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Abstract

Classification of medical images is an important issue in computer-assisted diagnosis. In this paper, a classification

scheme based on a one-class kernel principle component analysis (KPCA) model ensemble has been proposed for the

classification of medical images. The ensemble consists of one-class KPCA models trained using different image

features from each image class, and a proposed product combining rule was used for combining the KPCA models to

produce classification confidence scores for assigning an image to each class. The effectiveness of the proposed

classification scheme was verified using a breast cancer biopsy image dataset and a 3D optical coherence

tomography (OCT) retinal image set. The combination of different image features exploits the complementary

strengths of these different feature extractors. The proposed classification scheme obtained promising results on the

two medical image sets. The proposed method was also evaluated on the UCI breast cancer dataset (diagnostic), and

a competitive result was obtained.

Keywords: Breast cancer diagnosis; Biopsy image; One-class classifier; Kernel principle component analysis;

Classifier ensemble

1 Introduction
Medical imaging is one of the most important tools in

modern medicine; different types of imaging technologies

such as X-ray imaging, ultrasonography, biopsy imaging,

computed tomography, and optical coherence tomogra-

phy have been widely used in clinical diagnosis for var-

ious kinds of diseases. However, in clinical applications,

it is usually time-consuming to examine an image man-

ually. Moreover, as there is always a subjective element

related to the pathological examination of an image by

human physician, an automated technique will provide

valuable assistance for physicians. A large focus with

respect to medical image analysis has been on automated

image classification. Many recent studies have revealed

that medical images can be properly classified if suit-

able image feature descriptions are chosen [1-3]. These

research demonstrated that by combining different image
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description features, it is possible to improve medical

image classification performance.

Although the classifiers which can provide multi-class

classification such as support vector machines (SVM) and

neural networks are usually selected for medical image

classification [4], one-class classifiers (OCC) [5] that can

work on the samples seen are, so far, more appropriate

for medical image classification task. One-class classifica-

tion is also often called outlier (or novelty) detection as

the learning algorithms are used to differentiate between

data that appears normal and abnormal with respect to

the distribution of the training data. This principle of

one-class classification is thus appropriate with respect

to medical diagnosis and in disease versus no-disease

problems.

In many real classification tasks, using a single clas-

sifier often fails to capture all aspects of the data.

Therefore, a combination of classifiers (an ensemble) is

often considered to be an appropriate mechanism to

address this shortcoming. The main idea behind the

ensemble methodology is to use several classifiers and

combine the individual results in order to produce a

classification that outperforms the outcome that would
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have been produced if the classifiers were to oper-

ate in isolation [6]. Ensembles of one-class classifiers

have also been shown to perform better than individual

classifiers [7-9].

There are many strategies for constructing a classifier

ensemble, with examples including the use of different

training data sets, different feature subsets, various types

of individual classifiers, and different fusion rules. Among

these, the feature subset strategy has shown better per-

formance when the dimensionality of the feature vector

is high compared to the number of the data samples

[10-13]. It is thus suggested that the feature subset ensem-

ble strategy is consequently well suited to medical image

classification problems, as various types of image features

are generally extracted for medical image classification

tasks, which in turn means that the dimensionality of the

vector space is typically beyond the number of image sam-

ples, in which the ‘curse of dimensionality’ occurs, but the

use of the feature subset strategy can avoid such problem.

In this paper, we propose and evaluate a novel clas-

sification scheme for medical images. The proposed

classification scheme utilizes an ensemble of one-class

classifiers, which is built with the feature subset strat-

egy; each one-class classifier is trained with one type of

features extracted from the training images. The kernel

principle component analysis (KPCA) model was chosen

as the base classifier of the ensemble. Given a m-class

classification task and n different kinds of image fea-

tures, the ensemble will consist of m × n KPCA models.

For an unlabeled image, its n-types of features will first

be mapped into the kernel space by the corresponding

n-trained KPCA models from each class. The mapped

features will then be reconstructed from the high dimen-

sional kernel space into the original space by preimage

learning, the distances between the original features and

the reconstructed features will be measured. The dis-

tances given by the KPCA models will be combined to

output a confidence score describing the probability of

the sample belonging to a class. For a m-class classifi-

cation task, the m confidence scores will be obtained,

one for each class. The image will be classified into

the class with the maximum confidence score. Promis-

ing classification performance was obtained using the

proposed classification scheme on two medical image

sets.

2 Related works
In this section, we will first introduce some related

works on one-class classification. Then one-class classifier

ensembles will be discussed.

2.1 One-class classification

Moya et al. originated the term one-class classifica-

tion [14]. Many approaches to one-class classification

have been presented in the literature [5]. Following the

taxonomy in the survey papers of [15-17], the algorithms

used in OCC can be categorized as follows: (i) boundary

methods, (ii) density estimation, and (iii) reconstruction

methods.

Tax and Duin [18,19] sought to solve the problem of

OCC by distinguishing the positive class from all other

patterns in the pattern space; the positive class data was

surrounded by a hyper-sphere which encompassed almost

all positive patterns within the minimum radius. This

method of support vector data description (SVDD) was

different to that proposed by Schölkopf et al. [20] who,

using a separating hyper-plane instead of a hyper-sphere,

tried to separate the pattern space with data from the

space containing no data. Manevitz and Yousef [21] pro-

posed another version of one-class SVM based on iden-

tifying outlier data as representative of the second class,

and they applied their method to the standard Reuters [22]

dataset and noted that their SVMmethods was quite sen-

sitive to the choice of representation and kernel. Although

one-class classifiers, such as OCSVM, have been widely

used, the estimated boundary can be sensitive to the

nature of the data [23]. This can be highly problematic for

many applications, especially for medical diagnosis where

the number of false positives must be kept to a minimum,

since an accidental diagnosis of a cancer patient as healthy

may result in death.

