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Abstract One of the most important challenges for
machine learning community is to develop efficient classi-
fiers which are able to cope with data streams, especially
with the presence of the so-called concept drift. This phe-
nomenon is responsible for the change of classification task
characteristics, and poses a challenge for the learning model
to adapt itself to the current state of the environment. So there
is a strong belief that one-class classification is a promising
research direction for data stream analysis—it can be used for
binary classification without an access to counterexamples,
decomposing a multi-class data stream, outlier detection or
novel class recognition. This paper reports a novel modifica-
tion of weighted one-class support vector machine, adapted
to the non-stationary streaming data analysis. Our proposi-
tion can deal with the gradual concept drift, as the introduced
one-class classifier model can adapt its decision boundary to
new, incoming data and additionally employs a forgetting
mechanism which boosts the ability of the classifier to fol-
low the model changes. In this work, we propose several
different strategies for incremental learning and forgetting,
and additionally we evaluate them on the basis of several real
data streams. Obtained results confirmed the usability of pro-
posed classifier to the problem of data stream classification
with the presence of concept drift. Additionally, implemented
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forgetting mechanism assures the limited memory consump-
tion, because only quite new and valuable examples should
be memorized.
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1 Introduction

Contemporary computer systems manage and store enor-
mous amount of data. It is predicted that the volume of stored
information will be doubling every two years. People send 14
billion e-mails and more than 350 million tweets per day. The
huge chains of discount department stores (as Walmarkt Inc.)
register more than 1 million transactions per hour. There-
fore, the marked leading companies desire to develop smart
analytic tools based on machine learning approach, which
can analyze such enormous amount of data. Additionally,
designing such analytical tools should take into a consider-
ation that most of data arrives continuously in the form of
so-called data stream (Gama 2010). Furthermore, the rela-
tion within the data, i.e., statistical dependencies character-
izing a given phenomenon (such as client behavior), may
change (Gama 2012). This observation requires a special
analytical model which can cope with such non-stationary
characteristics. In the beginning, the data streams originated
in the financial markets. Today, data streams can be found
everywhere—in the Internet, monitoring systems, sensor net-
works and other domains (Hulten et al. 2009). Data streams
differ from the traditional static data, because they can be
viewed as an infinite amount of data that arrives continuously,
where memory and computational complexity play the cru-
cial roles. Due to this mining data stream poses many new
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challenges to the contemporary machine learning systems
(Aggarwal et al. 2004).

In this paper, we will mainly focus on the classification
task, which is a widely used analytical approach (Duda et al.
2001). Basically, it aims at assigning a given observation to
one of the predefined categories. Such situation can be found,
e.g., in spam filtering, biometrics, medical decision support,
or fraud detection to enumerate only a few. The concept drift
in the classification model mean that the statistical dependen-
cies between attributes describing an object and its predefined
label could change over time.

To explain the possible types of the changes, let us
shortly introduce a statistical classification model. This the-
ory assumes (Duda et al. 2001) that both the attributes
describing an object x ∈ X ⊆ Rd and its correct classi-
fication (class label) j ∈ M = {1, 2, . . . , M} are observed
values of a pair of random variables (X, J). The probability
distribution of them is given by the prior class probabilities

p j = P(J = j), j ∈ M (1)

and class-conditional probability density function of X

f j (x) = f (x | j), x ∈ X , j ∈ M. (2)

The classification algorithm � maps the feature space X

to the set of defined class labels M

� : X → M. (3)

If the probability characteristics given by Eqs. (1) and (2)
are known, then the optimal classifier �∗, minimizing the
misclassification probability, makes decisions according to
the following rule:1

�∗(x) = i if pi (x) = max
k∈M

pk(x), (4)

where p j (x) stands for the posterior probability

pi (x) =
pi fi (x)

f (x)
(5)

and f (x) denotes a probability density function

f (x) =

M∑

k=1

pk fk(x) (6)

Reverting to the notion of a concept drift, we can distin-
guish two types of such an event, according to its influence
on the probability density function Eq. (6) or on the posterior

probability Eq. (5) (Gama et al. 2013):

1 We assume so-called “zero-one” lost function, i.e., if the cost of the
misclassification error is the same and equals 1 and cost of correct
classification is 0. Otherwise the classification rule points on the class
for which the expectation value of the lost function is the smallest (Duda
et al. 2001).

– virtual concept drift means that changes do not impact the
posterior probabilities, but affect the conditional proba-
bility density functions (Widmer and Kubat 1993).

– real concept drift means that changes affect the posterior

probabilities and may impact unconditional probability
density function (Schlimmer and Granger 1986; Widmer
and Kubat 1996).

From the classification point of view, the real concept drift is
important because it can strongly affect the shape of the deci-
sion boundary. The virtual drift does not affect the decision
rule, especially taking into consideration the Bayes decision
rule Eq. (4). Another drift taxonomy depends on the drift
impetuosity and here we can distinguish:

– slow changes, i.e., gradual or incremental drift.
– abrupt changes, i.e., sudden drift.

