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The thermodynamics of the one-dimensional Heisenberg-Ising model for I.JI<1 as well as 
of the X-Y-Z model is reduced to a set of non-linear integral equations under some plausible 

assumptions. It is remarkable that the number of unknown functions involved in them 
becomes finite when rr/cos-1.J is a rational number for the Heisenberg-Ising model and when 

Kz/t; is a rational number for the X-Y-Z model (where coupling constants J"', Ju and J. are 
parametrized by f;, l, and J. as J:c=J. en (2t;,l) and Jy=J. dn (2t;,l); 12l20, K!22C20, and 
K 1 is the complete elliptic integral· of the first kind of modulus l). The validity of our theory 
has been confirmed by the high-temperature expansion of the free energy through the second 

term for a general value of .J and through the fourth term for .J=!. 

§ 1. Introduction 

One of the authors'> and Gaudin2> have discussed the thermodynamics of the 

Heisenberg-Ising ring of spin t with the anisotropy parameter L1 in the range 

IL11 =1 and 1.:11>1, respectively. These arguments have also been extended to 

the region ILl I <1 by one of the authors.8> However, this extension has been 

criticized by Johnson, McCoy and Lai4> with the use of the high-temperautre 

expansion. 

In this paper, we make new propositions on the energy spectrum of the 

excited states for a large chain and derive non-linear integral equations for the 

thermodynamics of the anisotropic Heisenberg model (X-Y-Z model) as well as 

of the Heisenberg-Ising model for I Lll <1 in one dimension. The ground state of 

the Hamiltonian· 

N N 

$C =J I:: {S/Sf+l + S/Sf+l + Ll(S/S;+,-t)} -2/}.oH:L:: S/; SN+l=S1 , (1·1) 
i=l i=l 

has been discussed by many authors.6h 7l In § 2, two assumptions on the distribu­

tion of parameters which determine the eigenvalues of (1 ·1) for I Lll <1 are proposed 

and consequently eigenvalue equations are reduced to more convenient ones for the 

real parts of these parameters. As the energy spectrum of this Hamiltonian is 

invariant under the transformation (J, Ll) ~ ( -J, - Ll), we confine ourselves to the 
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2188 M. Takahashi and M. Suzuki 

region 1>A>O. In § 3, non-linear integral equations are derived for the free energy 
of the Heisenberg-Ising model (1·1) in the thermodynamic limit. In contrast 
to the case IAI >1, it is quite remarkable that the number of unknown functions 
involved in these non-linear equations becomes finite when n/cos-1A is a rational 
number for IAI <L In particular, the free energy calculated from the non-linear 
integral equations has been checked to agree with the well-known exact results 
obtained by the usual high-temperature expansion method, at least, through the 
second term in a power series of JjT for the general value of A in the range 
IAI<1, and through the fourth term for A=t. In § 4 we start with Baxter's 
equations8l for eigenvalues of the X-Y-Z model and obtain non-linear integral equa­
tions for the free energy with the use of assumptions similar to those for the 
Heisenberg-Ising model. Summary and discussion will be given in the last section. 

§ 2. Eigenstates and eigenvalues of a large 

Heisenberg-Ising system 

In this section we discuss the eigenvalues of the Hamiltonian (1·1) for 
1>A>O. Now suppose that there are M down-spins and N-M up-spins. Fol­
lowing Bethe6l• 7l we write 

(2·1a) 

and 

(2·1b) 

Here kh k2, • • ·, kM are quasi-momenta, P denotes permutations of the integers 
1, 2, · · ·, m, and the phases ¢atJ are defined by 

(2·2) 

where Xa are introduced to parametrize the quasi-momenta ka as follows: 

A= cos(} and 

(2·3) 

(2·4) 

In the case S"= (N-2M)j2>0, the energy eigenvalue E and the momentum 
eigenvalue K are given by 

M 

E=J"L, (cos ka-A)- (N-2M)tJ.oH 
a=l 

M 

= "2:, {-2nJ()-1 sin 8a1 (xa)+ 2tJ.oH} - N ll.oH, (2·5a) 
a=l 

(2·5b) 

where 
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One-Dimensional Anisotropic Heisenberg Model 

a1 (x)=_l_ sin(n"/Po) 
2Po ch(nx/Po)- cos (n/Po) 

The periodic boundary condition 

n' 
Po=-. 

(} 

(fj(zt. z2, ···, ZM-b N+ 1) =(fj(1, Zt. z2, ···, ZM-1) 

is expressed by the relation 

2189 

(2·6) 

(2·7) 

{shi(}(xa+i)}N= _IT {shi-8(xa-xp+2i)}· a=1, 2, ···M. (2·8) 
sh i-8(xa-i) J=1 sh i-8(xa-xp-2i) ' 

Here, it should be remarked that the coupled equations (2 · 2), (2 · 3) and (2 · 8) 

have a periodic property with respect to the M parameters xa. Thus, at first 

sight it seems convenient to confine the region for X a in the first zone - n(J-1 

<Im Xa <n(}-1• However, it will be found to be more convenient to make use of 

an "extended zone" in our problem and to identify such parameters Xa as coincide 

with one another if any of them is repeatedly shifted by the period 2ni(}-1• 

Hereafter the symbol (mod 2p0i) implies the above feature of the periodicity, 

where Po=n/8. First, we discuss the case in which Po is an irrational number, 

and later we take a limiting process for the case in which Po is a rational 

number. In the limit of large N, the roots .of (2·8) are grouped in a various 

strings characterized by a common real abscissa and an order n. The follow­

ing two propositions play a main role in our theory. A reasoning for them will 

be discussed in § 5. 