Density estimation methods estimate the density of the

target class to form a model with which to represent the

data. The generally usedmodels include Parzen, Gaussian,

and Gaussian mixture models. The test point is classi-

fied by the maximum posterior probability. Generally, this

approach works well when the sample size is sufficiently

high and a flexible model is used. However, when the

model does not fit the data very well, a large bias may

result. Details and some comparisons of these methods

can be found in [24,25].

As the density estimation or support-vector-based

methods require large training sets, when this is not fea-

sible, one can approximate the target class by a simpler

reconstruction model. This type of models tries to cap-

ture the data structure; new objects are projected onto this

model. The reconstruction error, the difference between

the original object x and the projected object p(x), indi-

cates the resemblance of a new object to the original

target distribution.When the training data has a very high

dimensionality, the nearest neighbor methods tend to per-

form badly [26]. In such cases, it can often be assumed

that the target data is distributed in subspaces of much

lower dimensionality. Principle component analysis [27] is

a linear model that has the ability to project the original

data into orthogonal space which can captures the vari-

ance in the data. Many nonlinear subspace models have

also been proposed, such as self-organizing map (SOM),
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auto-encoders, auto-associative networks [28], and kernel

PCA [29].

2.2 Ensemble of one-class classifiers

Ensemble learning is concerned withmechanisms to com-

bine the results of a number of weak learning systems

to produce better learning performance. Several method-

ologies exist for creating an ensemble classifier from

individual classifiers; a survey on the design of multiple

classifier systems can be found in [6]. It has been demon-

strated that combining classifiers can also be effective for

one-class classifiers. The existing classifier combination

strategies can also be used in one-class classifiers. Because

for one-class classifiers, information concerning only one

class is available; thus, the combining of one-class clas-

sifiers is more difficult. Tax and Duin investigated the

influence of feature sets and the types of one-class clas-

sifiers for the best choice of the combination rule [30]. A

bagging-based one-class support vector machine ensem-

ble method was proposed in [31]. A dynamic ensemble

strategy based on structural risk minimization [32] was

proposed by Goh et al. for multi-class image annotation

[7]. Recently, some research results have revealed that cre-

ating a one-class classifier ensemble from different feature

subsets can provide better performance. Perdisci et al.

[33] also used an ensemble of one-class SVMs to create a

‘high-speed payload-based’ anomaly detection system, in

which the features were first extracted and clustered and

the OCSVM ensemble was then constructed based on the

clustered feature subsets. A biometric classification sys-

tem combining different biometric features was proposed

by Bergamini et al. [8], where the one-class SVMs in the

ensemble were trained by the data from different people.

The feature subset strategy provides diversity with respect

to the base classifiers, and some researchers emphasize

the importance of measuring diversity in ensembles so as

to improve classification performance [9,34].

Combining one-class classifiers has also shown promis-

ing performance in medicine and biology [35]. Peng Li

et al. [36] proposed a multi-size patch-based classifier

ensemble, which provides a multiple-level representation

of image content, and this method was evaluated on

colonoscopy images and ECG beat detection [37]. The

k-nearest neighbor classifier was selected as the base clas-

sifier in the work of Okun and Priisalu [38] in which

majority voting was chosen as the combination rules for

the ensemble and the method was evaluated on gene

expression cancer data.

3 One-class kernel subspace ensemble
In this section, the one-class kernel PCA model ensemble

will be introduced. The theory of kernel PCA and pattern

reconstruction via preimage will first be introduced, then

the proposed KPCA ensemble will be described.

3.1 KPCA and pattern reconstruction via preimage

The traditional (linear) PCA tries to preserve the great-

est variations of data by approximating data in a principle

component subspace spanned by the leading eigenvectors,

noises or less important data variations will be removed.

Kernel PCA inherits this scheme; however, it performs lin-

ear PCA in the kernel feature space Hκ . Suppose X ⊂ R
n

is the original input data space and Hκ is a reproducing

kernel Hilbert space (RKHS) (also called feature space)

associated to a kernel function κ(x, y) =< ϕ(x),ϕ(y) >,

where x, y ∈ X. ϕ(·) is a mapping induced by κ that ϕ(x) :

X → Hκ . Given a set of patterns {x1, x2, . . . , xN } ∈ X,

kernel PCA performs the traditional linear PCA in Hκ .

Similar to the linear PCA, KPCA also has the eigendecom-

position:

HKH = U�U ′ (1)

where K is the kernel matrix such that Kij = κ(xi, xj), and

H = I −
1

N
11

′ (2)

is the centering matrix, where I is the N × N iden-

tity matrix, 1 =[ 1, 1, . . . , 1]′ is an N × 1 vector, U =

[α1, . . . ,αN ] is the matrix containing eigenvectors αi =

[αi1, . . . ,αiN ]
′, and � = diag(λ1, . . . , λN ) contains the

corresponding eigenvalues.

