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and Spin-CNR, Via Ponte don Melillo, I-84084 Fisciano (Sa), Italy

T. Giamarchi

DPMC-MaNEP, University of Geneva, CH1211 Geneva, Switzerland

E. Orignac

Laboratoire de Physique, CNRS UMR5672 and École Normale Supérieure de Lyon,
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I. INTRODUCTION

While still holding many surprises, one-dimensional (1D)

quantum many-body systems have fascinated physicists and

mathematicians alike for nearly a century. Indeed, shortly

after the inception of quantum mechanics, Bethe (1931)
found an exact solution to the 1D Heisenberg model using

an ansatz for the wave function that now bears his name. This

early exact solution of a spin- 1
2
chain was to be followed by a

multitude of exact solutions to other 1D models. Other simple

1D models, which could not be solved exactly, were thor-

oughly studied by powerful methods especially suited for 1D.
Many researchers regarded these solutions as mere mathe-

matical curiosities that were, in general, of rather limited

interest for the real three-dimensional (3D) world.

Subsequent technological developments in the 20th and

21st centuries led to the discovery, chemical synthesis, and

more recently fabrication of a wide range of (quasi-)1D

materials and physical systems. Interestingly enough, the
properties of these systems are sometimes fairly well cap-

tured by the ‘‘toy models’’ of the past. In this article, we

review the physics of some of these models as well as their

experimental realizations. However, unlike earlier reviews

which have mainly focused on 1D systems of fermions

(Gogolin et al., 1999; Giamarchi, 2004), we mainly deal
with 1D systems where the constituent particles (or the

relevant excitations) obey Bose statistics.

Compared to higher dimensions, the quantum statistics of

the constituents plays a much less determinant role in 1D.

Nevertheless, when computing physical properties, quantum

statistics dictates the type of observables that may be experi-

mentally accessible. Thus, because of the long standing
interest in the electronic properties of quasi-1D materials

and nanostructures, physicists have mainly focused their

attention on 1D electron systems. Much less attention has

been given to 1D bosons, with the important exception of spin

systems. We show in Sec. II.D that spin- 1
2
systems are

mathematically equivalent to lattice hard-core bosons, and
thus are also reviewed in this article. In fact, many quasi-1D

materials exhibit (Mott-)insulating phases whose magnetic

properties can be modeled by assuming that they consist of

weakly coupled spin chains, similar to those analyzed by

Bethe in his ground breaking work.

Besides the spin chains, interest in other bosonic systems is

rather recent and was initially spurred by the fabrication of
long 1D arrays of Josephson junctions. In these systems,

Cooper pairs (which, to a first approximation, behave like

bosons) can hop around in 1D. Even more recently, further

experimental stimulus has come from the studies of the

behavior at low temperatures of liquid 4He confined in elon-

gated mesoscopic pores, as well as from the availability of

ultracold atomic gases loaded in highly anisotropic traps and

optical lattices. Indeed, the strong confinement that can be

achieved in these systems has made it possible to realize

tunable low-dimensional quantum gases in the strongly cor-

related regime.

As often happens in physics, the availability of new ex-

perimental systems and methods has created an outburst of

theoretical activity, thus leading to a fascinating interplay

between theory and experiment. In this article, we attempt

to survey the developments concerning 1D systems of inter-

acting bosons. Even with this constraint, it is certainly im-

possible to provide a comprehensive review of all aspects of

this rapidly evolving field.

The outline of this article is as follows. In Sec. II the basic

models are derived starting from the most general

Hamiltonian of bosons interacting through a two-body po-

tential in the presence of an arbitrary external potential.

Models both in the continuum and on the lattice are dis-

cussed. This section also introduces some important map-

pings allowing one to establish the mathematical relationship

of some of these boson models to other models describing

S ¼ 1
2
spins or spinless fermions on 1D lattices. In Sec. III,

exact solutions of integrable models along with results on

their correlation functions are reviewed. Some of these results

are important by themselves and not just merely academic

models, as there currently exist fairly faithful experimental

realizations of them. In Sec. IV, we describe some of the

computational approaches that can be used to tackle both

integrable and nonintegrable models. We also discuss their

application to some 1D models of much current interest.

Section V reviews the basic field-theoretic tools that describe

the universal low-energy phenomena in a broad class of 1D

interacting boson models, the so-called Tomonaga-Luttinger

liquid (TLL) phase. For these systems, the method of boson-

ization and its relationship to the hydrodynamic description

of superfluids (SF) (which is briefly reviewed in Sec. II) are

described.
The classification of phases and phase transitions exhibited

by the models introduced in Sec. II is presented in Sec. VI,

where besides the Mott transition between the TLL phase and

the Mott-insulating phase, other kinds of instabilities arising

when the bosons move in the presence of a disorder potential

will be described. The low-energy picture is often unable to

provide the quantitative details that other methods such as

exact solutions (Sec. III) or computational approaches (IV)

do. Thus, when results from any (or both) of the latter methods

are available, they complement the picture provided by bo-

sonization. Further extensions are considered in Sec. VII,

where studies of multicomponent (binary mixtures of bosons

or bosons and fermions) and coupled 1D systems, aswell as the

nonequilibrium dynamics of isolated quantum systems, are

reviewed. Next, we turn to the experimental realizations of

systems of interacting bosons in 1D, which include spin lad-

ders, superconducting wires, Josephson junctions, as well as

the most recent ultracold atomic systems. Finally, in Sec. IX

we shall provide a brief outlook for the field.
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II. MODELS FOR INTERACTING BOSONS

In this section, we introduce the basic models that describe

interacting bosons in 1D, both in the continuum and on a

lattice. These models will be analyzed using various tech-

niques in the rest of the review. However, before embarking

on the study of 1D physics per se, we recall the main general

results for bosons in dimensions higher than one. This will

serve as a reference with which we can compare the results

in 1D.

A. Bosons in dimensions higher than one

As Einstein discovered shortly after Bose introduced a new

type of quantum statistics, when the temperature of a system

of N noninteracting bosons is lowered, a phase transition

occurs. Below the transition temperature, the occupation

(N0) of the lowest available energy state becomes macro-

scopic, i.e., N0=N tends to a constant for N large. The

transition was therefore named ‘‘Bose-Einstein condensa-

tion,’’ and the macroscopically occupied quantum state,

‘‘Bose-Einstein condensate.’’ The acronym BEC is used in-

distinctly for both concepts. Mathematically, a BEC can be

described by a coherent state of matter, i.e., an eigenstate of

the boson field operator: �̂ðrÞjc 0ð�Þi ¼ �0ðr; �Þjc 0ð�Þi,
hence jc 0ð�Þi ¼ eâ

y
0
ð�Þj0i, where j0i is the zero-particle state,

â0ð�Þ ¼
R
dr��

0ðr; �Þ�̂ðrÞ, and �0ðr; �Þ is a complex func-

tion of space (r) and time (�).
The above definition implies that theUð1Þ symmetry group

related to particle conservation must be spontaneously bro-

ken. However, this is sometimes problematic (Leggett, 2001;

2006) because the use of coherent states for massive particles

violates the superselection rule forbidding the quantum su-

perposition of states with different particle numbers. The

definition of BEC according to Yang (1962) circumvents

this problem by relating the existence of a BEC to the case

in which the one-particle density matrix of the system,

g1ðr; r0; �Þ ¼ h�̂yðr; �Þ�̂ðr0; �Þi, behaves as g1ðr; r0; �Þ !
��

0ðr; �Þ�0ðr0; �Þ [�0ðr; �Þ � 0] for jr� r0j ! þ1. This

behavior is referred to as off-diagonal long-range order and

�0ðr; �Þ is called the order parameter of the BEC phase.

However, Yang’s definition is not applicable to finite sys-

tems. Following Penrose and Onsager (1956), a more general

criterion is obtained by diagonalizing the one-particle density

matrix1 as g1ðr; r0; �Þ ¼
P

�N�ð�Þ��
�ðr; �Þ��ðr0; �Þ, where

the natural orbitals �� are normalized such that
R
drj��ðr; �Þj2 ¼ 1. The existence of a BEC depends on

the magnitude of the N� compared to N. When there is

only one eigenvalue of OðNÞ [say, N0 �OðNÞ], the system

is a BEC described by �0ðr; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

N0ð�Þ
p

�0ðr; �Þ. When

there are several such eigenvalues, one speaks of a ‘‘frag-

mented’’ BEC (see Mueller et al., 2006, and references

therein). Furthermore, provided the depletion of the BEC is

small, that is, for N � N0 � N [indeed N0ðTÞ ! N as T ! 0
for the noninteracting gas], it is possible to describe the state

of the system using jc N
0 ð�Þi ¼ ð1=

ffiffiffiffiffiffi

N!
p

Þ½ây0 ð�Þ�Nj0i. Note

that contrary to the coherent state j�0ð�Þi, jc N
0 ð�Þi has a

well-defined particle number and can be obtained from

jc 0ð�Þi by projecting it onto a state with total particle number

equal to N.

The definitions of BEC according to Yang, Penrose, and
Onsager are equivalent in the thermodynamic limit and also

apply to interacting systems. In general, the ratio N0=N is

called the condensate fraction. It is important not to confuse

the condensate fraction, which for a BEC is finite, with the

superfluid fraction. The latter is a thermodynamic property

that is physically related to the fraction of the system mass
that is not dragged along by the walls of the container when

the latter rotates at constant angular frequency. In charged

systems, it is related to Meissner effect, i.e., the expulsion of

an externally applied magnetic field. Mathematically, the

superfluid fraction can be obtained as the thermodynamic

response to a change in the boundary conditions of the system
(see Sec. V for a discussion concerning 1D systems). Indeed,

the noninteracting Bose gas below the condensation tempera-

ture is the canonical example of a BEC that is not a superfluid.

