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One-class classi
cation problemhas been investigated thoroughly for past decades. Among one of themost e�ective neural network
approaches for one-class classi
cation, autoencoder has been successfully applied for many applications. However, this classi
er
relies on traditional learning algorithms such as backpropagation to train the network, which is quite time-consuming. To tackle
the slow learning speed in autoencoder neural network, we propose a simple and e�cient one-class classi
er based on extreme
learning machine (ELM).	e essence of ELM is that the hidden layer need not be tuned and the output weights can be analytically
determined, which leads to much faster learning speed.	e experimental evaluation conducted on several real-world benchmarks
shows that the ELM based one-class classi
er can learn hundreds of times faster than autoencoder and it is competitive over a
variety of one-class classi
cation methods.

1. Introduction

One-class classi
cation [1, 2] has received much interest
during recent years, which has also been known as novelty
or outlier detection. Di�erent from normal classi
cation,
data samples from only one class, called the target class, are
well characterized, while there are no or few samples from
the other class (also called the outlier class). To reveal the
necessity of one-class classi
cation, we take the case of online
shopping service as an example. In order to recommend
goods users want, it is convenient to track the users’ history
shopping lists (positive training samples), while collection
of negative training samples is challenging because it is
hard to say which one users dislike. Other applications
include machine fault detection [3], disease detection [4],
and credit scoring [5]. 	e goal is to “teach” the classi
er
through observing target samples so that it can be applied to
select unknown samples similar to the target class and reject
samples which deviate signi
cantly from the target class.

Various types of one-class classi
er have been designed
and applied in di�erent 
elds; see [6] for a comprehensive
review. Early attempt to obtain a one-class classi
er is by
estimating the probability density functions based on training

data. Parzen density estimation [7, 8] superposes kernel
functions on individual training samples to estimate the
probability density function. Naive Parzen density estima-
tion, similar to Naive Bayes approach used for classi
cation,

ts a Parzen density estimation on each individual feature
and multiplies the results for 
nal density estimation. A
test sample is rejected if its estimated probability is below a
threshold. However, estimating the true density distribution
usually requires a large number of training samples.

A simpler task is to 
nd the domain of the data distri-
bution. Schölkopf et al. [9] constructed a hyperplane which
is maximally distant from the origin to separate the regions
that contain no data. An alternative approach is to 
nd a
hypersphere [10] instead of a hyperplane to include the most
target data with the minimum radius. Both approaches are
cast out in the form of quadratic programming, while some
approaches [11–13] are of linear programming. One-class LP
classi
er [11] minimizes the volume of the prism, which is cut
by a hyperplane that bounds the data from above with some
mild constrains on dissimilarity representations. Lanckriet
et al. [13] propose the one-classminimax probabilitymachine
that minimizes the worst case probability of misclassi
cation
of test data, using only the mean and covariance matrix
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of the target distribution. When kernel methods are used,
the aforementioned domain-based classi
ers [2] can obtain
more �exible descriptions. Recently, a minimum spanning
tree based one-class classi
er [14]was proposed. It considered
graph edges as additional set of virtual target objects. By
constructing a minimum spanning tree, recognition of a new
test sample is determined by the shortest distance to the
closest edge of that tree.

Autoencoder neural network is one of the reconstruction
methods [1] to build a one-class classi
er. 	e simplest
architecture of such model is based on the single-hidden
layer feed-forward neural networks (SLFNs). Usually, the
hidden layer contains a smaller number of nodes than the
number of input nodes which works like an information
bottleneck. 	e classi
er reproduces the input patterns at
the output layer through minimizing the reconstruction
error. However, standard backpropagation (BP) algorithm is
used to train the networks, which is quite time-consuming.
Extreme learning machine [15, 16] is originally developed to
address the slow learning speed problem of gradient based
learning algorithms for its iterative tuning of the networks’
parameters. It randomly selects all parameters of the hidden
neurons and analytically determines the output weights. It is
stated [17, 18] in theory that ELM tends to provide the best
generalization performance at extreme learning speed since
it is a simple tuning-free algorithm.

