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Abstract: The extended Bose-Hubbard model with pure three-body local interactions is studied using the Density
Matrix Renormalization Group approach. The shapes of the first two insulating lobes are discussed, and
the values of the critical tunneling for which the system undergoes the quantum phase transition from
insulating to superfluid phase are predicted. It is shown that stability of insulating phases, in contrast to
the standard Bose-Hubbard model, is enhanced for larger fillings. It is also shown that, on the tip of the
boundary of the insulating phase, the model under consideration belongs to the Berenzinskii-Kosterlitz-
Thouless universality class.
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1. Introduction

Experimental progress in controlling ultra-cold atoms has
opened a new chapter in our understanding of the prop-
erties of strongly-correlated many-body quantum systems
[1, 2]. Old fashioned theoretical toy-models known from
condensed matter physics are undergoing a renaissance
since they provide realistic descriptions of the real quan-
tum systems confined in optical lattices (specially ar-
ranged laser beams forming periodic potential [3]). In the
simplest case of ultra-cold bosons confined in such a po-
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tential the system is described by the Bose-Hubbard (BH)
model, where single-particle tunnelings compete with lo-
cal two-body interactions. The theoretical analysis of
[4, 5] shows that this competition leads directly to the
phase transition from insulating phase (dominated by in-
teractions) to superfluid phase (dominated by tunnelings).
These predictions were confirmed in a spectacular exper-
iment with ultra-cold rubidium atoms [6]. Many different
extensions to the model have since been proposed and
studied theoretically [3], and are now awaiting experimen-
tal verification.

In this article, the ground state phase diagram of a par-
ticular extension of the standard BH model is studied.
Mutual interaction between particles is assumed here to
be of three-body origin, i.e. these dominate over two-body
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interactions. Although this assumption seems very exotic,
there are some possibilities of mimicking such a model
in experiments with ultra-cold atoms confined in optical
lattices. In the standard description three-body terms in
Hubbard-like models are introduced as an effective correc-
tion originating from interactions through higher orbitals
of optical lattices [7]. Typically in such a scenario three-
body terms are small corrections to dominant two-body
terms, and they can be viewed as the first occupation-
dependent correction to the on-site two-body interaction.
Due to perturbative changes of single-particle wave func-
tions, the effective three-body terms are attractive (for a
repulsive gas) [7, 8]. BH models with two- and three-body
interactions have been studied in many different scenar-
ios and using different numerical techniques [8–18, 25].
Recently it was suggested that it is also possible to con-
trol three-body terms independently of the two-body ones.
This can be done by exploiting internal degrees of free-
dom of interacting particles [19] or via very fast dissipation
processes [20]. It also seems possible to control effective
three-body interactions in the limit of high densities. In
this limit three-body interactions can be viewed as an ef-
fective way of taking into account changes in electronic
potential induced by a neighboring third particle. Typi-
cally, these changes are very small and therefore can be
neglected. Nevertheless, if one tunes an external magnetic
field to the value where the two-body �-wave scattering
length vanishes, then three-body interaction induced by
this mechanism dominates and in principle can be many
orders of magnitude larger than two-body interaction. The
consequences of a similar mechanism have been studied
for the case of polar molecules interacting via long-range
forces [21–23].

2. The model

On this basis we now assume that two-body interactions
can be neglected and the on-site energy changes only
when three- or more particles are present on a given lat-
tice site. In the one-dimensional case the Hamiltonian of
the system reads:

� = −J �

� �̂†� (�̂�−1 + �̂�+1) + W
6

�

� �̂�(�̂� − 1)(�̂� − 2)�
(1)

where �̂� annihilates a boson at site �, and �̂� = �̂†� �̂� is
a local density operator. The parameter J is the single-
particle hopping amplitude to the neighboring site and W
denotes the energy cost of forming a triplet on a given
lattice site. For numerical calculations, it is assumed that
the lattice has L sites and open boundary conditions. The
properties of Hubbard-like models are strongly depen-

dent on the average density ρ = N/L, where N is total
number of bosons confined in the lattice. For example, it
is known that for models considering on-site interactions
only, the insulating phase can occur only for integer fill-
ings [4]. Therefore, it is convenient to introduce a chemical
potential µ and to rewrite the Hamiltonian in the grand
canonical ensemble � = �−µN̂ , where N̂ =

�� �̂� is the
total number of particles operator. The phase diagram of
the model is described in [9, 14], and a similar extended
BH model with non-local three-body interactions was re-
cently studied in [23].