Assumption 1 : A string of order n consists of the sets 

x~:!=xan+ (n+1-2k)i+O(exp-8N) (mod 2p0i) 

and 

x~;~=xan+ (n+1-2k)i+p0i+O(exp-8N), (mod 2p0i) (2·9) 

where B>O, k=1, 2, ···, n, and Xan is real. We call these states the n-th-order 

bound states with+ and -parities, respectively. 

Assumption 2: The parity v and order n of a bound state should satisfy the 

following conditions : 

and 

sin{n(n-1)/Po}>O for v=+1, 

sin{n(n-1)/Po}<O for v= -1 

n-1 

2 :E U/Po]= (n-1)[(n-1)/Po], 
J=l 

(2·10a) 

(2·10b) 

(2·11) 

where [x] denotes the maximum integer less than or equal to x (Gauss' symbol). 

The requirement (2·11) comes from a plausible condition for the number 

of magnons in some special limit. (For details, see the discussion in § 5.) 
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2190 M. Takahashi and M. Suzuki 

Here we define series of real numbers P£ and series of integers V£, m.:, and Y.: 
as follows: 

i 

mo=O, mi= ~ V.t, 
k=1 

Y-1=0, Yo=1, Y1=JJ1> Y2=JJ1JJ2+1 and Y.:=Y.:-2+V.:Y.:-1. 

It is clear that Po is given by the continued fraction 

1 1 1 1 

Po JJ1 + JJ2 + Vs + · · · · 

(2·12) 

(2·13) 

The order and parity of all bound states which satisfy assumption 2 are 
expressed by 

n1 =Y.:-1 + (j-m.:)Y.: for m.:<i<mi+h j=1, 2, ···, 

v1= +1, Vm,= -1 and v1 =exp(;ri[(n1-1)jp0]) for j=;t=1, m1. (2·14) 

This will be proved in Appendix A. Now suppose that there are M 1 bound 
states of parity v 1 and order n1• Taking the product of Eqs. (2 · 8) for n1 com­
ponents of a string, we have the following equations for the real part x;J of 
(2 · 9) (hereafter we write x~J as x/): 

where 

nJ-1 

g(x; 2n" v 1v.t) II g2 (x; 2l, v 1v.t) for n1 =n.t, 
1=1 

E1k(x) = g(x; (n1+ n~:), v1v.t)g(x; ln,-nkl, VJV~:) 
Min (nj, n,t) -1 

x II g2 (x; ln 1 -n~:l +2l, v 1 v~:) for n1=Fnk, 1=1 

g(x· n +) = sh i-O(x+ni) , g(x; n, -·)= _ ch tO(x+ni) 
' ' sh tO(x-ni) ch tO(x-ni) 

The logarithm of Eqs. (2·15a) yields 

"' Mk 

Nt1(x,/)=2;rl/+ ~ ~(ii) 1 k(x/-x/), a=1,2, ···,M,, 
k=1 P=1 

where 

Min (nJ, n.t)-1 

+2 ~ f(x; ln,-nkl +2i, VJV.t), 
i=1 

(2·15a) 

(2·15b) 

(2·16a) 

(2·16b) 
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One-Dimensional Anisotropic Heisenberg Model 

and 

0 for n/p0 =integer, 

f(x; n, v) = ~ ln{ -g(x; n, v)} =2v tan-1 {(cot(mr/2p0))u th(7rx/2p0)} 

z 

2191 

otherwise . (2 · 17) 

The property that f(x; n, v) =0 for n/p0 =integer in (2·17), comes from the 
requirement that 81k(x) do not contain any kind of step function. The quantity 

I/ is an integer (or half-odd integer) for M 1 odd (or even), which is located 
in the region 

(2·18) 

Note that f(x; nh v 1) is a monotonously increasing function for r(j) odd, and 
a monotonously decreasing function for r(j) even, when r(j) is defined by 

mr(Jl < j < mr(J)+l· (2 ·19) 

§ 3. Non-linear integral equations for the free energy of the 
Heisenberg-Ising model in the thermodynamic limit 

Following Yang and Yang,9l we define particles and holes of bound states. 

From (2 ·15), we obtain integral equations for distribution functions p1 and p/" of 
particles and holes of bound states for the thermodynamic limit as- follows: 

where r(j) is defined in (2 ·19), and 

T,k(x) = (21t')-1_!!__81lx) 
dx 

The symbol a*b denotes the convolution of a(x) and b(x) as follows: 

a*b(x) = J_"'"'a(x-y)b(y)dy. 

The energy and entropy are given by 

and 

(3·1) 

(3·2) 

(3·3) 

(3·4) 

SjN= t
1 

s:.., {(Pt+P/)ln(pt+P/) -Pt ln p1-p/"ln p/}dx, (3·5) 

respectively, where A=21t'J0-1 sin{}. Minimizing the free energy F= E- T S 
with respect to Pi> we obtain the following non-linear equations for 1JJ=Pl!Pt: 
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2192 M. Takahashi and M. Suzuki 

"' In r;1 = ( -Aa1 +2n1!J.0H)/T+ ~ ( -1y<klT1k*In(1+r;k"1), (3·6) 
!:=1 

where r(k) is defined in (2·19). In Appendix B, we prove the following relations: 

T,k-s•*((1-2tJ"'i-•· 1)T,-l,k+TJ+l,k) = ( -1)•+1(t1,-l,k+tJJ+l,k)s., 

a,-si*((1-2(}"'i-•·')a,_l+a,+l) =0 for mi-l<j<mi-2, 

T,k- (1-2t1m£-t,J)si*TJ-!,k -di*TJ,k -si+l*TJ+1,k 

= ( -1)i+1(t11-1,ks,+tJ,,kd,-tJ,+l,ksi+l), 

a,- (1-2(}"'i-vJ)Si*aJ-1 -di*a,-si+1*ai+1 = 0 for j= mi -1, (3 · 7) 

d.(x)= J"' dk.eik:r:ch((p,-pi+l)k). 
-ro27r 2 ch (pik) ch(pwk) 

