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Abstract In this paper, we propose an Extreme Learning Machine-based one-class

classification method that exploits geometric class information. We formulate the pro-

posed method to exploit data representations in the feature space determined by the

network hidden layer outputs, as well as in ELM spaces of arbitrary dimensions. We

show that the exploitation of geometric class information enhances performance. We

evaluate the proposed approach in publicly available datasets and compare its perfor-

mance with the recently proposed One-Class Extreme Learning Machine algorithm,

as well as with standard and recently proposed one-class classifiers. Experimental

results show that the proposed method consistently outperforms the remaining ap-

proaches.

Keywords One-class classification · Novelty detection · Big Data · Extreme

Learning Machine

1 Introduction

Extreme Learning Machine (ELM) is an algorithm for Single-hidden Layer Feed-

forward Neural (SLFN) networks training [8, 9] that leads to fast network training

requiring low human supervision. In ELM networks, the network hidden layer pa-

rameters are randomly assigned. By using a non-linear activation function for the
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network hidden layer, the random assignment of the hidden layer weights and bias

values results in a random nonlinear mapping of the training data to the so-called

ELM space, having dimensionality equal to the number of the network hidden neu-

rons. After obtaining the training data representations in the ELM space, the network

output parameters can be analytically calculated using an optimization scheme in-

volving the network target vectors, in order to minimize the training error of the

network. Despite the fact that the determination of the hidden layer network outputs

is based on randomly assigned input weights, it has been shown that SLFN networks

trained by using the ELM algorithm have the properties of global approximators [9].

ELM has been proposed for supervised classification [8]. Since it’s first proposal,

several optimization schemes have been proposed in the literature for the calcula-

tion of the network output parameters, each highlighting different properties of the

ELM networks [9, 22, 23, 7, 3, 29, 37, 10, 13, 1, 12]. It has been shown that ELM

networks are able to outperform other sophisticated classification schemes, like the

Support Vector Machine classifier, [10, 1]. Extensions of the ELM algorithm target-

ing to semi-supervised [25, 15] and unsupervised [6] SLFN network training have

been recently proposed, where it is shown that ELM-based approaches are able to

provide state-of-the-art performance, while requiring low human supervision.

While ELM networks have been successfully exploited in (semi-)supervised and

unsupervised learning, their application to one-class classification problems has only

recently been investigated [21]. One-class classification (sometimes also called nov-

elty detection, outlier detection, or anomaly detection) refers to the classification case

where the available training data come from only one class, which needs to be mod-

eled. After learning a model for the class under consideration, unknown (test) sam-

ples are compared to that model and classified as class data or outliers (i.e., data not

belonging to the class). It is an important and challenging task, which has found ap-

plication in numerous problems where a large amount of data belonging to the class

under consideration can be acquired, while the description of the remaining world,

i.e., all other possibilities, is impractical. As an example application where one-class

classification is important, let us consider failure detection in industrial systems [35].

In failure detection tasks, the available class to be modeled is the working properly

case, while every other possibility can be considered as failure. In this case, one can

easily obtain data describing class working properly. However, obtaining data de-

scribing class failure is expensive, since one should cause failures to hundreds or

even thousands of machines. In addition, the caused failures should contain exam-

ples of all types of failures that may appear in real situations, which is difficult. For

this reason, modeling the class working properly by an one-class classifier is the

only reasonable choice. Other application scenarios include and medical diagnosis

problems [32], sensor networks [39], video surveillance/summarization [28, 30] and

mobile robotics [34]. An up-to-date review of one-class classification approaches can

be found in [31].

Among the one-class classification methods proposed in the literature, the One-

Class Support Vector Machine (OC-SVM) [33] and the Support Vector Data De-

scription (SVDD) [36] algorithms have been found to be effective. SVDD creates the

smallest possible boundary by calculating a center and a radius to define a hypershere

that can model the class of interest. Samples that appear outside of the hypershere are
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classified as novelties [36]. OC-SVM defines a hyperplane that can separate the class

of interest from the origin with the maximum possible margin [33]. Kernel Principal

Component Analysis (KPCA) based methods have also been proposed for novelty

detection [5, 2], where eigen-analysis is applied on the data forming the class to be

modeled. A novelty score can be computed using the reconstruction error [5] in the

feature space. Novelty score can also be calculated by projecting the training data in

the so-called null space, where the training data variance is zero, then calculate dis-

tances of the test data in the null space [2]. OC-ELM [21] has been found to achieve

performance comparable with several other state-of-art choices [21].