3. Simple observations

To start we investigate the properties of the system in the
limit of vanishing tunneling J → 0. In this limit, for anyµ, all correlations between neighboring sites vanish and
system remains in the Mott Insulator phase (MI) with in-
teger filling ρ0. The grand canonical energy of the system
is given by

� (ρ0� L) = L �W
6 ρ0(ρ0 − 1)(ρ0 − 2) − µρ0

� � (2)

From this relation one can easily find the boundaries of
the insulating lobes (i.e. values of chemical potential for
which density changes by unity). The critical values of
chemical potential for which insulating phase with fillingρ0 is stable are given by

µ±(ρ0)/W = 1
2(ρ0 − 1)(ρ0 − 1 ± 1)� (3)

For any integer ρ0 one finds the energy gap ∆(ρ0) =µ+(ρ)−µ−(ρ0) = W ·(ρ0 − 1). This means that, in contrast
to the standard BH model, insulating phases with larger
fillings become larger. Moreover for ρ = 1 one finds thatµ+(1) = µ−(1) = 0, i.e. the MI phase with ρ0 = 1 does
not exist at all in the system.

4. The phase diagram

To obtain the phase diagram of the studied system over the
whole range of tunnelings, we follow the standard method
based on energetic arguments [24]. This method is based
on the observation that in the MI phase, in contrast to the
SF phase, a non vanishing energy gap for adding (sub-
tracting) a particle to (from) the system always exists. It is
therefore possible to obtain the upper/lower boundary of
the insulating phase with filling ρ0 for given tunneling J ,
by finding numerically the ground state energy �0(ρ0� L� J)
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for N = ρ0 · L particles and the ground state energies�±(ρ0� L� J) for system with N = ρ0 ·L±1 particles respec-
tively. The upper and lower boundaries of the insulating
phase are therefore given by

µ±(ρ0� L� J) = ± [�±(ρ0� L� J) − �0(ρ0� L� J)] � (4)

as well as the energy gap within the phase

∆(ρ0� L� J) = µ+(ρ0� L� J) − µ−(ρ0� L� J)� (5)

In practice, phase boundaries obtained in this way depend
strongly on the lattice size L. Moreover, the energy gap
for the SF phase vanishes only in the thermodynamic limitL → ∞, and precise localization of the phase boundaries
becomes ambiguous. To overcome this problem, we per-
form DMRG 1 numerical calculations for different lattice
sizes L = 32� 48� � � � � 128 and extrapolate the obtained
data to the limit L → ∞. This extrapolation can be done
quite easily as the boundaries µ±(ρ0� L� J) treated as func-
tions of lattice size L fit almost perfectly to the linear re-
gression with 1/L (for discussion see [8]). In Fig. 1 an
exemplary case is presented for both ρ0 = 2 and ρ0 = 3.
This shows the accuracy of predictions based on linear
data regression to the thermodynamic limit L → ∞.
Finally, the phase diagram of the system is obtained by
plotting extrapolated values of µ±(ρ0� L → ∞� J) as func-
tions of tunneling (Fig. 2). The result is consistent with
previous analytical predictions in the limit of vanishing
tunneling. The second insulating lobe (ρ = 3) is broader
than the first one (ρ = 2) in the direction of chemical po-
tential as well as in the direction of tunneling. This means
that, in contrast to the standard Bose-Hubbard model, the
critical tunneling J� for which system undergoes the phase
transition from MI to SF phase is shifted to larger values
for higher fillings.
From the numerical point of view the most problematic
part of these calculations lies in determining the criti-
cal tunneling J� for which the system undergoes phase
transition from MI to SF phase. Theoretically, this
point is defined as a tunneling for which the energy gap
∆(J) = µ+(J)−µ−(J), calculated in the thermodynamic limit

1 Here I use the finite-size DMRG algorithm. The num-ber of bosons occupying a given lattice site is limited to 5.In each step of the DMRG calculations no more than 600states in the Schmidt-decomposition are stored. Conver-gence of the method is checked for each numerical point,and the relative error for the energy of the final state issmaller than 10−8.
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Figure 1. The upper µ+ and lower µ− boundaries of MI phase as
a function of the inverse of the system size 1/L for two
densities ρ = 2 (J/W = 0�15) and ρ = 3 (J/W = 0�22).
The solid lines are linear fits to the numerical data points.
Linear data extrapolation to the limit 1/L → 0 gives phase
boundaries in the thermodynamic limit. Numerical data
obtained from DMRG for L = 32� 64� � � � � 128.