The presence of a concept drift can lead to serious deterio-
ration of classifier’s accuracy (Lughofer and Angelov 2011).
This is depicted in Fig. 1, where two types of concept drift
are shown.

Additionally, we can consider a reoccurring concept drift.
It may occur in cases of, e.g., seasonal phenomena as weather
prediction or client preferences of clothes or sport stores
(Widmer and Kubat 1996). Therefore, developing efficient
methods which are able to deal with this type of change in
data stream is nowadays the focus of intense research.

The main aim of this paper is to introduce an efficient
method of incremental data stream classification, i.e., we will
consider the task where the concept drift is rather smooth and
the classifier model will try to follow the model’s changes.
As implementation of the classifier, we propose a novel mod-
ification of the weighted one-class classifier which tunes
the shape of its decision boundary on the basis of weights
assigned to the training objects. The main contribution of this
work is a novel one-class classifier applied to this task with
the built-in adaptation and forgetting mechanisms. The evalu-
ation of the proposed method is carried out on the basis of the
computer experiments on real and semi-synthetic data sets.
The outline of the work is as follows. First, the related works
on data stream classification and one-class classifiers will
be presented. Then, the original algorithm will be described.
The following section is focusing on the results of the exper-
imental research. The last part concludes the paper.

2 Related works

In this section, a short overview on the related fields will be
given.
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Fig. 1 Exemplary classifier accuracy deterioration—sudden drift versus incremental one

2.1 Data stream classification in the presence of concept
drift

In general, the following approaches can be considered to
cope with drifting data stream.

– Training new classifier every time when new data are
available. Such an approach is impractical and very
expensive, especially if drift occurs rapidly.

– Detecting concept drift in new data, and if these changes
are significant enough then train the classifier on the basis
of new data gathered after a drift occurred.

– Adopting an incremental learning algorithm for the clas-
sification model to smoothly adapt to changing nature of
incoming objects.

The first algorithms designed to deal with a drifting data
were STAGGER (Schlimmer and Granger 1986), IB3 (Aha
et al. 1991), and the suite of FLORA algorithms (Widmer and
Kubat 1996). Now, there are plethora of methods proposed to
cope with the concept drift phenomenon. Basically, we can
organize them into the following groups:

1. Drift detection algorithms.
2. Online learners.
3. Sliding window-based solutions.
4. Ensemble approaches (Kuncheva 2004; Ouyang et al.

2011).

The drift detectors try to alarm the recognition system
in case changes occur (Sobolewski and Wozniak 2013), but
this mechanism is not used by all classifiers dedicated to
data stream. Some evolving systems continuously adjust the
model to incoming data (Zliobaite 2010), what is called
implicit drift detection (Kuncheva 2008) as opposed to
explicit drift detection methods that raise a signal to indicate
change. The detector can be based on changes in the probabil-
ity distribution of the instances (Gaber and Yu 2006; Markou

and Singh 2003) or classification accuracy (Klinkenberg and
Joachims 2000; Baena-García 2006). Many detection algo-
rithms are based on a knowledge of object labels after the
classification to detect the presence of a concept drift, how-
ever as pointed out in Zliobaite (2010), such approach is not
useful from a practical point of view.

Online learners relate to classification algorithms that con-
tinuously update their classifier parameters while process-
ing the incoming data. According to Domingos and Hulten
(2003), such methods should meet some basic requirements:

– Each object must be processed only once in the course
of training.

– The memory and computing time are limited.
– The classifier training could be interrupted several times

and its quality should not be lower than the classifier
trained using batch mode.

Such classifiers work fast and are able to adapt their model
in a very flexible manner. Among the others, the following
are the most popular online learners: Naïve Bayes, Neural
Networks (Polikar et al. 2001), and Nearest Neighbor (Aha
et al. 1991). It is worth noting the Concept-Adapting Very
Fast Decision Tree (CVFDT) algorithm (Hulten et al. 2009),
which is an extended version of the ultra fast decision tree,
which ensures consistency with incoming data by maintain-
ing alternative subtrees.

The last groups of algorithms based on sliding windows
incorporate the forgetting mechanism. This approach is based
on the assumption that the recently arrived data have higher
relevancy, because they contain characteristics of the current
context. Usually three strategies are used:

– selecting the instances by means of a sliding window that
cuts off older instances (Widmer and Kubat 1996);

– weighting the data according to their relevance;
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– applying bagging and boosting algorithms that focus on
misclassified instances (Bifet et al. 2009; Chu and Zan-
iolo 2004).

When dealing with the sliding window, the main question is
how to adjust the window size. On the one hand, a shorter
window allows focusing on the emerging context, though
data may not be representative for a longer lasting context.
On the other hand, a wider window may result in mixing the
instances representing different contexts.

