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All systems in thermal equilibrium exhibit a spatially variable energy landscape due to thermal

fluctuations. Thus at any instant there is naturally a thermodynamically driven localization of energy

in parts of the system relative to other parts of the system. The specific characteristics of the spatial

landscape such as, for example, the energy variance, depend on the thermodynamic properties of the

system and vary from one system to another. The temporal persistence of a given energy landscape,

that is, the way in which energy fluctuations ~high or low! decay toward the thermal mean, depends

on the dynamical features of the system. We discuss the spatial and temporal characteristics of

spontaneous energy localization in 1D anharmonic chains in thermal equilibrium. © 1999

American Institute of Physics. @S0021-9606~99!51628-0#

I. INTRODUCTION

The pioneering work of Fermi, Pasta, and Ulam1 dem-

onstrated that a periodic lattice of coupled nonlinear oscilla-

tors is not ergodic, and that energy in such a lattice may

never be distributed uniformly. A great deal of work has

followed that classic paper trying to understand how energy

is distributed in discrete nonlinear systems.2–7 Specifically,

the possibility of spontaneous energy localization in perfect

anharmonic lattices has been a subject of intense interest.8–13

The existence of solitons and more generally of breathers

and other energy-focusing mechanisms, and the stationarity

or periodic recurrence or even slow relaxation of such spa-

tially localized excitations, are viewed as nonlinear phenom-

ena with important consequences in many physical

systems.10,14,15

The interest in the distribution and motion of energy in

perfect arrays arises in part because localized energy in these

systems may be mobile, in contrast with systems where en-

ergy localization occurs through disorder. The interest also

arises because such arrays may themselves serve as models

for a heat bath for other systems connected to them.16 Albeit

in different contexts, ‘‘perfect’’ arrays serving as energy

storage and transfer assemblies for chemical or photochemi-

cal processes are not uncommon.17,18

The study of anharmonic chains and of higher-

dimensional discrete arrays has been less than systematic,

certainly an inevitable consequence of the breadth and math-

ematical difficulty of the subject. Some studies ~including the

work of Fermi, Pasta, and Ulam! deal with microcanonical

arrays. Here one observes the way in which a given constant

amount of energy distributes itself among the elements of the

array. The notion of ‘‘temperature’’ usually does not enter in

these discussions, although such an association could be

made if the energy is randomly distributed. Other studies of

anharmonic chains ~far more limited in number! deal with

systems subject to external noise and other external forces.

The questions of interest here involve the ways in which

noise can enhance ~as in noise-enhanced signal propa-

gation!15 or even totally modify ~as in noise-induced phase

transitions!19 the properties of the nonlinear array. Even

more limited has been the study of systems that are in ther-

mal contact with one or more external heat baths maintained

at a constant temperature.10,12 Here the questions usually re-

volve around the robustness against thermal fluctuations of

stationary or quasistationary solutions of the microcanonical

problem. In both microcanonical and canonical systems,

some work concentrates on stationary states or long-time be-

havior or equilibrium properties of the array, while other

work deals with transport properties or with the approach to

equilibrium. Furthermore, there is variation in the portion of

the potential where the nonlinearity resides. Thus, in some

cases the elements of the array are themselves nonlinear

while in others it is the coupling between elements that is

nonlinear ~and, on occasion, both are nonlinear!.
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Within this broad setting, our interest in this paper fo-

cuses on one-dimensional arrays of classical oscillators in

thermal equilibrium.12 An understanding of thermal equilib-

rium properties and the effects of nonlinearities on these

properties is a prerequisite to the perhaps more interesting

analysis of the nonequilibrium behavior of anharmonic lat-

tices in the presence of thermal fluctuations and the approach

to equilibrium in such systems. In particular, here we deal

with the case of ‘‘diagonal anharmonicity,’’ that is, the non-

linearity in our model is inherent within each oscillator in the

array ~representing, for example, intramolecular interac-

tions!, while the connections between oscillators ~represent-

ing, for example, intermolecular interactions! are ordinary

linear springs. The anharmonicity may be soft or hard. We

explore the conditions that lead to spontaneous energy local-

ization in one or a few of the oscillators in the array, and the

time it takes for a given energy landscape to change to a

different landscape. One could undertake a parallel study in

systems with anharmonic interactions between oscillators

~‘‘off-diagonal’’ anharmonicity!. We address such systems

in subsequent work.20

The energy landscape is determined by the local poten-

tial of each oscillator, and by the channels of energy ex-

change in and out of each of the oscillators. The couplings

between oscillators provide one such exchange channel, and

the coupling of the array with the heat bath provides the

other. We shall see that different arrays ~soft, hard! behave

very differently in response to these channels. We broadly

anticipate our conclusions by revealing that ~i! persistent en-

ergy localization occurs in arrays of weakly coupled soft

oscillators even when strongly coupled to a heat bath ~while

such localization is absent in the hard chain!; ~ii! persistent

localization occurs in strongly coupled hard arrays provided

they are weakly coupled to a heat bath ~while such localiza-

tion is absent in the soft chain!; ~iii! quasidispersionless mo-

bility of localized energy requires off-diagonal anharmonic-

ity.