Using these relations we can rewrite (3·1) as follows: 

p,+p/=s•*(P~-1+P~+l) for mi-1<j<mi-2, 

(3·8) 

p,+p/"=s•*P~-1 +d•*Pl-si+1*P~+l for j=mi-1 (3·9) 

with Poh=tJ(x). Equations (3·6) are rewritten as 

ln(1+r;o) = -2n"Jsin(JtJ(x)j((JT), 

In r;1= (1-2&,._,, 1) si* ln(1 + r;1- 1) + s,* ln(1 + r;1+1) for mi_1<j<mi -2, 

In "'JJ = (1- 2t1mi-t> 1)s•* In (1 + 1JH) + d•* In (1 + r;1) + Sw* ln(1 + 1JJ+!) 

for j=m.-1 (3·10) 

and 

lim In r;1 = 2!J,0H. 
,_.,., n1 T (3·11) 

The free energy of this system F=E- T S is given by 

(3·12) 

If Po=n'/(J is a rational number given by the continued fraction 

1 1 1 1 
(3·13) 

we take the limit Va+l~oo in Eqs. (3 ·10). Then in this limit we have that 
Pa = 0 +and Sa+!= da = itJ (x). Therefore, a partial set of the integral equations 
(3 ·10) (namely for j>ma -1) can be reduced to the following simple difference 
equations: 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/6

/2
1
8
7
/1

8
5
7
4
0
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



One-Dimensional Anisotropic Heisenberg Model 

ln 1/ma-1 = i ln { (1 + 1/ma) I (1 + 1/ma-2)} 

and 

lnr;,=tln{(1+r;H)(1+r;J+l)} for j>ma. 

The general solution of these difference equations is given by 

1/ma-1 = /C2 + (a+ a-1) IC 
\ 

and 

2193 

(3·14) 

(3·15) 

Substituting (3 ·15) into (3 ·10) we can determine the parameters a and tc as 

a=exp( -yaf.J.oHIT) and ln tc(x) =sa* ln(1+r;ma-2). (3·16) 

Thus, the set of Eqs. (3 ·10) has been reduced to that with a finite number of 

unknown functions 1/h r;2, • • ·, 1/ma-2 and tc; i.e., 

and 

ln (1 + r;o) = - 2rcJ sin (){) (x) I (OT) , 

ln r;,= (1- 2{),.1_,, 1) St* ln (1 + 1/1-1) + St* ln(1 + 1/J+l) 

for m 1_!<j<m, -2, 1 <i<a, 

ln r;,= (1- 2fim1_,, 1)s,* ln (1 + 1/1-1) + d1* ln (1 + r;1) + si+l* ln (1 + 1JJ+l) 

for j=m,-1, 1<i<a 

and ln IC =Sa* ln (1 + 1/ma-2) · (3 ·17) 

Especially when Po is an integer lit, the above equations (3 ·17) ar~ reduced 

again to the following very simple ones: 

ln (1 + r;o) = - 2rcJ()-1 sin (){) (x) IT , 

ln r;1= S1* ln {(1 + 1/J-1)(1 + 1/1+1)} for j = 1, 2, 3, · · ·, 111-3 , 

ln 1/v,-2 =s1* ln { (1 + r;.,_ 3) ( 1 + 2tc ch Po*H + tc2)} 

and 

(3·18) 

The high-temperature expansion of the free energy based on these equations 

is given in Appendix C. The results thus obtained agree with the well-known 

exact one at least up to the second term for a general value of J. In particular, 

it is easy to obtain more terms of the high-temperature expansion for J = t. 

The free energy for this case is given by 
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2194 M. Takahashi and M. Suzuki 

F/N= -i-J -T ln !C(O), (3·19) 

where !C(x) is the solution of the following coupled non-linear integral equations 

ln 7/J (x) = -3-/3 (JjT)s1 (x) + s1* ln(1 + 7J2), 

7J2 (x) =!C2 (x) +21C(x)ch(3,u0H/T) 

and 

(3·20) 

The case H=O is investigated in Appendix D. The free energy calculated 
from (3·20) agrees with that obtained by Katsura and Inawashiro10> through the 
fourth term in the high-temperature expansion method. 

In Appendix E it will' be shown that for the limit Po----'>2, Eqs. (3 ·10) are 
solved analytically and one obtains the exact free energy of the isotropic X-Y ; 

model.11> In the limit Po--'> oo, Eqs. (3 ·10) become equivalents to those for the 
isotropic Heisenberg modeP> as it should be. 

§ 4. The one-dimensional X- Y-Z model 

In recent papers,8> Baxter obtained a set of transcendental equations to deter­
mine the energy spectrum of the one-dimensional X- Y-Z model, the Hamiltonian 
of which is given by 

N 

.!}{= L; (JxS/'Sf+l +JyS/'S¥+1 +J.S/S~+l), (4·1) 
£~1 ' 

where SN+l=Sr. N=even and 1>JyjJ,>Jx/J.>O (this restriction goes without 
loss of generality, since the eigenvalues are unaltered by changing the signs of 
any two of Jx, Jy and J,). The coupling constants Jx and Jy are parametrized 
by ( and l as 

Jx=J. cn(2(, l), Jy=J. dn(2(, l); 1>z>o, K 1>2(>0. (4·2) 

Here K 1 denotes the complete elliptic integral of the first kind of modulus l. 
There appear N/2 parameters Xr, x 2, ... , and xN/2 which satisfy 