Denote the mean of the ϕ-mapped patterns by ϕ̄ =
1
N

∑N
j=1 ϕ(xj). Then for a mapped pattern ϕ(xi), the cen-

tered map ϕ̃(xi) can be defined as follows:

ϕ̃(xi) = ϕ(xi) − ϕ̄. (3)

The kth eigenvector Vk of the covariance matrix in the

feature space is a linear combination of ϕ̃(xi):

Vk =

N
∑

i=1

αkiϕ̃(xi) = ϕ̃αk , (4)

where ϕ̃ =[ ϕ̃(x1), ϕ̃(x2), ..., ϕ̃(xN )]. If we use βk to denote

the projection of the ϕ-image of a pattern x onto the kth

component Vk , then:

βk = ϕ̃(x)′Vk =

N
∑

i=1

αkiϕ̃(x)′ϕ̃(xi)

=

N
∑

i=1

αkiκ̃(x, xi), (5)

where

κ̃(x, y) = ϕ̃(x)′ϕ̃(y)

= (ϕ(x) − ϕ̄)′(ϕ(y) − ϕ̄)

= κ(x, y) −
1

N
1

′
kx −

1

N
1

′
ky +

1

N2
1

′
K1 (6)
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where kx =[ κ(x, x1), . . . , κ(x, xN )]′. Denote

κ̃x =[ κ̃(x, x1), . . . , κ̃(x, xN )]′

= kx −
1

N
11

′
kx −

1

N
K1 +

1

N2
11

′
K1

= H(kx −
1

N
K1), (7)

then βk in Equation 5 can be rewritten as βk = α
′

k κ̃x.

Therefore, the projection P(ϕ(x)) of ϕ(x) onto the sub-

space spanned by the firstM eigenvectors can be obtained

by:

P(ϕ(x)) =

M
∑

k=1

βkVk + ϕ̄ =

M
∑

k=1

(α′
k κ̃x)(ϕ̃αk) + ϕ̄

= ϕ̃Lκ̃x + ϕ̄, (8)

where L =
∑M

k=1 αkα
′
k .

PCA is a simple method whereby a model for the dis-

tribution of training data can be generated. For linear

distributions, PCA can be used; however, many real-world

problems are nonlinear. Methods like Gaussian mixture

models and auto-associative neural networks have been

used for nonlinear problems. These methods, however,

need to solve a nonlinear optimization problem and are

thus prone to local minima and sensitive to the initial-

ization [29]. KPCA runs PCA in the high-dimensional

feature space through the nonlinearity of the kernel, and

this allows for a refinement in the description of the pat-

terns of interest. Therefore, kernel PCA was chosen to

model the nonlinear distribution of the training samples

here.

Kernel PCA has been widely used for classification

tasks. A straightforward method using kernel PCA for

classification is to directly use the distances between the

mapped patterns in the feature space Hκ to obtain the

classification boundaries [29,39]. However, as pointed out

in [29] for kernel PCA, their experimental results showed

that the classification performance highly depends on the

parameters selected for the kernel function, and there is

no guideline for parameter selection in real classification

tasks. It is also demonstrated in a more recent work that it

is not sufficient to use kernel space distance for unsuper-

vised learning algorithms, and the distances in the input

space are more appropriate for classification [40].

In this paper, we focus on the distances between a pat-

tern x and its reconstruction results by the kernel PCA

models trained from different classes. As kernel PCA is

used as an one-class classifier here, which means that

for each class, at least one KPCA model is trained. Sup-

pose there is an m-class classification task, there will be

m KPCA models, one for each class. Given an unlabeled

pattern x, every KPCA model will produce a projection

P(ϕ(x))i, i = 1, . . . ,m. During classification, x will be

reconstructed in the input space by every P(ϕ(x))i, then

m reconstruction results x
′

1, . . . , x
′

m can be obtained, the

distance between x and each x
′

i (also called reconstruc-

tion error) is calculated, and x will be assigned to the

class whose KPCA model produces the minimum recon-

struction error. Ideally, the KPCA model trained from the

class which x also belongs to will always give the mini-

mum reconstruction error. In our proposed classification

scheme, multiple KPCA models are trained for each class

and the reconstruction errors of KPCA models from dif-

ferent classes are combined for classification, which is

demonstrated in Section 3.2 and Section 3.3.

In order to obtain the input-space distance between

x and its reconstruction result, it is necessary to map

P(ϕ(x)) back into the input space. The reverse mapping

from feature space back to input space is called the preim-

age problem (Figure 1). However, the preimage problem is

ill-posed and the exact preimage x
′
of P(ϕ(x)) in the input

Figure 1 Illustration of KPCA preimage learning. The sample x in the original space is first mapped into the kernel space by kernel mapping ϕ(·),

then PCA is used to project ϕ(x) into P(ϕ(x)), which is a point in a PCA subspace. Preimage learning is used to find the preimage x̂ of x in the

original input space from P(ϕ(x)).
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space does not exist [41]; instead, one can only find an

approximation x̂ in the input space such that

ϕ(x̂) = P(ϕ(x)). (9)

In order to address the preimage learning problem,

some algorithms have been proposed. Mika et al. [41] pro-

posed an iterative method to determine the preimage by

minimizing least square distance error. Kwok and Tsang

proposed a distance constraint learning (DCL) method

to find preimage by using a similar technique in multi-

dimensional scaling (MDS) [42]. In a more recent work,

Zheng et al. [43] proposed a weakly supervised penalty

strategy for preimage learning in KPCA; however, their

method needs information for both positive and negative

classes. As we are only interested in one-class scenarios,

the distance constraint method in [42] was selected with

respect to the work described in this paper. We briefly

review the method here.