Therefore, certain advanced algorithms adjust the win-
dow size dynamically depending on the detected state [e.g.,
FLORA2 (Widmer and Kubat 1996) and ADWIN2 (Bifet
and Gavaldà 2007)] or multiple windows may even be used
(Lazarescu et al. 2004).

The last group consists of algorithms that incorporate a
set of classifiers (Wang et al. 2003; Stanley 2003; Tsymbal
et al. 2008). It has been shown that a collective decision can
increase classification accuracy because the knowledge that
is distributed among the classifiers may be more compre-
hensive. This premise is true if the set consists of diverse
members (Hulten et al. 2009; Shipp and Kuncheva 2002).
In static environments, diversity may refer to the classifier
model, the feature set, or the instances used in training.

In a changing environment, diversity can also refer to
the context. This makes ensemble systems interesting for
researchers dealing with concept drift. We can distinguish
three main approaches related to classifier ensembles for data
stream:

1. Dynamic combiners, where individual classifiers are
trained in advance and their relevance to the current con-
text is evaluated dynamically while processing subse-
quent data (Jacobs et al. 1991; Littlestone and Warmuth
1994).

2. Updating the ensemble members, where each ensemble
consists of a set of online classifiers that are updated
incrementally based on the incoming data (Fern and
Givan 2003; Kolter and Maloof 2007; Bifet et al. 2011;
Rodríguez and Kuncheva 2008).

3. Dynamic changes of the line-up of ensemble, namely,
individual classifiers are evaluated dynamically and the
worst one is replaced by a new individual trained on the
most recent data (Jackowski 2013; Kolter and Maloof
2003).

The Streaming Ensemble Algorithm (SEA) (Street and Kim
2001) or the Accuracy Weighted Ensemble (AWE) (Wang
et al. 2003) keeps a fixed-size set of classifiers. Data are
collected in data chunks, which are used to train new clas-
sifiers. The SEA uses a majority voting, whereas the AWE
makes decision on the basis of weighted voting. Dynamic

Weighted Majority (DWM) algorithm (Kolter and Maloof
2003) reduces the weight when the classifier makes an incor-
rect decision. Eventually, the classifier is removed from the
ensemble when its weight falls below a given threshold. Inde-
pendently, a new classifier is added to the ensemble when the
committee makes a wrong decision. Jackowski proposes a
classifier ensemble training methods dedicated to a so-called
recurring context (Jackowski 2013). To select an ensemble
for the current model, the ensemble pruning method based on
evolutionary programming is employed. Woźniak et al. pro-
pose the dynamic ensemble model called Weighted Aging
Ensemble (WAE) (Woźniak et al. 2014). It can modify the
line-up of a classifier ensemble on the basis of three fac-
tors: diversity measure, overall ensemble accuracy, and time
that given classifier has spent as a member of the ensemble
pool.

In this paper, we present a novel adaptive weighted one-
class classifier that is able to change itself according to the
nature of received data streams. We propose to use principles
of incremental learning and forgetting to adjust shape of the
decision boundary according to the concept changes in new
data chunks. The learning and forgetting in data streams is
realized by modifying weights assigned to objects—we pro-
pose how to calculate weights for new incoming objects to
use their information to change the classifier and how to for-
get the old objects to prevent the overfitting of the classifier
and uncontrolled increase in the volume of the stored data.
Thus, let us shortly present the idea of one-class classifier.

2.2 One-class classification

One-class classification (OCC) is one of the most challeng-
ing areas of machine learning. It is assumed that during the
classifier training stage we have at our disposal only objects
coming from a single class distribution—the target concept
(Koch et al. 1995). During the exploitation phase of such a
classifier, there may appear new objects originating from dif-
ferent distributions than the target class. They are known as
outliers and should be rejected by the trained model. There-
fore, one-class classification aims at deriving a classification
boundary that may separate the known target objects from
possible outliers that may appear. No assumptions about the
nature of outliers should be made.

OCC is an attractive approach for data stream classifica-
tion, because it can be used for binary classification without
an access to counterexamples, decomposing a multi-class
data stream, outlier detection or novel class recognition. Most
of data stream methods focus on supervised learning, which
require a fully labeled data set for training. However, labeling
an entire chunk of data stream can be expensive or hard to
obtain, which limits the real-life applications of such meth-
ods (Kurlej and Woźniak 2012). Additionally, let us con-
sider the intrusion detection for computer system (IDS/IPS)
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(Noto et al. 2012). The target class covering the normal and
safe messages is unchanged but the malicious messages as
intrusion are still changing, because the malicious users are
trying to lead security systems on. Therefore, they are invent-
ing a variety of attacks. If we concentrate on normal mes-
sages only, as target class, then we can believe that we are
able to train classifiers which are capable of distinguishing
normal messages from malicious messages without knowl-
edge about the outlier class. It could protect our security sys-
tem against so-called “zero day attack” as well. Furthermore,
OCCs require only a small number of positively labeled
examples for initial training, which can be a valuable prop-
erty in case of non-stationary classification.