While the OC-ELM algorithm proposed in [21] has been found to be in line with

other one-class classification techniques, in terms of performance, in this paper we

show that geometric information concerning the class under consideration in the ELM

space is important for one-class classification problems. Such information can be ex-

ploited for performance enhancement. We propose an One-Class Extreme Learning

Machine classifier that is able to exploit such geometric class information. In more

detail, the proposed classifier performs a nonlinear mapping of the training data to the

ELM space, where the class under consideration is modeled. Geometric class data re-

lationships are described by using graph structures describing the scatter of the class

under consideration, or by exploiting pair-wise data relationships in the ELM space.

The proposed method is also extended in order to operate in ELM spaces of arbi-

trary dimensions [10, 17]. We evaluate the proposed approach in publicly available

datasets, where we compare its performance with that of standard one-class classi-

fiers, i.e., OC-SVM [33] and SVDD [36], as well as recently proposed state-of-the-art

methods, i.e., Kernel Null Space Methods for Novelty Detection (KNFST) [2], Kernel

PCA for novelty detection (KPCS) [5] and OC-ELM [21]. Experimental results show

that the proposed algorithms are able to consistently outperform the above mentioned

methods.

The rest of the paper is structured as follows. Section 2 provides an overview

of previous related work in ELM-based classification. The proposed one-class clas-

sification method is described in detail in Section 3. An extension of the proposed

method that operates in arbitrary-dimensional ELM spaces is described in Section

4. Experiments evaluating the proposed method are provided in Section 5. Finally,

conclusions are drawn in Section 6.

2 Overview of Extreme Learning Machine

Let us denote by xi ∈ R
D a set of N vectors consisting our training set. We would

like to employ {xi}i=1,...,N in order to train a SLFN network using the ELM algo-

rithm [8]. Such a network consists of D input (equal to the dimensionality of xi),

L hidden and C output (equal to the number of classes involved in the classifica-

tion problem) neurons. The number of hidden layer neurons L is a parameter of the

ELM algorithm and is usually set to be much greater than the number of classes C,

i.e., L ≫ C. In ELMs, the network input weights Win ∈ R
D×L and the hidden

layer bias values b ∈ R
L are randomly assigned, while the network output weights

Wout ∈ R
L×C are analytically calculated, as subsequently described.
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Given an activation function Φ(·) for the network hidden layer and using a linear

activation function for the network output layer, the response oi = [oi1, . . . , oiC ]
T of

the network corresponding to xi is calculated by:

oik =

L
∑

j=1

wkj Φ(vj , bj ,xi), k = 1, ..., C, (1)

where vj is the j-th column of Win, wk is the k-th column of Wout and wkj is the

j-th element of wk. It has been shown that almost any non-linear piecewise contin-

uous activation functions Φ(·) can be used for the calculation of the network hidden

layer outputs, e.g., the sigmoid, polynomial, Radial Basis Function (RBF), RBF-χ2,

Fourier series, etc [9, 7, 10, 13]. It has been also recently proven that ELM networks

using polynomials, Nadaraya-Watson and sigmoid functions attain the theoretical

generalization bound of feedforward neural networks. For the remaining activation

function choices, the Tikhonov regularization can be applied to guarantee the weak

regularity of the hidden layer output matrix, while not sacrificing the network’s gen-

eralization capability [26].

By storing the network hidden layer outputs φi ∈ R
L corresponding to all the

training vectors xi, i = 1, . . . , N in a matrix Φ = [φ
1
, . . . ,φN ], the network re-

sponse for the entire training set O ∈ R
C×N can be expressed in a matrix form

as:

O = W
T
outΦ. (2)

For multi-class classification problems, the network target vectors ti ∈ R
C , i =

1, . . . , N are set to tik = 1, when xi belongs to class k, and tik = −1, otherwise.

The original ELM algorithm [8] assumes zero training error. That is, it is assumed that

oi = ti, i = 1, . . . , N , or by using a matrix notation O = T, where T = [t1, . . . , tN ]
is a matrix containing the network target vectors. By using (3), the network output

weights Wout can be analytically calculated by:

Wout =
(

ΦΦ
T
)−1

ΦT
T = Φ

†
T

T . (3)

In the case where L > N , the calculation of the network output weights Wout

through (3) is inaccurate, since the matrix ΦΦ
T is singular. A regularized version of

the ELM algorithm that allows small training errors and tries to minimize the norm of

the network output weights Wout has been proposed in [10]. In this case, the network

output weights are calculated by solving the following optimization problem:

Minimize: JRELM =
1

2
‖Wout‖

2

F +
c

2

N
∑

i=1

‖ξi‖
2

2
, (4)

Subject to: WT
outφi = ti − ξi, i = 1, ..., N, (5)

where ξi ∈ R
C is the error vector corresponding to xi and c is a parameter denoting

the importance of the training error in the optimization problem, satisfying c > 0.
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By substituting the constraints (5) in (4) and determining the saddle point of JRELM

with respect to Wout, the network output weights are obtained by:

Wout =

(

ΦΦ
T +

1

c
I

)−1

ΦT
T , (6)

or

Wout = Φ

(

Φ
T
Φ+

1

c
I

)−1

T
T = Φ

(

K+
1

λ
I

)−1

T
T , (7)

where K ∈ R
N×N is the so-called ELM kernel matrix [10, 17] and I is the identity

matrix of appropriate dimensions.