For any two patterns xi and xj in the input space, the

Euclidean distance d(xi, xj) can be easily obtained. Sim-

ilarly, the feature-space distance d̃(ϕ(xi),ϕ(xj)) between

their ϕ-mapped images in the feature space can also be

obtained. For many commonly used kernels, such as the

Gaussian kernels, there is a simple relationship between

the feature-space distance and the input-space distance

[44]:

d̃
2

ij = Kii + Kjj − 2κ(d2ij). (10)

Therefore,

κ(d2ij) =
1

2
(Kii + Kjj −d̃

2

ij ). (11)

As κ is invertible, d2ij can be obtained if d̃
2

ij is known.

A given training set has n patterns X = {x1, . . . , xn}. For

a pattern x in the input space, the corresponding ϕ(x) is

projected to P(ϕ(x)), then for each training pattern xi inX,

P(ϕ(x)) will be at a certain distance d̃(P(ϕ(x)),ϕ(xi)) from

ϕ(xi) in the feature space. This feature-space distance can

be obtained by:

d̃
2
(P(ϕ(x)),ϕ(x)) = ‖P(ϕ(x))‖2 + ‖ϕ(xi)‖

2

− 2P(ϕ(x))′ϕ(xi).

(12)

The Equation 12 can be solved by using Equations 5 and

8. Therefore, the kernel space distances in Equation 11

between P(ϕ(x)) and each xi can be obtained now. Denote

the kernel space distance between P(ϕ(x)) and xi as:

d
2 =[ d21 , d

2
2 , . . . , d

2
n] . (13)

The location of x̂ will be obtained by requiring d2(x̂, xi)

to be as close to the values in (13) as possible, i.e.,

d2(x̂, xi) ≃ d2i , i = 1, . . . , n. (14)

To this end, in DCL, the training set X is constrained

to the n nearest neighbors of x, and the least square

optimization is used to obtain x̂.

3.2 Construction of one-class KPCA ensemble for image

classification

Given an image set of m classes, the proposed one-class

KPCA ensemble is built as follows: (i) for each image cat-

egory, n-type image features are extracted; (ii) a KPCA

model will be trained for each individual type of the

extracted features; and (iii) therefore, for each image class,

n KPCA models will be constructed. For a m-class prob-

lem, there will be m × n KPCA models in the ensemble.

The construction of the proposed one-class KPCA ensem-

ble is illustrated in Figure 2, where KPCA
j
i represents the

model trained by the type j feature from class i.

Figure 2 Construction of one-class KPCA ensemble from different image feature sets. KPCA
j
i represents the KPCA model trained from the jth

image feature of class i.
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3.3 Multi-class prediction using an ensemble of one-class

KPCAmodels

The classification confidence score is used to describe the

probability of the image that belongs to each class. The

confidence score can provide a quantitative measure of

the predictions produced by KPCA models.

Given an unlabeled image x with n extracted features

F = {f1, f2, . . . , fn}, let KPCA
j
i represent the KPCA model

belonging to class i and trained from the feature set fj,

where i ∈ {1 . . .m} is the class label and j ∈ {1 . . . n} is

the feature label. For classification, the preimages of each

image feature fj ∈ F will be obtained by all the KPCA

models trained from the jth feature. The DCL method

introduced in Section 3.1 is used for obtaining the preim-

ages. For example, the preimages of f1 will be obtained by

the models KPCA1
i , i = 1, . . . ,m. Denote the preimages

of fj as f ′
j = {f ′1

j , f ′2
j , . . . , f ′m

j }, and the squared distance

Dj between fj and f ′
j is used as the reconstruction error,

therefore:

Dj =[ d1j , d
2
j , . . . , d

m
j ] , (15)

where d
j
i = ‖fj − f ′i

j ‖2, i = 1, . . . ,m. In the same way,

the preimages of all the features in F will be obtained,

forming a distance matrix D, which has the dimensions

n×m, where n is the number of KPCAmodels used for the

preimage learning and m is the number of image classes.

Each row of D represents the reconstruction errors of a

feature in F bym KPCA models from each class:

D =

⎡

⎢

⎢

⎢

⎣

D1

D2

...

Dn

⎤

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎝

d11 d21 · · · dm1
d12 d22 · · · dm2
...

... · · ·
...

d1n d2n · · · dmn

⎞

⎟

⎟

⎟

⎠

. (16)

Noting that the values in each column of D represents

the reconstruction errors of F using the KPCA models

from the same class, these values provide a measurement

of how an image x is described by the KPCA models

from one class. Since we try to find the KPCA mod-

els from a class which give the minimum reconstruction

error, this indeed is a 1-nearest neighbor search, as we

wish to find the best preimage of x in m preimages. Such

a distance measure can improve the speed of the classifi-

cation. Moreover, it is also in line with the ideas in metric

multi-dimensional scaling, in which smaller dissimilarities

are given more weight, and in locally linear embedding,

where only the local neighborhood structure needs to be

preserved [42].

In order to combine the reconstruction errors from

KPCA models, the reconstruction errors in D are first

normalized using Equation 17:

d̃
j

i = exp(−d
j
i /s), (17)

which models a Gaussian distribution from the square

distance. The scale parameter s can be fitted to the distri-

bution of d
j
i. Moreover, Equation 17 has the feature that

the scaled value is always bounded between 0 and 1. The

normalized distance matrix D is denoted by D̃.