In this paper, the proposed one-class classi
er based on
ELM is constructed for situations where only the target class
is well described. 	e proposed one-class classi
er utilizes
the uni
ed ELM learning theory [17], which leads to extreme
learning speed and superior generalization performance.
Moreover, the classi
er further lessens the human interven-
tion since it is not limited to speci
c target labels. Both
random feature mappings and kernels can be adopted for
such classi
er which makes it more �exible to unique target
descriptions. Constructing the proposed classi
er for three
quite di�erent speci
c-designed arti
cial datasets demon-
strates the classi
er’s ability to describe universal target
class distributions. When real-world datasets are evaluated,
the proposed one-classi
er is competitive over a variety of
one-class models and learns hundreds of times faster than
autoencoder neural network for one-class classi
cation.

	e rest of the paper is organized as follows. Section 2
brie�y reviews extreme learning machine. In Section 3, we

rst describe the hypersphere perceptron as a one-class clas-
si
er and then introduce our proposed ELM based one-class
classi
er. Section 4 describes the experiments conducted
on both arti
cial and real-world datasets. Finally, Section 5
presents the conclusion of the work.

2. Brief Review of ELM

ELM aims to reach not only the smallest training error but
also the smallest norm of output weights [16] between the
hidden layer and the output layer. According to Bartlett’s
theory [19], the smaller norm of weights is, the better
generalization performance of networks tends to have. 	us,
better generalization performance can be expected for ELM

networks. In [17], equality constraints are used in ELM,
which provides a uni
ed solution for regression, binary, and
multiclass classi
cations.

2.1. Equality-Optimization-Constraints-Based ELM. Given�
training data (x�, ��)��=1, where x� = [��1, . . . , ���]� ∈ �� is the
individual feature vector with dimension � and �� ∈ �� is
the desired target output, in the one-class classi
cation case,
single output node (� = 1) is enough. 	e ELM output
function can be formulated as

	 (x) = h(x)�� = �∑
�=1
���(w�, ��, x) , (1)

where � = [�1, . . . , ��]� is the vector of the output weights
between the hidden layer and the output layer, w� =
[��1, . . . , ���]� is the input weights connecting input nodes
with the �th hidden node, �� is the bias of the �th hidden node,
h(x) = [�(w1, �	, x), . . . , �(w�, ��, x)]� is the output vector of
the hidden layer with respect to input x, and �(w, �, x) is the
activation function (e.g., sigmoid function�(w, �, x) = 1/(1+
exp(−(w� ⋅ x + �)))) satisfying ELM universal approximation
capability theorems [20, 21]. In fact,h(x) is a knownnonlinear
feature mapping which maps the training data x from the �-
dimensional input space to the �-dimensional ELM feature
space [17].	e goal of ELM is tominimize the normof output
weights as well as the training errors, which is equivalent to

min �
ELM = 12 ���������2 + �12
�∑
�=1

����������2

s.t. h (x�)�� = �� − ��, � = 1, . . . , �,
(2)

where �� is the slack variable of the training sample x� and� controls the tradeo� between the output weights and the
errors. Based on the Karush-Kuhn-Tucker (KKT) theorem
[22], the corresponding Lagrange function of the primal ELM
optimization (2) is

��ELM = 12 ���������2 + �12
�∑
�=1

����������2 −
�∑
�=1
�� (h (x�)�� − �� + ��) ;

(3)

the following optimality conditions of (3) should be satis
ed:

���ELM�� = 0 �⇒ � = �∑
�=1
��, h (x�) = H

��, (4a)

���ELM��� = 0 �⇒ �� = ���, � = 1, . . . , �, (4b)

���ELM��� = 0 �⇒ h (x�)�� − �� + �� = 0, � = 1, . . . , �, (4c)

where H = [h(x1), . . . , h(x�)]� is the hidden layer output

matrix and � = [�1, . . . , ��]� is the vector of Lagrange
variables. Substituting (4a) and (4b) into (4c) we have

( I� +HH
�)� = T. (5)
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Here I is the identity matrix and T = [�1, . . . , ��]�. Substitut-
ing (5) into (4a), we get

� = H
� ( I� +HH

�)−1 T. (6)

	e ELM output function (1) can be further derived as

	 (x) = h (x)�� = h (x)�H� ( I� +HH
�)−1 T. (7)

If the hidden nodes’ feature mapping h(x) is unknown to
users, kernel methods that satisfy Mercer’s condition can be
adopted:  (x�, x�) = h(x�) ⋅ h(x�). 	e ELM kernel output
function can be written as

	 (x) = h (x)�� = h (x)�H� ( I� +HH
�)−1 T

= [[
[
 (x, x1)... (x, x�)

]]
]

�

( I� +ΩELM)
−1
T

(8a)

and the kernel matrix for ELM is

ΩELM = HH
� : ΩELM�,� = h (x�) ⋅ h (x�) =  (x�, x�) . (8b)

