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One-dimensional Bose gas in optical lattices of arbitrary strength
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One-dimensional Bose gas with contact interaction in optical lattices at zero temperature is investigated by
means of the exact diffusion Monte Carlo algorithm. The results obtained from the fundamental continuous model
are compared with those obtained from the lattice (discrete) Bose-Hubbard model, using exact diagonalization,
and from the quantum sine-Gordon model. We map out the complete phase diagram of the continuous model and
determine the regions of applicability of the Bose-Hubbard model. Various physical quantities characterizing the
systems are calculated, and it is demonstrated that the sine-Gordon model used for shallow lattices is inaccurate.
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The Bose-Hubbard model (BHM) was introduced in 1963
[1,2]. While the original motivation was to describe a crys-
talline solid, for which the model failed, the BHM became one
of the fundamental quantum many-body problems. It has found
clear-cut realization with ultracold atoms in deep optical lat-
tices. This led to the seminal observation [3] of the superfluid–
Mott-insulator quantum phase transition [4] following the pro-
posal of Ref. [5]. In many aspects the experiments surpass the
theory as shallow optical lattices can be easily realized, while
an exact quantum many-body description of such systems is
lacking. Even the case of deep optical lattices is controversial,
as the scattered discussions demonstrate [6–11], indicating
the necessity to go beyond the standard BHM (for a review,
see Ref. [12]). Nevertheless, the BHM is commonly used for
lattice systems in different dimensions and it frequently works
very well. Still, there arise natural and important questions that
have motivated the present work: When can it be used with
confidence? What is the regime of validity of the BHM?

The discrete BHM is derived from a continuous space
model that, due to its complexity, has only been addressed
recently [13–18]. In this Rapid Communication, we use the
exact diffusion quantum Monte Carlo method [13,15,19–21]
and investigate one-dimensional Bose gas in optical lattices
using a continuous Hamiltonian in real space. We compare the
results with those obtained from the BHM and determine its
regions of validity. Furthermore, a whole new generation of
clean experiments on one-dimensional Bose gases loaded in
optical lattices [22,23] have appeared, while the comparison of
theory with experiment is not perfect [24,25]. We also analyze
the sine-Gordon (SG) model, commonly used for shallow
lattices [9,26,27], and show that it cannot be straightforwardly
used to predict the position of the phase transition and the
value of the gap [24]. We calculate the static structure factor,
the one-body density matrix, the energy gap, and the Luttinger
parameter and its dependence on the interaction and lattice
strengths. Finally, we compare our results with the experiments
of Ref. [24]—surprisingly, our theory, which is in principle
superior to all approximate ones, does not always provide a
better description.

The first quantization Hamiltonian of N bosons of
mass m interacting by a contact potential of strength g =
−2�

2/(ma1D), with a1D being the one-dimensional s-wave

scattering length, has the form

Ĥ =
N∑

i=1

[
− �

2

2m

∂2

∂x2
i

+ VL(xi)

]
+ g

∑
i<j

δ(xi − xj ). (1)

The external potential VL(x) = V0 cos2(πx/a0) represents an
optical lattice of strength V0 with the lattice constant a0. A
characteristic energy associated with the lattice is the recoil
energy Erec = π2

�
2/(2ma2

0). We consider a system of finite
size La0, where L is an integer, and impose periodic boundary
conditions.

The ground-state properties of Hamiltonian (1) are studied
using the diffusion Monte Carlo (DMC) algorithm [28] that
solves the Schrödinger equation in imaginary time. Statistical
variance is significantly diminished by using the importance
sampling. The DMC method gives an exact estimation of
any observable commuting with the Hamiltonian, and delivers
bias-free predictions for other observables by pure estimator
techniques [28].

In deep optical lattices, model Eq. (1) reduces to the BHM.
In its standard and simplest form, the second quantization
Hamiltonian is given by

ĤBH = −J

L∑
�=1

(â†
�â�+1 + H.c.) + U

2

L∑
�=1

â
†
�â

†
�â�â�. (2)

The hopping and interaction constants J and U are determined
as [10]

J = −
∫ La0

0
W ∗

� (x)

[
− �

2

2m

∂2

∂x2
+ VL(x)

]
W�+1(x)dx,

(3)

U = g

∫ La0

0
|W�(x)|4 dx,

where W�(x) is the Wannier function for the lowest Bloch
band (maximally) localized near the minimum x = x� of the
periodic potential VL(x). The results for the BHM are obtained
by exact diagonalization.