Most of the existing works on OCC have not explicitly
dealt with the changing nature of the input data (Masud
et al. 2011). They are based on an underlying assumption
that the training data set does not contain any uncertainty
information and properly represents the examined concept.
However, in many real-world applications, data change its
nature over time—which is a vital problem for data stream
analysis (Hashemi et al. 2009). For example, in environ-
mental monitoring applications, data may change accord-
ing to the examined conditions and what once was con-
sidered an outlier may in near future become a representa-
tive of the target concept. This kind of dynamic information
(typically ignored in most of the existing one-class learn-
ing methods) is critically important for capturing the full
picture of the examined phenomenon. Therefore, there is a
need for introducing novel, adaptive techniques for dealing
with non-stationary data sets (Gomez-Verdejo et al. 2011).
On the other hand, OCC can be very useful for a variety of
real-life data stream applications. Such an practical exam-
ple would include a process of monitoring the nuclear power
plant (Jackowski and Platos 2014). Here, the data arrive as
a stream of sensor outputs and can be subject to changes
due to the different energy demand ratios. It is easy to gather
labeled examples of proper behavior of such a plant, but coun-
terexamples are obviously dangerous to collect. This is an
example of real-life situation in which an incremental OCC
model, that can adapt to changes in data, can be of a high
demand.

So far the OCC problem for data streams, especially in
the presence of concept drift, has not been investigated thor-
oughly. One should mention several proposal of on-line One-
Class Support Vector Machines (Zhang et al. 2009), an one-
class modification of very fast decision trees (OcVFDT) (Li
et al. 2009) and uncertain one-class classifier for summa-
rizing concepts in the presence of uncertainty applying a
generated bound score into a one-class SVM-based learn-
ing phase (Liu et al. 2014). Few ensemble techniques, based
on chunks of data and standard one-class classifiers, have
also been recently introduced (Zhang et al. 2010; Zhu et al.
2011).

2.3 Weighted one-class support vector machine

One-class classification aims at distinguishing between the
available objects coming from the target distribution iT and
unknown outliers iO that are unavailable during the classi-
fier training step but may appear in the process of classifier
exploitation. One-class support vector machine (OCSVM)
(Schölkopf and Smola 2002) achieves this goal by comput-
ing a closed boundary in a form of a hypersphere enclos-
ing all the objects from iT . During the exploitation phase, a
decision made about the new object is based upon checking
whether it falls inside the hypersphere. If so, the new object
is labeled as one belonging to iT . Otherwise it belongs to
iO . The center a and a radius R are the two parameters that
are sufficient for describing such a decision hypersphere. To
have a low acceptance of the possible outliers, the volume
of this d-dimensional hypersphere, which is proportional to
Rd , should be minimized in such a way that tightly encom-
passes all available objects from iT . The minimization of Rd

implies minimization with respect to R2. Following this, the
minimization functional may be formulated as follows:

�(a, R) = R2, (7)

with respect to the constraint:

∀i∈{1,...,N } ‖xi − a‖2 ≤ R2, (8)

where xi are objects from iT , and N stands for the quantity of
training objects. Additionally, to allow the fact that there may
have been some outliers in the training set and to increase
the robustness of the trained classifier, some objects with
distance to a greater than R are allowed in the training set,
but associated with an additional penalty factor. This is done
identically as in a standard SVM by the introduction of slack
variables ξi .

This concept can be further extended to a weighted
one-class support vector machine (WOCSVM) (Bicego and
Figueiredo 2009) by the introduction of weights wi that
allows for an association of an importance measure to each of
the training objects. This forces slack variables ξi , to be addi-
tionally controlled by wi . If with object xi there is associated
a small weight wi , then the corresponding slack variable ξi

indicates a small penalty. In effect, the corresponding slack
variable will be larger, allowing xi to lie further from the
center a of the hypersphere. This reduces an impact of xi on
the shape of a decision boundary of WOCSVM.

Using the above-mentioned ideas, we can modify the min-
imization functional:

�(a, R) = R2 + C

N∑

i=1

wiξi , (9)
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with the modified constraints that almost all objects are
within the hypersphere:

∀i∈{1,...,N } ‖xi − a‖2 ≤ R2 + ξi , (10)

where ξi ≥ 0, 0 ≤ wi ≤ 1. Here, C stands for a parameter
that controls the optimization process—the larger the C, the
less the outliers are allowed with the increase of the volume
of the hypersphere.