2.2. Advances of ELM. Extreme learning machine has gained
much more popularity since its advent. It has been able to
avoid the problem of time complexity which classic learning
techniques are confronted with while providing better gener-
alization performance with less human intervention. Because
of such attractive features, researchers have extended the
basic ELM to several di�erent directions and many variants
of ELM have been developed. For instance, online sequential
ELM (OS-ELM) [23, 24] can learn the sequential coming
data (one by one or chunk by chunk) with a small e�ort to
update the output weights. 	e training data are discarded
a�er being learned by the network and the output weights
need not be retrained, which is especially e�cient for time-
series problems. Other typical works include fully complex
ELM [25, 26], incremental ELM (I-ELM) [20, 21], sparse ELM
[27], ELM with elastic output [28, 29], and ELM ensembles
[30–32]. See [33] for further details on the many ELM
variants.

When uncertainty is present in the dataset, integration
of fuzzy logic system and extreme learning machine tends
to enhance the generalization capability of ELM. In [34], a
neurofuzzy Takagi-Sugeno-Kang (TSK) fuzzy inference sys-
tem is constructed utilizing extreme learning machine. 	e
number of inference rules is previously determined by the *-
means method. One ELM is used to obtain the membership
of each fuzzy rule and multiple ELM are used to obtain
the consequent part. Rong et al. [35] show that type-1 fuzzy
inference system (type-1 FLS) is equivalent to a generalized
SLFN. Hence, the hidden nodes work as the antecedent part
and the output weights as the consequent part.	en, extreme
learning machine is directly applied to the type-1 FLS and
the corresponding online sequential fuzzy ELM has also

been developed. Deng et al. [36] further extend the idea to
type-2 fuzzy inference system (type-2 FLS) because of type-
2 FLS’s superiority in modeling high level uncertainty. With
the most widely used interval type-2 FLS, the parameters
of the antecedents are randomly initialized according to the
ELM mechanism. 	e Moore-Penrose generalized inverse is
used to initialize the parameters of the consequents and the
parameters are 
nally re
ned by Karnik-Mendel algorithm
[37]. Many applications have also been investigated in the
literature. For example, the hybrid model of ELM with inter-
val type-2 FLS has been applied for permeability prediction
[38].

3. The Proposed One-Class Classifier

3.1. Support Vector Data Description. For a better under-
standing of one-class classi
ers, support vector data descrip-
tion (SVDD) [10] is discussed here for one-class classi
cation
process. SVDDde
nes a spherically shaped boundary around
the complete target set and is intuitively appealing since it
regards the target class as a self-closed system. Let - ={x�, � = 1, . . . , �} be the training set, and x� ∈ �� is
drawn from the target distribution. SVDD aims to minimize
the volume of the sphere as well as the training errors ��
for objects falling outside the boundary, which is equivalent
to

min �
SVDD = �2 + �
�∑
�=1
��

s.t. ����x� − a����2 ≤ �2 + ��, � = 1, . . . , �
�� ≥ 0, ∀�,

(9)

where � and a are the hypersphere’s radius and center,
respectively. Parameter � controls the tradeo� between the
volume and the errors.

	e corresponding function of the primal SVDD opti-
mization (9) is

�SVDD

= �2 + � �∑
�=1
��

− �∑
�=1
�� (�2 + �� − (����x�����2 − 2a ⋅ x� + ‖a‖2)) −

�∑
�=1
����

(10)

with the Lagrange variables �� ≥ 0 and �� ≥ 0. �SVDD should
be minimized with respect to �, a, �� and maximized with
respect to ��, ��.

Based on the Karush-Kuhn-Tucker (KKT) theorem [22],
to get the optimal solutions of (10), we should have

��SVDD� = 0 �⇒ �∑
�=1
�� = 1, (11a)
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��SVDD

a
= 0 �⇒ a = �∑

�=1
��x�, (11b)

��SVDD�� = 0 �⇒ � = �� + ��. (11c)

From (11c) and �� ≥ 0 and �� ≥ 0, �� can be removed and ��
can be further limited to the interval [0, �]:

0 ≤ �� ≤ �. (12)

Substituting (11a)–(11c) into (10), the dual optimization
function can be derived as

��SVDD =
�∑
�=1
�� (x� ⋅ x�) −

�∑
�=1

�∑
�=1
���� (x� ⋅ x�) (13)

subject to constraints (11a) and (12). To constitute a �exible
data description model, kernel function  (x�, x�) = �(x�) ⋅
�(x�), with an implicit feature mapping � of the data into a
higher dimensional feature space, can be adopted to replace
the inner product (x� ⋅x�). In this case, the corresponding dual
optimization function is changed to

��SVDD =
�∑
�=1
�� (x�, x�) −

�∑
�=1

�∑
�=1
���� (x�, x�) . (14)

	e KKT conditions of the target functions are

�� (�2 + �� − ����x� − a����2) = 0,
���� = 0.