L → ∞, vanishes. Unfortunately, due to the numerical er-
rors, this definition can not be adopted directly. The phase
diagram obtained above allows us to estimate the critical
tunneling J�/W ∼ 0�19 for ρ = 2 and J�/W ∼ 0�28 forρ = 3.
At this point it is worth comparing the energy gap ∆(J)
obtained numerically to the analytical results obtained
recently in [25]. In that paper the authors perform pertur-
bative calculations for a general BH model with two- and
three-body local interactions (for ρ = 2). In the third-
order of perturbation with respect to the tunneling, in the
particular case of vanishing two-body interactions, the re-
sult reduces to the form

∆(3)(J)W = 1−10 JW + 38
3

� JW
�2

+ 116
3

� JW
�3

+ � � � (6)

As it is seen in the right panel of Fig. 2, the energy gap ob-
tained numerically fits almost perfectly to the predictions
of (6). The deviations are clearly visible for larger tunnel-
ings where the third-order approximation breaks down.
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Figure 2. (Left panel) The phase diagram of the Bose-Hubbard model with pure three-body interactions. In contrast to the standard Bose-Hubbard
model in the first insulating lobe one finds two particles in each lattice site. Note also that the second insulating lobe for ρ = 3 is larger
than the first one for ρ = 2. The phase diagram determined in thermodynamic limit L → ∞ by extrapolating the numerical data obtained
from DMRG for L = 32� 64� � � � � 128. (Right panel) Rescaled single-particle gap ∆ as a function of tunneling for ρ = 2 (red circles)
compared with analytical result obtained in third-order perturbation (6) (solid black line).

5. Berenzinskii-Kosterlitz-Thouless

transition

In order to determine the critical tunneling more pre-
cisely two independent but complementary methods may
be used. The first is based on the assumption that near the
critical point the studied system belongs to the same uni-
versality class as the standard Bose-Hubbard model. At
the phase transition the standard BH model in � dimen-
sions can be mapped to the � + 1-dimensional XY model.
Therefore, in the one-dimensional case the phase transi-
tion belongs to the Berenzinskii-Kosterlitz-Thouless class
(BKT) [26, 27]. As was shown recently, the universality
class does not change when one extends the standard BH
model with local three-body terms [8]. This suggests, that
even in the limit of vanishing two-body terms (as studied
here) the universality class can remain unchanged. If true,
this is a way to obtain the critical tunneling J� . Indeed,
for the BKT transition the energy gap ∆(J) in the vicinity
of the critical tunneling J� , vanishes as

∆(J) ∼ exp
�− α√

1 − J/J�
� � (7)

Therefore, if the critical tunneling J� was known and in-
deed the relation (7) would hold, then by plotting log ∆(J)
against

√
1 − J/J� the data points should follow a linear

regression. Moreover, this can happen only for a unique
value of J� and, due to uniques of the relation (7), only
if the transition is of BKT type. Plots in Fig. 3 show
that the BKT scaling is satisfied with an appropriately
chosen critical value of the tunneling J� . In this way
we confirm that the phase transition is indeed of BKT
type. Values of critical tunneling obtained in this way

are J�/W = 0�191(±0�005) and J�/W = 0�282(±0�005)
for ρ0 = 2 and ρ0 = 3 respectively. Uncertainties in
the critical tunnelings may be estimated from compar-
ison of the results obtained for different system sizesL = 118� � � � � 128. In all these cases the critical tunneling
differs from estimated values by no more than estimated
uncertainties.
For completeness local two-body �2 = ��̂†2� �̂2�� and lo-
cal three-body �3 = ��̂†3� �̂3�� correlation functions (for the
middle lattice site � = L/2) are plotted in the insets of
Fig. 3. For both fillings studied (ρ0 = 2 and ρ0 = 3), in
the vicinity of the phase transition the three-body corre-
lation �3 changes its behavior, which can be viewed as a
changing of ground-state properties. Note however that
in the limit of large tunneling, both correlation functions
necessarily approach the values of the standard BH model.

6. Entanglement entropy approach

The phase transition from the MI to SF phase can be
also identified using a complementary method, by look-
ing for changes in the behavior of the entanglement en-
tropy (EE) of the subsystem �(�� L) = −Tr [ρ̂� lnρ̂�]. Here,ρ̂� = TrL−�|G��G| is the reduced density matrix of the sub-
chain of length � obtained by tracing-out remaining de-
grees of freedom from the ground state of the system |G�.
The scaling behavior of the EE is well known in the ther-
modynamic limit, i.e. when L → ∞. In the SF phase,
due to the nonlocal correlations in the system, EE treated
as a function of size of the subsystem is logarithmically
divergent with �. In contrast, in the MI phase, long-range
correlations vanish and therefore entanglement entropy
saturates for large enough subsystem sizes �. These facts
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Figure 3. Energy gap of the insulating lobe ∆ as a function of tunnel-
ing J for two integer fillings ρ0 = 2 (upper panel) and ρ0 = 3
(bottom panel). With this scaling the numerical points fit
to the linear behavior predicted by the Kosterlitz-Thouless
universality class (7). This suggests that studied model
belongs to the same universality class as standard Bose-
Hubbard model. Numerical data obtained from DMRG forL = 128. In the insets the correlation functions �2 (red
solid line) and �3 (blue dashed line) as functions of tun-
neling J/W are presented.