On the other hand, the 1D models discussed here do not

exhibit BEC (even at T ¼ 0).
The above discussion does not provide any insights into

how to compute the BEC wave function�0ðr; �Þ for a general
system of mass m bosons interacting through a potential

VintðrÞ and moving in an external potential Vextðr; �Þ, which
is described by the Hamiltonian

Ĥ ¼
Z

dr�̂yðrÞ
�

� ℏ
2

2m
r2 þ Vextðr; �Þ

�

�̂ðrÞ

þ
Z

drdr0�̂yðrÞ�̂yðr0ÞVintðr0 � rÞ�̂ðrÞ�̂ðr0Þ: (1)

For such a system, in the spirit of a mean-field theory

Pitaevskii (1961) and Gross (1963) independently derived

an equation for the condensate wave function by approximat-

ing �̂ðrÞ in the equation of motion, iℏ@��̂ðr; �Þ ¼
½�̂ðr; �Þ; Ĥ ��N̂�, by its expectation value h�̂ðr; �Þi ¼
�0ðr; �Þ over a coherent state, where � is the chemical

potential and N̂ is the number operator. The Gross-
Pitaevskii (GP) equation reads

iℏ@��0ðr;�Þ¼
�

� ℏ
2

2m
r2��þVextðr;�Þ

þ
Z

dr0Vintðr�r0Þj�0ðr0;�Þj2
�

�0ðr;�Þ:

(2)

For an alternative derivation, which does not assume the

spontaneous breakdown of the Uð1Þ symmetry, one can

look for the extrema of the functional hc ð�Þjiℏ@��
ðĤ ��N̂Þjc ð�Þi, using the (time-dependent Hartree)

ansatz jc ð�Þi ¼ ð1= ffiffiffiffiffiffiffiffi
N0!

p Þ½ây0 ð�Þ�N0 j0i, where â0ð�Þ ¼
R
dr��

0ðr; �Þ�̂ðrÞj0i and � is a Lagrange multiplier to ensure

that
R
drj�0ðr; �Þj2 ¼ N0.

The use of the Gross-Pitaevskii equation (2) to describe the
interacting boson system assumes a small BEC depletion, i.e.,

N0 ’ N. This is a good approximation in the absence of

1This is mathematically always possible because g1ðr; r0; �Þ ¼
h�̂yðr; �Þ�̂ðr0; �Þi is a positive-definite Hermitian matrix provided

r, r0 are regarded as matrix indices.
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strong correlations and at low temperatures. Thus, it is par-

ticularly suitable for dilute ultracold gases (Pitaevskii and

Stringari, 1991; 2003; Leggett, 2001), for which the inter-

particle potential range is much smaller than the interparticle
distance d. In these systems, interactions are well described

by the Lee-Huang-Yang pseudopotential (Huang and Yang,

1957; Lee et al., 1957; Lee and Yang, 1957) VðrÞ ’
ð4�ℏ2as=mÞ�ðrÞ@rðr�Þ, where as is the s-wave scattering

length. Typically, as � d, except near a s-wave Feshbach

resonance (Pitaevskii and Stringari, 2003; Leggett, 2006). For
trapped gases, it has been rigorously established that in the

limit of N ! 1 and Nas fixed, the Gross-Pitaevskii approxi-
mation becomes exact for the ground-state energy and parti-

cle density (Lieb et al., 2000). Furthermore, in this limit, the

gas is both 100% Bose condensed (Lieb and Seiringer, 2002)

and 100% superfluid (Lieb et al., 2002).

In a uniform system, the above definitions of BEC imply
that the momentum distribution

nðkÞ ¼
Z

dre�ik�rg1ðrÞ ¼ N0�ðkÞ þ ~nðkÞ; (3)

where ~nðkÞ is a regular function of k. The Dirac delta
function is the hallmark of the BEC in condensed matter

systems such as liquid 4He below the � transition. On top of

the condensate, interacting boson systems support excitations

with a dispersion that strongly deviates from the free-particle

dispersion �0ðkÞ ¼ ℏ
2k2=2m. A way to compute the excita-

tion spectrum is to regard the GP equation as a time-

dependent Hartree equation. Thus, its linearized form
describes the condensate excitations, which, for a uniform

dilute gas, have a dispersion of the form �ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0ðkÞ½�0ðkÞ þ 2g	0�
p

, where 	0 ¼ N=V, and g is the

strength of the interaction. This was first obtained by

Bogoliubov, who proceeded differently by deriving a qua-

dratic Hamiltonian from (1) in terms of ��̂ðrÞ ¼
�̂ðrÞ � ffiffiffiffiffiffi

N0

p
and ��̂yðrÞ ¼ �̂yðrÞ � ffiffiffiffiffiffi

N0

p
and keeping only

the (leading) terms up to OðN0Þ. Note that, in the jkj ! 0
limit, the excitations above the BEC state are linearly dis-

persing phonons: �ðkÞ ’ ℏvsjkj, where vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g	0=2m
p

.

From the point of view of the spontaneous breakdown of

the Uð1Þ symmetry, the phonons are the Goldstone modes
of the broken-symmetry phase.

We conclude this section by reviewing the hydrodynamic

approach. Although we derive it from the GP equation for a

dilute gas, its validity extends beyond the assumptions of this

theory to arbitrarily interacting superfluid systems in any

dimension. We begin by setting �0ðr; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	ðr; �Þ
p

ei
ðr;�Þ

in Eq. (2). Hence,

@�	þ ℏ

m
r � ð	r
Þ ¼ 0; (4)

@�
þ
�
ℏðr
Þ2
2m

þ 1

ℏ
½Vextþg	�� ℏ

2m

r2 ffiffiffiffi
	

p
ffiffiffiffi
	

p
�

¼0: (5)

Equation (4) is the just continuity equation where the particle

current jðr; �Þ ¼ 	ðr; �Þvðr; �Þ ¼ ðℏ=mÞ	ðr; �Þr
ðr; �Þ. The
second equation describes a potential flow with velocity

potential ðℏ=mÞ
ðr; �Þ. The last term in Eq. (5) is called the

quantum pressure. If we call ‘ the typical distance character-

izing the density variations, the quantum pressure term scales

as �ℏ
2=m‘2 and therefore it is negligible compared to the

classical pressure term g	 when ‘ � � ¼ ℏ=
ffiffiffiffiffiffiffiffiffiffi
m	g

p
(� is

known as the healing length). In the limit of a slowly varying

density profile, the quantum pressure term in Eq. (5) can be

dropped and the equations can be written as

@�	þr � ð	vÞ ¼ 0; (6)

@�vþr
�
Vext

m
þ 1

2
v2
�

¼ �rP

	m
: (7)

These equations coincide with the classical Euler equation

describing the flow of a nonviscous fluid with an equation of

state where Pð	Þ ¼ g	2=2. This result is in agreement with

simple thermodynamic considerations from which the classi-

cal fluid of Eq. (6) has, at zero temperature, an energy per unit

volume eð	Þ ¼ g	2=2 and chemical potential �ð	Þ ¼ g	. In
the literature on ultracold gases, this approximation is known
as the Thomas-Fermi approximation. In the static case (v ¼ 0
and @�	 ¼ 0), it leads to r½VextðrÞ þ Pð	ðrÞÞ� ¼ 0, which
allows one to determine the BEC density profile 	ðrÞ for a
given trapping potential VextðrÞ.

As mentioned, the validity of the hydrodynamic equations

is very general and applies to strongly interacting bosons as
well as fermion superfluids, for which the dependence of the

chemical potential on the density is very different. However,

in 1D the assumptions that underlie GP (and Bogoliubov)

theory break down. Quantum and thermal fluctuations are

strong enough to prevent the existence of BEC, or equiva-

lently the spontaneous breakdown of the Uð1Þ symmetry in

the thermodynamic limit. This result is a consequence of the
Mermin-Wagner-Hohenberg (MWH) theorem (Hohenberg,

1967; Mermin and Wagner, 1966; 1968), which states that,

at finite temperature, there cannot be a spontaneous

breakdown of continuous symmetry groups [like Uð1Þ] in

two-dimensional (2D) classical systems with short-range

interactions. Indeed, at T ¼ 0, a 1D quantum system with a
spectrum of long-wavelength excitations with linear disper-

sion can be mapped, using functional integral methods, to a

2D classical system (see Sec. II.D for an example). Therefore,

the MWH theorem also rules out the existence of a BEC in

those 1D systems. For the 1D noninteracting Bose gas, the

excitations have a quadratic dispersion, and thus the mapping

and the theorem do not apply. However, a direct proof of the
absence of BEC in this case is straightforward (see, e.g.,

Pitaevskii and Stringari, 2003).

In the absence of a BEC, the assumptions of the GP theory

and the closely related Bogoliubov method break down.

When applied to 1D interacting boson systems in the ther-

modynamic limit, these methods are plagued by infrared
divergences. The latter are a manifestation of the dominant

effect of long-wavelength thermal and quantum fluctuations,

as described by the MWH theorem. By decoupling the den-

sity and phase fluctuations, Popov (1972 and 1987) was able

to deal with these infrared divergences within the functional

integral formalism. However, Popov’s method relies on in-

tegrating the short-wavelength fluctuations perturbatively,
which is a controlled approximation only for a weakly

interacting system. For arbitrary interaction strength, it is
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necessary to resort to a different set of tools to tackle the 1D

world. Before going into their discussion, we first need to

define the various models that we use to describe interacting

bosons in 1D, and whose solutions are reviewed in the
following sections.

B. Bosons in the continuum in 1D

We first consider the case of bosons moving in the con-

tinuum along one direction (henceforth denoted by x). Thus,
we assume that a very strong confinement is applied in the

transverse directions [denoted r? ¼ ðy; zÞ] so that only the

lowest energy transverse quantum state �0ðr?Þ needs to be
considered. Hence, the many-body wave function reads

c Bðr1; . . . ; rNÞ ¼ c Bðx1; . . . ; xNÞ
YN

i¼1

�0ðri?Þ: (8)

In what follows, we focus on the degrees of freedom de-

scribed by c Bðx1; . . . ; xNÞ. The most general Hamiltonian for

a system of N bosons interacting through a two-body poten-
tial VintðxÞ while moving in an external potential VextðxÞ reads

Ĥ ¼
XN

i¼1

�
p̂2
i

2m
þ Vextðx̂iÞ

�

þ
XN

i<j¼1

Vintðx̂i � x̂jÞ; (9)

where m is the atom mass and p̂i ¼ �iℏð@=@xiÞ the ith
particle momentum operator (½x̂i; p̂j� ¼ iℏ�ij).