(15)

	e constraints have to be enforced and we have three
cases as follows:

(1) �� = 0
�� = � �⇒ �� = 0,

�� = 0 �⇒ �2 ≥ ����x� − a����2 ,
(16)

(2) 0 < �� < �
�� > 0 �⇒ �� = 0,

0 < �� < � �⇒ �2= ����x� − a����2,
(17)

(3) �� = �
�� = 0 �⇒ �� ≥ 0,

�� = � �⇒ �2 ≤ ����x� − a����2 .
(18)

Only a small ratio of objects with �� > 0 are called the
support vectors. 	e dual optimization functions (13) and
(14) are standard Quadratic Programming (QP) problems
and the Lagrange variables �� can be obtained using some
optimization methods such as SMO algorithm [39]. To test

a new object z, its distance to the center of the sphere is
calculated. 	e classi
er will accept the object if the distance
is less than or equal to the radius:

‖z − a‖2 = (z ⋅ z)
− 2 �∑
�=1
�� (z ⋅ x�) +

�∑
�=1

�∑
�=1
���� (x� ⋅ x�) ≤ �2. (19)

In addition to the batch learning model of SVDD,
incremental learning methods [40] of SVM are extended
to SVDD algorithm. Yin et al. [28] show an online fault
diagnosis process through a hybrid model of incremental
SVDD (ISVDD) and ELMwith incremental output structure
(IOELM). 	ey used the ISVDD to detect the unknown
failure model, and the output nodes of IOELM are adaptively
increased to recognize the new failure mode.

3.2. 	e ELM Based One-Class Classi
er. When data only
from the target class are available, the one-class classi
er is
trained to accept target objects and reject objects that deviate
signi
cantly from the target class. In the training phase,
the one-class classi
er, which de
nes a distance function7 between the objects and the target class, takes in the
training set - to build the classi
cation model. In general,
the classi
cation model contains two important parameters
to be determined: threshold 8 and modal parameter 9.
A generic test sample z is accepted by the classi
er if7(z | -, 9) < 8.

In the training phase, not all the training samples are to
be accepted by the one-class classi
er due to the presence of
outliers or noisy data contained in the training set. Otherwise,
the trained classi
cation model may generalize poor to
unknown test set when the training set includes abnormal
data samples. Usually, threshold 8 is determined such that
a user-speci
ed fraction ? of training samples most deviant
from the target class are rejected. For instance, if one is
told 
ve percent of training samples are mislabeled, setting? = 0.05 makes the classi
er more robust. Even when all
the samples are correctly labeled, rejecting a small fraction
of training samples helps the classi
er to learn the most
representative model from the training samples.

Any one-class classi
er has model parameters which
in�uence the model complexity (�exibility), for example, the
number of hidden nodes in autoencoder neural networks or
the tradeo� parameter � of SVDD. Minimizing the errors
of both the target and outlier classes on a cross-validation
set is no longer available since there is no data from the
outlier class. Fortunately, several model selection criteria
[2] have been proposed. Assuming the uniform distribution
of the outlier class, consistency-based model selection [41]
method is one of the most e�ective methods used to select
the model parameters. 	e basic idea is that the complexity
of the classi
er can be increased as long as it still 
ts the
target data. 	e more complex the model, the smaller the
volume of the classi
er in the object space and the less the
probability of outlier objects falling inside the domain of
the classi
er. In practice, one can make an ordering of the
potential model parameters such that the latter parameter
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Figure 1: Example boundaries of the proposed classi
er with di�erent number of hidden nodes.

always yields the more complex classi
er and chooses the
most complex classi
er without over
tting the target data.

	e compactness hypothesis [42] is the basis for object
recognition. It states that similar real world objects have to be
close in the feature space. 	erefore, for similar objects from
the target class, the target outputs should be the same:

�� = A, ∀x� ∈ -, (20)

where A is a real number. All the training samples’ target
outputs are set to the same value A. 	en, the desired target

output vector is T = [�1, . . . , ��]� = [A, . . . , A]�. Training the
samples from the target class can directly use the optimization
function (2). For a new test sample z, the distance function
between the sample object and the target class is de
ned as

7ELM (z | -, 9) = BBBBBh (z)�� − ABBBBB
= BBBBBBBBBh (z)