( 4 · 3a) 

N(2 

:E Cxa = Kl'v' + iKzv (4·3b) 
a=l 

for a=1, 2, ... , Nj2, where Q=K1,j(; v and v' are certain integers and H(z) 
is Jacobi's elliptic theta function of modulus l' = -./1-[2• The function H(z) is 
also related to the usual elliptic theta function as 

(4·4) 

The energy eigenvalue E and momentum eigenvalue K are given by 
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One-Dimensional Anisotropic Heisenberg Model 

and 

respectively, where 

N/2 

E= -J,m:;-1 sn(2() :E a1Cxa) -NJ,R 
· a=l 

•·- . ( rcv)NII12 H(C(xa+i)) e -exp .--
Q a~lH(((xa-i))' 

"' 
a1(x)= :E a 1(x-2jQ), 

J~-CX> 

R=t -rc ( 4()-1 sn (2() {a1 (0) + a 1 (Q)}, 

and the parameter Po of a 1 (x) in (2 · 6) is now replaced by 

Po=Kt/C. 

2195 

(4·5a) 

(4·5b) 

(4·6a) 

(4·6b) 

(4·7) 

It should be noted that a 1 (x) is expressed in terms of Jacobi's zeta function 

Z(() with modulus l as follows: 

al(x)=.r{zcc)+ sn(cn(d_nc}, (4·8) 
7C sn2 C -sn2 (t(x) 

and Z(() denotes Jacobi's zeta function with modulus l. Now we assume that 

assumptions 1 and 2 are valid for the new parameters xh x 2, • ··, and xN12 in 

( 4 · 3). In the same way as in §§ 2 and 3, we obtain integral equations for the 

thermodynamics of the X- Y-Z model. The differences are that the real parts 

of the new parameters shrink to the region [-Q, Q] and that the number of 

parameters x is always N/2. We introduce new functions defined by 

"' 
s,(x) = :E s,(x+2jQ) 

J~-oo 

and 

"' d,(x) = :E d,(x+2jQ), (4·9) 
J~-CX> 

where the functions s, (x) and d, (x) are defined in (3 · 8). Then our non­

linear integral equations for the X-Y-Z model are given by 

In (1 + r;o) = - J.7C(-1 sn (2() (] (x) /T , 

In r;,= (1- 2(]mi-" 1) s,* In (1 + 1/J-1) + s,* ln(1 + 1/JH) 

lim ln r;1=2l. 
,_"' n1 T 

for m,_1<j<m,-2, 

for j=m,-1, 

The convolution used here is defined in the range [-Q, Q] as 

( 4 ·10) 

(4·11) 
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2196 M. Takahashi and M. Suzuki 

(4·12) 

When Po is a rational number (or integer), the integral equations (4·10) and 
(4·11) are reduced to those corresponding to (3·17) (or (3·18)), where p.0H 
is replaced by A. It is clear that the solutions 1Ji of these equations are even 
functions of A. The quantity A is the Lagrange multiplier associated with the 
condition that M(=the number of the parameters x) is N/2. To determine the 
value of A, we start with the expression 

F/N= ~(E-TS-A(N-2M)) = -J.R-J;at;,~ 1 sn(2t;,) 

X J_QQ a 1(x)s1(x)dx-T s_: ln(1 +1]1 (x))s1(x)dx. 

Differentiating' this equation with respect to A, and using the relation 

o(E-TS)joM= -2A, 

we obtain 

(4·13) 

(4·14) 

(4·15) 

The parameter A should be chosen so that the right-hand side may vanish. In 
Appendix F we prove that this holds at A=O. Thus, Eq. (4·11) is rewritten as 

lim(ln 1]1)/n1=0. (4·16) 
J~<D 

In Appendix G we solve Eqs. (4·10) and (4·16) for the limitp 0 ~2. The 
results thus obtained gives the exact free energy of the anisotropic X-Y model 
in zero magnetic field. In the limit p 0 ~oo, we obtain the non-linear integral 
equations of the Heisenberg-Ising model for [A[> 1 in the zero field. 2l In the 
limit z~o, we obtain non-linear equations of the Heisenberg-Ising model for 
[A[ <1 in the zero field. These are equivalent to the equations in § 3, if we put 
H=O and (}=2t;,. 

§ 5. Summary and discussion 

Coupled non-linear integral equations for the free energy of the Heisenberg­
Ising model with [A [ < 1 and in more general for the X-Y-Z model have been 
derived with the use of two plausible assumptions on the distribution of Xa's. The 
number of our coupled equations becomes finite, when 7!/0 is a rational number. 
The high-temperature expansion series has been checked to agree with the rigorous 
one, at least, through the second term for a general value of A (=cos (}) and 
through the fourth term for A= t. 

The plausibility of our assumptions 1 and 2 may be realized in the following 
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One-Dimensional Anisotropic Heisenberg Model 2197 

discussion. In the limit of large N, we assume that the parameters Xa to satisfy 

(2·8) are grouped in various strings in the complex plane of these variables. To 

realize what character these strings have, let Im Xa=/=np0• Then the absolute value 

of the parenthesis on the left-hand side in Eq. (2 · 8) is less or larger than unity. 

Consequently the absolute value of the whole left-hand side in Eq. (2 · 8) goes to 

zero or infinity as N becomes infinite. So is the right-hand side in Eq. (2 · 8). 