have some consequences also for finite size L of the full
system. As predicted by conformal field theory, depending
on the boundary conditions, in the SF phase entanglement
entropy is the following function function of � [28, 29]

�(�� L) = c
3κ ln

�κLπ sin
�π�L

��
+ �(L) + � � �L

� � (8)

The parameter κ depends on the boundary conditions and
is equal to 1 or 2 for periodic or open boundary condi-
tions respectively. The pre-factor c is related to the cen-
tral charge of corresponding conformal field theory. For
non-critical phases (like MI phase) it is zero, whereas it is
non zero whenever the system manifests some non-local
correlations. It is known that deep in the SF phase, due
to the equivalence with Tomonaga-Luttinger liquid [30],
central charge c = 1. To show that EE in the studied sys-
tem can be well understood with this description, Fig. 4
plots entanglement entropy �(�� L) as a function of scaled
subsystem size ln

�
sin

� π�L ��
obtained from DMRG calcu-

lations with L = 128 for different tunnelings J/W and
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Figure 4. Entanglement entropy of the subchain of length � for a
number of example tunnelings J/W (ρ = 2). With cho-
sen scaling the numerical points fit to the linear predic-
tions of CFT. In the MI phase (low tunnelings) the slope of
the corresponding lines (proportional to the central charge
c) is equal to 0. In the SF phase (large tunnelings) the
line gradients saturate on the value ∼ 1/6. This corre-
sponds to the central charge value c = 1 predicted by
the Tomonaga-Luttinger liquid theory. Numerical data ob-
tained from DMRG method for L = 128.

ρ0 = 2. With appropriate scaling the numerical points fit
almost perfectly to lines which is in agreement with the
predictions of (8). The gradients of these lines are directly
related to the central charge of the many-body quantum
state.
The method described above enables one to plot the cen-
tral charge c as a function of tunneling J . The results for
two integer fillings ρ0 = 2 and ρ0 = 3 are presented in
Fig. 5. In both cases, in the MI phase the central charge
vanishes and deep in the SF phase it saturates at the
expected value c = 1. For moderate values of tunneling
rapid change in the behavior of entanglement entropy is
observed. The central charge achieves its maximal value
at the critical point predicted with the previous method.
Such behavior of the central charge is very similar to the
situation observed in the standard BH model [31]. It is
believed that non monotonicity in the central charge be-
havior is a direct consequence of the finite size of the
system, and in the thermodynamic limit it smoothly flows
to ”step-like” behavior. The maximal value of the central
charge c obtained from finite size calculations is reached
in the neighborhood of the critical tunneling J� . All nu-
merical results obtained here fully agree with all these
properties.

7. Conclusions

The phase diagram for the one-dimensional extended
Bose-Hubbard model with pure three-body interactions
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Figure 5. Central charge c as a function of the tunneling rate J for
two integer fillings ρ = 2 (upper panel) and ρ = 3 (bottom
panel) determined from the behavior of the EE (8). For
small tunnelings in MI phase the central charge is equal to
0 and in deep SF phase it is equal to 1 in accordance with
Luttinger Liquid theory. Near the quantum phase transi-
tion we observe a rapid change of central charge, and for
critical tunneling J� the central charge c achieves the maxi-
mal value. The value of the critical tunneling J� agrees with
the value determined from decaying of the energy gap of
insulating lobe (7). Numerical data obtained from DMRG
method for L = 128.

was studied. It was shown that insulating lobes are
present for integer fillings ρ0 ≥ 2 and that their shapes,
in contrast to the standard BH model, become larger for
larger ρ0. Three-body interactions lead to enhanced sta-
bility of the MI phase in the µ − J phase diagram. The
first two MI lobes were discussed in details with DMRG
calculations for different system sizes. Values of critical
tunnelings J� for which the system undergoes phase tran-
sition from MI to SF were determined. It was also shown
that the studied model belongs to the BKT universality
class in analogy to the standard BH model.
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