�
H
� ( I� +HH

�)−1 T − ABBBBBBBBB .
(21)

	e decision whether z belongs to the target class or not
is based on threshold 8. Recall that 8 is optimized to reject
a small fraction ? of training samples to avoid over
tting.
	e distances of the training samples to the target class can
be directly determined using (21) and the constraint of (2)

7ELM (x� | -, 9) = BBBBBBh (x�)�� − A
BBBBBB = BBBB��BBBB . (22)

From (22), we 
nd the distances are |��| and the larger |��|
means the more deviant of the training sample x� from the
target class. Hence, we derive threshold 8 based on a quantile
function to reject the most deviant training samples. Denote
the sorted sequence of the distances of training samples by
d = [7(1), . . . , 7(�)] such that 7(1) ≥ ⋅ ⋅ ⋅ ≥ 7(�). Here, 7(1) and7(�) represent the most and the least deviant samples. 	e
function determining 8 can be written as

8 = 7�oor(�⋅�), (23)

where �oor(C) returns the largest integer not greater than C.
	en, we can get the decision function for z to the target class:

CELM (z) = sign (8 − 7ELM (z | -, 9))
= {1 E is classi
ed as a target

−1 E is classi
ed as a outlier.
(24)

Remark 1. 	e target output A can be assigned to arbitrary
real number except 0. When A = 0, seen from (6), the
output weights between the hidden layer and the output layer
become 0 (� = 0, 0 is the �-dimensional zero vector).
	erefore, the decision value of any sample z is 0 using the
proposed classi
er. It is obvious that, in such case, the one-
class classi
er cannot distinguish between the target class and
the outlier class. When A ̸= 0, as there are in
nite possible A,
there seem to exist in
nite ELMbased one-class classi
ers. To
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Figure 2: Comparisons between ELM network and autoencoder neural network: the number of hidden nodes in ELM network should be
large enough according to ELM learning theory and one output node is enough for one-class classi
cation, while the number of hidden nodes
in autoencoder neural network is usually less than the feature dimension and the number of output nodes should be equal to the number of
input nodes.

get a universal ELM based one-class classi
er, we normalize
the distance function (21) by dividing the target output A
7NORM-ELM (z | -, 9)
= BBBBBBBB

h (z)� − A
A

BBBBBBBB =
BBBBBBBBBBBBB
(h (z)H� (I/� +HH�)−1 T − A)

A
BBBBBBBBBBBBB

=
BBBBBBBBBBBB
h (z)H� (I/� +HH�)−1 eA − A

A
BBBBBBBBBBBB

= BBBBBBBBBh (z)
�
H
� ( I� +HH

�)−1 e − 1BBBBBBBBB ,
(25)

where e is the�-dimensional unit vector. 	e normalization
formula (25) is to eliminate the possible bias introduced
by the target output A. In practice, one can set the target
output A = 1 such that (21) is equivalent to (25) and the
normalization step is implicitly done.

Remark 2. Both random feature mappings and kernels can
be used for the proposed one-class classi
er.When nonlinear
piecewise continuous functions satisfying ELM universal
approximation capability theorems [20, 21] are used as the
activation function, the ELM network can approximate any
target continuous function as long as the number of hidden
nodes � is large enough. When the feature mapping is
unknown, kernel methods can be adopted as shown in (8a)
and (8b). Huang et al. [17] have shown ELM, the uni
ed
solution for regression, binary, and multiclass classi
cations.
Since the same optimization formula (2) is used in the
proposed one-class classi
er, this paper also shows ELM, the
uni
ed learning mode for one-class classi
cation.

Figure 1 shows the decision boundaries (black curves) of
the classi
er with incremental hidden nodes using sigmoid

Table 1: Speci
cation of UCI datasets.

Datasets Target class # target # outlier # features

Spectf heart 0 55 212 44

Arrhythmia Normal 245 207 279

Sonar Mines 111 97 60

Liver Healthy 145 200 6

E. coli Periplasm 52 284 7

Diabetes Present 500 268 8

Breast Benign 241 458 9

Abalone Classes 1–8 1407 2770 8

function as the activation function. 	e dataset (blue points)
is composed of 100 samples in the plane. 	reshold 8 is
determined such that ? = 0.01 and the model parameter �
is automatically determined by the consistency-based model
selectionmethod.When the number of hidden nodes is small(� = 50), the classi
er fails to approximate the target region
and some unexpected “holes” without any targets can be seen
from the le�most picture of Figure 1. 	e weakness alleviates
asmore hidden nodes are added.When the number of hidden
nodes � gets large enough, the classi
er can be close enough
to describe the target class well. 	is is consistent with ELM
universal approximation capability theorems [20, 21].