The simplest nontrivial model of interacting bosons in the

continuum is the one introduced by Lieb (1963) and Lieb and

Liniger (1963), which is obtained from Eq. (9) upon setting

VextðxÞ ¼ 0 and considering a Dirac delta interaction

VintðxÞ ¼ g�ðxÞ. When a transverse external confinement is

considered, an effective one-dimensional model with Dirac
delta interaction can still be obtained within a pseudo-

potential approximation by properly summing over the virtual

excitations of the high-energy transverse modes (Olshanii,

1998) (cf. Sec. IV.A.2). For the Lieb-Liniger model, the

Hamiltonian reads

Ĥ ¼ � ℏ
2

2m

XN

i¼1

@2

@x2i
þ g

XN

i<j¼1

�ðxi � xjÞ: (10)

It is convenient to parametrize the interaction strength in this
model using the parameter c ¼ mg=ℏ2, which has the dimen-

sion of an inverse length. Thus, c ¼ 0 corresponds to free

bosons while c ! þ1 is the hard-core or Tonks-Girardeau

limit (Girardeau, 1960). As shown in Sec. III.A, in this limit

the model can be solved exactly by mapping it onto a system

of noninteracting fermions. Moreover, as shown by Lieb and

Liniger, the model can be solved for all values of c using the
Bethe ansatz. This solution is reviewed in Sec. III.B. Gurarie

(2006) studied a generalization of the Lieb-Liniger model

with Feshbach resonant interactions, which can be approxi-

mately solved by the Bethe ansatz. However, we shall not

review this solution here and refer the interested reader to

Gurarie (2006).
The Lieb-Liniger model is not the only interacting boson

model that can be solved exactly. The following model,

Ĥ ¼ � ℏ
2

2m

XN

i¼1

@2

@x2i
þ

XN

i<j¼1

g

ðxi � xjÞ2
; (11)

which was introduced by Calogero (1969) also has this

property. Moreover, Calogero showed that the model is also

solvable when a harmonic potential, i.e., for
P

N
i¼1 Vextðx̂iÞ ¼

1
2
m!2

P
L
i¼1 x

2
i , is added to Eq. (11). The interaction strength

in the model (11) is characterized by the dimensionless

parameter �, where �ð�� 1Þ ¼ 2mg=ℏ2. Note that the inter-

action potential in this model is singular for xi ¼ xj. To deal

with this behavior, we must require that the many-body wave

function vanishes when xi ¼ xj, that is, the model describes a

system of hard-core bosons with 1=x2 interactions. For � ¼
0, 1, one recovers the Tonks-Girardeau (TG) gas. This model

will be further discussed in Sec. III.E.

Furthermore, besides the two types of interactions leading

to the exactly solvable models of Lieb, Liniger, and Calogero,

it is also possible to consider other kinds of interactions that

are experimentally relevant. Among them, three types of

interactions play an especially important role: (i) VintðxÞ�
1=jxj3 describes a system of (polarized) dipoles in 1D. This

interaction is relevant for systems of dipolar ultracold atoms

(Griesmaier et al., 2005) or bosonic molecules. Note that,

contrary to 3D, the integral of this potential
Rþx
�x dx

0Vintðx0Þ
converges for large x [i.e., the Fourier transform VintðqÞ is

finite as q ! 0] and thus it is essentially not different from a

short but finite range interaction potential. (ii) The unscreened

Coulomb potential VintðxÞ / 1=jxj is relevant for charged

systems such as superconducting wires, Josephson junction

arrays, and trapped ion systems. Vintðq!0Þ is singular even in
1D and this leads to some modifications of the properties of

the system at long wavelengths compared to the case of short-

range interactions.

Furthermore, other models that are worth studying deal

with the effect of different kinds of external potentials such as

periodic, disorder, or trapping potentials. The effect of a weak

periodic potential will be considered in Sec. VI.A, whereas

the effect of a strong periodic potential is best discussed by

using the lattice models that will be introduced in the follow-

ing section. In both cases, the potential leads to the existence

of bosonic Mott insulators. Disorder potentials are another

type of external potentials that are relevant for both con-

densed matter systems, where it appears naturally, and cur-

rently for ultracold atomic systems, where it is introduced

artificially to study its effects in a more controlled way. In 1D

Bose systems, as discussed in Sec. VI.B, it can lead to glassy

phases. In addition, in ultracold atomic systems the atoms are

in the gaseous phase and therefore need to be contained. As

described in Sec. VIII.D, the confining potential can be made

using either laser light or (time-dependent) magnetic fields,

and for small gas clouds, it can be well approximated by a

harmonic potential VextðxÞ ¼ 1
2
m!2x2. Such a potential

makes the system intrinsically inhomogeneous, and thus

can lead to phase separated coexistence of different phases.

The effect of the trap will be discussed below.

C. Bosons on the lattice in 1D

In the previous section, we have introduced several models

of interacting bosons in the continuum. However, when the

bosons move in the presence of a deep periodic potential, e.g.,

for VextðxÞ ¼ V0 cosðGxÞ, where V0 is the largest energy scale

in the problem, a more convenient starting point is to project
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the Bose field operator on the basis of Wannier orbitals w0ðxÞ
belonging to the lowest Bloch band of VextðxÞ. Thus,

�ðxÞ ’
XL

i¼1

w0ðx� iaÞb̂i; (12)

where a ¼ 2�=G is the lattice parameter. In doing the above

approximation, we have neglected the projection of �ðxÞ on
higher bands. Thus, if V0 is decreased, taking into account the
Wannier orbitals of higher bands may become necessary.

Upon inserting Eq. (12) into the second quantized version

of Eq. (9), the following Hamiltonian is obtained:

Ĥ ¼
XL

i;j¼1

�

�tijb̂
y
i b̂j þ

XL

k;l¼1

V int
ik;jlb̂

y
i b̂

y
k b̂jb̂l

�

; (13)

where tij ¼ �R
dxw�

0ðx� iaÞĤ0ðxÞw0ðx � jaÞ, Ĥ0¼
ðℏ2=2mÞ@2xþVextðxÞ, and V int

ik;jl ¼
R
dxdx0w�

0ðx� iaÞw�ðx0 �
kaÞVintðx� x0Þw0ðx0 � jaÞw0ðx� laÞ. When the boundary

conditions are periodic, we must further require that b̂yLþ1 ¼
b̂y1 and b̂Lþ1 ¼ b̂1. For a deep lattice potential, it is possible

to further simplify this model because in this limit the orbitals

w0ðx� iaÞ are strongly localized about x ¼ ia and it is
sufficient to retain only the diagonal as well as nearest-

neighbor terms, which leads to the extended Hubbard model:

ĤEBHM ¼
XL

i¼1

�

�tðb̂yi b̂iþ1 þ H:c:Þ ��n̂i

þ U

2
b̂yi b̂

y
i b̂ib̂i þ Vn̂in̂iþ1

�

; (14)

where n̂i ¼ b̂yi b̂i is the site occupation operator and � is the

chemical potential. We discuss this model in Sec. VI.A. The

first term is the kinetic energy of the bosons in the tight-

binding approximation, while the last two terms describe an

on-site interaction of strength U and a nearest-neighbor

interaction of strength V.
When the range of the interaction is small compared to the

lattice parameter a, it is possible to further neglect the

nearest-neighbor interaction compared to the on-site interac-

tion U because the overlap of the Wannier orbitals in a deep

lattice potential makes V small. The resulting model is known

as the Bose-Hubbard model:

ĤBHM¼
XL

i¼1

�

�tðb̂yi b̂iþ1þH:c:Þ��n̂iþ
U

2
b̂yi b̂

y
i b̂ib̂i

�

:

(15)

In condensed matter systems, such as Josephson junction

arrays, it is usually difficult to compute t and U from first

principles. However, in cold atomic systems the forms of the
external potential and the atom-atom interaction are accu-

rately known so that it is possible to compute t and U from

first principles (Bloch et al., 2008).

For finite values of U=t, the Bose-Hubbard model is not

exactly solvable. However, for U=t ! þ1, the sectors of the

Hilbert space where ni ¼ 0, 1 and ni > 1 decouple and

the model describes a gas of hard-core bosons, which is the
lattice analogue of the TG gas. For this system, the

Hamiltonian reduces to the kinetic energy

ĤLTG ¼
XL

i¼1

�

�tðb̂yi b̂iþ1 þ H:c:Þ ��n̂i

�

; (16)

supplemented with the constraint that ðb̂yi Þ2j�physi ¼
ðb̂iÞ2j�physi ¼ 0 on all physical states j�physi. Moreover, as

in the continuum case, the model remains exactly solvable
when an external potential of the form V̂ext ¼

P

ivextðiÞn̂i is
added to the Hamiltonian. The properties of the lattice hard-

core bosons both for V̂ext ¼ 0 and for the experimentally

relevant case of a harmonic trap are discussed in

Sec. III.A.2. We note that in dimensions higher than 1, the

lattice gas of hard-core bosons on a hypercubic lattice is
known rigorously to possess a BEC condensed ground state

(Kennedy et al., 1988).

When the interactions are long range, such as for Cooper

pairs in Josephson junction arrays, which interact via the

Coulomb interaction, or for dipolar ultracold atoms and

molecules, the nearest-neighbor interaction V
P

in̂in̂iþ1 in
Eq. (14) cannot be neglected. If U is sufficiently large in

the system, so that the U ! þ1 limit is a reasonable ap-

proximation, the extended Bose-Hubbard model [Eq. (14)]

reduces to the so-called t-V model, whose Hamiltonian reads

Ĥt-V ¼
XL

i¼1

½�tðb̂yi b̂iþ1þH:c:Þ��n̂iþVn̂in̂iþ1�: (17)

This model is Bethe-ansatz solvable and is sometimes also

called the quantum lattice gas model (Yang and Yang, 1966a;

1966b; 1966c). As we will see in the next section, this model

is equivalent to an anisotropic spin- 1
2
model called the XXZ

chain (Orbach, 1958; Walker, 1959) and to the 6 vertex model

of statistical mechanics (Lieb, 1967). It is convenient to

introduce the dimensionless parameter � ¼ V=ð2tÞ to mea-
sure the strength of the interaction in units of the hopping.