In the latter case, after the calculation of the network output weights Wout, the

network response for a given vector xl ∈ R
D is given by:

ol = W
T
outφl = T

(

K+
1

λ
I

)−1

Φ
Tφl = T

(

K+
1

λ
I

)−1

kl, (8)

where kl is the ELM kernel vector for xl.

Recently, it has been shown that the performance of the ELM network can be en-

hanced by exploiting geometric (class) data relationships in the ELM space [13, 15].

By trying to minimize both the network training error and the within-class disper-

sion of the training data in the ELM space, the network output weights Wout are

calculated by solving the following optimization problem [13]:

Minimize: JGELM =
1

2
‖S

1

2Wout‖
2

F +
c

2

N
∑

i=1

‖ξi‖
2

2
, (9)

Subject to: WT
outφi = ti − ξi, i = 1, ..., N, (10)

where S ∈ R
L×L is the within-class scatter matrix calculated using φi. S can also ex-

press general geometric data relationships expressed within the context of the Graph

Embedded framework [38, 15]. By substituting the constraints (10) in (9) and deter-

mining the saddle point of JGELM with respect to Wout, the network output weights

are obtained by:

Wout =

(

ΦΦ
T +

1

c
S

)−1

ΦT
T . (11)

After the calculation of the network output weights Wout, the network response for

a given vector xl ∈ R
D is given by:

ol = W
T
outφl. (12)

xl is finally classified to the class corresponding to the network output neuron pro-

viding the maximal network output.
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For one-class classification problems, the following optimization problem has

been recently proposed for the calculation of the network output weight vector w ∈
R

L [21]:

Minimize: JOC−ELM =
1

2
‖w‖2

2
+

c

2

N
∑

i=1

ξ2i , (13)

Subject to: wTφi = 1− ξi, i = 1, ..., N, (14)

leading to the solution:

w =

(

ΦΦ
T +

1

c
I

)−1

Φ1, (15)

where 1 ∈ R
N is a vector of ones. After the calculation of the network output weight

w, the network response for a given vector xl ∈ R
D is given by:

ol = w
Tφl (16)

and xl is classified to the class under consideration if (ol−1)2 ≤ ǫ, or is characterized

as an outlier, if (ol − 1)2 > ǫ, where ǫ ≥ 0 is a threshold determined by using the

network responses for the training data.

3 One-Class Extreme Learning Machine exploiting geometric data

relationships

In this Section, we describe in detail the proposed one-class classification method

that exploits geometric data relationships in the ELM space in order to incorporate

geometric class information in the one-class classification model.

In order to describe pairwise data relationships, we assume that the training data

representations in the ELM space are used in order to form the vertex set of a graph

G = {Φ,V}, where V ∈ R
N×N is a matrix expressing pair-wise similarities be-

tween the graph vertices φi. S can be defined as follows:

S = ΦLΦ
T , (17)

where L ∈ R
N×N is the graph Laplacian matrix defined by L = D − V, D being

the diagonal degree matrix of G having elements Dii =
∑N

j=1
Vij [38].

The dispersion of the training data in the ELM space from their mean can be

expressed as follows:

Sw =
1

N

N
∑

i=1

(

φi − φ̄
) (

φi − φ̄
)T

=
1

N
Φ

(

I−
1

N
11

T

)

Φ
T = ΦLwΦ

T , (18)

where φ̄ expresses the mean training vector in the ELM space, 1 is a vector of ones

and I is an identity matrix of appropriate dimensions. Clearly, Sw can be expressed

within the Graph Embedded framework, using the matrices V = 1

N211
T and D =

1

N
I.
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Global pair-wise geometric information in the ELM space can be expressed by

employing a fully-connected graph in which the weight matrix V is defined by:

vij = exp

(

−
‖φi − φj‖

2

2

2σ2

)

, (19)

where σ can be used as a scaling parameter of the Euclidean distances between φi

and φj .

Finally, kNN graphs describing local class data relationships can be exploited by

defining the graph weight matrix V elements as follows:

Vij =

{

vij , if φj ∈ Ni,

0, otherwise,
(20)

where Ni denotes the neighborhood of φi. Here it is worth noting that the proposed

approach can exploit several types of graphs, each describing different pairwise rela-

tionships between the training data.