These remarks point to the fact that our analysis of an-

harmonic chains in thermal equilibrium could start from two

‘‘opposite’’ viewpoints. On the one hand, we might start by

analyzing uncoupled oscillators in thermal equilibrium and

then proceed to investigate what happens if we couple these

oscillators to one another. This approach focuses on the en-

tropic localization mechanism12 and the way in which the

coupling between the oscillators eventually degrades it. On

the other hand, we might start with a coupled isolated chain,

focus on energetic localization mechanisms in such a chain,7

and then proceed to investigate the ways in which thermal

fluctuations and dissipation affect such local structures.

Since we are explicitly interested in localization in the pres-

ence of thermal fluctuations, and since entropic effects have

received far less attention than energetic ones, we choose to

follow the former approach.

No matter the sequence of our queries, since here our

interest lies mainly in understanding energy localization in a

nonlinear discrete array in thermal equilibrium and the way

in which thermal effects depend on system parameters, we

pose our questions as follows:

~a! How is the energy distributed in an equilibrium non-

linear chain at any given instant of time, and how does this

distribution depend on the anharmonicity? In other words,

can one talk about spontaneous energy localization in ther-

mal equilibrium, and, if so, what are the mechanisms that

lead to it?

~b! How do local energy fluctuations in such an equilib-

rium array relax in a given oscillator? Are there circum-

stances in the equilibrium system wherein a given oscillator

remains at a high level of excitation for a long time?

~c! Can local high-energy fluctuations move in some

nondispersive fashion along the array? In other words, can an

array in thermal equilibrium transmit long-lived high-energy

fluctuations ~if indeed they exist! from one region of the

array to another without too much energy loss to dispersion?

The answers to these questions have not been found ana-

lytically, and are for that reason most clearly presented in

comparative fashion. Starting with an ensemble of uncoupled

oscillators at thermal equilibrium, one knows exactly the be-

havior of a single harmonic oscillator and can say a great

deal about the behavior of a single anharmonic oscillator

from general thermodynamic considerations. Thus, for in-

stance, the mean energy of a single harmonic oscillator in

thermal equilibrium at temperature T is E5kBT

(kB5Boltzmann’s constant!. This energy is on average di-

vided equally between kinetic and potential ~a partition that

enters importantly in questions concerning landscape persis-

tence!. A simple virial analysis immediately shows that a

soft anharmonic oscillator in thermal equilibrium has energy

greater than kBT while a hard anharmonic oscillator has en-

ergy smaller than kBT . Both share the property of the har-

monic oscillator that the average kinetic energy is kBT/2, but

their average potential energies differ. One also knows ex-

actly the energy fluctuations in a harmonic oscillator: the

energy variance s2 is equal to kB
2 T2, and the ratio of s to E

is therefore independent of temperature. The energy fluctua-

tions are easily determined to be greater in a soft oscillator

and smaller in a hard oscillator. From these facts one can

arrive at rather definitive qualitative conclusions regarding

the distribution and persistence of energy in ensembles of

single oscillators and the effects of the anharmonicities on

these features.12

The situation becomes more complicated when such os-

cillators are connected to one another. Not only can the os-

cillators now exchange energy with the heat bath, but there

are also coupling channels whereby oscillators can exchange

energy with one another. The interplay of these various en-

ergy exchange channels and the effects of anharmonicity on

this interplay are some of the issues to be addressed in this

work.

This paper is organized as follows. In Sec. II we intro-

duce our model and notation. We fix some of the parameter

values and briefly discuss the numerical methods used in our

simulations. Here we introduce the hard, harmonic, and soft

local potentials to be compared. In Sec. III we review and

illustrate previous results for uncoupled oscillators in thermal

equilibrium so as to establish the background for the coupled

systems. The phenomenon of ‘‘entropic localization,’’

whereby ensembles of single thermalized soft oscillators lo-

calize and retain energy more effectively than harmonic or
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hard oscillators, is recalled. In Sec. IV we explore the con-

sequences of coupling our oscillators. In Sec. V we briefly

address the mobility of energy fluctuations in our systems.

Finally, Sec. VI summarizes our findings and anticipates fur-

ther studies.