D. Mappings and various relationships

In 1D, several transformations allow the various models
introduced above to be related to each other as well as to other

models. We explore them in this section. The first mapping

relates a system of hard-core bosons to a spin- 1
2
chain

(Holstein and Primakoff, 1940; Matsubara and Matsuda,

1956; Fisher, 1967). The latter is described by the set of

Pauli matrices f�̂x
j ; �̂

y
j ; �̂

z
jgLj¼1 (below we use �̂�

j ¼
�̂x

j � i�̂y
j ), where j is the site index. The transformation

due to Holstein and Primakoff (1940) reads2

�̂þ
j ¼ b̂yj

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n̂j

q

; �̂�
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n̂j

q

b̂j; �̂z
j¼ n̂j�1=2:

(18)

Hence, Eq. (16) maps onto the XX spin-chain model

Ĥ0 ¼
XL

j¼1

½�2tð�̂x
j�̂

x
jþ1 þ �̂y

j�̂
y
jþ1Þ ��ð�̂z

j þ 1
2
Þ� (19)

Furthermore, the nearest-neighbor interaction in the t-V
model [cf. Eq. (17)] becomes an Ising interaction

2The Holstein-Primakoff transformation is actually more general

as it can be used for higher S spins and in any dimension.
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Ĥint ¼ V
XL

j¼1

ð�̂z
j þ 1

2
Þð�̂z

jþ1 þ 1
2
Þ: (20)

Therefore, the t-V model maps onto the XXZ or Heisenberg-
Ising spin-chain model in a magnetic field. Alternatively, spin

systems can be seen as faithful representations of hard-core

boson systems.

Another useful transformation relates S ¼ 1
2
spins (and

hence hard-core bosons) to spinless fermions. This is a fairly

convenient way of circumventing the hard-core constraint by

means of the Pauli principle. Following Jordan and Wigner
(1928), we introduce the transformation by relating fermions

to spins (Jordan andWigner, 1928; Lieb et al., 1961; Katsura,

1962; Niemeijer, 1967):

�̂þ
j ¼ ĉyj e

�i�
P

m<j
ĉym ĉm ; �̂�

j ¼ e
i�
P

m<j
ĉym ĉm ĉj;

�̂z
j ¼ ĉyj ĉj � 1=2;

(21)

where fĉi; ĉyj g ¼ �ij, and otherwise anticommute, as corre-

sponds to fermions. By combining the transformations (21)
and (18), Eq. (16) is mapped onto a noninteracting fermion

Hamiltonian

Ĥ0 ¼
XL

j¼1

½�tðĉyj ĉjþ1 þ H:c:Þ ��ĉyj ĉj�: (22)

Nevertheless, as given above, the mapping assumes open

boundary conditions. For periodic boundary conditions

b̂y1 b̂L ¼ �ĉy1 ĉLe
i�
P

L
j¼1

ĉyj ĉj ; (23)

which means that when the total number of particles in the

chain N ¼ hN̂i (where N̂ ¼ P
L
m¼1 ĉ

y
mĉm commutes with Ĥ) is

odd, the fermions obey periodic boundary conditions, while if

N is even, they obey antiperiodic boundary conditions.

A consequence of the mappings between the Fermi gas and

the TG in the continuum and the lattice is that the spectra and

thermodynamics of the TG gas and the noninteracting fer-

mion model (22) are identical. In particular, the low-energy
excitations of the TG gas have linear dispersion, which

contribute a term linear in the temperature T to the specific

heat at low T (see Sec. III for an extended discussion). In

addition, on the lattice it is also possible to show (see, e.g., the

Appendix in Cazalilla, 2004a) the equivalence of the Jordan-

Wigner approximation and Girardeau’s Bose-Fermi mapping,

which applies to the many-body wave functions of both
models and is reviewed in Sec. III.A.

At low lattice filling, that is, when the number of particles

N is very small compared to the number of lattice sites L,
single-particle dispersion of the lattice model is well approxi-

mated by a parabola, i.e., �ðkÞ ¼ �2t coska ’ �2tþ
ℏ
2k2=2m� where m� ¼ ℏ

2=ð2a2tÞ is the lattice effective
mass. The TG gas of hard-core bosons in the continuum is

thus recovered. Indeed, by carefully taking the low-filling

limit of the Bose-Hubbard model (15), it is also possible to

recover the Lieb-Liniger model (10) and hence, in the limit

U=t � 1, the leading corrections of Oðt=UÞ to the lattice TG

Hamiltonian. These corrections can then be used to compute

various thermodynamic quantities of the lattice and contin-
uum TG gases (Cazalilla, 2003). In the low-filling limit,

the corrections yield an attractive interaction between the

Jordan-Wigner fermions (Sen, 1999; 2003), which is a particu-

lar case of the mapping found by Cheon and Shigehara (1999)

between the Lieb-Liniger model and a model of spinless

fermions with (momentum-dependent) attractive interactions.
In the opposite limit of large lattice filling (i.e., n0 ¼

N=L � 1), the representation

b̂yj ¼
ffiffiffiffiffi

n̂j

q

e�i
̂j and b̂j ¼ ei
̂j
ffiffiffiffiffi

n̂j

q

; (24)

in terms of the on-site particle number (n̂j) and phase (
̂j)

operators becomes useful. The phase operator 
̂j is defined as

the canonical conjugate of n̂j, that is, we assume that

½n̂j; 
̂j� ¼ i�ij. Hence, n̂j ¼ i@=@
j and the many-body

wave functions become functions of the set of angles

f
jgLj¼1, where 
i 2 ½0; 2�Þ. The angle nature of the 
j stems

from the discreteness of the eigenvalues of n̂j. The operator

ei
̂j decreases the eigenvalue of n̂j by one, just as b̂j does, but

if repeatedly applied to an eigenstate with small eigenvalue, it

will yield unphysical states with negative eigenvalues of n̂j.

Indeed, this is one of the problems usually encountered when

working with 
̂j. However, when the mean lattice filling

hn̂ji ¼ n0 � 1 these problems become less serious.

Using Eq. (24), the kinetic energy term in the Bose-Hubbard

model (15) becomes�t
P

jð
ffiffiffiffiffiffiffiffiffiffi
n̂jþ1

p
eið
̂j�
̂jþ1Þ ffiffiffiffiffi

n̂j
p þH:c:Þ. In ad-

dition, the interaction energy and chemical potential can

be written as
P

j½ðU=2Þb̂yj b̂yj b̂jb̂j ��n̂j� ¼
P

j½ðU=2ÞN̂2
j �

��N̂j�, where N̂j ¼ n̂j � hn̂ji ¼ n̂j � n0 ¼ i@=@
j and ��

is the deviation of the chemical potential from the value for
which hn̂ji ¼ n0. If the fluctuations of N̂j are small,which is the

case provided U � tn0, n̂j can be replaced by n0 and thus the

phase model is obtained:

Ĥ ¼
XL

j¼1

�

�EJ cosð
̂j � 
̂jþ1Þ þ
EC

2
N̂2

j ���N̂j

�

; (25)

where EJ ¼ 2n0t, EC ¼ U. In the case of arrays of Josephson

junctions (cf. Sec. VIII), the interaction is the long-range

Coulomb potential, and a more realistic model is obtained

by replacing EC=2
P

jN̂
2
j by

P

ijVijN̂iN̂j, where Vij is a func-

tion of ji� jj.
Interestingly, when formulated in the language of the

Feynman path integral, the model in Eq. (25) with �� ¼ 0
provides a particular example of a general relationship be-

tween some models of quantum bosons in 1D and some

classical systems in 2D. As pointed out by Feynman

(1972), the partition function Z ¼ Tre�Ĥ ( ¼ 1=kBT,
with kB the Boltzmann constant) of a quantum system can

be written as a sum over all system configurations weighted

by e�S, where S is the analytic continuation of the classical

action to imaginary time �E. For the model in Eq. (25), Z ¼
RQ

L
j¼1½d
j�e�S½
j�, where [d
j] is the integration measure

over all possible configurations of the angle 
j, and S½
j� is
given by

S½
j� ¼
XL

j¼1

Z ℏ

0
d�E

�
ℏ _
2j

2EC

�EJ

ℏ
cosð
jþ1 � 
jÞ

�

; (26)

where 
j ¼ d
j=d�E. The term proportional to _
2j in Eq. (26)

plays the role of the kinetic energy, and stems from the

operator ECN̂
2
j=2 in the Hamiltonian, where N̂j ¼ i@=@
j
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plays the role of the momentum. Indeed, in certain applica-

tions, such as, e.g., the computational methods discussed in

Sec. IV, it is sometimes useful to discretize the integral over

�. A convenient discretization of the term / P

j
_
2j=2 is

provided by �P

j;�E
cosð
j;�Eþ��E

� 
j;�EÞ. By suitably

choosing the units of the ‘‘lattice parameter’’ ��E, the parti-
tion function corresponding to Eq. (26) can be related to that

of the classical XY model. The latter describes a set of planar
classical spins Sr ¼ ðcos
r; sin
rÞ interacting ferromagneti-

cally on a square lattice and its classical Hamiltonian reads:

HXY ¼ � �J
X

hr;r0i
Sr � Sr0 ¼ � �J

X

hr;r0i
cosð
r � 
r0Þ; (27)

where r ¼ ðj; �E=��EÞ, and hr; r0i means that the sum runs
over nearest-neighbor sites only. Assuming that 
r varies

slowly with r, we may be tempted to take a continuum limit

of the XY model, where � cosð
r � 
r0Þ is replaced by
1
2

P

hr;r0ið
r � 
r0 Þ2 ¼ 1
2

R
drðrr
Þ2. Indeed, this procedure

seems to imply that this model [and the equivalent quantum

model of Eq. (26)] are always superfluids with linearly dis-

persing excitations in the quantum case. However, this con-
clusion is incorrect as the continuum limit neglects the

existence of nonsmooth configurations of 
r, which are to-

pological excitations corresponding to vortices of the classi-

cal XY model and to quantum phase slips in 1D quantum

models. The correct way of taking the continuum limit

of models such as Eq. (25) or its ancestor, the Bose-

Hubbard model, will be described in Sec. V, where the
bosonization method is reviewed.

To sum up, we have seen that, equipped with the knowl-

edge about a handful of 1D models, it is possible to analyze a

wide range of phenomena, which extend even beyond 1D to

2D classical statistical mechanics. In the following, we begin

our tour of 1D systems by studying the exactly solvable
models, for which a rather comprehensive picture can be

obtained.

III. EXACT SOLUTIONS

A. The Tonks-Girardeau (hard-core boson) gas

We first consider the Tonks-Girardeau model correspond-

ing to the limit c ! þ1 of Eq. (10). In this limit, the exact

ground-state energy was first obtained by Bijl (1937) and

explicitly derived by Nagamiya (1940). The infinitely strong

contact repulsion between the bosons imposes a constraint in
the form that any many-body wave function of the TG gas

must vanish every time two particles meet at the same point.