For establishing weights, we may use techniques ded-
icated to a weighted multi-class support vector machines
(Cyganek 2012). In this paper, we propose to use a following
formula:

wi =
|xi − xmean|

R + δ
, (11)

where δ > 0 is used to prevent the case of wi = 0. The value
of xmean is computed with the usage of all available learn-
ing samples. In case of data streams, this would mean that
samples from the incoming chunk are used together with the
samples from previous chunks that have not been discarded
in the forgetting process.

3 Adaptive WOCSVM for incremental data stream

We assume that the classified data stream is given in a form
of data chunks. At the beginning, we have at our disposal
an initial data set DS0 that allows to train the first version
of the classifier. Then, for each i-th iteration, we receive an
additional chunk of data labeled as DS i . We assume that
there is a possibility of concept drift presence in the incoming
chunks of data. Therefore, it would be valuable to adjust the
one-class classifier to changes in the nature of data. The idea
is depicted in Fig. 2. Later, we will train the classifier on the
incoming chunk, but it will be employed (evaluated) on the
following one.

In case when we are using a WOCSVM trained on DS0

for all new incoming data, we notice a significant drop in
performance—and after few new chunks of data, it is possible
that this model will not be able to handle the new objects, as
objects in the stream have shifted significantly from their ini-
tial distributions. To prevent this from happening, we propose
to adapt an one-class classifier incrementally with the new
incoming data to deal with the presence of concept drift and
allow for a more efficient novelty detection in data streams.
We propose to apply the classifier adaptation in a changing
environment via modification of weights assigned to objects
from the data set. We introduce an incremental learning pro-
cedure, meaning that the data set DS will consist of all avail-
able chunks of data at the given i-th moment. Additionally,
we augment our model with a forgetting mechanism to dis-
card objects that are no longer relevant to the current state of
the analyzed concept. The proposed algorithm is summarized
in a pseudo-code manner in Algorithm 1.

Algorithm 1 Adaptive WOCSVM with forgetting
Require: input data stream,

data chunk size,
classifier training procedure()
treshold ε

1: i ← 0
2: repeat

3: collect new data chunk DSi

4: DS = DS ∪ DSi

5: calculate the weights of the examples according to Eq. (11)
6: correct the weights of the data from DSi (according to Eq. (12) if

applicable)
7: correct the weights of the data to simulate forgetting (according

to Eq. (13),(14), or (15))
8: remove from DS all objects with weights smaller than ε

9: classifier ← classifier training procedure(DS, weights assigned
to objects in DS)

10: i ← i + 1
11: until end of the input data stream

Fig. 2 Algorithm training and testing phases on the successive data chunks
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Let us present the details of the crucial algorithm’s phases.

3.1 Incremental learning

We propose to extend the WOCSVM concept by adding an
incremental learning principle to it (Ross et al. 2008). We use
the passive incremental learning. In this method, new data
are added without considering its importance. Incremental
learning should allow to change the shape of the previously
learned decision boundary. Here, we propose two strategies
for updating our classifier with new, incoming data by:

– assigning weights to objects from DSk according to
Eq. (11). This is motivated by the fact that in the incoming
data chunk not all objects should have the same impact
on the shape of the new decision boundary,

– assigning the highest weights to objects coming from the
new data chunks:

∀xi ∈DSk
wi = 1. (12)

This is motivated by the fact that in the presence of the
concept drift objects from a new chunk, therefore, should
have a top priority in forming the new decision boundary.

3.2 Incremental forgetting

If we apply only the incremental learning principle to the
WOCSVM, the decision boundary will become more and
more complex with each additional chunk of data. This
enlarges our data set and the memory requirements, what
is impractical and leads to a poor generalization ability. This
can be avoided by forgetting unnecessary, outdated exam-
ples (Gent et al. 2012). It seems natural that the degree of
importance of data reduces as the time passes.

The simplest way is a removal of objects coming from
the previous (or oldest iteration). Yet in this way, we discard
all the information they carried—while they still may have
some valuable influence on the classification boundary (e.g.,
in case of a gradual concept drift where the changes of the
data distribution are not rapid). A method that allows for a
gradual decrease of the object influence over time seems a
far more attractive idea.

Identically as in incremental learning, we modify the
weights assigned to objects to change the influence of the
data on the shape of the decision boundary. In this case, we
propose to reduce weights of objects from previous chunks
of data in each iteration.

We propose three methods for calculating new weights for
objects delivered in previous iterations:

– gradual decrease of weights with respect to their initial
importance—here, we introduce a denomination factor τ

that is a user-specified value used to decrease the weights
in each iteration:

wk+1
i = wk

i − τ. (13)

This is motivated by the fact that if an object had initially
assigned a higher weight, it had a bigger importance for
the classifier. As such, these objects can be valuable for a
longer period of time than objects with initial low weights.
In this approach, their weights will sooner approach the 0
value and they will be removed in a fewer iterations than
objects with high initial weights.