Therefore we may expect that in a string there always exists, at least, one 

parameter Xp which satisfies one of the relations 

(5·1) 

i.e., 

(5·2) 

for any a. For more detail, we have+ (or-) sign m (5·2), if the imaginary 

part of Xa is located in the region 2·mp0<Im xa<(2m+1)p0 (or(2m-1)p0<Im 

xa<2mp0). Furthermore, if {xa} are solutions of (2 · 8), then the complex con­

jugates {xa} are also its solutions. This may yield symmetric distributions of 

the solutions {xa} about the real axis in the complex plane. This symmetric 

situation is also valid with respect to the p 0i-axis (mod 2p0i). From these guid­

ing principles, we have proposed the two assumptions. 

In particular, it may be instructive to mention here why we propose Eq. 

(2 ·11) in assumption 2. Let us consider a special situation that all bound states 

have the same order n and parity v. Assume that the relation 

SO) 1 
Pn,vdk= 2-_., n 

(5·3) 

holds when p~,v is zero. For this case, the integral equation corresponding to 

(3 ·1) becomes of the form 

l_ ~(x; n, v) =signa,.v·Pn,v(x) +l_ _.!!... S"' {f(x-x'; 2n, +) 
2n- dx 2n- dx -"' 

n-1 

+2:Ef(x-x'; 2j, +)}p,.,v(x')dx', (5·4) 
1=1 

where 

a,.+ = 1- ~ + 2 [.!!--.] and 
Po 2po 

(5·5) 

Equation (5 · 3) is rewritten as 

n-1 
2 v_ • v+ + +2 ~ + na,. -Sign a,. a2,. "'-' a21 • (5·6) 

J=1 

Combining the above equation (5 · 6) with (2 ·10), we have 

n-1 

2 :E [jfpo] = (n-1)[n-1/Po]. (5·7) 
J=1 
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2198 M. Takahashi and M. Suzuki 

When Po is a rational num her (of the form v1 + _!_ _!_ _!_), there 
V2 + Vs + ··· + Va 

is an alternative method to derive integral equations by assuming from the begin­
ning that the order n of bound states is restricted to integers smaller than Ya 
for this case. The equations thus derived are equivalent to those obtained by 
taking the limit Va+l ~ oo in § 3, as shown in Appendix H. In both derivations, 
the densities p1 and p/', at least, obey identical equations, and consequently we 
arrive at the identical expression of the free energy in the two methods. In 
particular when Po is an integer, the coupled integral equations proposed in a 
previous paper8l are equivalent to Eqs. (3 ·18). Thus, the previous theory in 
Ref. 3) can be regarded as still valid at n"/8 =Po= integer. A failure in that paper 
is to have applied illegally those assumptions which hold only for p 0 =integer to 
the other general case Po= non-integer. 

In the limit T ~o, Eqs. (3 ·10) and (3 ·11) are reduced to the linear integral 
equations obtained by Orbach/l and we have solved ~nalytically Eqs. ( 4 ·10) and 
(4·11) to obtain the exact ground-state energy by Baxter.8l (See Appendix I.) 
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Appendix A 

--Proof of (2·14)--

W e should always remember through this Appendix that Po is assumed to be 
an irrational number. Equation (2·11) is rewritten as 

~:([;J _ [~J _ [n~j]) = (n- 1) ([~] _ [n~1J). (A·1) 

It is clear that the right-hand side of (A·1) is zero or n-1. Using the simple 
relation 

[a+{1]- [a]- [{1] =0 or 1, (A·2) 

we have 

[~J + [n~j] = [n~ 1 J for j=1, 2, ···, n-1. (A·3) 

Since p0 is not an integer, this condition (A· 3) is satisfied, if n = 1, 2, · · ·, [p 0] + 1. 
When n> [p0] + 1, (A· 3) is equivalent to the conditions 

(A·4) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/6

/2
1
8
7
/1

8
5
7
4
0
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



One-Dimensional Anisotropic Heisenberg Model 

where 

n1=[(n-1)/Po] +1. 

After a simple manipulation, (A·4) are replaced by the equations 

n= [ipo] + [(n1-i)Po] +1=n1v1+ [ips]+ [(n1-i)p2] +1 

for i = 1, 2, · · ·, n1 -1 . 

2199 

(A·5) 

(A·6) 

Similarly, these conditions (A· 6) are satisfied, if n1 = 2, 3, · · ·, [1/ p 2] + 1. If 
n1> [1/ P2J + 1, it is required again that 

n1=n2v2+ [ips/P2J + [(ns-i)Ps/P2] +1 for i=1, 2, ···, ns-1 (A·7) 

with n2= [1/p~J + 1. Repeating this process, we obtain all integers that satisfy 
Eq. (2·11). 

Appendix B 

--Derivation of ( 3 · 7) --

It is convenient to introduce functions A 11 defined by 

A 1,(x) = ( -1Yu'DJtD(x) +TJt(x). (B·1) 

The Fourier transformations A11 (k) of the functions A 11 (x) satisfy the symmetry 
property 

(B·2) 

and they are calculated as 

sh(pok)A,,=sh{(( -1Y+1Po-q,+q,)k} +sh{(( -1)'po+q,+q,)k} 

Bj-1 

+2 I; sh{( -q1+q1+a,.)k} for m 1-1<i<m,, j<l=f=.m, 
1&=1 

and j=mf.-h j<l 

and 

Yi-t-1 

+2 I; sh{(-q,.t+q1 +a,)k} for mt-1+1<j<m,-1, (B·3) 
1=1 

where 

a,= Po -2l + 2Po [l/Po], 

q1= ( -1)'(p,- (j-m,)Pw) for m,<j<mHI. (B·4) 

Fourier transformations of a1(x) are given by 

(B·5) 
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2200 M. Takahashi and M. Suzuki 

After a lengthy calculation, we have 

At.z- {(1-26t,m;_)At-1,! + At+l,z} /2 ch(p1k) = C -1Y+16tz, 

aj- {(1-26J,mi_)aJ-d-aJ+l} /2 ch(pik) =0 for mi-1<j<m,-2' 

ch{(pi+ Pw)k} A,,z- (1-26J,m; .. ) ch(pi+1k)AJ+l,!- ch(pik)AJ-1,z 

=2( -1Y+16Jzch(pik)ch(pwk), 

ch {(p, + Pw)k} a1 - (1- 261,m; .. ) ch(pik) a1-1- ch(pi+1k)ai+l =0 

for j=mi-1. 