As first pointed out by Girardeau (1960), this constraint can

be implemented by writing the wave function c Bðx1; . . .Þ as
follows:

c Bðx1; . . . ; xNÞ ¼ Sðx1; . . . ; xNÞc Fðx1; . . . ; xNÞ; (28)

where Sðx1; . . . ; xNÞ ¼
Q

N
i>j¼1 signðxi � xjÞ and c Fðx1; . . .Þ

is the many-body wave function of a (fictitious) gas of

spinless fermions. Note that the function Sðx1; . . .Þ compen-

sates the sign change of c Fðx1; . . .Þ when any two particles

are exchanged and thus yields a wave function obeying Bose
statistics. Furthermore, eigenstates must satisfy the noninter-

acting Schrödinger equation when all N coordinates are

different. Hence, in the absence of an external potential,

and on a ring of circumference L with periodic boundary

conditions [i.e., c Bðx1; . . . ; xj þ L; . . . ; xNÞ ¼ c Bðx1; . . . ;
xj; . . . ; xNÞ], the (unnormalized) ground-state wave function

has the Bijl-Jastrow form

c 0
Bðx1; . . . ; xNÞ /

Y

i<j

sin
�

L
jxi � xjj: (29)

This form of the ground-state wave function is generic of

various 1D models in the limit of infinitely strong repulsion

and of the Calogero-Sutherland model as we will see later.

The ground-state energy of the TG gas is then E ¼
ℏ
2ð�	0Þ2=6�m, where 	0 ¼ N=L is the mean particle den-

sity; and the energy of the lowest excited state is EðqÞ �
ℏ
2�	0=mjqj for jqj � �	0 suggesting a linear phonon spec-

trum. As with the free Fermi gas, the TG gas has a finite

compressibility at T ¼ 0 and a specific heat linear in tem-

perature. As we will see in Sec. V, these properties are not

limited to the case of infinite contact repulsion but are generic

features of interacting 1D bosons.

1. Correlation functions in the continuum

Besides thermodynamic properties, the mapping of

Eq. (28) also allows the calculation of the correlation func-
tions of the TG gas. Since Eq. (28) implies that the probability

of finding particles at given positions is the same in the TG

and in the free spinless Fermi gases, the density correlation

functions of both gases are identical. In particular, the pair-

correlation function D2ðxÞ ¼ h	ðxÞ	ð0Þi=	2
0 is given by

D2ðxÞ ¼ 1�
�
sinð�	0xÞ
�	0x

�
2

: (30)

However, computing the one-particle density matrix,

g1ðx; yÞ ¼
Z YN

i¼2

dxic
�
Bðx; . . . xNÞc Bðy; . . . xNÞ; (31)

is considerably more involved. Upon inserting Eq. (28) into

Eq. (31), we see that the sign functions do not cancel out and

therefore the bosonic and fermionic correlations are not

identical anymore.
Nevertheless, it can be shown (Schultz, 1963) that g1ðx; yÞ

can be expressed as the Fredholm determinant of a linear

integral equation (Tricomi, 1985). Another representation

(Lenard, 1964) of g1ðx; yÞ is in terms of a Toeplitz determi-

nant. Such determinants have been thoroughly studied in

relation to the 2D Ising model (Szego, 1952; Wu, 1966).

The asymptotic long-distance behavior of the Toeplitz deter-
minant can be obtained (Ovchinnikov, 2009) from the Fisher-

Hartwig theorem (Fisher and Hartwig, 1968), which yields

g1ðxÞ ¼ 	0G
4ð3=2Þ

�
1

2	0Lj sinð�x=LÞj

�
1=2

; (32)

where GðzÞ is Barnes’ G function; Gð3=2Þ ¼
A�3=2�1=4e1=821=24; A ¼ 1:282 427 12 . . . is Glaisher’s con-
stant. Thus, G4ð3=2Þ ¼ 1:306 991 . . . . In the thermodynamic

limit, a more complete asymptotic expression is available

(Vaidya and Tracy, 1979a; 1979b; Gangardt, 2004):
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g1ðxÞ ¼
	1

j�	0xj1=2
�

1� 1

8

�

cosð2�	0xÞ þ
1

4

�
1

ð�	0xÞ2

� 3

16

sinð2�	0xÞ
ð�	0xÞ3

þ 33

2048

1

ð�	0xÞ4

þ 93

256

cosð2�	0xÞ
256ð�	0xÞ4

þ . . .

�

; (33)

where 	1 ¼ Gð3=2Þ4=
ffiffiffi

2
p

¼ �e1=22�1=3A�6. The leading
term of Eq. (33) agrees with Eq. (32) for L ! 1. The slow

power-law decay of g1ðxÞ at long distances leads to a diver-

gence in the momentum distribution: nðkÞ � jkj�1=2 for

k ! 0. The lack of a delta function at k ¼ 0 in nðkÞ implies

the absence of BEC. However, the �k�1=2 divergence can be

viewed as a remnant of the tendency of the system to form a

BEC. The power-law behavior of g1ðxÞ as jxj ! 1 [or nðkÞ as
k ! 0] is often referred to as quasilong-range order.

Alternative ways of deriving the g1ðxÞ follow from the

analogy (Lenard, 1964) between the ground-state wave func-

tion of the TG gas and the distribution of eigenvalues of

random matrices (Mehta, 2004) from the circular unitary

ensemble. It is also possible to show (Jimbo et al., 1980;
Forrester et al., 2003a) that the density matrix of the TG gas

satisfies the Painlevé V nonlinear second order differential

equation (Ince, 1956). Furthermore, the Fredholm determi-

nant representation can be generalized to finite temperature

(Lenard, 1966).

The asymptotic expansion of the one-particle density-

matrix function at finite temperature in the grand-canonical
ensemble has been derived (Its et al., 1991). Asymptotically

with distance, it decays exponentially, and, for �> 0, the
dominant term reads

g1ðx; 0; Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�1
p

�ℏ
	1e

�2jxj=rcFð�Þ; (34)

where �1 ¼ kBT and 	1 is the same constant as in Eq. (33),

the correlation radius rc is given by

r�1
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�1
p

2�ℏ

Z 1

�1
d� ln

��������

e�
2�� þ 1

e�
2�� � 1

��������
; (35)

whereas FðuÞ is a regular function of u ¼ � given by

FðuÞ ¼ exp

�

� 1

2

Z 1

u
d�

�
dc

d�

�
2
�

;

cð�Þ ¼ 1

�

Z 1

�1
d� ln

��������

e�
2�� þ 1

e�
2�� � 1

��������
:

(36)

Two regimes can be distinguished: For 0<� � 1, the
correlation length rc is just proportional to the de Broglie

thermal length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�1
p

=ℏ. For 1 � �, the integral in
Eq. (35) is dominated by � in the vicinity of � ffiffiffiffiffiffiffiffi

�
p

. By

linearizing �2 in the vicinity of these points, the integral can

be shown to be proportional to ð�Þ�1=2. As a result, one

obtains rc � ℏvF (where vF ¼ ℏ�	0=m is the Fermi ve-

locity) for a degenerate TG gas. For the one-particle Green’s

function G<
B ðx; �;Þ ¼ h�̂yðx; �Þ�̂ð0; 0Þi, Korepin et al.

(1993) showed that

G<
B ðx;�;Þ / exp

�Z 1

�1

dk

2�

��������
xþ t

ℏk

m

��������

	 ln

��������

eðℏ
2k2=2mÞ���1

eðℏ
2k2=2mÞ��þ1

��������

�

: (37)

For 1 � �, one can use the previous expansion of

the integrand around the points k ¼ �kF ¼ � ffiffiffiffiffiffiffiffiffiffiffi
2m�

p
=ℏ,

which gives G<
B ðx; �;Þ / exp½�ð�=4ℏvFÞðjx� vF�jþ

jxþ vF�jÞ�. These results can also be recovered by using

the field-theoretic approach reviewed in Sec. V.

So far we have dealt with the homogeneous TG gas, which

can be relevant for condensed matter systems. However,

ultracold atomic gases are confined by inhomogeneous po-

tentials. Fortunately, the TG gas remains solvable even in the
presence of an external potential.

The Bose-Fermi mapping, Eq. (28), is still valid in the

presence of any external confining potential VextðxÞ. However,
the eigenstates are constructed from the Slater determinants

c Fðx1; . . . ; xNÞ ¼
1
ffiffiffiffiffiffi

N!
p det

n¼N�1;j¼N

n¼0;j¼1
’nðxjÞ; (38)

where ’nðxjÞ are the eigenfunctions of the noninteracting

Schrödinger equation in the presence of VextðxÞ. Considerable
simplification results from the fact that the confining potential

in experiments is, to a good approximation, harmonic:

VextðxÞ ¼ 1
2
m!2x2. Using Eqs. (38) and (28), the eigenfunc-

tions of many-body Hamiltonian are constructed from

the harmonic-oscillator orbitals: ’nðxÞ ¼ ½H nðx=‘HOÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nn!‘HO
ffiffiffiffi
�

pp

�e�x2=2‘2
HO , where H nðzÞ are the Hermite poly-

nomials and ‘HO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðm!Þ
p

is the oscillator length (in what

follows and unless otherwise stated, all lengths are measured

in units where ‘HO ¼ 1), which yields the following ground-

state wave function:

c 0
Bðx1; . . . ; xNÞ ¼ C�1=2

N

YN

k¼1

e�x2
k
=2

YN

i>j¼1

jxi � xjj; (39)

where CN ¼ N!
Q

N�1
n¼0 2

�n
ffiffiffiffi
�

p
n!. Also in this case, the special

form of the mapping (28) implies that the density profile and

density correlations of the harmonically trapped TG gas are

identical to those of a harmonically trapped gas of noninter-

acting spinless fermions. The latter have been studied in

detail (Vignolo et al., 2000; Brack and van Zyl, 2001) and
will not be review here. Instead, we focus on the off-diagonal

correlations and the momentum distribution which, as in the

homogeneous case, are different for the Fermi and TG gases.

The one-particle density matrix g1ðx; yÞ can be obtained

evaluating the (N � 1)-dimensional integral in Eq. (31)

using Eq. (39). From this result, we can obtain the natural

orbitals (cf. Sec. II.A), which obey
R
dyg1ðx; yÞ��ðyÞ ¼

N���ðxÞ, as well as the momentum distribution: nðkÞ ¼
1=2�

R
dxdyg1ðx; yÞeikðx�yÞ. In the ground state, N0 is the

largest eigenvalue, followed by N1, etc. As discussed in

Sec. II.A, when the system exhibits BEC, N0 is of OðNÞ
(Penrose and Onsager, 1956; Leggett, 2001). Furthermore,

note that, because the trapped system is not translationally
invariant, N� and nðkÞ are not proportional to each other. In

other words, the natural orbitals ��ðxÞ are not plane waves.
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For harmonically trapped systems with a few particles

N 
 10, g1ðx; yÞ was first computed by Girardeau et al.