– aligned decrease of weights without considering their ini-
tial importance—here, we introduce a time factor κ that is
a user-specified value standing for a number of iterations
after which the object should be removed:

wk+1
i = wk

i − (wa
i /κ), (14)

where wa
i stands for the initial value of the weight

assigned to i th object. As we can see, the weights of
objects are reduced with each iteration till they are equal
to 0 (and removed from DS)—the main difference is that
this method does not consider the initial importance of
data. This means that all the objects from the k-th data
chunk will be removed in the same moment, after κ iter-
ations. This is motivated by the fact that changes in the
dynamic environment can be unpredictable and quickly
move from the original distribution—therefore, data from
previous steps may quickly loose its importance.

– decrease of weights according to the following sigmoidal
function:

wk+1
i = wa

i 2 exp(−β(k + 1))(1 + exp(−β(k + 1))

(15)

where β is responsible for the forgetting rapidity. Its value
should be determined experimentally. This method allows
for a smooth forgetting of previous data with the rapidity
of changes controlled by user.

4 Experimental investigations

Our experimental aims were as follow:

• to establish, if applying principles of incremental learning
and forgetting in one-class classification will allow to
handle data streams with the presence of concept drift
efficiently;

• to examine the effectiveness of proposed incremental
learning and forgetting schemes that were introduced in
this paper.
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Table 1 Details of data stream benchmarks used in the experiments

Data set Objects Features Classes Drift type

RBF 1,000,000 20 2 Gradual

LED 1,000,000 24 10 Gradual

COV 581,012 53 7 Unknown

ELEC 45,312 7 2 Unknown

AIR 539,383 7 2 Unknown

4.1 Data sets

There is an abundance of benchmarks for comparing machine
learning algorithms working in static environments. How-
ever, for non-stationary data streams, there is still just a few
publicly available data sets to work with.2 Most of them are
artificially generated ones, with only some real-life exam-
ples. Following the standard approaches found in the litera-
ture, we decided to use both artificial and real-life data sets.
Additionally, to the best knowledge of authors , there are
no data stream benchmarks for one-class classification prob-
lems. Therefore, we need to apply a transformation changing
existing multi-class streams into one-class data. To do this,
we need to select a single class to serve as the target con-
cept and use remaining class(es) as outliers. Details of used
benchmarks can be found in Table 1.

Below, we provide a short description of each data set:

– RBF: the radial basis function generator outputs a user-
defined number of drifting centroids. Each of such cen-
troids is described by a class label, position, weight, and
standard deviation. The created data set is defined as a
two-class problem with 1,000,000 objects in each class.
Four gradual recurring concept drifts were defined. To
change this data set into a one-class problem, we use
positive class as the target class and negative class as
outlier class.

– LED: this is an artificial data stream generator, described
by 24 features that describe an output of seven-segment
LED display. We generate a data set consisting of
1,000,000 objects and with the presence of gradual con-
cept drift. We use digit 0 as the target class and remaining
digits as outliers.

– COV: forest cover type is a real-life data set that deals
with different cover types in four wilderness areas. Each
example is described by 53 cartographic features that
allow to categorize cover type into one out of seven
classes. There are 581,012 examples in this data set. We
use Lodgepole Pine (cover type 2) class as target class

2 http://en.wikipedia.org/wiki/Concept_drift.

(as it is the most numerous one, with 283,301 examples)
and remaining six classes as outliers.

– ELEC: electricity is a real-life data set describing fluctu-
ations in energy prices from the electricity market. This
benchmark consists of 45,312 objects, each described by
seven features. We use the positive class as the target
concept and negative class as outliers.

– AIR: airlines in a real-life data set dealing with the prob-
lem of predicting flight delays. This data stream consists
of 539,383 objects, each described by seven features. We
use the positive class (flight on time) as the target concept
and negative class (flight delay) as outliers.

4.2 Set-up

For the purposes of experimental analysis, we use as a base
model WOCSVM with RBF kernel, σ = 0.1 and C = 10.

We use seven different models of the proposed one-
class classifiers in our experiments—each with applied dif-
ferent combination of incremental learning and forgetting
mechanisms. The details and abbreviations of these algo-
rithms are given in Table 2. As reference methods, we
apply an Incremental and On-line One-Class Support Vec-
tor Machine (IOCSVM, with RBF kernel, σ = 0.1 and
C = 10) (Zhang et al. 2009) and One-Class Very Fast Deci-
sion Tree (OcVFDT) (Li et al. 2009).

The data block size used for creating data chunks was
d = 2,500 for all the data sets. For all experiments, we set
the threshold for discarding old objects ε = 0.05

As we deal with one-class task, for training purposes we
utilize only objects belonging to the target class in given
chunks. For testing, we use all of objects from the incoming
chunk (both target class and outliers).