These equations are equivalent to (3 · 7). 

Appendix C 

--High-temperature expansion for a general value of Ll--

(B·6) 

At :first we obtain the solution of the zeroth order, r;P> by putting A/T = 0 
m Eqs. (3 ·10). The integral equations (3 ·10) are reduced to the following 
difference equations: 

and 

ln(1+r;o<0>) =0, 

In r;P> = H1-26m;_.,,)ln(1 + rJJ 0 ~1) + t ln(1 + r;n1), m;-1<j<m~, -2, 

In r;/0> = t(1- 26m; .. .,1) In (1 + rJJ 0 ~-1) +tIn (1 + r;/0>) +tIn (1 + r;n1), 

j=m;-1 

The solution of the above difference equations (C ·1) is given by 

1+r;/O)=f2(~,+y~,-1)' f(n) =zn+1_z-1n-1 
f (yi-1) z-z-

and z=exp( -tJ.0H/T) . 

(C·1) 

(C·2) 

In order to apply an iterative method to Eqs. (3 ·10), we expand ln(1 + r;1(x)) with 
respect to the parameter AjT as 

""(A)n ln(1+r;1(x))=ln(1+r;/0>) + J;i T c/n>(x), 

1 + rJJ(x) = (1 + r;/0>) exp (~ 1 ( ~) n c/n> (x)) 

= (1+r;/o>) {1+ ~c/1> + (~) 2(c{>)' + c/2>} + ... ' 
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One-Dimensional Anisotropic Heisenberg Model 2201 

1JJ(X) =1J/O) + (1 + 1J/O)) ~C/1) + (1 + 1J/Ol) { (c~1)y + c/2)} ( ~ r + ... ' 

In 1JJ(x) =In 1J/ol + In {1 + (1 + 1J/ol) c /1l (A) + (1 + 1J/ol) {c /2l + (c/1l)2} (A) 2 + .. ·} 
1J/O) T 1J/O) 2 T 

=ln 1J/Ol+ (1+ (1J/ol)-1)c/1l~ + {(1+ (1J/ol)-1) (c/2l + (c~ 1 l)2) 

- {(1 + c1j,~)-1)c/1)P} (~r + .... 

The equations for c/1l are written as 

"' :E [a,t(1 + (1J/0l) - 1) -D1t* ]ct<1l = -a11s1 (x), 
!=1 

where 

{
(l-2aJ,m;_,)aJ,t+1Si + aj,t-1Si for m;-1<j<m; -2, 

~= . 
(1-2a1,m;_.)a1,t+1s;+a1,td;+a1,t-1si+1 for J=m;-1. 

The solution of (C · 4) is easily given by 

A (1)_ 1 {fc + 2 1)sh(qtk) Ct - nt y;-
f(1)f(y; -1)f(nt + Y; -1) sh(pok) 

- f(nt -1)sh{(qt -2( -1Y+1p;)k}} for m;-1<l<m;. 
sh(pok) 

T;hus, the high-temperature expansion of the free energy is obtained as 

(C·3) 

(C·4) 

(C·5) 

(C·6) 

(C·7) 

up to the :first order of JjT. This agrees with the well-known results obtained 
by the ordinary high-temperature expansion method. 

Appendix D 

--High-temperature expansion for J = t through the fourth term--

In order to confirm the validity of our treatment, we have performed the 
high-temperature expansion of the free energy for J = t in a power series of J /T 
up to the fourth term. Now the free energy for J = t is expressed as 
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2202 M. Takahashi and M. Suzuki 

F Joo ·Joo N =-A -ooa1(x)s1(x)dx-T _}n(1+7]1(x))s1(x)dx 

= _ _!_J-T ln ,~~;(0). 
2 

(D·1) 

Here ,11; (x) is the solution of the following non-linear integral equations: 

where 

ln 7]1(x) = -c(JjT)s1(x) +2sl* ln(1+~~;), 

ln "(x) = s1* ln (1 + 7]1), 

c=3v'3 and 

(D·2) 

(D·3) 

(D·4) 

As the solution for J=O is given by 7J1 (x) =3 and ,~~;(x) =2, we may find the 
solution for the general value of J in a power series of J /T as follows: 

and 

(D·5) 

Substituting (D · 5) into (D · 2) and (D · 3), and expanding again the logarithmic 
functions there, we obtain the following linear integral equations for bn(x) and 
Cn(x): 

2cn(x) -sl*bn(x) =B,.(x), 

2sl*cn(x) -bn(x) =Cn(x), (D·6) 

where Bn(x) and Cn(x) are expressed by simple polynomials of the functions 
{b,.}(k=l, ···, n-1) and {c.~:}(k=1, ···, n-1); 

(D·7) 

Now the coupled integral equations (D · 6) are solved by the Fourier transform 
to give 

bn(k) = {s1 (k)} - 1 {q(k)B .. (k)- p(k)Cn(k)}, 

c,.(k) = {2s1 (k)}-1{p(k)B"'(k) -q_(k)C,.(k)}, (D·8) 

where $1 (k) denotes a Fourier transform of s1 (x), and consequently it is given 
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One-Dimensional Anisotropic Heisenberg Model 2203 

by s1(k) =! sech k. The Fourier transforms p(k) and ij(k) are defined by 

~(k) _ s1(k) sh 2k 
P -1- {sl(k)}2 sh 3k 

and 

(D·9) 

respectively. In this way it is possible, in principle, to obtain the solution in a 
power series of JjT up to an arbitrary order. In fact we have found the series 
expansions through the fourth term (i.e., n = 3). The results thus obtained are 
summarized as 

With use of the above results, the free energy is expressed by 

F J { 3c f"' . } 3c2J 2 f"' -= -Tln2-- 2-- ij(k)dk -- {p8 (x) +l(x)}dx 
N 4 2n -"' 32T -"' 

J 9 J2 1 JS 
=-Tln2---- --- -+···. 