Figure 1 presents the complete phase diagram of the con-
tinuous model compared with various theories. The transition
line separating the superfluid and the Mott-insulator phases
is obtained from the Luttinger parameter K = vF/c, where
the Fermi velocity vF = �πN/(La0m) is entirely fixed by
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FIG. 1. The zero-temperature phase diagram of the continuous
model compared with various approximate theories, as a function
of the s-wave scattering length a1D/a0 and the optical lattice
intensity V0/Erec. The position of the Mott-insulator–superfluid phase
transition is defined by K = 2. Black circles, DMC results; green
solid line, exact diagonalization of the BHM; dashed red line,
sine-Gordon predictions; squares with error bars (pink, amplitude
modulation; blue, transport measurements), experimental results of
Ref. [24]. DMC and exact diagonalization results are obtained for
N = 12.

the system setup, while the speed of sound c depends in
a nontrivial way on the strength of the interaction and the
lattice height [9,27]. For unit filling, the phase transition takes
place at the critical value K = 2 as it follows from effective
renormalization group theory [27]. The phase transition of
the continuous model is shown by black circles. For V0 = 0
the critical value |a1D|/a0 = 0.56 coincides with that of the
Lieb-Liniger model. It is interesting to compare with the SG
and BHM, which are expected to be valid for shallow lattices
and high lattices with weak interactions, respectively. As there
is no way to establish the exact regions of applicability of each
theory internally, we deduce them by direct comparison with
the DMC data. Within the BHM, the transition is governed by
a single parameter, J/U . Using the K = 2 criteria for N = 12
particles, one obtains a critical point at (J/U )c = 0.28. The
relation to the two parameters of the continuous model (the
lattice intensity and the interaction strength) is obtained from
Eqs. (3), resulting in the solid green line in Fig. 1. We find that
for V0/Erec � 3 the BHM and the continuous model predict the
same transition curve. There is a certain discrepancy between
the two models at lower ratios, as, for instance, one gets
|a1D|/a0 = 0.402 for N = 12 and |a1D|/a0 = (4/3)(J/U )c =
0.373 in the thermodynamic limit for V0 = 0 in the BHM.
However, deviations are not as dramatic as for other quantities,
for instance, the one-body density matrix, which is discussed
later. The SG model should be valid for shallow lattices, but it is
not clear, within the model, up to which maximum value of V0

it works. It is kind of a surprise that the SG model coincides
with the DMC result only at V0 = 0, deviating from it for
any finite value of V0. There is an overall good agreement
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FIG. 2. Parameter K = 2S(kmin)kF/kmin calculated at the first
point, kmin = 2π/(La0), of the static structure factor for N = 12
particles as a function of interaction strength |a1D|/a for lattices of
different heights V0 = 0,1,2,3,4,5Erec (top to bottom curves). Solid
symbols connected with solid lines, DMC results; open symbols,
BHM; dashed line, Lieb-Liniger thermodynamic result for V0 = 0.
The K = 2 short-dashed line separates the superfluid regime (above)
from the insulating one (below). Notice that K can be identified with
the Luttinger parameter in the region with K > 2.

with the experimental position of the phase transition [24].
In the region of shallow lattices, the amplitude modulation
measurements are compatible with the DMC results, while the
transport measurement at the weakest lattice agrees better with
the SG model.