An important aspect of designing an experiment for non-
stationary data was choosing an appropriate metric for eval-
uating examined methods. We decided to measure classifi-
cation accuracy and time efficiency. We use the data chunk-
based evaluation method, described earlier in this paper.

4.3 Results and discussion

The average accuracies achieved by tested algorithms are pre-
sented in Table 3, their average training times on data chunk
are presented in Table 4, and their average memory usage is
presented in Table 5. Additionally, we present detailed accu-
racy behavior of the proposed incremental learning and for-
getting schemes on each of analyzed data sets in Figs. 3, 4, 5,
6 and 7 to allow for a visual inspection of their performance.

The experimental analysis allows us to draw several inter-
esting conclusions about the performance of the proposed
schemes for one-class classification in non-stationary envi-
ronments. First of all, analysis of performance of a standard
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Table 2 Details of used versions of the proposed one-class classification model with different incremental learning and forgetting procedures

Model Description

L1 F0 Standard WOCSVM without any adaptation mechanism

Trained on a single incoming chunk, without any previous data

L1 F1 Incremental learning: assigning weights to new objects according to Eq. (11)

Forgetting: gradual decrease of weights according to Eq. (13) with τ = 0.15

L2 F1 Incremental learning: assigning highest weights to new objects

Forgetting: gradual decrease of weights according to Eq. (13) with τ = 0.15

L1 F2 Incremental learning: assigning weights to new objects according to Eq. (11)

Forgetting: aligned decrease of weights without considering their initial importance according to Eq. (14) with κ = 0.1

L2 F2 Incremental learning: assigning highest weights to new objects

Forgetting: aligned decrease of weights without considering their initial importance according to Eq. (14) with κ = 0.1

L1 F3 Incremental learning: assigning weights to new objects according to Eq. (11)

Forgetting: decrease of weights according to proposed function Eq. (15) with β = 9

L2 F3 Incremental learning: assigning highest weights to new objects

Forgetting: decrease of weights according to proposed function Eq. (15) with β = 9

Table 3 Average classification
accuracies (%)

Bold values indicate the most
accurate methods for a given
dataset

Data set OcVFDT IOCSVM L1 F0 L1 F1 L2 F1 L1 F2 L2 F2 L1 F3 L2 F3

RBF 62.82 71.06 59.67 71.34 75.69 73.47 74.12 73.82 77.12

LED 56.94 64.48 51.98 64.24 68.49 62.21 65.06 64.98 70.36

COV 55.90 71.08 57.32 70.35 75.73 68.23 72.38 73.11 75.76

ELEC 68.39 70.42 62.08 70.15 73.49 70.03 72.94 72.67 74.04

AIR 62.72 64.51 61.12 63.84 66.13 61.98 64.22 63.87 66.14

Table 4 Average chunk training
time in seconds [s] Data set OcVFDT IOCSVM L1 F0 L1 F1 L2 F1 L1 F2 L2 F2 L1 F3 L2 F3

RBF 1.87 4.63 6.12 6.43 5.14 6.32 5.24 6.33 5.13

LED 1.92 4.62 5.98 6.19 5.02 6.23 6.10 6.28 5.04

COV 2.38 4.06 6.01 6.12 5.00 6.14 5.02 6.14 4.99

ELEC 1.32 3.74 4.56 4.73 4.26 4.68 4.21 4.65 4.22

AIR 0.97 2.10 4.43 4.61 3.19 4.51 3.16 4.38 3.17

Table 5 Average memory
consumption in megabytes
[MB]

Data set OcVFDT IOCSVM L1 F0 L1 F1 L2 F1 L1 F2 L2 F2 L1 F3 L2 F3

RBF 1.12 4.62 3.54 4.04 2.78 3.97 2.65 3.82 2.34

LED 0.23 3.17 2.54 2.33 1.25 2.04 1.19 2.12 1.08

COV 0.11 2.03 1.37 2.02 1.09 1.97 1.00 1.92 0.93

ELEC 0.04 1.08 0.53 0.92 0.51 0.91 0.50 0.89 0.46

AIR 0.15 1.76 2.63 1.21 1.54 2.04 1.59 1.97 1.45

WOCSVM shows us that canonical one-class classifiers dis-
play a very poor adaptation abilities in the presence of chang-
ing concepts. We tested the performance of this classifier
without any incremental learning or forgetting scheme, so
it was trained each time from a scratch on incoming data

chunks. This limited its adaptation, as it did not have any
access to previous objects—which can be very important
in case of gradual drifts. Without any mechanism to incor-
porate new observations, while storing the previous ones,
standard WOCSVM could not adapt sufficiently its deci-
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Fig. 3 Accuracies of proposed incremental learning and forgetting methods for RBF data set

Fig. 4 Accuracies of proposed incremental learning and forgetting methods for LED data set

sion boundary, which resulted in an extended acceptance of
outliers.