(2001) and Lapeyre et al. (2002). To obtain the thermody-

namic limit scaling of nðk ¼ 0Þ and N0 with N, Papenbrock
(2003) studied g1ðx; yÞ for larger systems by writing the

integrals in Eq. (31) in terms of an integration measure that

is identical to the joint probability density for eigenvalues of

(N � 1)-dimensional random matrices from the Gaussian

unitary ensemble (GUE), and expressed the measure in terms

of harmonic-oscillator orbitals. This enabled the computation
of g1ðx; yÞ in terms of determinants of the (N � 1)-
dimensional matrices:

g1ðx; yÞ ¼
2N�1e�ðx2þy2Þ=2

ffiffiffiffi
�

p ðN � 1Þ! det
m;n¼N�2

m;n¼0
½Bm;nðx; yÞ�;

Bm;nðx; yÞ ¼
Z 1

�1
dzjz� xjjz� yj’mðzÞ’nðzÞ:

(40)

The form of g1ðx; yÞ above and its relation to the GUE had

earlier been discussed by Forrester et al. (2003a). Equation

(40) allowed Papenbrock (2003) to study g1ðx; yÞ and nðkÞ for
up to N ¼ 160. The leading N behavior of nðk ¼ 0Þ was

found to be nðk ¼ 0Þ / N. The behavior of �0 was then

inferred from the result for nðk ¼ 0Þ and a scaling argument,

which resulted in N0 /
ffiffiffiffi

N
p

.
A detailed study of the lowest natural orbitals and their

occupations N� in a harmonic trap was given by Forrester

et al. (2003b). Using a numerical approach based on an

expression similar to Eq. (40), they computed g1ðx; yÞ and
obtained the natural orbitals by a quadrature method up to

N ¼ 30. By fitting the results of the two lowest natural
orbitals (� ¼ 0, 1) to a law N� ¼ aNp þ bþ cN�q, they

found that

N0 ¼ 1:43
ffiffiffiffi

N
p

� 0:56þ 0:12N�2=3

N1 ¼ 0:61
ffiffiffiffi

N
p

� 0:56þ 0:12N�4=3:
(41)

Furthermore, a mapping to a classical Coulomb gas allowed
Forrester et al. (2003b) to obtain an asymptotic expression

for g1ðx; yÞ of the harmonically trapped TG gas in the limit of

large N. Their result reads

g1ðx; yÞ ¼ N1=2 G
4ð3=2Þ
�

ð1� x2Þ1=8ð1� y2Þ1=8
jx� yj1=2 : (42)

This expression shows that g1ðx; yÞ in the trap exhibits a

power-law decay similar to the one found in homogeneous

systems. Using a scaling argument, the behavior of N�¼0;1

can be obtained from Eq. (42), which reproduces the leading

behavior obtained numerically [Eq. (41)]. In addition, the

one-particle density matrix in harmonic traps was also studied

by Gangardt (2004) using a modification of the replica trick.

The leading order in N obtained by Gangardt agrees with
Eq. (42), and his method further allows one to obtain the

finite-size corrections to Eq. (42). Indeed, the leading correc-

tions in the trap and homogeneous systems [cf. Eq. (33)] are

identical.

Another quantity of interest is the momentum distribution

nðkÞ. Whereas the small k behavior can be obtained from the

asymptotic formula (42), the large k asymptotics gives infor-
mation about short-distance one-particle correlations not cap-

tured by Eq. (42). For two hard-core bosons in a harmonic

trap, Minguzzi et al. (2002) found that nðk ! þ1Þ � k�4.

Since the singularities arising in the integrals involved

also appear in the many-body case, this behavior was believed

to hold for arbitrary N. Similar results were obtained
numerically for up to eight particles in harmonic traps

(Lapeyre et al., 2002) and analytically, using asymptotic

expansions, for homogeneous systems (Forrester et al.,

2003b).

Olshanii and Dunjko (2003) showed that the tail �k�4 is a

generic feature of delta-function interactions, i.e., it applies to
the Lieb-Liniger model at all values of the dimensionless

parameter � ¼ c=	0. The behavior can be traced back to the

kink in the first derivative of the exact eigenstates at the point

where two particles meet. For homogeneous systems

(Olshanii and Dunjko, 2003)

nðk ! 1Þ ¼ 1

ℏ	0

�2e0ð�Þ
2�

�
ℏ	0

k

�
4

; (43)

where the calculation of eð�Þ is discussed in Sec. III.B, and

nðkÞ is normalized so that
R
dknðkÞ ¼ 1. Results for harmoni-

cally trapped systems can be obtained by means of the local

density approximation (LDA). In those systems, nðk ! 1Þ �
�HOðℏ	0

0Þ3=k4, where �HO is a dimensionless quantity and

	0ðx ¼ 0Þ is the density at the trap center. Numerical results

for �HO for different values of �0 (where �0 is the �
parameter in the center of the trap) are shown in Fig. 1.

Based on the observed behavior of �HO, Olshanii and

Dunjko (2003) proposed that measuring the high-k tail of
nðkÞ allows one to identify the transition between the weakly

interacting Thomas-Fermi and the strongly interacting Tonks-

Girardeau regimes.

A straightforward and efficient approach to computing the

one-particle density matrix of hard-core bosons in generic

potentials in and out of equilibrium was introduced by Pezer
and Buljan (2007). Indeed, g1ðx; y; �Þ ¼ h�yðx; �Þ�ðy; �Þi
(notice the addition of the dependence on time �) can be

written in terms of the solutions [’iðx; �Þ] of the single-

particle time-dependent Schördinger equation relevant to

the problem
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Ω
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O
(γ

0
)

Interaction strength, γ
0

γ
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exact
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Tonks-Girardeau

FIG. 1. Dimensionless coefficient �HOð�0Þ (see text) as a func-

tion of the interaction strength �0 at the center of the trap. The

dotted line shows the Thomas-Fermi estimate �0
TF ¼ ð8=32=3Þ	

ðNma21D!=ℏÞ�2=3 for the interaction strength in the center of the

system as a function of �0. The numerical results are compared with

the asymptotic expressions in the Thomas-Fermi and Tonks-

Girardeau regimes. From Olshanii and Dunjko, 2003.
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g1ðx; y; �Þ ¼
XN�1

i;j¼0

’�
i ðx; �ÞAijðx; y; �Þ’jðy; �Þ; (44)

where, from the general definition of the many-body Tonks-
Girardeau wave function [Eq. (38)] and of the one-particle

density matrix [Eq. (31)], one can write

Aðx; y; �Þ ¼ ðdetMÞðM�1ÞT ; (45)

where Mijðx; y; �Þ ¼ �ij � 2
R
y
x dx

0’�
i ðx0; �Þ’jðx0; �Þ (for

x < y without loss of generality). This approach has allowed

the study of hard-core boson systems out of equilibrium

(Buljan et al., 2007; Pezer and Buljan, 2007) and was
generalized to study hard-core anyons by del Campo (2008).

2. Correlation functions on the lattice

As mentioned in Sec. II.D, for hard-core bosons on the
lattice, the Jordan-Wigner transformation, Eq. (21), plays the

role of Girardeau’s Bose-Fermi mapping (28). Thus, as in

the continuum case, the spectrum, thermodynamic functions,

and the correlation function of the operator n̂j are identical to

those of the noninteracting spinless lattice Fermi gas.

However, the calculation of the one-particle density matrix

is still a nontrivial problem requiring similar methods to those

reviewed in Sec. III.A.1.

Using the Holstein-Primakoff transformation (18), the one-

particle density matrix g1ðm� nÞ ¼ hb̂ymb̂ni can be expressed
in terms of spin correlation functions (Barouch et al., 1970;

Barouch and McCoy, 1971a; 1971b; Johnson and McCoy,

1971; McCoy et al., 1971; Ovchinnikov, 2002; Ovchinnikov,

2004): g1ðm�nÞ¼ h�̂þ
m�̂

�
n i¼ h�̂x

m�̂
x
niþh�̂y

m�̂
y
ni¼2h�̂x

m�̂
x
ni

[note that h�̂x
n�̂

y
mi ¼ 0 and h�̂x

n�̂
x
mi ¼ h�̂y

n�̂
y
mi by the Uð1Þ

symmetry of the XX model]. Thus, consider the following set

of correlation functions: S��ðn�m; �Þ ¼ h�̂�
mð�Þ�̂�

nð�Þi
where � ¼ x, y, z. We first note that (Lieb et al., 1961)

ei�ĉ
y
m ĉm ¼ 1� 2ĉymĉm ¼ ÂmB̂m; (46)

where Âm ¼ ĉym þ ĉm and B̂m ¼ ĉym � ĉm. Hence,

Sxxðl�mÞ¼ 1
4
hB̂lÂlþ1B̂lþ1 ...Âm�1B̂m�1Âmi;

Syyðl�mÞ¼ 1
4
ð�1Þl�mhÂlB̂lþ1Âlþ1 ...B̂m�1Âm�1B̂mi;

Szzðl�mÞ¼ 1
4
hÂlB̂lÂmB̂mi: (47)

Using Wick’s theorem (Caianiello and Fubini, 1952;

Barouch and McCoy, 1971a), these expectation values are

reduced to Pfaffians (Itzykson and Zuber, 1980). At zero

temperature, the correlators over the partially filled Fermi

sea have the form h�FjÂlÂmj�Fi ¼ 0, h�FjB̂lB̂mj�Fi ¼ 0

(l � m), and h�FjB̂lÂmj�Fi ¼ 2G0ðl�mÞ, where G0ðRÞ ¼
h�FjĉymþRĉmj�Fi is the free-fermion one-particle correlation

function on a finite chain. The Pfaffians in Eq. (47) then

reduce to the Toeplitz determinant (Lieb et al., 1961) of a
R	 R matrix: GðRÞ¼detlm½2G0ðl�m�1Þ�;l;m¼1; . . . ;R.
Thus,

SxxðRÞ ¼
1

4

�����������������������

G�1 G�2 . . . G�R

G0 G�1 . . . G�Rþ1

: : . . . :
: : . . . :
: : . . . :

GR�2 GR�3 :: G�1

�����������������������

: (48)

By taking the continuum limit of Eq. (48) as explained in

Sec. II.C, the Toeplitz determinant representation of the

continuum TG gas is recovered. For a half-filled lattice
with an even number of sites L and a number of particles

N ¼ L=2 odd (Ovchinnikov, 2004), the free-fermion

density-matrix G0ðlÞ ¼ sinð�l=2Þ=L sinð�l=LÞ, so that

G0ðlÞ ¼ 0 for even l, and the Toeplitz determinant (48)

can be further simplified to yield SxxðRÞ ¼ 1
2
ðCN=2Þ2

(for even R), SxxðRÞ ¼ � 1
2
CðR�1Þ=2GðRþ1Þ=2 (for odd N),

where CR is the determinant of the R	 R matrix: CR ¼
detlm½ð�1Þl�mG0ð2l� 2m� 1Þ�; l; m ¼ 1; . . . ; R.