Figure 2 reports the Luttinger parameter K of the con-
tinuous model as a function of |a1D|/a0 for a number of
characteristic values of V0. The figure also shows the BHM
prediction and the V0 = 0 Lieb-Liniger limit. Its knowledge is
essential in order to use the Luttinger liquid (LL) theory, which
provides a description of long-range and small-momentum
correlation functions. It is important to realize that the effective
LL theory uses K as an input, while a full quantum many-body
problem needs to be solved in order to obtain the dependence
of K on the system parameters. The condition K = 2 provides
the critical value of |a1D|/a0 corresponding to the superfluid-
insulator transition. For V0 = 0 the line starts exactly at K = 1
(for Tonks-Girardeau a1D = 0 gas) and increases with the
scattering length. In that case the DMC results are compatible
with the Bethe ansatz solution of the Lieb-Liniger model
in the thermodynamic limit, while the deviations at weak
interactions can be attributed to finite-size corrections. In the
Mott-insulator regime, the sound is absent, resulting in vertical
lines for K < 2 in the thermodynamic limit [29]. Within the
BHM, K depends on the single parameter J/U , generating a
series of curves scaled by the value of a1D. For shallow lattices
BHM predictions lie above the Lieb-Liniger V0 = 0 curve,
which by itself can serve as a test of the validity of the BHM.
A more precise boundary of applicability is obtained when
compared with the DMC results. We find good agreement
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FIG. 3. Static structure factor S(k). Solid symbols, continuous
model; solid lines, SBH(k) defined by (4); dashed line, S0(k) defined
by (5); dashed-dotted line, S(k) = |k|/kF corresponds to a linear
slope with the critical value of the Luttinger parameter K = 2
and separates superfluid (SF) and Mott-insulator (MI) phases. The
following parameters are used: short-dashed line, Tonks-Girardeau
gas (i.e., V0 = 0 and a1D = 0); continuous and Bose-Hubbard models
(from top to bottom) V0/Erec = 0, 4, 8, and |a1D| = 4a0.

for large |a1D|/a0 and V0. For the range reported in Fig. 2,
agreement for K is achieved for V0/Erec � 4.

The static structure factor [30–33] S(k) is defined as S(k) =
1
N

〈�ρ̃(k)�ρ̃(−k)〉, where �ρ̃(k) is the Fourier transform of
the density-fluctuation operator (following the notations from
Ref. [11]). From the solution of the BHM it can be obtained
as [11]

S(k) ≈ SBH(k) = 1 + G2
0(k)[S0(k) − 1], (4)

where G0(k) = ∫ La0

0 dx|W�(x)|2 exp [−ik(x − x�)] and

S0(k) = 1

N

∑
l1,l2

(〈n̂l1 n̂l2〉 − 〈n̂l1〉〈n̂l2〉) exp[ika0(l2 − l1)] (5)

is a discrete analog of S(k). The typical behavior of S(k) is
shown in Fig. 3. In the Lieb-Liniger gas, corresponding to
V0 = 0, and large a1D, the S(k) is a featureless monotonous
function typical for weakly interacting Bose gas [34,35]. The
limit of V0 = 0 and a1D = 0 corresponds to Tonks-Girardeau
gas [36] which can be mapped to an ideal Fermi gas showing a
kink at k = 2kF, with the Fermi momentum kF = πN/(La0).
For a finite optical lattice, more features appear at momentum
k = 2kF, which corresponds to the border of the first Brillouin
zone.

At low momenta, the static structure factor is well approx-
imated by the Feynman relation

S(k) = �
2k2

2mε(k)
, ε(k) =

√
�2 + (�ck)2, (6)

where � � 0 is the energy gap. Note that in units of k/kF

there is a critical value of the slope in S(k) corresponding to
K = 2 (see Fig. 3). If S(k) lies above the critical line for small
momentum, the gas is superfluid and S(k) is linear for k → 0,
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FIG. 4. OBDM ρ1(L/2) obtained from the pure DMC estimator
for V0 = 1Erec and two characteristic values of the interaction
strength, |a1D|/a0 = 0.1 (insulating phase, left panel) and |a1D|/a0 =
1 (superfluid phase, right panel), for different system sizes L. Solid
symbols, continuous model; open symbols, BHM. For |a1D|/a0 = 0.1
one observes an exponential decay (insulating phase), while for
|a1D|/a0 = 1 it is much better fit by a power-law form (superfluid
phase).

otherwise, the system is insulating and S(k) is quadratic for
k → 0.