In order to incorporate information related to the geometry of the class in the cal-

culation of the network output weight vector w, the following optimization problem

is solved:

Minimize: JGOC−ELM =
1

2
w

T
Sw +

c

2

N
∑

i=1

ξ2i , (21)

Subject to: wTφi = 1− ξi, i = 1, ..., N, (22)

where S is the matrix encoding data relationships of interest, as described above.

By observing (13) and (21), it can be seen that the second term of the optimization

problems solved by the OC-ELM and the proposed method expresses the training

error, i.e. w should be selected so as to map most of the training data to a value

close to one. The first term in both (13) and (21) is a regularizer. In the original

OC-ELM method (13), the adopted regularizer tries to minimize the l2 norm of w.

The regularizer used in (21) can be considered as a data projection minimizing the

geometric properties expressed in Sw.

Let us consider the within-class scatter expressed in (18). The regularizer em-

ploying Sw can be expressed as follows:

w
T
Sww = w

T
ΦLwΦw = w

T

(

1

N

N
∑

i=1

(

φi − φ̄
) (

φi − φ̄
)T

)

w

=
1

N

N
∑

i=1

(

w
Tφi −w

T φ̄
) (

w
Tφi −w

T φ̄
)T

=
N
∑

i=1

(oi − ō) (oi − ō)
T
= S̃w. (23)

That is, by exploiting Sw in its regularization term, the proposed method tries to find

the vector w which minimizes the training error and at the same time minimizes the
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dispersion of the data in the network’s output layer. It can be easily shown that the

exploitation of the graphs in (19) and (20) lead to regularization terms minimizing

pair-wise distances of the data in the network’s output layer.

In order to obtain the solution of (21), we use its dual optimization problem which

is given by:

LGOC−ELM =
1

2
w

T
Sw +

c

2

N
∑

i=1

ξ2i −
N
∑

i=1

αi(w
Tφi − 1 + ξ), (24)

where αi, i = 1, . . . , N are the Lagrange multipliers corresponding to the constraints

in (22). By determining the saddle points of LGOC−ELM with respect to w, ξ and

αi, we obtain:

ϑLGOC−ELM

ϑw
= 0 ⇒ Sw = Φα, (25)

ϑLGOC−ELM

ϑξi
= 0 ⇒ ξ =

1

c
α, (26)

ϑLGOC−ELM

ϑαi

= 0 ⇒ Φ
T
w = 1− ξ. (27)

In order to avoid singularity issues, we adopt a regularized version of S, i.e.:

S̃ = S+ λI, (28)

where λ > 0 is a regularization parameter used in order to exploit the diagonally

dominant property of non-singular matrices. Thus, from (25) and (28) we obtain:

w = S̃
−1

Φα. (29)

By substituting (26) and (27) to (29), the network output weight vector w is given

by:

w =

(

ΦΦ
T +

1

c
S̃

)−1

Φ1

=

(

ΦΦ
T +

1

c
S+

λ

c
I

)−1

Φ1. (30)

After the calculation of the network output weight w, the network response for a

given vector xl ∈ R
D is given by:

ol = w
Tφl (31)

and xl is classified to the class under consideration if (ol−1)2 ≤ ǫ, or is characterized

as an outlier, if (ol − 1)2 > ǫ, where ǫ ≥ 0 is a threshold determined by using the

network responses for the training data. Clearly, by describing (15) and (30), one can

observe that the proposed GOC-ELM is an extension of the OC-ELM classifier that

exploits geometric class relationships for the calculation of the network output weight

vector.
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4 Kernel One-Class Extreme Learning Machine exploiting geometric data

relationships

The above-given analysis exploits random network hidden layer parameters and de-

termines a network output weight vector w that is defined in the ELM space R
L of

finite dimensions. The same applies to the OC-ELM algorithm [21] described in Sec-

tion 2. In multi-class classification problems, however, ELM algorithms exploiting

kernel formulations have been found to outperform ELM networks exploiting random

hidden layer parameters [10, 17]. The kernel formulation for the proposed GOC-ELM

algorithm, requires a mapping of the data from the input space to an ELM space of

arbitrary dimensionality, by employing any non-linear activation function Φ(·) 7→ F ,

i.e., the RBF kernel function. By exploiting the Representer Theorem, the network

output weight vector w in the ELM space can be expressed as a linear combination

of the data representations in the ELM space of and a reconstruction vector i.e.:

w = Φβ, (32)

where Φ ∈ R
|F|×N is a matrix that contains the data representations in the ELM

space and β ∈ R
N is a vector containing the reconstruction weights of w with respect

to Φ. By substituting w using (32) in (24), and by using a regularized version of S as

in (28), the Lagrangian function LGOC−ELM gets the following form:

LGOC−ELM =
1

2
βT (KLK+ λK)β +

c

2

N
∑

i=1

ξ2i

−
N
∑

i=1

αi(β
T
ki − 1 + ξ), (33)

where K ∈ R
N×N is the so-called kernel ELM matrix defined by K = Φ

T
Φ and

ki ∈ R
N is a vector having elements equal to ki,j = φT

i φj , j = 1, . . . , N .