The normalized reconstruction errors in D̃ are obtained

by different one-class KPCA models, which can be com-

bined to produce the confidence scores (CS) for classifying

x into each class. Let Cs = {cs1, cs2, . . . , csm} denote the

confidence scores for x with respect to each image class.

The confidence scores can be computed from the distance

matrix D̃ by using an appropriate combination rule. A

product rule was proposed in [45] for combining one-class

classifiers:

csk(x) =

∏

k Pk(x|wT)
∏

k Pk(x|wT) +
∏

k Pk(x|wO)
, (18)

where k is the label of the target class.
∏

k Pk(x|wT) is the

probabilities of classifying x into the target class obtained

from classifiers of class k, which can be calculated from

the values in one column of the distance matrix D̃ as:
∏

k

Pk(x|wT) =
∏

j=1...n

d̃
k

j . (19)

∏

Pk(x|wO) represents the probability of x belonging to

the outlier class, which is obtained by multiplying all the

values in D̃ except the values from the ‘target’ class k:

∏

Pk(x|wO) =
∏

d̃
i

j , j = 1 . . . n, i = 1 . . .m and i �= k.

(20)

In [30], the authors investigated different mechanisms

for combining one-class classifiers, and their results

showed that the ‘product rule’ in Equation 18 outperforms

other combining mechanisms for one-class classifiers. As

noted in [30,45], when using the product combining rule,

Pk(x|wT) should be available and a distance should be

transformed to a ‘resemblance’ by some heuristic mapping

as in Equation 17.

However, when one-class classifiers are used for multi-

class classification tasks, the product rule in Equation 18

may not perform well. The number of the one-class clas-

sifiers constructed for the outlier classes will exceed the

number of the classifiers for the target class; a problem of

‘imbalance’ thus occurs in Equation 18, where the items

used for producing
∏

k Pk(x|wO) are much more than the

items used for
∏

Pk(x|wT). During classification, some

classifiers from the outlier classes may give small classifi-

cation probabilities when the classifiers estimate that the

pattern is not an outlier. In Equation 18, these small prob-

abilities will still be used to calculate
∏

k Pk(x|wO), even

if there are more classifiers which have a different judge-

ment. In this imbalance situation, due to those relatively

small probabilities, a small value of
∏

k Pk(x|wO) will be
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Figure 3 Illustration of KPCAmodel selection to produce outlier

probability product.

obtained, approaching 0, which makes the classification

confidence scores rather closed to each other.

Here, a variant of the product combining rule of

Equation 18 is proposed to address the imbalance prob-

lem. Instead of using the mapping values from all the

outlier classes’ KPCA models, for those models trained

by a same type of image feature, only the model that

gives the biggest mapping value will be chosen to produce
∏

k Pk(x|wO). The proposed product combining rule can

be described as:

csk(x) =

∏

k Pk(x|wT)
∏

k Pk(x|wT) +
∏

j P
j

k (x|wO)
, (21)

where j is the image feature label and j = 1 . . . n.
∏

k Pk(x|wT) can be obtained using Equation 19. Each

P
j

k (x|wO) in
∏

j P
j

k (x|wO) is the probability of x belongs to

the outlier classes using the jth image feature, which can

be obtained by:

P
j

k
(x|wO) = max{d̃

i

j }, i = 1 . . .m and i �= k. (22)

The maximum value selection procedure in Equation 21

is illustrated by a simple example in Figure 3. In Figure 3,

there is a four-class classification task (I, II, III, and IV in

the figure), in which four types of features are extracted

from image x. For one type of image feature, there are four

trained KPCA models, each from a different class, giv-

ing four reconstruction results for the same feature of x

(one row in matrix D̃). If we consider class I as the ‘tar-

get’ class (first column in the figure), the four values in the

first column are used to produce the item
∏

k Pk(x|wT) in

Equation 21. The other three column of values are deemed

as the outlier probabilities produced by the KPCA mod-

els from the other three classes. The proposed combining

rule selects the maximum mapping value from each row

to produce the outlier probability product
∏

j P
j

k (x|wO).

The selection scheme in Equation 21 ensures that

the numbers of items for calculating
∏

k Pk(x|wO) and
∏

Pk(x|wT) are the same. Moreover, the negative effect on

confidence scores brought by the imbalance can also be

removed. The proposed combining rule is in line with the

basic idea of one-class classification, as in the one-class

scenario, one only needs to know if a pattern should be

assigned to the target class or to the outlier class. If one or

more outlier models is able to produce a high outlier prob-

ability product, the current target class should be doubted.

Moreover, by combining the outliers value from different

feature-derived models, the diversity of the ensemble will

be improved, which is an important factor to make an

ensemble learning method successful [46].

Note that since the ‘target class’ is unknown for an

unlabeled image, during classification, each class will be

deemed as the target class in turn to calculate the confi-

dence score, i.e., each column in D̃ will be used in turn to

obtain
∏

k Pk(x|wT) for each class. In such a way, for a m-

class classification, each class will be deemed as the target

class, one by one, to producem confidence scores; thus the

image will be assigned to the class giving the maximum

classification confidence score.