8 2 7 T 27 T 2 

Here, we have used the following formulae 

"'2_ 1 (kc)ch(2k) +n sh(2k) 
p-~ ' 

2nc sh(3k) 

"'2 _ 1 ( kc) ch k- n sh k 
q -~ ' 

2nc sh(3k) 

L ( b ) = f"' sh(ax)sh(bx)sh(cx)d 
s a, , c, - x 

-«> sh83x 

(D·lO) 

(D·ll) 

(D·ll') 

(D·12) 

(D·13) 

=!!..._ {f(a+b-c) + f(a-b+c) + f( -a+b+c) -f(a+b+c)}; 
6 

(x
2 1) nx f(x) = ---tan-

36 4 6 
(D·14) 
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2204 M. Takahashi and M. Suzuki 

for lal + lbl + lcl<9, and in particular 

I2(a, b)=Is(a, b, 3) =.!!__ {ca- b)cot n(a-b)- (a+b)cot n(a+b)} (D·15) 
18 6 6 

together with formulae derived by differentiating (D ·14) and (D ·15) with respect 
to a, b or c. 

Appendix E 

--Isotropic X-Y limit--

The isotropic X-Y Hamiltonian corresponds to the case v1 = 2 and JJ 2 ~ oo 
in (2 ·13). Consequently, the coupled non-linear integral equations (3 ·10) for 
this limit are reduced to the simple equations: 

and 

ln 'lj2 = _!_ ln {(1 + 1ja) I (1 + 1j1)}, 
2 

1 
ln 1JJ =- ln {(1 + 1j1_ 1) (1 + 171+1)}, j = 3, 4, · · · 

2 

lim (ln 171) I (2j- 3) = 2/J.oH. 
}-->oo T 

The general solution of the difference equation (E · 3) is given by 

1+1J1 =P(j-1) for j=2, 3, ... , 

where 

Substituting (E · 5) into (E ·1), (E · 2) and (E · 4) we have 

1 + 171 =J-2(0), a= (z2+exp( -Asl(x)IT) ) 112 • 

z-2 + exp( -Asl(x)IT) 

(E·1) 

(E·2) 

(E·3) 

(E·4) 

(E·5) 

(E·6) 

Using the formula (3 ·12), we arrive at the well-known expression11l in the form 

F =- /}.oH -T S"" s1(x)ln(1 +z2 exp(T-1As1(x)))(1 +z2 exp(- T- 1As1 (x)))dx JV -oo 

(E·7) 
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One-Dimensional Anisotropic Heisenberg Model 2205 

Appendix F 

--Proof of A= 0--

When Po is a rational number, it is clear that fh/1/0A vanishes at A= 0, 
because r;1 is a function of ch(YaA/T). 

When Po is an irrational number, we introduce functions r;j (x) satisfying a 
series of the following coupled integral equations: 

ln(1+r;oa) = -nJ.r,-1 sn(2r,)8(x)/T, 

In r;,a = (1- 28mt_,,J) St* In (1 + r;'J-1) + St* In (1 + r;j+l) 

for mi-1<j<mt-2, i<a, 

In r;/ = (1- 28mt . .,J)St* ln(1 + r;j_1) + dt* ln(1 + r;/) + si+l* ln(1 + r;j+l) 

for j=mt-1, i<a, 

7J~a-1 = {!Ca(x)}2 + 21Ca(x)ch(yaA/T), 

In /Ca (x) = (1- 28ma-1,ma-J S* In (1 + 7J~a-2) · (F-1) 

The functions r;1=lima--+co r;1a satisfies Eqs. ( 4 ·10) and ( 4 ·11). Differentiating 

(F -1) with respect to A we have linear integral equations for ar;,a jfJA. At A= 0 
it is clear that no inhomogeneous term appears in these equations. Therefore 

we have fJr;//fJAI>-~o=O and fJr; 1 /oAI>-~o=O. We arrive also at the same conclusion 
by using the high-temperature expansion method, because each term in the series 
is even with respect to A as shown in Appendix C. 

Appendix G 

--Anisotropic X-Y limit--

The anisotropic X-Y Hamiltonian corresponds to the case JJ1 =2 and JJ2~oo 

m ( 4 -10). The coupled equations ( 4 ·10) for this limit are reduced as 

follows: 

In r;1 = - J,nT -1r;.-1 sn (2r,) s1 (x) + t In {(1 + r;1) (1 + r;2)}, 

In 7j2 = i- In {(1 + r;a) / (1 + r;t)}, 

In r;1 =tIn {(1 + r;1- 1)(1 + r;1+1)}; j = 3, 4, · · · , 

lim In 7JJ =0. 
}--+co (2j-3) 

The solution of the above difference equations is given by 

1 + r;1 = (a(x) + 1) - 2 and 1 +r;1 = (a(x) + j)2 ; j=2, 3, · ·· , 

where 

(G-1) 

(G-2) 

(G-3) 

(G-4) 

(G-5) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/6

/2
1
8
7
/1

8
5
7
4
0
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



2206 M. Takahashi and M. Suzuki 

a(x) =- {1+ exp(As1(x)/T)}-1; A=J.n-C-1 sn(2C) and C=Kl/2. (G·6) 

Substituting this into ( 4 ·13) we have 

~=-! (J.-Jy) -T f~Q S1(x)ln{l+exp(~s1(x))} {I+exp(- ~s1(x))}dx. 