When comparing our approaches to the reference meth-
ods (IOCSVM and OcVFDT), one may see that they out-
perform these state-of-the-art classifiers for non-stationary
single class streams. This is because most used one-class
methods for data streams (such as the reference ones) do

not have embedded methodologies for dealing with shifting
concept—they just work in an incremental way. Our method
is able to efficiently adapt to the changing context by forget-
ting the no longer relevant samples, and thus increasing its
overall accuracy. One should note that OcVFDT has much
lower training time than our methods, but this is at the cost
of a much lower overall accuracy.
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Fig. 5 Accuracies of proposed incremental learning and forgetting methods for COV data set

Fig. 6 Accuracies of proposed incremental learning and forgetting methods for ELEC data set

When examining the proposed schemes for incremental
learning, one may see two major trends. First, calculating
new weights based on the distance returns in most cases an
inferior performance to approach based on assigning highest
weights for incoming objects. This can be explained by the
fact that weight calculation in the first scheme is based on the
distance between the new objects and the center of the one-

class classifier hypersphere. As the center of the classifier is
moving with each new training data chunk (as it is adapt-
ing to changes in data), weights quickly lose their meaning
with the change of inner-class data distribution. Addition-
ally, data from incoming chunk represent the current state of
the classified target concept and its influence on the shape
of the decision boundary should be boosted. That is why the
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Fig. 7 Accuracies of proposed incremental learning and forgetting methods for AIR data set

simpler method based on assigning highest weights to new
object returns more accurate classifiers. Furthermore, this
approach significantly reduces the computational time and
memory consumption of proposed methods, as can be seen
in Tables 4 and 5. This is due to the fact that calculating dis-
tances and new weights for incoming examples requires addi-
tional processing time, while simply assigning highest weight
alleviates the computational load connected with processing
new chunks.

As for the forgetting mechanism, we can see their impor-
tant influence on the proposed method. They allow to store
useful information for some time, but allow to gradually
reduce their level of influence on the shape of the deci-
sion boundary. This is of high importance for constructing
efficient models for cases with gradual or recurring drifts.
From the three proposed methods, we can see that gradual
decrease of weights with respect to their initial importance
and decrease of weights according to proposed sigmoidal
function returns the best performance. This can be explained
by the fact that these methods take into consideration the ini-
tial weight of examples and remove them according to their
relevance. We can assume that if a given object was important
in previous chunk, it can still be of some use in few incoming
partitions of data stream (especially in case of slow changes in
the environment). Out of these two methods, the one based
on our sigmoidal function returns superior results in three
out of five data sets. For the remaining two benchmarks, all
proposed forgetting mechanisms output similar accuracies.

The memory and time consumptions of these methods are
quite similar, but one may see that sigmoidal-based forget-
ting tends to return slightly less complex models.

Taking the mentioned factors into consideration, one may
conclude that the best one-class classification model for data
streams with the presence of concept drift would be returned
by combining incremental learning by assigning highest
weights to objects coming from the new data chunk with
forgetting by sigmoidal-based function. Experimental results
show us that such a combination returns superior results to
all other algorithms presented in this paper. Additionally, it
has the lowest memory consumption and one of the lowest
time complexities. This allows us to draw a conclusion that
this model is a good choice for tackling one-class classifica-
tion for non-stationary data in changing environments both in
terms of overall accuracy for dichotomizing between target
concept and outliers, and in terms of overall computational
complexity and ability to work in real-time pattern classifi-
cation systems.

5 Conclusions

In this work, we introduced a modified Weighted One-
Class Support Vector Machine augmented with the princi-
ples of incremental learning and forgetting. These techniques
allowed to adapt the decision boundary of the classifier to
changes in the incoming data.
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Our proposition focused on the modifications of weights
used by WOSVM. We employed the incremental training of
the weights which was additionally supported by forgetting
mechanism. The forgetting boosts classifier’s ability to gen-
eralization and strongly reduces the amount of stored data,
because outdated examples are removed from the memory.

We conclude with suggestion that the efficient one-class
classification model for data streams with the presence of
concept drift would be returned by combining incremental
learning by assigning highest weights to objects coming from
the new data chunk with forgetting by sigmoidal-based func-
tion. Experimental results show us that such a combination
returns superior results to all other algorithms presented in
this paper. Additionally, it has the lowest memory consump-
tion and one of the lowest time complexities.

As the achieved results are very promising, then we
decided to continue our work with them in the future. The
following research direction will be explored:

– implementing and testing new forgetting mechanisms,
– testing our approach on different types of concept drift,

especially on sudden shift which requires drift detector
and shorter restoration time of the adaptation strategies,

– implementing active learning mechanisms which do not
require labels of each examples in a chunk,

– implementing classifier ensemble based on the proposed
incremental WOCSVM.

These topics can lead to a new propositions of efficient
classifiers for one-class classification in data streams with
changing concept.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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