II. THE MODEL AND NUMERICAL METHODS

Our system is a one-dimensional chain of N identical

unit-mass oscillators labeled i51,2, . . . ,N with harmonic

nearest-neighbor interactions and on-site potentials V(x i)

that may be hard, harmonic, or soft. Here x i is the displace-

ment of oscillator i from its equilibrium position, with asso-

ciated momentum p i . We assume periodic boundary condi-

tions. The Hamiltonian of the system is

H5(
i51

N S p i
2

2m
1

1

2
k~x i2x i11!2

1V~x i! D , ~1!

where k is the intermolecular force constant. Figure 1 is a

schematic of the model.

To represent the thermalization of our chain the model is

further expanded to include the Langevin prescription for

coupling a system to a heat bath at temperature T via fluctu-

ating and dissipative terms. The stochastic equations of mo-

tion for the chain are then given by the Langevin equations

x ï52k~2x i2x i112x i21!2gx i̇2

dV~x i!

dx i

1h i~ t !, ~2!

where a dot represents a derivative with respect to time. The

h i(t) are mutually uncorrelated zero-centered Gaussian

d-correlated fluctuations that satisfy the fluctuation–

dissipation relation:

^h i~ t !&50, ^h i~ t !h j~ t8!&52gkBTd i jd~ t2t8!. ~3!

Since we are interested in assessing the effects of anhar-

monicities on energy localization, we start by specifying the

on-site potentials to be used in our analysis:

V0~x !5
1
2 x2

Vs~x !5uxu2ln~11uxu! ~4!

Vh~x !5
1
2 x2

1
1
2 x4.

The subscript 0 stands for the harmonic case, s for the soft

and h for the hard. At small amplitudes the three potentials

are harmonic with a unit natural frequency. Figure 2 shows

the potentials and associated forces.

We end this section with a brief description of the nu-

merical methods used in our simulations throughout this pa-

per. The numerical integration of the stochastic equations for

all our simulations is performed using the second-order He-

un’s method ~which is equivalent to a second-order Runge–

Kutta integration!.21,22 We use a time step Dt50.005. The

number of oscillators in our simulations ranges between 100

and 1000 and is indicated in each figure as appropriate. In

each simulation the system is initially allowed to relax for

enough iterations to insure thermal equilibrium, after which

we take our ‘‘measurements.’’ In all of our subsequent en-

ergy landscape representations we have used the same se-

quence of random numbers to generate the thermal fluctua-

tions.

III. PROPERTIES OF UNCOUPLED OSCILLATORS:
ENTROPIC LOCALIZATION

In order to understand the equilibrium properties of a

chain of oscillators it is useful to first review the behavior of

single ~uncoupled! oscillators described by the potentials in

Eq. ~4!.

FIG. 1. Illustration of the 1D chain considered in this work. Each oscillator

in the chain experiences an on-site potential and is harmonically bound to its

nearest-neighbors.

FIG. 2. Left panel: the on-site potentials defined in Eq. ~4!. Right panel: the associated forces. Solid lines: harmonic potential, V0(x). Dotted lines: soft

anharmonic potential, Vs(x). Dashed lines: hard anharmonic potential, Vh(x).
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Suppose first that our oscillator is isolated. The salient

features of anharmonic oscillators are that ~i! they oscillate

with different frequencies at different energies, and ~ii! the

density of states changes with changing energy. In particular,

hard potentials are associated with increasing frequencies of

oscillation and sparser densities of states with increasing am-

plitude ~energy!; on the other hand, in soft potentials the

oscillation frequency decreases and the density of states in-

creases with increasing amplitude.

To get a sense, useful for later analysis, of these and

associated oscillator characteristics, we present several fig-

ures that show various distinct features of our three types of

oscillators. Figure 3 shows the frequencies v(E) of isolated

single oscillators as a function of increasing energy E ~which

in turn corresponds to increasing amplitude!. This frequency

is evaluated directly by solving the equation of motion

dx/dt56A2@E2V(x)# over one period of oscillation at en-

ergy E:

v~E !5pS E
2xmax

xmax dx

A2@E2V~x !#
D 21

. ~5!

The amplitude of oscillation xmax at a given energy can be

found by solving for the positive root of V(x)5E . The har-

monic oscillator has a single frequency at unity. The soft and

hard oscillators oscillate at unit frequency at low amplitudes

~energies! because we have chosen all the oscillators to co-

incide there, but with increasing amplitude the hard oscillator

frequencies increase and those of the soft oscillator decrease.

In Fig. 3 we also show the period of oscillations t(E)

52p/v(E). The period increases with increasing energy for

the soft oscillator, remains constant for the harmonic oscil-

lator, and decreases with energy for a hard oscillator. This

behavior will figure prominently in our subsequent analysis

of energy localization.

Next we consider these same single oscillators, but now

each connected to a heat bath at temperature T via Langevin

terms. The left panel of Fig. 4 shows the normalized energy

distribution P(E) vs E for the three cases. This distribution

is given by

P~E !5

e2E/kBTt~E !