4 Experiments and results
The effectiveness of the proposed method is illustrated

using a biopsy breast cancer image set, a 3D OCT retinal

image set, and the UCIWisconsin breast cancer (diagnos-

tic) dataset. The details of the image set and image feature

extractors are given in Section 4.1. Section 4.2 intro-

Figure 4 Typical image instances. (a) Carcinoma in situ: tumor confined to a well-defined small region, usually a duct (arrow). (b) Invasive: breast

tissue completely replaced by the tumor. (c) Normal: normal breast tissue, with ducts and finer structures.
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Table 1 Features extracted from gray level co-occurrence

matrix

Index Features Index Features

1 Energy 12 Sum of squares

2 Entropy 13 Sum average

3 Dissimilarity 14 Sum variance

4 Contrast 15 Sum entropy

5 Inverse difference 16 Difference variance

6 Correlation 17 Difference entropy

7 Homogeneity 18 Information measure of

correlation (1)

8 Auto-correlation 19 Information measure of

correlation (2)

9 Cluster shade 20 Maximal correlation

coefficient

10 Cluster prominence 21 Normalized inverse

difference

11 Maximum probability 22 Normalized inverse

difference moment

duces our experimental setup and the evaluation methods

used in our experiments. The effectiveness of combin-

ing kernel PCAs is illustrated in Section 4.3. Finally, the

proposed method was compared with some state-of-art

ensemble classification methods on the UCI Wisconsin

breast cancer dataset.

4.1 Image set and feature extraction

With respect to the work described in this paper, three

medical image sets were used to evaluate the proposed

classification method: A breast cancer benchmark biopsy

images dataset from the Israel Institute of Technology

[47], a 3D OCT retinal image set, and the breast cancer

dataset (diagnostic) from UCI machine learning reposi-

tory [48].

4.1.1 Breast cancer biopsy image set

The image set consists of 361 samples, of which 119

were classified by a pathologist as normal tissue, 102 as

carcinoma in situ, and 140 as invasive ductal or lobu-

lar carcinoma. The samples were generated from breast

tissue biopsy slides, stained with hematoxylin and eosin.

They were photographed using a Nikon Coolpix� 995

attached to a Nikon Eclipse� E600 (Nikon Corporation,

Shinjuku, Tokyo, Japan) at magnification of ×40 to pro-

duce images with resolution of about 5 µ per pixel. No

calibration wasmade, and the camera was set to automatic

exposure. The images were cropped to a region of interest

of 760 × 570 pixels and compressed using the lossy JPEG

compression. The resulting images were again inspected

by a pathologist to ensure that their quality was sufficient

for diagnosis. Figure 4 presents three sample images of

healthy tissue, tumor in situ, and invasive carcinoma.

The shape feature and texture feature are critical factors

for distinguishing one image from another. For the biopsy

image discrimination, shapes and textures are also effec-

tive. As we can see from Figure 4, the three kinds of biopsy

images have visible differences in cell externality and tex-

ture distribution. Thus, we use completed local binary pat-

terns (CLBPs) [49] for extracting local textural features,

gray level co-occurrence matrix (GLCM) [50] statistics for

representing global textures, and the curvelet transform

[51] for shape description. These feature descriptors have

shown promising results in our previous work on biopsy

image classification [52].

Different from traditional LBPs, in CLBPs a local region

is represented by three coding operators to represent

the central pixel, the difference signs, and the difference

magnitudes [49]. According to the authors, CLBP can

achieve much better rotation invariant texture classifica-

tion results than conventional LBP-based schemes. In this

paper, we use the 3D joint histogram of these three oper-

ators to generate textural features of breast cancer biopsy

Figure 5 Examples of two 3D OCT images showing the difference between a ‘normal’ (a) and an AMD retina (b).
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Figure 6 Examples of OCT images. (a) Before preprocessing. (b) After preprocessing.

images, and the joint combination of the three compo-

nents gives better classification than when using conven-

tional LBPs and provides a smaller feature dimension. The

dimension of the CLBP feature is 200.

The co-occurrence probabilities provide a second-order

method for generating texture features. The basis for fea-

tures used here is the gray level co-occurrence matrix

[50]. With respect to the work described in this paper,

a total of 22 features were extracted from gray level co-

occurrence matrix, and they are listed in Table 1. Each of

these statistics has a qualitative meaning with respect to

the structure within the gray level co-occurrence matrix.

The total dimension of the GLCM features is 220.

The fastest curvelet transform currently available is the

curvelets via wrapping [51], which was therefore adopted

with respect to our work. From the curvelet coefficients,

some statistics can be calculated from each of these

curvelet sub-bands. In this paper, the mean μ, the stan-

dard deviation δ, and the entropy H are used as the

simple features. If n curvelets are used for the trans-

form, 3n features G =[Gμ,Gδ ,H] are obtained, where

Gμ =[μ1,μ2, . . . ,μn], Gδ =[ δ1, δ2, . . . , δn], and H =

[ h1, h2, . . . , hn]. A 3n-dimensional feature vector can be

used to represent each image in the dataset. Using five

levels of the curvelet transform, 82 sub-bands of curvelet

coefficients are computed, therefore, a 246 dimensional

curvelet feature vector is generated for each image.

4.1.2 3DOCT retinal image set

The 3D OCT retinal image set was collected at the Royal

Hospital of University of Liverpool. The image set con-

tains 140 volumetric OCT images, in which 68 images are

Table 2 Recognition rate (percent) for the biopsy image

data from individual KPCAs and the combinedmodel

Image class CvletK GLCMK LBPK Combined

Normal 70.10 67.70 71.40 92.70

In situ 76.50 72.58 81.83 93.78

Invasive 77.71 68.65 85.57 90.35

from normal eyes and the remainder from eyes that have

age-related macular degeneration (AMD). Figure 5 shows

the example images.