Remark 3. Autoencoder is one of the most e�ective neural
networks approaches for one-class classi
cation, which has
been applied by Manevitz and Yousef for document retrieval
[43]. Constrain the number of output nodes that must be
equal to the number of input nodes (� = �).	e hidden layer
in such a network actually acts as a bottleneck, where � < �.
	e idea is that while the bottleneck prevents learning the full
identity function on �-space, the identity on the small set of
examples is in fact learnable. Traditional learning algorithms
like BP are used to train the network. Several challenging
issues such as local minimum, trivial human intervention,
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Table 2: 	e value of I1 measure with standard deviations (in parentheses) for a number of one-class classi
ers. Twenty trials have been
conducted for each dataset.

Dataset SPECTF heart Arrhythmia Sonar Liver

Classi
er I1
Naive Parzen 41.7 (4.2) 61.8 (1.1) 46.8 (2.2) 41.5 (0.9)

Parzen 39.3 (1.7) 63.7 (1.2) 49.8 (2.9) 40.7 (1.4)

*-means 38.3 (4.7) 63.7 (1.7) 53.2 (3.2) 41.7 (1.4)

1-NN 31.8 (2.6) 59.2 (1.5) 60.4 (2.2) 41.3 (1.3)

*-NN 34.7 (1.2) 62.4 (0.9) 55.3 (1.3) 42.0 (1.2)

Autoencoder 39.3 (3.4) 64.8 (1.6) 50.6 (2.4) 42.2 (1.7)

PCA NaN1 26.3 (5.3) 37.2 (8.3) 41.1 (1.3)

MST 33.7 (1.7) 62.4 (0.8) 56.7 (1.8) 42.1 (1.1)

*-centers 36.4 (2.9) 62.8 (1.2) 53.3 (2.3) 41.6 (1.3)

SVDD 38.9 (4.7) 60.5 (4.8) 51.2 (5.8) 40.6 (3.1)

MPM 31.1 (8.7) 51.9 (5.0) 44.6 (6.3) 40.7 (2.0)

LPDD 38.3 (3.9) 63.8 (2.0) 52.2 (4.2) 40.7 (1.6)

SVM 38.1 (6.4) 63.4 (1.9) 53.6 (3.1) 40.5 (2.4)

ELM 42.6 (1.8) 63.6 (1.6) 54.2 (3.5) 43.0 (1.6)
1None of target data is recalled.

Table 3: 	e value of I1 measure with standard deviations (in parentheses) for a number of one-class classi
ers. Twenty trials have been
conducted for each dataset.

Dataset E. coli Diabetes Breast Abalone

Classi
er I1
Naive Parzen 71.7 (7.0) 68.7 (1.1) 82.4 (3.2) 51.8 (0.3)

Parzen 75.1 (5.7) 67.7 (1.4) 80.1 (7.7) 49.0 (1.0)

*-means 54.6 (15.2) 68.9 (1.1) 58.8 (17.2) 45.2 (1.3)

1-NN 21.2 (3.9) 64.8 (0.9) 35.3 (5.8) 35.7 (1.0)

*-NN 43.9 (14.2) 68.8 (1.0) 34.9 (7.5) 49.8 (1.4)

Autoencoder 53.5 (15.8) 66.9 (1.3) 37.9 (10.9) 48.7 (2.7)

PCA 33.7 (15.4) 65.5 (1.9) 31.1 (1.0) 46.0 (0.5)

MST 36.3 (12.9) 67.5 (0.7) 34.4 (3.4) 47.3 (0.9)

*-centers 38.8 (6.5) 67.7 (1.1) 49.4 (22.9) 42.5 (2.6)

SVDD 50.9 (10.6) 61.1 (2.5) 68.0 (9.1) 44.5 (3.3)

MPM 38.8 (11.8) 63.5 (1.7) 71.7 (6.5) 44.9 (1.9)

LPDD 67.8 (11.0) 66.6 (0.8) 79.6 (7.5) 45.8 (2.0)

SVM 57.2 (12.8) 66.6 (1.1) 83.1 (3.0) 46.2 (1.2)

ELM 77.1 (4.8) 69.1 (1.1) 80.1 (5.1) 53.0 (0.7)

and time consuming in learning stage discourage people who
are not familiar in the 
eld to use it, while the ELMbased one-
class classi
er can approximate the target class well as long as
the dimensionality of the feature mappings is large enough
(cf. Figure 2).