*0
` dEe2E/kBTt~E !

~6!

~the density of states is proportional to the period of oscilla-

tions!. The figure supports our introductory comments:

firstly, that the average energy of the soft oscillators is

greater than that of the harmonic oscillators, whose average

energy is in turn greater than that of the hard oscillators;

secondly, that the energy fluctuations are smallest in the hard

oscillator and largest in the soft oscillator. Thus in equilib-

rium we find at any instant that there is a greater variability

of energy in an ensemble of single soft oscillators than in one

of harmonic or hard oscillators. The right panel of Fig. 4

shows the average period of oscillation t(kBT) for a ther-

malized distribution:

t~kBT ![E
0

`

dE t~E !P~E !. ~7!

Consonant with the energy dependence of t(E), the average

period of the soft oscillator increases with temperature, that

of the harmonic oscillator is independent of temperature, and

that of the hard oscillator decreases with temperature.

The features just discussed are also visible in the energy

landscape rendition shown in Fig. 5. Along the horizontal

direction in each panel lies an ensemble of 100 independent

thermalized oscillators and the vertical upward progression

shows how these oscillators evolve with time in the equilib-

rium system. Here and in all our energy landscape figures the

y axis covers 120 time units, the same units shown on time

axes throughout the paper. Each oscillator is connected to a

heat bath. The gray scale represents the energy – an oscilla-

tor of higher energy is darker in this portrayal.

The first thing to note is that along any horizontal line

~i.e., at any given time! the soft landscape is darker and

grainier than the harmonic, and the lightest and least grainy

is the hard oscillator landscape. This reflects the fact that the

FIG. 3. Oscillation characteristics of single isolated oscillators. Left panel: frequency as a function of the oscillator energy for the potentials in Eq. ~4!. Right

panel: oscillation periods for single oscillators. Solid lines: harmonic oscillator. Dotted lines: soft anharmonic oscillator. Dashed lines: hard anharmonic

oscillator.
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soft oscillators have the highest energies and the greatest

energy fluctuations. This observation provides a basis to be

used in answer to the first question posed in the introduction.

In an ensemble of independent oscillators in thermal equilib-

rium there is of course a greater energy in some oscillators

than in others simply because there are energy fluctuations in

a system in thermal equilibrium. These fluctuations are

greater in soft anharmonic oscillators than in harmonic or

hard anharmonic oscillators.

The second noteworthy feature of the landscape illus-

trates the answer to the second question posed in the intro-

duction, namely, how long it takes in an equilibrium en-

semble for the fluctuations to relax and the energy landscape

to change. The trend for our independent oscillators is clear:

the soft oscillators retain a given energy for a longer time

than do the harmonic, which in turn hold on to a given en-

ergy longer than do the hard oscillators. This is particularly

evident for those oscillators that acquire a high energy

through a fluctuation: in the soft oscillator landscape the dark

streaks are clearly visible. The reason for this behavior be-

comes clear if we write the equation of motion for the energy

of each oscillator E5p2/21V(x). Setting p5 ẋ and using

Eq. ~2! one finds that for any type of oscillator

Ė52gp2
1ph~ t !. ~8!

Thus, the energy exchange with the surroundings involves

only the momentum variable ~i.e., the kinetic energy!. Con-

sider an oscillator that has acquired a given high-energy fluc-

tuation E, and consider how this energy is distributed be-

tween the oscillator displacement and momentum. In a

harmonic oscillator the energy during one cycle of oscilla-

tion is equally partitioned between kinetic and potential. In a

soft oscillator, however, the energy spends relatively more

time in potential than in kinetic form ~and the opposite is true

for the hard oscillator!. Thus, during the major portion of the

cycle the momentum of a soft oscillator is relatively low

~while its displacement is large!; the energy in the soft oscil-

lator can therefore not enter from and leave to the thermal

FIG. 4. Left panel: energy distribution in single thermalized oscillators for the three potentials at kBT50.5. Right panel: average oscillation period for the

three oscillators as a function of temperature. Solid lines: harmonic potential, V0(x). Dotted lines: soft anharmonic potential, V s(x). Dashed lines: hard

anharmonic potential, Vh(x).

FIG. 5. Energy ~in gray scales! for ensembles of 100 thermalized indepen-

dent oscillators as a function of time. The oscillators are lined up ~but not

connected! along the x-axis and time advances along the y-axis. The tem-

perature is kBT50.5 and the dissipation parameter is g51. Top panel: soft

oscillators; middle panel: harmonic oscillators; lower panel: hard oscillators.
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surroundings as easily as in the other oscillators. The energy

relaxation process is therefore slower, and a soft anharmonic

oscillator retains a high energy it might have gained via a

fluctuation for a longer time.12

The energy relaxation process visible in Fig. 5 is shown

more quantitatively in Fig. 6. Here we have plotted the nor-

malized energy correlation function

C~t !5K ^E~ t !E~ t1t !&2^E~ t !&^E~ t1t !&

^E2~ t !&2^E~ t !&2 L . ~9!