The coherence properties differ significantly in the insulat-
ing and the superfluid phases. Commonly, the superfluidity is
associated with the presence of a Bose-Einstein condensate,
where the condensate wave function is the order parameter
of the superfluid phase, manifested by the off-diagonal long-
range order (ODLRO) in the one-body density matrix (OBDM)
ρ1(r). A finite value of the condensate fraction, ρ1(r →
∞)/ρ �= 0, was used to localize the superfluid–Mott-insulator
phase transition in three dimensions [18]. However, in one
dimension, quantum fluctuations destroy ODLRO, even at
zero temperature [37], and ρ1(r) always decays to zero. The
LL theory predicts a slow power-law decay in the superfluid
phase [38], in contrast with the fast exponential decay in the
insulating phase. Figure 4 shows the OBDM ρ1(r) calculated
in two different phases at the largest possible length r = L/2 in
a box of size L. The solid lines show fits to the numerical data.
As it can be seen, the large distance behavior of ρ1 is different in
both cases, as for small values of |a1D|/a0 the OBDM presents
an exponential decay, while in the opposite limit it is better
reproduced by a power law. The comparison with the BHM
shows qualitative agreement in the form of the decay, while
quantitatively the description of the discrete model can be quite
off, especially for strong interactions.

The energy gap can be considered as an order parameter
describing the insulating phase. Figure 5 reports the gap
calculated with different methods. In the first one, the (charged)
gap is evaluated from the ground-state energies calculated
for N , N + 1, and N − 1 particles on L = N lattice sites,
according to the expression

�c = EN+1 − 2EN + EN−1, (7)

which corresponds to the difference of chemical potentials
between the N + 1 and the N particle systems, respectively.
Alternatively, an upper bound for the gap is obtained from the
Feynman relation (6). We obtain � and c by numerical fitting
of the DMC data for S(k). The experimental data for the gap
are taken from Ref. [24]. We observe a remarkable divergence
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FIG. 5. Energy gap. Squares with error bars, experimental data
from Ref. [24]; solid circles, DMC prediction obtained from the fit
to S(k → 0); open circle, DMC prediction obtained according to
Eq. (7); solid line, sine-Gordon model [24]; dashed line, upper bound
given by V0/2. a1D/a0 = 0.181 82.

between the exact DMC results, which are consistent among
themselves using two different criteria, the SG model and
the experiment. Still, the experimental points are in better
agreement with the SG model than with the DMC calculation.
This poses a question if the modulation spectroscopy method
used in Ref. [24] is precise for measuring the value of the gap
in shallow lattices. The gap �c obtained from the BHM (not
shown) grows from 0.9 for V0 = 0.5 to 1.5 for V0 = 1.5 (in
units of Erec) for the parameters of Fig. 5 and lies above the
V0/2 line. In this regime, �c is larger than the energy gap
between the Bloch bands and the BHM is not valid.

To conclude, we established the zero-temperature phase
diagram of a one-dimensional Bose gas in an optical lat-
tice, determining the superfluid–Mott-insulator transition line.
We analyzed and compared the properties of a continuous
Hamiltonian (using the DMC method) with that of the discrete

Bose-Hubbard model (solved via exact diagonalization). We
established the regions of applicability of the approximate
Bose-Hubbard and sine-Gordon models, and found that the
sine-Gordon model fails to describe the regime of a shallow
lattice for any finite lattice strength. This poses a natural ques-
tion if it is possible reconcile the discrepancy by improving
the sine-Gordon model. In general, the Bose-Hubbard model
is valid for high optical lattices with weak interactions, but the
precise applicability of this description depends on the quantity
of interest. The dependence of the Luttinger parameter K on
the height of the lattice and the strength of the interaction
is reported. We also showed that the one-body correlations
decay to zero following a slow power law in the superfluid
phase, and exponentially in the Mott-insulator phase. We
compared our results with the experiment of Ref. [24], and
found an overall good agreement for the phase diagram.
Instead, we saw a discrepancy in the value of the excitation
gap. Importantly, our results help to understand the experi-
ments with one-dimensional gases beyond the Bose-Hubbard
approximation.

Note added. Recently, a new experimental study [39] of
the phase diagram by the LENS group in Florence appeared,
in particular, analyzing shallow lattices where we find a
discrepancy with the sine-Gordon model and the transport
measurements of Ref. [24]. The experimental measurements
and the path integral Monte Carlo calculations of Ref. [39]
agree with our predictions.
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Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature
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