4. Experiments

4.1. Arti
cial Datasets. First, we illustrate the proposed
method with both random feature mappings and kernels on
three speci
c designed arti
cial datasets, which all contain
100 samples created in a 2D feature space. 	e 
rst dataset

contains four Gaussian distributions (each has 25 samples)
with the same unit covariance matrix but with di�erent
mean vectors. It is set to test the classi
er’s sensitivity to
multimodality. 	e second dataset contains one Gaussian
distribution with the 
rst feature with a variance of 1 and
the second feature with a variance of 40. Moreover, the two
features are rotated over 45 degrees to construct a strong
correlation.	e third banana-shaped dataset, which has been
shown in Section 3, contains one uniform distribution along
an arc curve with some small position o�sets. It is to test
the in�uence of convexity. In Figure 3, the datasets (blue
points) together with the decision boundaries (black curves)
in the feature space are illustrated. Sigmoid function acts as
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Figure 3: 	e upper row shows the boundaries of the method with random feature mappings and the bottom row shows the boundaries of
the method with Gaussian kernel. Parameter � of the method with random feature mapping from le� to right is 211, 26, and 29. Parameters(�, J) of the method with Gaussian kernel from le� to right are (22, 5.76), (20, 2.81), and (2−4, 1.55).

the activation function for the method with random feature
mappings (� large enough) and Gaussian kernel  (x�, x�) =
exp(−‖x� − x�‖2/J2) is used for the method with kernels.
All the thresholds are determined such that ? = 0.01.
	e pictures show that methods using both random feature
mappings and kernels give reasonable results. However, the
method with kernels tends to be superior to the method with
random feature mappings since the boundary captures the
distribution more precisely, while in Figure 3(a) some small
“holes” still exist in the upper le� and lower right regions for
the method with random feature mappings.

4.2. UCI Datasets. 	is section compares the perfor-
mance of the proposed method with a variety of one-
class classi
cation algorithms. 	e popular one-class clas-
si
ers to be compared include Parzen [7], Naive Parzen,*-means [44], *-centers [45], 1-NN [46], *-NN [47],
autoencoder, PCA [48], MST [14], MPM [13], SVDD
[10], LPDD [11], and SVM [9]. 	e implementations
for one-class SVM are carried out using compiled C-
coded SVM packages: LIBSVM [49]. All the other algo-
rithms are conducted with Matlab toolbox DD TOOLS
[50]. Binary and multiclass classi
cation datasets taken
from UCI Machine Learning Repository [51] are used.
	e speci
cations of the datasets are shown in Table 1.
	e datasets are transformed for one-class classi
cation by
setting a chosen class as the target class and all the other
classes as the outlier class.

In our experiments, all the inputs have been normalized
into range [0, 1].	e samples from the target class are equally
partitioned in two sets for training and testing, respectively.
All one-class classi
ers are trained on target data only and
tested on both the remaining target data and all other

Table 4:	e value of precision and recall for two datasets (arrhyth-
mia and E. coli).

Dataset Arrhythmia E. coli

Classi
er Precision Recall Precision Recall

Naive Parzen 45.6 96.0 63.7 86.2

Parzen 52.0 82.4 71.5 80.6

*-means 52.5 81.0 52.4 64.6

1-NN 44.5 88.6 12.1 90.2

*-NN 47.8 90.2 31.9 87.3

Autoencoder 52.6 84.7 47.3 73.5

PCA 79.1 15.9 23.2 74.4

MST 47.3 91.8 23.9 90.0

*-centers 50.4 83.4 29.3 68.9

SVDD 55.7 69.3 48.8 66.9

MPM 64.0 43.9 38.4 45.4

LPDD 51.7 83.3 67.8 75.4

SVM 52.4 80.5 57.8 65.8

ELM 52.8 80.1 83.2 72.3

nontarget data. To assess the performance, we useI1measure
[52], which is de
ned as a combination of recall (�) and
precision (K) with an equal weight in the following form:

I1 (�, K) = 2�K
(� + K) . (26)

All the thresholds 8 are determined such that ? = 0.1.
	e Gaussian kernel is used in Parzen, Naive Parzen, MPM,
SVDD, SVM, and ELM. 	e consistency-based model selec-
tion method is employed to select the model parameters. For
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Table 5: Running time for ELM, autoencoder, and SVDD over twenty trials.