By determining the saddle points of LGOC−ELM with respect to β, ξ and αi, we

obtain:

ϑLGOC−ELM

ϑβ
= 0 ⇒ β = (LK+ λI)

−1
α, (34)

ϑLGOC−ELM

ϑξi
= 0 ⇒ ξ =

1

c
α, (35)

ϑLGOC−ELM

ϑαi

= 0 ⇒ Kβ = 1− ξ. (36)

By substituting (35) and (36) in (34), we obtain:

β =

(

K+
1

c
LK+

λ

c
I

)−1

1. (37)

Thus, the network output weight w is given by combining (32) and (37) by:

w = Φ

(

K+
1

c
LK+

λ

c
I

)−1

1. (38)
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Table 1 Training set cardinalities and number of features for each class

Name Dataset Size Target Class Cardinality (N ) Data dimension (D)

IMPART [18] 1204 86 500

I3DPost [4] 832 104 100

Arrhythmia [24] 420 237 and 183 278

Wisconsin Breast Cancer [24, 27] 699 241 and 458 9

After the calculation of the network output weight w, the network response for a

given vector xl ∈ R
D is given by:

ol = w
Tφl = βT

Φ
Tφl = βT

kl. (39)

xl is finally classified to the class under consideration if (ol − 1)2 ≤ ǫ, or is charac-

terized as an outlier, if (ol − 1)2 > ǫ, where ǫ ≥ 0 is a threshold determined by using

the network responses for the training data.

5 Experiments

In this section, we describe experiments conducted in order to evaluate the perfor-

mance of the proposed GOC-ELM classifier. Since several types of graphs describing

different types of class data relationships can be defined, we report the performance of

the proposed GOC-ELM classifier for several types of graphs. We chose four differ-

ent graph types, which have been shown to provide good performance in multi-class

classification problems [14, 16]. Specifically, in our experiments we employ graphs

defined for the Laplacian Eigenmap (LE), the Locally Linear Embedding (LLE), the

within-class scatter in Linear Discriminant Analysis (LDA) and the within-class scat-

ter in Clustering-based Disriminant Analysis (CDA) methods. In what follows, each

variant of the proposed method is expressed by using the acronym (GOC-ELM-X),

where X denotes the type of graph that is exploited (i.e., LE, LLE, LDA or CDA).

In order to directly compare the performance of the proposed method with that

of other one-class classification choices, we include in our experiments standard one-

class classifiers, i.e., OC-SVM [33] and SVDD [36], as well as recently proposed

state-of-the-art one-class classifiers, i.e., KPCS [5] and KNFST [2]. We have em-

ployed publicly available datasets that are briefly described in subsection 5.1. Finally,

experimental results are provided in Subsection 5.2.

5.1 Data sets

In this section, we present the publicly available datasets employed in our exper-

iments. These datasets were selected in order to evaluate the performance of the

proposed GOC-ELM in one-class classification problems related to video summa-

rization (e.g., viewing angle selection) and problems of generic interest. Training set

cardinalities and number of features for each class are summarized in Table 1.
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5.1.1 IMPART Dataset [18]

The IMPART Multi-modal/Multi-view Dataset consists of five recording sections in-

cluding multi-view and multi-modal captures. The classification scenario used in our

experiments refers to distinguishing one (a priori chosen) viewing angle (e.g., frontal

with respect to the human body orientation) from all the remaining ones. Fourteen

cameras were placed in a circle, in order to capture a scene with 3600 coverage around

each subject. Long videos depicting multiple human actions were automatically tem-

porally segmented to shorter ones depicting single actions by using the method in

[19]. This process led to the creation of 1204 action videos. We obtained vectorial

action video representations following a Bag-Of-Features-based approach [11, 14],

which resulted into 1204 500-dimensional vectors. For each of the 14 target (view)

classes, there are 86 available vectors in total. Example frames from the IMPART

dataset can be seen in Figure 5.1.1.

Fig. 1 Example frames from the IMPART dataset

5.1.2 i3DPost Dataset [4]

The i3DPost Multi-view Human Action Dataset contains 832 high-resolution (1080×
1920 pixel) videos depicting eight persons performing different activities. The database

camera setup consists of eight cameras placed in the perimeter of a ring at a height of

2 meters above the studio floor. Similar to the IMPART dataset, the classification sce-

nario used in our experiments refers to distinguishing one viewing angle (e.g., frontal

with respect to the human body orientation), from all the remaining ones. We ob-

tained vectorial action video representations by following a Bag-Of-Features-based

approach [11, 14], which resulted into 832 100-dimensional vectors. For each of the

8 target (view) classes, there are 104 available vectors in total. Example frames from

the I3DPost dataset can be seen in Figure 5.1.2.