The OCT images are preprocessed by using the Split

Bregman Isotropic Total Variation algorithm with a least

squares approach [53]. The preprocessing step has two

targets: (i) identification and extraction of a volume of

interest (VOI) which also results in noise removal and

(ii) flattening of the retina as appropriate. The example

images after preprocessing can be seen in Figure 6.

As the images are three-dimensional, following the work

in [53], three types image features were used for image

description: local binary patterns of three orthogonal

planes (LBP-TOP), local phase quantization (LPQ) and

multi-scale spatial pyramid (MSSP).

4.1.3 UCI breast cancer dataset

The Wisconsin breast cancer image sets were obtained

from digitized images of fine needle aspirate (FNA) of

breast masses. They describe characteristics of the cell

nuclei present in the image. Ten real-valued features are

computed for each cell nucleus: radius, texture, perime-

ter, area, smoothness, compactness, concavity, concave

points, symmetry and fractal dimension. The 569 images

in the dataset are categorized into two classes: benign and

malignant.

4.2 Experimental setup and performance evaluation

methods

MATLAB 7 was used to implement the proposed process

together with the Gaussian kernel k(x, y) = exp(−‖x −

y‖2/2σ 2). Other types of kernels could have been used;

however, since the Gaussian kernel is commonly used

for the kernel PCA, the SVDD, and the Parzen density,

this kernel is the only kernel used with respect to the

experiments reported here.

Unless otherwise stated, tenfold cross-validation was

used, all the results are averages of ten runs of the ten-

fold cross-validation. The following measures are used to

evaluate the proposed cascade method:
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Table 3 Recognition rate (percent) for the 3D OCT retinal

image data from individual KPCAs and the combined

model

Image class LPQK LBP-TOPK MSSPK Combined

Normal 86.20 88.45 85.56 92.30

AMD 86.50 86.69 85.83 91.82

• Recognition rate (RR) = number of correctly

recognized images / number of testing images
• ROC, receiver operating characteristic graph
• AUC, area under an ROC curve

4.3 Evaluation of kernel PCA ensemble

The KPCA ensemble evaluation using the biopsy image

data and the 3D OCT retinal image data is reported

in this section. For the biopsy images, as introduced in

Section 4.1, three types of image features were extracted,

therefore for each image class, three kernel PCAs were

built with respect to each type of image feature. The

recognition rates of using these KPCAs individually are

listed in column 2 to column 4 in Table 2, where CvletK,

GLCMK, and LBPK represent KPCAmodels trained from

curvelets, GLCM, and LBP, respectively. The results of

combining all KPCA models are listed in the last col-

umn of Table 2; the combining rule is introduced in

Equation 21. The parameters of KPCAs were set to σ = 4

and n = 40. The combined model gives the best classi-

fication performance for each image class; the averaged

classification accuracy for these three image classes is

92.28%.

The evaluation results on the 3D OCT retinal images

are list in Table 3. Three types of image features were

extracted, namely LPQ, LBP-TOP, and MSSP. Therefore,

for each image class three kernel PCAs were built with

respect to each type of image feature. The recognition

rates of using these KPCAs individually are listed in col-

umn 2 to column 4 in Table 3, where LPQK, LBPK, and

MSSPK represent the KPCA models trained from LPQ,

LBP-TOP, and MSSP, respectively. The results of com-

bining all KPCA models are listed in the last column of

Table 3. The parameters of KPCAs were set to σ = 4 and

n = 40. The combined model gives the best classification

Table 4 Recognition rate (percent) for biopsy image data

from different one-class classifier ensembles

Image class PCA MoG KMeans SVDD Parzen KPCA

Normal 85.17 82.12 80.12 85.56 84.54 92.70

In situ 87.33 84.67 83.46 87.22 81.26 93.78

Invasive 82.56 81.88 79.65 84.67 83.23 90.35

The kernel widths for KPCA and SVDD were set to σ = 4. The number of principal

components for KPCA and PCA were set to n = 40.

Table 5 Recognition rate (percent) for 3D OCT retinal

image data from different one-class classifier ensembles

Image class PCA MoG KMeans SVDD Parzen KPCA

Normal 82.06 84.56 76.96 88.77 82.04 92.30

AMD 81.22 85.67 78.84 86.45 80.73 91.82

The kernel widths for KPCA and SVDD were set to σ = 4. The number of principal

components for KPCA and PCA were set to n = 40.

performance for each image class; the averaged classifica-

tion accuracy for these two image classes is 92.06%.

From Tables 2 and 3, one can see that using the pro-

posed product combining rule, the classification accura-

cies of all the image classes have been improved. This

illustrates that by combining one-class classifiers trained

from different features can improve the classification per-

formance, which is in accordance with the observation in

[30]. For comparison, the other one-class classifiers are

also used as the base classifier of the ensemble, using

the same combining rule, the classification results on the

biopsy image set and the 3D OCT retinal image set are

listed in Tables 4 and 5, respectively.