Classi
er ELM Autoencoder SVDD

Dataset Training time Testing time Training time Testing time Training time Testing time

SPECTF heart 0.3 0.1 93.2 1.1 0.4 0.1

Arrhythmia 0.2 0.2 17462.0 8.7 1.6 0.2

Sonar 0.1 0.1 248.8 1.4 0.7 0.1

Liver 0.1 0.1 9.9 0.9 1.3 0.2

E. coli 0.1 0.1 8.2 0.9 0.7 0.2

Diabetes 0.3 0.2 37.3 0.9 6.2 0.2

Breast 0.1 0.2 45.3 0.9 2.5 0.3

Abalone 1.0 2.5 64.2 1.0 118.0 2.5

Parzen, MPM, SVDD, SVM, and ELM, the kernel parameterJ is chosen from 20 aliquots between the minimum and
maximum pairwise object distances, so as the smoothing
parameter of sigmoid transform function used in LPDD.
For *-means, *-centers, parameter * is selected from the
range {1, 2, . . . , 20}. For ELM, another parameter � is chosen

from the range {2−24, 2−23, . . . , 225} and we set J a higher
priority than �; that is, when the parameter combinations,(J1, �1) and (J2, �2), both obtain consistent boundaries, we
always choose a smaller J rather than a larger �. We try
every possible parameter setting and 
nd the most complex
classi
er as long as the classi
er is consistent. For Naive
Parzen and *-NN, the leave-one-out maximum likelihood
estimation is used. One-class PCA retains 0.95 variance for
the training set. For MST, the complete minimum spanning
tree is used. 	e number of hidden nodes in autoencoder
neural network is carefully chosen from a large range and the
optimal number is selected.

All the experiments are carried out in Matlab R2013a
environment running in E5504 2GHz CPU, 4GB RAM.
Twenty trials have been conducted for each dataset and the
average I1 and corresponding standard deviations are shown
in Tables 2 and 3. 	e best results are shown in boldface. As
an example, we give a detailed description for the diabetes
experiment. First, all the samples from both the target class
and the outlier class are normalized into range [0, 1]. 	en,
the 500 training target samples are randomly divided into
two equal sets (250 samples for each set). One of the sets is
used for training the one-class classi
er and the other set,
together with all the samples from the outlier class, is used for
testing only. A�er that, the consistency-basedmodel selection
method is employed to select the model parameters for each
classi
er using only the training set. Finally, the other target
set with the outlier set is judged by the trained classi
er with
precision and recall recorded. I1 value is then derived as (26).
	e same procedure repeats for twenty times and the corre-
sponding mean and deviation values are calculated. It can be
seen that the generalization performance of ELM is the best in

ve of the eight experiments while in the other experiments,
except for sonar dataset, the performance is comparable to
the best classi
er. Table 4 presents a detailed performance
comparison of two datasets, including precision and recall.

Table 5 reports the execution time comparisons in sec-
onds between the ELM, autoencoder, and SVDD classi
ers

for all the eight experiments. As observed from Table 5, the
advantage of the ELM on training time is quite obvious. ELM
can generally learn hundreds of times faster than autoencoder
neural network due to the tuning-free mechanism. Besides,
ELM also learns much faster than SVDD without solving
a QP problem. For testing time, since autoencoder may
obtain a more compact network and the parameters have
been tuned in the training phase, the computational time
depends on the speci
c task. 	e computational complexity
of ELM mostly depends on the number of samples while
autoencoder depends on both the number of samples and
the number of dimensions. 	us, for datasets with relatively
small size and high dimensions, such as arrhythmia dataset,
ELM obtains a smaller testing time, while for datasets with
relatively large size and low dimensions, such as abalone
dataset, autoencoder reacts faster to the testing samples.
However, ELM still tends to outperform autoencoder with
respect to both training time and accuracy. It is obvious that
ELM and SVDD obtain a similar testing time since both of
them utilize a kernel function.

5. Conclusion

	is paper presents a simple and e�cient one-class classi
er
utilizing extreme learning machine, which also shows ELM,
the uni
ed learning mode for one-class classi
cation. Both
random feature mappings and kernels can be used for the
proposed classi
er while the method with kernels tends to
be superior to the method with random feature mappings.
Moreover, the proposed classi
er with kernels achieves the
best results on 
ve of the eight UCI datasets, which suggests
ELM being e�ective for one-class classi
cation problem. We
have also discussed the relationships and di�erences between
autoencoder neural network and ELM network for one-
class classi
cation. Although autoencoder neural network
has been successfully applied in many applications, the slow
gradient basedmethod is still used to tune all the parameters,
which is far slower than required.On the other hand, the ELM
based one-class classi
er has an analytical solution which can
obtain superior generalization performance at much faster
learning speed. Possible future directions include the fusion
of fuzzy logic and ELM for one-class classi
cation, one-class
classi
er ensembles with ELM, and substituting autoencoder
with the ELM based one-class classi
er for deep learning.
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