5.1.3 Arrhythmia Dataset [24]

Arrhythmia dataset is part of the UCI machine learning repository [24]. It contains 2
(healthy and not healthy) classes of cardinality of 237 and 183 samples each, leading

to a total dataset cardinality of 420 samples. Each sample is represented by a 278-

dimensional feature vector.
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Fig. 2 Example frames from the I3DPost dataset

Table 2 Performance (%) in IMPART Dataset

Algorithm View 1 View 2 View 3 View 4 View 5 View 6 View 7 View 8 View 9 View 10 View 11 View 12 View 13 View 14 Mean

OC-SVM [33] 55.02 ± 2.84 54.75 ± 1.67 49.80 ± 2.84 50.33 ± 1.87 51.56 ± 3.39 58.10 ± 3.65 53.89 ± 1.42 51.62 ± 1.35 50.22 ±2.69 49.56 ± 1.50 51.52 ±1.63 53.43 ± 0.11 49.63 ± 1.87 55.00 ± 2.49 52.46± 0.18

SVDD [36] 55.80 ± 3.31 54.30 ± 2.15 52.36 ± 4.47 50.35 ± 1.85 52.83 ± 2.92 57.92±3.39 54.06 ± 1.54 51.32 ±1.59 49.19 ± 3.11 50.52 ±0.67 51.26 ±1.95 53.03 ±1.12 51.22 ±2.48 55.68 ±3.31 52.85±0.36

KNFST [2] 45.10 ±8.12 53.34 ±1.48 44.70 ± 1.92 52.40 ±0.19 43.55 ±4.95 48.82 ±6.62 53.04 ±3.72 53.83 ±0.56 47.66 ±4.89 53.70 ±0.63 52.81 ±2.15 56.59 ±0.21 50.51 ±2.45 53.80 ±3.36 50.38 ± 0.94

KPCS [5] 45.48 ± 7.91 48.00 ±12.5 53.36 ±5.77 55.33 ±3.51 51.11 ±3.41 50.24 ±0.74 46.58 ±9.56 50.52 ±2.55 49.88 ±7.78 59.44±2.87 57.85± 2.14 52.90 ±6.67 49.85 ±5.93 41.93 ± 16.7 50.89 ± 4.79

OC-ELM [21] 54.53 ± 1.19 54.89 ±3.37 54.12 ±2.78 53.21 ±2.36 55.71 ±1.21 56.97 ±4.11 55.40 ±3.55 53.04 ±1.07 50.62 ±2.38 52.99 ±1.42 51.57 ±3.70 55.32 ±2.12 51.80 ± 0.96 56.13 ±2.08 54.02±0.78

GOC-ELM-LDA 55.68 ±1.26 54.95 ±3.43 55.05 ±1.98 54.99 ±2.17 56.46 ±1.87 56.97 ±4.11 57.21 ±1.53 54.18 ±1.40 51.53 ±3.04 53.57 ±0.83 52.15 ±3.81 55.74 ±2.28 52.14 ±1.16 56.53 ±2.24 54.80±0.74

GOC-ELM-CDA 57.53±1.38 56.43±2.31 56.23±1.88 56.48±1.52 57.31±1.55 57.08 ±4.08 57.93±1.29 55.98±1.21 53.61±1.88 55.54 ±0.64 53.59 ±4.00 56.79±3.07 53.49 ±1.15 57.82±1.99 56.13±0.72

GOC-ELM-LE 55.53 ± 1.46 54.95 ±3.43 54.79 ±1.97 54.70 ±2.30 56.50 ±1.92 56.97 ±4.11 56.56 ±2.07 54.02 ±1.35 50.99 ±2.69 53.66 ±0.77 52.29 ±4.16 55.74 ±2.28 52.11 ±1.21 56.59 ±1.75 54.67±0.79

GOC-ELM-LLE 55.02 ±1.48 54.71 ±2.54 54.68 ±.039 55.70 ±4.01 56.48 ±0.93 56.85 ±6.48 54.96 ±4.26 53.93 ±3.84 51.21 ±2.04 56.34 ±3.92 54.22 ±3.91 55.37 ±3.31 52.53±4.51 56.68 ±3.05 54.91 ±2.67