On a finite chain and for odd N, CR is a Cauchy determi-

nant, shown by Ovchinnikov (2002) to yield

CR¼
�
2

�

�
R YR�1

k¼1

�
sin½�ð2kÞ=L�2

sin½�ð2kþ1Þ=L�sin½�ð2k�1Þ=L�

�
R�k

:

(49)

In the thermodynamic limit, Eq. (49) reduces to

CR ¼ ð2=�ÞR
YR�1

k¼1

�
4k2

4k2 � 1

�
R�k

; (50)

and hence the one-body density matrix,

g1ðRÞ ¼ 2SxxðRÞ �
2C0
ffiffiffiffi
�

p
�

1

R1=2
� ð�1ÞR

8R5=2

�

(51)

for large R, where 2C0=
ffiffiffiffi
�

p ¼ 0:588 352 . . . can be expressed
in terms of Glaisher’s constant (Wu, 1966; McCoy, 1968;

Ovchinnikov, 2004). Thus, also in this case, the one-particle

density matrix of the bosons decays as a power law, indicating

the absence of a BEC at T ¼ 0. At nonzero temperature, the

power-law behavior is replaced by an exponential decay (Its

et al., 1993).

Next, we turn to the dynamical correlations G<
��ðR; �Þ ¼

heiℏH�=ℏ�̂�
me

�iĤ�=ℏ�̂�
mþRi, � ¼ x, y. To obtain these objects,

it is convenient to consider the four spin correlator (McCoy
et al., 1971; Vaidya and Tracy, 1978)

C��ðR;�;NÞ¼h�̂�
1þðN=2Þð�Þ�̂�

1�RþNð�Þ�̂�
1 ð0Þ�̂�

1�RþðN=2Þð0Þi;
(52)

which is obtained by evaluating a Pfaffian (Lieb et al., 1961;

McCoy et al., 1971). From the cluster property,

lim
N!1

C��ðR; �; NÞ ¼ ½G<
��ðR; �Þ�2: (53)

G<
��ðR; �Þ can be obtained. The long-time behavior of the

one-particle Green’s function G<
B ðR; �Þ ¼ hb̂ynþRð�Þb̂nð0Þi

was computed by Müller and Shrock (1983; 1984) for

R ¼ 0 following a method due to McCoy et al. (1983a;
1983b). They found that G<

B ð0; �Þ � ði�Þ�1=2. When compar-

ing this result with Eq. (51), we see that the leading asymp-

totic behavior is controlled by the same exponent (¼ 1
2
) in
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both space and time. This is a consequence of the conformal

invariance of the underlying field theory [see Sec. V and

Gogolin et al. (1999); Giamarchi (2004) for an extended

discussion].
At finite temperature, the asymptotic behavior of the

Green’s function has been obtained by Its et al. (1993)

G<
B ðR; �Þ � exp

�

jRj
Z �

��

dk

2�
lnj tanhð�� 2t coskÞj

�

;

(54)

in the spacelike regime (for jRj> 4�t=ℏ,  ¼ 1=kBT), and

G<
B ðR; �Þ � �2ð�

2
þþ�2�Þ exp

�Z �

��

dk

2�
jR� 4� sinkj

	 lnj tanhð�� 2t coskÞj
�

; (55)

in the timelike regime (for jRj< 4�t=ℏ), where

�� ¼ 1

2�
lnj tanhð��� 2 cosp0Þj; (56)

where p0 is defined by sinp0 ¼ jRjℏ=4�t. For � � 1 and

j�=tj< 2, one can expand in the vicinity of�kF ¼ �n0 such
that � ¼ 2t coskF, and obtain that the correlation functions

(54) and (55) decay exponentially with x on a length scale

�=4ℏvF, as found previously in the continuum case. For

infinite temperature, the correlation functions are local and

Gaussian (Sur et al., 1975).

Finally, we consider the effects of a trapping potential. As
discussed in Sec. VIII, the use of a periodic potential gen-

erated by a deep optical lattice allows experimentalists to

reach the strongly correlated regime where the system be-

haves essentially as a lattice TG gas in the presence of a trap

(Paredes et al., 2004).

As in the continuum case, the lattice TG gas remains

exactly solvable when an external potential V̂ext is added to
ĤLTG [Eq. (16)]. For the experimentally relevant harmonic

potential, the Jordan-Wigner transformation maps the model

described by ĤLTG þ V̂ext to the following fermionic

Hamiltonian:

ĤF ¼
X

j

½�tðĉyj ĉjþ1 þ H:c:Þ þ ðVx2j ��Þn̂j�; (57)

where xj ¼ ja, a is the lattice parameter, and V is the

strength of the trapping potential. The above Hamiltonian
can be easily diagonalized since it is quadratic. Using the

single-particle eigenstates of Eq. (57), the momentum distri-

bution nðkÞ can be computed using Toeplitz determinants

(Paredes et al., 2004), as explained. In addition, an alter-

native and computationally more efficient way of calculating

one-particle correlations in the lattice, for arbitrary external
potentials, was introduced by Rigol and Muramatsu (2004

and 2005c). We note that the one-particle density matrix can

be expressed in term of spin operators as g1ði; jÞ ¼ hb̂yi b̂ji ¼
h�̂þ

i �̂
�
j i ¼ �ij þ ð�1Þ�ij h�̂�

j �̂
þ
j i. Hence, in order to deter-

mine g1ði; jÞ it suffices to calculate

Gði; jÞ ¼ h�̂�
i �̂

þ
j i

¼ h�Fj
Yi�1

¼1

ei�ĉ
y

ĉ ĉiĉ

y
j

Yj�1

�¼1

e�i�ĉy� ĉ� j�Fi

¼ det½ðPiÞyPj�; (58)

where j�Fi ¼
Q

N
�¼1

P
L
%¼1 P%�ĉ

y
%j0i is the Slater determinant

corresponding to the fermion ground state in the trap, and

ðP�ÞL;Nþ1, with � ¼ i, j is obtained using properties of

Slater determinants and written as

P�
%� ¼

8
><

>:

�P%� for % < �; � ¼ 1; . . . ; N

P%� for % � �; � ¼ 1; . . . ; N

��% for � ¼ N þ 1

: (59)

From Eq. (58), Gði; jÞ and hence g1ði; jÞ are computed nu-
merically. This method has the additional advantage that it

can be easily generalized to study off-diagonal correlations in

systems out of equilibrium (Rigol and Muramatsu, 2005b). It

has also been generalized to study hard-core anyons by Hao

et al. (2009).

To discuss the properties of the trapped gas, it is convenient

to define a length scale determined by the confining potential
in Eq. (57): � ¼ ðV=tÞ�1=2. We also define the ‘‘character-

istic’’ density ~	 ¼ Na=� , which is a dimensionless quantity

that plays a similar role to the mean filling n0 in homoge-

neous systems (Rigol and Muramatsu, 2004; 2005c). For ~	 >
2:68, an incompressible plateau with n0 ¼ 1 is always present
at the trap center.

A detailed study of g1ði; jÞ, the lowest natural orbitals and
their occupations, and the scaled momentum distribution

function revealed that, in the regions where ni < 1, their

behavior is very similar to the one observed in the continuum

trapped case (Rigol and Muramatsu, 2004; 2005c). One-

particle correlations were found to decay as a power law,
g1ði; jÞ � ji� jj�1=2, at long distances (see the main panel in

Fig. 2), with a weak dependence on the density (discussed in
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FIG. 2. One-particle density matrix of trapped hard-core bosons

vs ji� jj (i located in the center of the trap) for systems with

N ¼ 1000, ~	 ¼ 2:0, n0 ¼ 0:75 (dotted line), N ¼ 100, ~	 ¼ 4:47	
10�3, n0 ¼ 0:03 (dash-dotted line), and N ¼ 11, ~	 ¼ 2:46	 10�5,

n0 ¼ 2:3	 10�3 (dashed line), where n0 is the filling of the central

cite. The abrupt reduction of g1ði; jÞ occurs when nj ! 0. Thin

continuous lines correspond to power laws ji� jj�1=2. The inset

shows N0 vs N for systems with ~	 ¼ 1:0 (). The straight line

exhibits
ffiffiffiffi

N
p

behavior. From Rigol and Muramatsu, 2005c.
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Sec. IV.B.3). As a consequence of that power-law decay, the

leading N behavior of N0 and n0k ¼ 0 was found, both

numerically and by scaling arguments, to be N0 /
ffiffiffiffi

N
p

(see
the inset in Fig. 2) and n0k¼0 /

ffiffiffiffi

N
p

, with proportionality

constants that are only functions of ~	. On the other hand,
the high-� and high-k asymptotics of the occupation of the

natural orbitals and of the momentum distribution function,

respectively, are not universal for arbitrary fillings. However,

at very low filling, universal power-law decays N� / ��4 and

n0ðkÞ / k�4 emerge in the lattice TG (Rigol and Muramatsu,

2004), in agreement with what was discussed for the TG gas
in the continuum.

Finite temperatures in experiments have dramatic effects in

the long-distance behavior of correlations in 1D systems. For

the trapped TG gas in a lattice, exact results for g1ði; jÞ, the
natural orbitals and their occupations, as well as the momen-

tum distribution function, can be obtained in the grand-

canonical ensemble (Rigol, 2005). As in the homogeneous
case, the power-law behavior displayed in Fig. 2 is replaced by

an exponential decay, which implies that nðk ¼ 0Þ �Oð1Þ and
N0 �Oð1Þ at finite T. As a result, the behavior of nðkÞ at low
momenta is very sensitive to the value of T. Hence, it can be

used as a sensitive probe for thermometry (Rigol, 2005). Other

studies of the momentum distribution of the trapped lattice
TG gas at finite T have suggested that it can be well approxi-

mated by a Lévy distribution (Ponomarev et al., 2010).