The inner brackets indicate an average over time t ~200 000

iterations! and the outer brackets an average over an en-

semble of 1000 oscillators. The correlation function is nor-

malized so that all energies, high and low, contribute

‘‘equally.’’ It is thus a measure of the full exchange of en-

ergy with the heat bath, both through the dissipative term and

also via the fluctuations. We note that the trend in Fig. 6

~slower decay as the oscillators soften! is consistent with the

corresponding slowing trend for each temperature in the

right panel of Fig. 4. Also note that on average the energy of

an oscillator changes on the time scale of half a period of

oscillation, i.e., on the time scale it takes the oscillator to

move from one side of the potential well to the other.

We have thus summarized and illustrated our earlier

findings,12 namely, that in an array of independent oscillators

in thermal equilibrium at a given temperature there are larger

energy fluctuations and longer retention of energy the softer

the oscillators. This is an entropy-driven localization, arising

from the fact that the density of states in soft oscillators

increases with increasing energy. It minimizes the free en-

ergy because it is entropically favorable for oscillators to

populate phase space regions where the density of states is

higher, which in an ensemble of soft oscillators leads to a

greater spatial variability than in harmonic or hard oscilla-

tors. The temporal persistence of this greater variability is a

consequence of the fact that coupling to a heat bath occurs

only via the kinetic energy. In the soft ensemble the energy

is in potential form a greater fraction of time than in kinetic

form, which is not the case for the other two ensembles.

We gave this scenario the name stochastic localization in

our earlier work,12 but will refer to it as entropic localization,

a term that more accurately reflects its physical causes. It is

important to stress that entropic localization in soft oscilla-

tors is robust in the sense that it becomes more pronounced

as temperature increases provided the potential continues to

soften, and that it is achieved regardless of the initial condi-

tion of the system.

The remaining parameters that can be varied at this point

are the dissipation parameter and the temperature. A change

in the dissipation parameter does not affect Fig. 4 since this

is an equilibrium distribution. In Fig. 5 a higher dissipation

parameter would cause a more rapid decay of energy fluc-

tuations ~and, correspondingly, a lower dissipation parameter

allows an energy fluctuation to survive for a longer time!.
Thus, although high dissipation does not interfere with the

appearance of greater energy fluctuations in the soft oscilla-

tors, it works against the temporal retention of excess energy

by any one oscillator. The energy correlation function decays

more slowly for the soft oscillator for any dissipation, and

this decay is more rapid ~for all the oscillators! as the dissi-

pation increases. In any case, for a given dissipation param-

eter the softer potential retains energy for a longer time.

The temperature affects the quantitative outcome of

Figs. 4 and 5. In Fig. 4 the distributions broaden with in-

creasing temperature, but the differences between the differ-

ent oscillators remain and, in particular, the fact that the dis-

tribution for the soft oscillator is the broadest continues to be

true. In Fig. 5 higher temperatures produce relatively greater

graininess in the soft oscillator figure than in the other two.

This is clearly observed in the sequence of Fig. 7, which

shows the evolution of ensembles of soft oscillators for dif-

ferent temperatures. A temperature increase leads to stronger

entropic localization and this effect also appears in the en-

ergy correlation functions, as shown in Fig. 8. This behavior

is contrasted with that of harmonic and hard anharmonic

oscillators, whose energy landscapes and energy correlation

functions show essentially no temperature dependence in this

range. The energy fluctuations in these latter cases dissipate

very quickly. Note that the temperature dependence of the

correlation times implicit in Fig. 8 is consistent with the

temperature dependence of an average period of oscillation

of a soft oscillator as shown in the right panel in Fig. 4: with

increasing temperature the correlation time continues to be

approximately half a period.

With this background, we are now ready to consider the

behavior of chains of oscillators, where everything that we

have found so far has to be reconsidered in the face of the

additional forces now present through the oscillator–

oscillator coupling.

IV. COUPLED OSCILLATORS

In this section we explore the consequences of coupling

the oscillators discussed in the previous section with har-

monic springs. In this exploration we attempt to bring some

order to seemingly contradictory reports that the coupled os-

cillators must be hard in order for such an array to localize

FIG. 6. Energy correlation function vs time for independent oscillators with

kBT50.5 and g51. Note that the energy changes most slowly in the soft

potential ensemble. Solid line: harmonic potential. Dotted line: soft anhar-

monic potential. Dashed line: hard anharmonic potential.
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energy effectively, or that the coupled oscillators must be

soft in order to accomplish such localization. To anticipate

our results, we will show that both claims are correct, but

each in a different parameter regime and for different physi-

cal reasons. The variable parameters in this discussion are

the temperature kBT , the dissipation parameter g, and the

coupling strength k.