With respect to the comparison of the operation of

a variety of one-class classifiers, six one-class classifiers

were used as the base classifier for the ensemble: they

are Parzen, SVDD, PCA, Kmeans, MoG, and KPCA. The

receiver operating characteristic (ROC) curves obtained

using different one-class classifiers on the biopsy image

data are shown in Figure 7. The x axis of the ROC curves

is false positive rate (FPr) and the y axis is the true

positive rate (TPr). The FPr and TPr are obtained by

Equations 23 and 24, respectively. A threshold on the

difference between the biggest confidence score and the

second biggest confidence score was used to obtain

the trade-off between TPr and FPr. Initially, the threshold

was set to 0.05, then the threshold was increased by a step

of 0.01 until 0.60, on each threshold value, and the TPr
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Figure 7 Receiver operating characteristics curves of different

one-class classifiers. These curves were used as the base classifier

for the ensemble on the biopsy image data.
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Table 6 AUC of different one-class classifiers used as the

base classifier for the ensemble on the biopsy image data

Parzen SVDD PCA Kmeans MoG KPCA

AUC 84.30 83.61 84.19 84.28 83.67 93.53

and FPr were accounted. The areas under the ROC curves

(AUC), for the compared classifiers, are listed in Table 6;

the KPCA ensemble gives the best result.

TPr =
True positive

True positive + False negative
(23)

FPr =
False positive

False positive + True negative
(24)

The proposed method was also compared with some

state-of-art methods on the biopsy image set. The meth-

ods compared with are as follows: (i) the level set his-

togram (LSH) method proposed in [54]; (ii) a cascade

classification system (CAS) in [55], which first classi-

fies the images into ‘cancer’ and ‘non-cancer’ categories,

then further classification is implemented within the ‘can-

cer’ category to discriminate different cancer types; (iii) a

hybrid feature (HF) proposed in [56], which used higher-

order spectra (HOS), local binary pattern (LBP), and laws

texture energy (LTE) for histopathological image clas-

sification, in which the Takagi-Sugeno fuzzy model is

selected as the classifier.

In our experiment, based on the description in [54], for

LSH, the images were first converted to grayscale images

that have the intensity range between 0 and 255, then

25 thresholds with the steps of 10 were used to convert

the images into binary images (0 and 1). For each binary

image, the level set segmentation was used to generate a

42-bin histogram for the connected components in the

image. Thus, each image finally generated a feature vector

with the size of 42 × 25 = 1, 050. SVM with RBF ker-

nel was used for classification with the parameter σ that

defines the spread of the radial function set to 4.0, and the

parameter C that defines the trade-off between the clas-

sifier accuracy and the margin was set to 3.0. For CAS,

we used the same classifier, decision tree C5.0, and the

same image features as stated in [55]. The feature vector

for each image is a combination of first-order statistics,

co-occurrence matrix, and steerable filters.

Table 7 Performance comparison of some state-of-art

methods and the proposedmethod on the biopsy image

set

Classification accuracy Error rate AUC

LSH 87.38 13.62 88.97

CAS 91.94 7.88 93.12

HF 90.27 9.73 91.56

Proposed 92.28 7.72 93.85
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Figure 8 Receiver operating characteristics curves of the

comparedmethods on the biopsy image data.

Table 7 lists the performance of the compared methods

on the biopsy image set, where one can be noted that the

proposed method achieved the better performance than

other methods. The CAS method obtained an accuracy

of 91.94%, which is superior than the accuracy of LSH

and HF. The LSH method obtained only 87.38% accu-

racy on the biopsy image set. LSH only used the level

set histograms for image description, while other com-

pared methods all used composite image features, which

demonstrates that using a combination of different image

features can improve classification performance. Figure 8

presents the ROC curves of the compared methods; the

AUC of the ROC curves are listed in Table 7.

For the 3D OCT retinal images, a method in [53]

was used to compare with the proposed method. The

method in [53] used the same image data, and the same

image features introduced in Section 4.1.2 were composed

together as the image feature, in which Bayes classifier was

used for classification. A classification accuracy of 91.50%

was reported by the authors, while our proposed system

achieved 92.06%.

The proposed method was also compared with some

state-of-art methods on the UCI breast cancer dataset.

The methods compared are the following: (i) the multi-

layer perceptron ensemble (MLPE) method proposed in

[57]; (ii) a boosted neural network (BoostNN) classifier

in [58]; (iii) a decision tree (DT) and support vector

machine sequential minimal optimization (SVM-SMO)

based ensemble classifier proposed by Luo and Cheng

[59]. The results are listed in Table 8.

Table 8 Comparison of classification accuracy on the UCI

breast cancer image set

MLPE BoostNN DT-SVM-SMO Proposed

Classification 97.10 96.25 91.67 97.28

accuracy
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5 Conclusions
In this paper, a classification scheme based on a one-

class KPCA model ensemble has been proposed for the

classification of medical images. The ensemble consists

of one-class KPCA models trained using different image

features from each image class, and a proposed prod-

uct combining rule was used for combining the kernel

PCA models to produce classification confidence scores

for assigning an image to each class. The effectiveness of

the proposed classification scheme was verified using a

breast cancer biopsy image dataset and a 3D OCT retinal

image set. The proposed classification scheme obtained

high classification accuracy on the tested image sets.

Although the proposed system has shown promising

results with respect to the biopsy image classification task,

there are still some aspects that need to be further inves-

tigated. The benchmark images used in this work were

cropped from the original biopsy scans and only cover

the important areas of the scans. However, it is often dif-

ficult to find regions of interest (ROIs) that contain the

most important tissues in biopsy scans; therefore, more

effort needs to be put into detecting ROIs from biopsy

images. The parameters of the kernel PCAmodels, such as

the number of principle components and the width of the

Gaussian kernel, were fixed during the experiments. In the

future research, some optimization methods or adaptive

algorithms should be considered for searching the optimal

parameters of KPCA models.
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