Table 3 Performance (%) in I3DPost Dataset

Algorithm View 1 View 2 View 3 View 4 View 5 View 6 View 7 View 8 Mean

OC-SVM [33] 64.96 ± 3.54 64.29 ± 4.38 68.92 ± 0.65 69.52 ± 4.64 62.52 ± 2.81 66.20 ± 2.63 65.08 ± 4.79 70.91 ± 1.77 66.55 ± 2.73

SVDD [36] 64.89 ± 3.64 64.79 ± 3.84 68.43 ± 0.88 69.52 ± 4.64 62.41 ± 2.94 66.20 ± 2.29 65.98 ± 4.06 70.91 ± 1.77 66.90 ± 2.62

KNFST [2] 75.74 ± 3.37 67.05 ± 12.60 78.34 ± 0.75 79.45 ± 1.85 66.90 ± 9.67 65.27 ± 11.53 74.52 ± 3.31 78.82 ± 3.85 73.15 ± 5.54

KPCS [5] 75.83 ± 3.75 72.95 ± 1.93 71.91 ± 3.33 70.97 ± 2.24 71.01 ± 5.27 70.95 ± 4.62 68.53 ± 1.06 69.74 ± 1.22 73.75 ± 2.05

OC-ELM [21] 74.15 ± 1.69 75.07 ± 5.34 75.91 ± 1.01 79.14 ± 1.98 69.57 ± 0.58 73.83 ± 1.11 74.34 ± 3.40 76.40 ± 3.81 74.80 ± 2.54

GOC-ELM-LDA 75.25 ± 1.77 77.88 ±3.09 78.73 ± 2.01 80.69 ± 0.21 71.87 ± 2.27 75.58 ± 0.83 75.03 ± 2.80 77.07 ± 2.95 76.51 ±2.52

GOC-ELM-CDA 78.75 ± 1.53 80.53 ± 2.03 80.57 ± 1.53 82.19 ± 1.09 76.45 ± 1.12 79.08 ± 0.77 79.33 ± 1.19 80.47 ± 1.53 79.67 ± 1.59

GOC-ELM-LE 75.86 ± 1.47 77.79 ± 3.15 78.73 ± 2.01 80.79 ± 0.08 71.97 ± 2.28 75.90 ± 1.02 75.03 ± 2.80 77.07 ± 2.95 76.64 ± 2.47

GOC-ELM-LLE 77.65 ± 3.35 79.37 ± 3.46 80.30 ± 2.09 82.01 ± 1.53 71.76 ± 0.83 77.36 ± 0.34 76.30 ± 2.56 80.38 ± 1.51 78.14 ± 2.98

5.1.4 Wisconsin Breast Cancer Dataset [27]

Wisconsin Breast Cancer Dataset is part of the UCI machine learning repository [24].

It was collected between 1989 and 1991 by the University of Wisconsin Hospitals,

Madison from Dr. William H. Wolberg [27]. This dataset contains two classes of 241
and 458 samples each, resulting in a total dataset cardinallity of 699 samples. Each

sample is represented by a 9-dimensional feature vector.

5.2 Experimental Results

In all our experiments, we evaluate the performance of each algorithm by using the g-

mean metric [20], which have been found to be useful when there are data imbalances.

The g-mean metric indicates both precision and recall measurements as follows:

G =
√

precision ∗ recall (40)

We report the performance obtained by applying the kernel version of the proposed

GOC-ELM algorithms, since it consistently outperformed the GOC-ELM algorithm
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Table 4 Performance (%) in Wisconsin Breast Cancer Dataset

Algorithm Benign Malignant Mean

OC-SVM [33] 94.51 ± 1.11 86.06 ± 2.45 90.29

SVDD [36] 96.66 ± 0.59 90.88 ± 2.80 93.77

KNFST [2] 94.7 ± 0.92 34.27 ± 0.71 64.49

KPCS [5] 28.01 ± 2.44 12.01 ± 2.78 92.7

OC-ELM [21] 94.70 ± 0.74 72.72 ± 4.81 83.71

GOC-ELM-LDA 96.63 ± 0.75 72.72 ± 4.81 84.68

GOC-ELM-CDA 96.67 ± 0.63 72.72 ± 4.81 84.7

GOC-ELM-LE 96.65 ± 0.74 72.66 ± 4.81 84.66

GOC-ELM-LLE 96.82 ± 0.72 ± 97.71 ± 0.47 97.27

Table 5 Performance (%) in Arrhythmia Dataset

Algorithm Healthy Not healthy Mean

OC-SVM [33] 70.64 ± 1.79 35.81 ± 5.18 53.23

SVDD [36] 70.69 ± 1.72 27.65 ± 3.12 49.17

KNFST [2] 68.93 ± 1.69 39.59 ± 6.46 54.26

KPCS [5] 54.53 ± 3.43 67.30 ± 3.40 60.92

OC-ELM [21] 69.79 ± 1.43 52.01 ± 3.16 60.9

GOC-ELM-LDA 69.98 ± 1.36 53.86 ± 2.24 61.92

GOC-ELM-CDA 71.62 ± 0.76 54.16 ± 2.24 62.89

GOC-ELM-LE 69.96 ± 1.40 53.77 ± 2.35 63.65

GOC-ELM-LLE 71.15 ± 1.36 55.42 ± 3.12 63.29

exploiting the ELM space determined by the network hidden layer outputs. The same