In order to determine the conditions that may lead to

energy localization in a thermalized chain of oscillators it is

useful to investigate the ways in which energy may escape

from a given oscillator. It is apparent from the Langevin Eq.

~2! that there are now two channels of escape. As in the last

section, one is the friction term that dissipates the energy to

the bath. The other is the coupling term that transfers energy

to the nearest-neighbors. The difference between these two

mechanisms is that the dissipation is determined entirely by

the kinetic energy of the oscillator. Energy transfer along the

chain, on the other hand, while still dependent on the kinetic

energy, is primarily determined by the extension or contrac-

tion of the springs connecting neighboring oscillators, that is,

by the potential energy through the relative oscillator dis-

placements. To make these statements more quantitative, it is

useful to generalize the concept of a local energy by defining

a local function whose sum over sites is the total energy of

the chain. To include the contribution from the nearest-

neighbor restoring forces one writes

E i[
p i

2

2
1V~x i!1

k

4
@~x i2x i11!2

1~x i2x i21!2# , ~10!

and the total energy of the system is then E5( iE i . The rate

of change of the local energy is easily found to be

E i̇52gp i
2
1p ih i~ t !2

k

2
~x i2x i11!~p i1p i11!

2

k

2
~x i2x i21!~p i1p i21!. ~11!

Note that although this expression does not explicitly involve

the potential, the rate of local energy loss of course does

depend on the potential through the displacements and mo-

menta.

The dynamics of the local energy will thus depend on

the interplay of the thermal ~fluctuations!, dissipative, and

intrachain forces. In order to highlight the main comparisons

and contrasts, we frequently will juxtapose the behavior of

chains for which one or the other of the energy exchange

channels is clearly the dominant one, and in each case assess

the effects of temperature changes.

The effect of interoscillator coupling on entropic local-

ization is illustrated in Fig. 9. In this figure we show the

system of soft oscillators that were uncoupled in Fig. 7 ~spe-

cifically, the case with kBT50.5 and g51!, but now provid-

FIG. 7. Energy landscapes for thermalized independent soft oscillators as a

function of time for different temperatures. The dissipation parameter is

g51. Temperatures from top to bottom: kBT50.1, 0.5, 1.0, and 2.0.

FIG. 8. Energy correlation function vs time for independent soft oscillators

with g51 and different temperatures ~the same as in Fig. 7!.
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ing successively larger values for the coupling constant k.

Entropic localization is still apparent for small values of k,

but as coupling increases there is clear degradation of en-

tropic localization. This is to be expected since energy ex-

change is sensitive to large oscillator amplitude differences

in soft oscillators.

The associated energy correlation functions

C~t !5K ^E i~ t !E i~ t1t !&2^E i~ t !&^E i~ t1t !&

^E i
2~ t !&2^E i~ t !&2 L

i

, ~12!

for the cases in Fig. 9 are shown in Fig. 10. These curves

confirm the degradation of entropic localization with increas-

ing k.

We thus turn to chains of coupled oscillators with low

dissipation ~g50.05! and focus, in particular, on strongly

coupled chains ~if both k and g are small we know pretty

much what happens from the analysis in the previous sec-

tion!. In Fig. 11 we have drawn the energy landscape for the

soft ~top panel!, harmonic ~middle panel!, and hard oscilla-

tors ~lower panel! providing kBT50.5, g50.05, and k51.0.

From this figure it is clearly evident that now the localization

of energy at a given site is greater in the hard case than in the

harmonic case, and this in turn, is greater than in the soft

case. The confirming local energy correlation functions for

these cases are plotted in Fig. 12. Clearly, for a given tem-

perature the hard array retains energy at a given location for

a longer time than do the other two arrays.

In the low-g, large-k regime the effective energy ex-

change channel is sensitive to the oscillator amplitude rather

than to its kinetic energy, so we expect entropic localization

in the soft array to be degraded since soft oscillators have

large amplitudes. Furthermore, as the harmonic coupling in-

creases it eventually overwhelms the local soft potential and

the soft chain becomes an essentially harmonic chain at suf-

ficiently large k. On the other hand, hard oscillators exchange

little energy via the coupling channel since they do not reach

large amplitudes. This, and the fact that dissipation to the

bath via kinetic energy ~the other energy exchange channel!
has been minimized ~low g!, leads to persistent energy local-

ization in the hard array. This is an energetic localization

mechanism. The frequency mismatch between an energetic

hard oscillator and its less energetic neighbors, and the

dearth of density of states at high energies, further contribute

to this persistence.