(G·7) 

We transform the variable x as follows: 

q=sin-1cn(K1x k) k'=(1-l')/(1+l'), k'=V1-k3, l'=V1-l2 
1 +k'' ' 

and 

e(q) =As1(x) =~dn( K 1x k) =~.JI-k 2 cos2 q. 
1 + k' 1 + k' ' 1 + k' 

(G·8) 

Finally we obtain 

F = _l_ (J,-Jy)- T J"12 dq In{I + exp (e(q))} {1 + exp(- e(q))}. N 4 -1rt221r T T 
(G·9) 

Appendix H 

--Non-linear equations for a rational number p0--

Let Po be a rational number given in the form 

(H·l) 

where u and v are integer and prime to each other. In this case we add to 
Assumption 2 another condition that n1<u. Since u = Ya in our previous notation, 
we have only to consider bound states with parity v 1 and order n1 for j = 1, 2, 
···, ma. (These notations are defined in (2·12) and (2·14).) It must be remarked 
that at j=m and k=ma-1, the second term of r.h.s. of (2·16) for (:)1k(x) is 
zero, because (n1 +nk)/p0 =v=integer. Thus, we obtain a set of integral equa­
tions slightly different from (3 ·10) as follows: 

In (1 + "Qo) = - 2n-J(:)-1 sin (:)(] (x) /T, 

In "QJ = (1- 2t1m; . .,J) Si* In (1 + "QJ-1) + Si* In (1 + "QJ+l) 

In n1= (1-2t1,.;_,,1)si* In (1 + n1- 1) + d;* In (1 + n1) + Sw* In (1 + "QJ+l) 

for j=mi-1, i<a. 
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One-Dimensional Anisotropic Heisenberg Model 

ln 1/m,,-2 = (1- 2~ma_ 1 ,ma-2) S,;* ln (1 + 1/ma-s) + St* ln {(1 + 1/ma-1) (1 + 1/;;;~)}, 

ln 1/ma-1 = Ya* H +Sa* ln (1 + 1/ma-2) 

2207 

(H·2) 

It is clear that this set of equations is equivalent to (3 ·17). The above argu­

ments are applied also to the X-Y-Z model in a quite similar way. 

Appendix I 

--The limit T~O--

In this limit we put s1(x)=Tln7J1(x). Equations (3·10) and (3·11) are 

written as follows: 

where 

s1(x) = (1-2~mj.,, 1 )s,;*SJ_ 1 +s,*SJ+l for m1_ 1<j<m,;-2, 

e1(x) = (1-2~mi_,,J)S,;*SJ_ 1 + d,*S/ + S,;+l*SJ+1 for j= m,; -1, 

e0+= -A~(x), lim 81 =2f..1.0H, A=2nJ0-1 sin(), ,_,., n, 

for e1(x) >o, 

for s1(x) <O, 

(1·1) 

For J>O and H>O, e1(j>2) are always positive. From Eqs. (3·5), s1 is 

given as the solution of the integral equation 

e1= -Aa1(x) +2f..l.oH- J_"'"' T1,1(x-x')s1-(x')dx'. 

The function S1 (x) is a monotonously increasing function of x 2 and is negative 

in a certain region [-B, B]. Therefore 7J1 (x) is zero in this region and infinite 

outside this region. Linear integral equations (3 ·1) are written as 

a1(x) =p1(x) + s:B T1,1(x-x')p1(x')dx' for lxl<B. (I·2) 

For J<O and H>O, s1 (j=l=v1) are always positive, and Sv, is given by 

Sv, = -Aav, +2f..l.oH+ s:,., Tv,,v,(x-x')e;;(x')dx'. 

In the same way as in the above paragraph we obtain 

av, (x) = - Pv, (x) + s:B Tv,,., (x- x') Pv, (x') dx' . (I·3) 
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2208 M. Takahashi and M. Suzuki 

The integral equations (I· 2) and (I· 3) are equivalent to those obtained by 
Orbach/> 

Next we discuss the X-Y-Z model. In the limit r~o, Eqs. (4·10) and 
( 4 ·16) are written as 

e1 (x) = (1-2~m;_" 1 )s;*eJ-1 + S;*eJ+l for m;-I<j<m; -2, 

e1 (x) = (1-2~m;.,, 1 )s;*eJ-I + d;*e1 + + s;+l*eJ+l for j= m; -1, 

e0 + = -A~ (x), lim eJ = 0, A= nJ.r.-1 sn (2r.). 
J--+<<> n, (I·4) 

For J.>O, we have 

and (I·5) 

eo= IAI~(x), 

and 

(I·6) 

This set of equations is solved analytically by the Fourier transformation and 
the result is given by 

( ) _IAI ~ (nnix)ch((Po+1-j)nn/Q) e1 x -- ..::..... exp -- , 
2Qn=-"' Q ch((p0 +1)nn/Q) 

j=1,2,···,J,Il-1, 

e., = _l:!l t exp (nnix) 1 . 
2Qn=-oo Q 2 ch((p0 -1)nn/Q) 

(I·7) 

Substituting (1· 5) and (I· 7) into ( 4 ·13), we obtain the exact ground-state energy 
of the X-Y--Z model by Baxter.8> 
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