applies for the OC-ELM algorithm. That is, in the following results we report the

performance of the special case of the proposed kernel GOC-ELM algorithm that

uses L = 0, since it has been found to outperform the OC-ELM method proposed in

[21] in most cases.

Regarding the values of the parameters used in each of the tested algorithms,

they have been determined by following a grid search approach. For OC-SVM and

SVDD-based one-class classification, we define the regularization parameter and the

fraction of the outliers, respectively, by setting the corresponding parameters equal

to dN , where the value of parameter d is given by d = {0.05, 0.1, 0.3, 0.5, 0.8}. In

KPCS-based one-class classification, the total PCA energy preserved is set equal to

p = {0.85, 0.9, 0.95}. In KNFST, the reconstruction error boundary is set to the value

dN , where d = {0.05, 0.1, 0.3, 0.5, 0.8}. In OC-ELM and the proposed GOC-ELM

classifiers, the regularization parameters c, λ are set equal to c = 10l and λ = 10l,
where l = {−6, . . . , 6}. The number k of nearest neighbors used in order to define

the kNN graph in GOC-ELM-LLE is set to k = {2,′ . . . , 10} and the number of

clusters used in GOC-ELM-CDA is set to s = {2, . . . , 20}. In all our experiments,

the parameter σ used for defining the weights of V in (19) has been set equal to the

mean Euclidean distance between the training samples in the ELM space.

In our first set of experiments, we have applied the one-class classification meth-

ods in the IMPART and i3DPost action video datasets. In both datasets, we report

the average performance of each algorithm by performing a f -fold cross-validation

procedure, where f = 3 for IMPART and f = 4 for i3DPost. We have employed
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a RBF kernel function using the χ2 distance, where the variance is defined to be

proportional to the mean χ2 distance between the training vectors by employing a

weight σ = [0.5, 1.0, 5.0, 10.0]. Multiple experiments have been conducted (one for

each view angle) and the obtained performance values are illustrated in Tables 2 and

3 for the IMPART and the i3DPost datasets, respectively. In addition, we report the

mean performance and standard deviations of each algorithm, which corresponds to

the performance of each algorithm after training multiple one-class classifiers, each

used in order to make decisions for a specific view. It is clear that in both cases, the

incorporation of geometric class information in OC-ELM-based classification leads

to enhanced performance. Specifically, it can be seen that the proposed GOC-ELM

algorithms outperform OC-ELM in most cases. The proposed GOC-ELM algorithm

exploiting the (clustering-based) within-class variance of the training data provides

the best performance in both databases. It is worth noting here that GOC-ELM-CDA

outperforms all the remaining choices to a large extend.

In our second set of experiments, we have applied the one-class classification

methods in the Wisconsin Breast Cancer and Arrhythmia datasets. Due to the fact

that the cardinality of these datasets is rather small, when compared to the IMPART

and i3DPost datasets, we employ 70% of the class data in order to form our train-

ing set and the remaining 30% in order to form the evaluation set. We apply 10
experiments by randomly partitioning each dataset in training and test sets and we

report the mean of the obtained performances, as well as the standard deviations, for

each algorithm. Experimental results are illustrated in Tables 4 and 5. The incorpo-

ration of geometrical class information in the OC-ELM optimization process clearly

enhances the performance of the OC-ELM classifier. The proposed algorithms out-

perform the OC-ELM algorithm [21] in every case. Finally, it can be seen that the

proposed GOC-ELM methods outperforms standard and recently proposed state-of-

the-art approaches.

6 Conclusions

In this paper, we have shown that geometric class information described by exploit-

ing graph structures can be incorporated in Extreme Learning Machine-based neural

network training for one-class classification. We have proposed two solutions to this

end. The first solution employs data representations in the feature space determined

by the outputs of the network hidden layer outputs, while the second one employs

data representations in arbitrary-dimensional ELM spaces. We have shown that the

incorporation of geometric class information in ELMs for one-class classification

leads to enhanced performance. In addition, we compared the performance of the

proposed one-class classifier with standard, as well as recently proposed methods in

public datasets corresponding to real problems. Experimental results show that the

proposed method is able to provide satisfactory performance in all tested cases.
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