The energetic localization mechanism in strongly

coupled hard oscillators is robust against temperature in-

creases. Indeed, according to our explanation, the localiza-

tion should become more pronounced and persistent as tem-

perature increases provided the dissipation is sufficiently

weak. In Fig. 13 we have drawn the energy landscapes for a

strongly coupled (k51.0) array of hard oscillators, weakly

coupled to the bath ~g50.05! at different temperatures. The

FIG. 9. Energy landscapes for thermalized soft oscillators as a function of

time. The dissipation parameter is g51 and the temperature kBT50.5. From

top to bottom the coupling constants are k50, 0.05, 0.5, and 1.0.

FIG. 10. Local energy correlation function vs time for chains of soft oscil-

lators with g51, kBT50.5 and different values for the coupling constant

~same as in Fig. 9!.
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figure qualitatively confirms these expectations. The corre-

sponding energy correlation functions are plotted in Fig. 14:

C(t) for the hard chain does decay more slowly with in-

creasing temperature. Thus, localization in this strongly

coupled system of hard oscillators becomes more effective

with increasing temperature and is not entirely fragile against

dissipative forces. On the other hand, the soft and harmonic

correlation functions ~not shown here! are essentially inde-

pendent of temperature. Note that the trend in Figs. 12 and

14 is ‘‘opposite’’ to that of the uncoupled oscillators in the

right hand panel of Fig. 4. In the strongly coupled chain

harmonic and soft oscillators in fact lose their energy rather

quickly on the time scale of one oscillation period of an

isolated oscillator, but the hard oscillators retain energy cor-

relations for longer than a period, indeed for many periods at

the highest temperatures shown. With increasing temperature

the hard oscillators retain energy more effectively even while

the average oscillation period decreases. In fact, the decay of

the correlation functions appears to involve two time scales,

one of the order of an oscillation period and another much

longer one that grows with temperature.

The temporal irregularities ~oscillations! visible in Figs.

12 and 14 are reproducibly there at all temperatures; we do

not know their source.

V. MOBILITY OF LOCALIZED ENERGY
FLUCTUATIONS

The upper two energy landscapes in Fig. 11 show what

might appear as fairly dispersionless energy transport. Nar-

row high-energy pulses move visibly along the chain before

disappearing, while others appear ~via thermal fluctuations!
to repeat the process elsewhere along the chain. However,

this cannot be claimed to represent nonlinear behavior since

the middle panel in Fig. 11 in fact represents a completely

harmonic system! This serves as a cautionary note about the

overinterpretation of such results.

We noted earlier that with increasing k the soft chain

eventually becomes essentially harmonic because the inter-

molecular harmonic interactions overwhelm the local soft

potential ~the only way to prevent this is by considering soft

interoscillator interactions, which we defer to another

paper!.20 The upper panel in Fig. 11 exhibits mostly this

essentially harmonic behavior—it is quite similar to the

middle panel—but not entirely so. The soft oscillator chain

clearly shows higher-energy regions than the harmonic

~darker patches, a not fully degraded remnant of entropic

localization! that move more rapidly ~steeper streaks! over

longer distances ~longer streaks! than in the harmonic chain.

Therefore, the soft anharmonicity is clearly still playing

some role, albeit a diminishing one with increasing coupling.

To provide some quantification, we introduce the dynamical

energy correlation function

C~ j ,t !5K ^E i~ t !E i1 j~ t1t !&2^E i~ t !&^E i1 j~ t1t !&

^E i
2~ t !&2^E i~ t !&2 L

i

.

~13!

This correlation function plotted as a function of j for various

time differences t is shown in Fig. 15 for a soft chain and in

Fig. 16 for a harmonic chain. For a given coupling constant

k and delay time t, the correlation function peaks at the site

FIG. 12. Energy correlation function vs time for coupled oscillators with

g50.05, kBT50.5, and k51.0. Solid line: harmonic potential. Dotted line:

soft anharmonic potential. Dashed line: hard anharmonic potential.

FIG. 11. Energy landscapes for thermalized strongly coupled oscillators as a

function of time. The dissipation parameter is g50.05, the temperature

kBT50.5, and the coupling constant k51.0. Top panel: soft oscillators;

middle panel: harmonic oscillators; lower panel: hard oscillators.
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i1 j to which most of the energy originally at i has migrated.

The change of the peak position with k indicates the velocity

of the migration, and the height and width of the pulse reflect

the dispersive dynamics.

The following results are evident:

~a! Increasing k in either soft or harmonic chains in-

creases the velocity at which a fluctuation propagates.

~b! The velocity for a given set of parameters is greater

in the soft chain.

~c! Dispersion is slower in the soft chain.

However, as noted before, the differences between soft

and harmonic chains at large k are fairly marginal. More

dramatic differences in mobility features occur with anhar-

monic intermolecular potentials, a situation that will be pre-

sented elsewhere.20

VI. CONCLUSIONS

We have presented a fairly complete characterization of

the thermal equilibrium behavior of oscillator chains with

‘‘diagonal anharmonicity,’’ that is, chains with nonlinear on-

site potentials and harmonic intersite potentials. Our particu-

lar interest lies in the characterization of possible spatial en-

ergy localization in such systems, and of the temporal

persistence of such localization.

The instantaneous localization of energy of a system in

thermal equilibrium is a manifestation of the thermal fluctua-

tions: it is an equilibrium property unrelated to system dy-

namics. We argued that not only do soft anharmonic chains

have a higher total energy at a given temperature than do

FIG. 13. Energy landscapes for thermalized coupled hard oscillators as a

function of time. We take g50.05 and k51.0. Temperatures from top to

bottom: kBT50.1, 0.5, 1.0, and 2.0.

FIG. 14. Energy correlation function vs time for strongly coupled hard

oscillators with g50.05, k51 and different temperatures ~same as in Fig.

13!.

FIG. 15. Dynamical energy correlation function C( j ,t) for soft chains with

g50.05 and kBT51.0.
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harmonic or hard chains, but also that thermal fluctuations

are more pronounced in the soft anharmonic chains. This is a

consequence of the fact that free energy maximization favors

the occupation of phase space regions with a high density of

states. The density of states increases with energy in a soft-

ening potential, so it is entropically favorable for a few soft

oscillators to have rather high energies. This in turn leads to

greater spatial energy variability than in harmonic or hard

chains, that is, soft chains have ‘‘hotter spots.’’ The effect

becomes more pronounced with increasing temperature. This

entropic energy localization mechanism in soft chains is de-

graded as the harmonic intersite potential increases because

the harmonic contributions become dominant over the local

soft anharmonicity effects.

In addition to the capacity for instantaneous localization

of energy ~which is greatest in soft chains!, one is interested

in the temporal degradation of a high energy fluctuation.

That is, given a ‘‘local hot spot’’ ~which is easier to find in

soft chains, but nevertheless does occur in harmonic and

hard chains due to thermal fluctuations!, how does such a

fluctuation evolve in time? Such a fluctuation never grows

spontaneously, nor does it persist indefinitely. Rather, it

eventually degrades, either through dissipation into the bath

or through dispersion along the chain.

The rate of dissipation into the bath depends on the value

of the dissipation parameter and also on the kinetic energy of

the oscillators. If the dissipation parameter is small, this

channel is of course slow for any chain. However, even if the

dissipation parameter is large, dissipation can still be slow if

the energy is not primarily in kinetic form. This is the case

for soft chains provided the interatomic potential is weak

~since otherwise the chain is essentially harmonic!. In soft

chains the energy is in potential form for a longer fraction of

the time than in the other chains. As temperature is in-

creased, this effect becomes more pronounced because ever

softer portions of the potential become accessible, and the

energy is stored as potential energy a greater fraction of the

time. Thus an increase in temperature in weakly coupled soft

chains leads not only to greater energy fluctuations but also

to a slower decay of these fluctuations.

Energy dispersion along the chain depends on the mag-

nitude of the coupling constant and also on the relative os-

cillator displacements. If the coupling constant is small, this

channel is slow for any chain. If it is large, then this channel

can still be slow if relative displacements of neighboring

oscillators are small. This is the case for the hard chain,

where displacements are relatively small and don’t change

much with increasing energy. Furthermore, because in a hard

oscillator the frequency increases with increasing energy,

there is a frequency mismatch between a ‘‘hot’’ oscillator

and its ‘‘colder’’ neighbors that further impedes energy

transfer. This leads to greater persistence of local high-

energy fluctuations with increasing temperature. Thus an in-

crease in temperature in weakly dissipative hard chains

leads not only to greater energy fluctuations but also to a

slower decay of these fluctuations.

The soft chain, on the other hand, increasingly loses its

soft character as the interoscillator energy transfer channel

strengthens, and therefore both the landscape and the dy-

namical effects of anharmonicity quickly disappear as this

coupling constant is increased.

Finally, we showed that in harmonically coupled nonlin-

ear chains ~that is, in chains with diagonal anharmonicity! in

thermal equilibrium, high-energy fluctuation mobility does

not occur beyond that which is observed in a harmonic chain.

The situation might be quite different if there is nondiagonal

anharmonicity, that is, if the interoscillator interactions are

anharmonic. Our results on these systems will be presented

elsewhere.20

Further presentations will also deal with bistable ‘‘impu-

rities’’ connected to chains of the types that we have consid-

ered here.23
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