B. The Lieb-Liniger model

We now turn to the more general Lieb-Liniger model,

Eq. (10). The model is integrable (Lieb, 1963; Lieb and

Liniger, 1963) by the Bethe ansatz, i.e., its eigenfunctions

are of the form

c Bðx1; . . . ; xNÞ ¼
X

P

AðPÞei
P

n
kPðnÞxn ; (60)

for x1 < x2 < . . .< xN where the P’s are the N! possible

permutations of the set f1; . . . ; Ng. The value of the wave
function c Bðx1; . . .Þ when the condition x1 < x2 < � � �< xN
is not satisfied, is obtained from the symmetry of the wave

function under permutation of the particle coordinates. The

physical interpretation of the Bethe ansatz wave function is

the following. When the particle coordinates are all distinct,

the interaction energy term in Eq. (10) vanishes, and the

Hamiltonian reduces to that of a system of noninteracting
particles. Thus, the eigenstates of the Hamiltonian can be

written as a linear combination of products of single-particle

plane waves. If we now consider a case with two particles n
and m of respective momenta kn and km having the same

coordinate, a collision between these two particles occurs.

Because of the 1D nature of the system, the energy and
momentum conservation laws imply that a particle can only

emerge out of the collision carrying the same momenta or

exchanging it with the other particle. Considering all possible

sequences of two-body collisions starting from a particular

set of momenta k1; . . . ; kN leads to the form of the wave

function (60). When the permutations P and P0 only differ

by the transposition of 1 and 2, the coefficients AðPÞ and
AðP0Þ are related by AðPÞ ¼ ½ðk1 � k2 þ icÞ=ðk1 � k2 þ
icÞ�AðP0Þ so that the coefficients AðPÞ are fully

determined by two-body collisions. Considering three-body

collisions then leads to a compatibility condition known as

Yang-Baxter equation which amounts to require that any

three-body collision can be decomposed into sequences of
three successive two-body collisions. The Bethe ansatz wave

function can be seen as a generalization of the Girardeau

wave function (28), where the requirement of a vanishing

wave function for two particles meeting at the same point has

been replaced by a more complicated boundary condition. As

in the case of the TG gas, the total energy of the state (60) is a
function of the kn by

E ¼
X

n

ℏ
2k2n
2m

: (61)

However, the (pseudo-)momenta kn are determined by requir-

ing that the wave function (10) obeys periodic boundary
conditions, i.e.,

eiknL ¼
YN

m¼1
m�n

kn � km þ ic

kn � km � ic
; (62)

for each 1 
 n 
 N. Taking the logarithm, it is seen that the

eigenstates are labeled by a set of integers fIng, with

kn ¼ 2�In
L

þ 1

L

X

m

log

�
kn � km þ ic

kn � km � ic

�

: (63)

The ground state is obtained by filling the pseudo-Fermi sea

of the In variables. In the continuum limit, the N equations

(62) determining the kn pseudomomenta as a function of the
In quantum numbers reduce to an integral equation for the

density 	ðknÞ ¼ 1=Lðknþ1 � knÞ of pseudomomenta that

reads (for zero ground-state total momentum)

2�	ðkÞ ¼ 1þ 2
Z q0

�q0

c	ðk0Þ
ðk� k0Þ2 þ c2

; (64)

with 	ðkÞ ¼ 0 for jkj> q0, while the ground-state energy per
unit length and the density become

E

L
¼
Z q0

�q0

dk
ℏ
2k2

2m
	ðkÞ; and 	0¼

Z q0

�q0

dk	ðkÞ: (65)

By working with dimensionless variables and functions,

gðuÞ ¼ 	0ðquÞ; � ¼ c

q0
; � ¼ c

	0

; (66)

the integral equation can be recast as

2�gðuÞ ¼ 1þ 2�
Z 1

�1

gðu0Þdu0
�2 þ ðu� u0Þ2 ; (67)

where gðuÞ is normalized such that �
R
1
�1 gðuÞdu ¼ �.

In the limit c ! 1, �=ðu2 þ �2Þ ! 0 so that gðuÞ ¼
1=ð2�Þ. Using Eq. (67), one finds that �=� ! 1=�, i.e., q0 ¼
�	0. Thus, in this limit, the function 	ðkÞ ¼ 
ð�	0 � jkjÞ=
ð2�Þ and the ground-state energy becomes that of the TG gas.

In the general case, the integral equations have to be solved

numerically. The function gðuÞ being fixed by the ratio � ¼
c=q0 and � being also fixed by �, the physical properties of

the Lieb-Liniger gas depend only on the dimensionless

ratio � ¼ c=	0. An important consequence is that, in the
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Lieb-Liniger model, low density corresponds to strong inter-

action, and high density corresponds to weak interaction,

which is the reverse of the 3D case. As a consequence of

the above mentioned scaling property, the energy per unit
length is E=L ¼ ℏ

2	3
0=2með�Þ. The Bogoliubov approxima-

tion gives a fair agreement with eð�Þ for 0< �< 2. The TG
regime [defined by eð�Þ ¼ �2=3 with less than 10% accu-

racy] is reached for � > 37. Expansions of the ground-state

energy to order 1=�3 have been obtained (Guan and
Batchelor, 2011) recently, and are very accurate for � > 3,
allowing one to describe the crossover.

Until now, we have only considered the ground-state energy

with zero momentum. However, by considering Eq. (63), it is

seen that if we shift all the In quantum numbers by the same

integer r and at the same time we shift all the kn pseudomo-

menta by the quantity 2�r=L, we obtain another solution of
Eq. (63). For such a solution, the wave function (60) is multi-

plied by a factor eið2�r=LÞ
P

n
xn indicating a shift of the total

momentum P ¼ 2ℏ�rN=L. At the same time, the ground-

state energy is shifted by a quantity equal to P2=2Nm, in

agreement with the Galilean invariance of Eq. (10). The

compressibility and the sound velocity can be derived from

the expression of the energy per unit length. Remarkably, the
sound velocity obtained from the Bogoliubov approximation

agrees with the exact sound velocity derived from the Lieb-

Liniger solution for 0< �< 10 even though, as we have just

seen, the range of agreement for the energy densities is much

narrower. For � � 1, one can obtain an approximate solution

of the integral equations (67) by replacing the kernel by

2=�. Then, one finds (Lieb and Liniger, 1963) gðuÞ’
�=ð2���2Þ, which leads to ��¼ð2þ�Þ and E ¼
ðℏ2�2	3

0=6mÞ½�=ð�þ 2Þ�2. This expression of the energy is

accurate to 1% for � > 10. A systematic expansion of thermo-

dynamic quantities in powers of 1=� can be found in Iida and
Wadati (2005). For the noninteracting limit, � ! 0, the kernel
of the integral equation (67) becomes 2��ðu� u0Þ and the

solutions become singular in that limit. This is an indication

that 1D interacting bosons are not adiabatically connected

with noninteracting bosons and present nongeneric physics.

Besides the ground-state properties, the Bethe-ansatz so-

lution of the Lieb-Liniger model also allows the study of
excited states (Lieb, 1963). Two types of excitations (that we

call type I and type II) are found. Type I excitations are

obtained by adding one particle of momentum q > q0 to

the [N � 1] particle ground state. Because of the interaction,

the N � 1 pseudomomenta k0n (1 
 n 
 N � 1) are shifted

with respect to the ground-state pseudomomenta kn by k0n ¼
kn þ!n=L, while the pseudomomentum kN ¼ q. Taking the

continuum limit of Eq. (63), one finds the integral equation

(Lieb, 1963)

2�JðkÞ¼2c
Z q0

�q0

Jðk0Þ
c2þðk�k0Þ2��þ2tan�1

�
q�k

c

�

;

(68)

where JðkÞ ¼ 	ðkÞ!ðkÞ. The momentum and energy of type I

excitations are obtained as a function of q and JðkÞ as

P¼qþ
Z q0

�q0

JðkÞdk; �I¼��þq2þ2
Z q0

�q0

kJðkÞdk:

(69)

The type I excitations are gapless, with a linear dispersion for

P ! 0 and a velocity equal to the thermodynamic velocity of

sound. For weak coupling, they reduce to the Bogoliubov

excitations. In the TG limit, they correspond to transferring
one particle at the Fermi energy to a higher energy. Type II

excitations are obtained by removing one particle of momen-

tum 0< kh ¼ q < q0 from the [N þ 1] particle ground state.

As in the case of type I excitations, the interaction of the hole

with the particles creates a shift of the pseudomomenta, with

this time k0n ¼ kn þ!n=L for n 
 h and k0n ¼ knþ1 þ!n=L
for n > h. The corresponding integral equation is (Lieb,

1963)

2�JðkÞ¼2c
Z q0

�q0

Jðk0Þ
c2þðk�k0Þ2þ��2tan�1

�
q�k

c

�

;

(70)

with the same definition for JðkÞ. The momentum and energy

of the type II excitation are

P¼�qþ
Z q0

�q0

JðkÞdk; �II¼��q2þ2
Z q0

�q0

kJðkÞdk:

(71)

For P ¼ �	, �II is maximum, while for q ¼ K, P ¼ 0, and
�II ¼ 0. For P ! 0, the dispersion of type II excitation

vanishes linearly with P, with the same velocity as the

type I excitations. Type II excitations have no equivalent in

the Bogoliubov theory. Type II and type I excitations are not

independent from each other (Lieb, 1963): a type II excitation

can be built from many type I excitations of vanishing
momentum. The Lieb-Liniger thermodynamic functions can

be obtained using the thermodynamic Bethe ansatz (Yang and

Yang, 1969).

C. The t-V model

Results similar to those above can be obtained for the t-V
model defined in Sec. II.C. Its Bethe-ansatz wave function, in

second quantized form, reads

j�Bi ¼
X

1
n1<���<nN
L

X

P

e
i
P

N

j¼1
kPðjÞnjAðPÞb̂ynN � � � b̂yn1 j0i;

(72)

where j0i is the vacuum state of the bosons, and P is a

permutation. By imposing periodic boundary conditions,
the following set of equations for the pseudomomenta kn is

obtained:

eikjL ¼ ð�ÞN�1
YN

l¼1
l�j

1� 2�eikj þ eiðkjþklÞ

1� 2�eikl þ eiðkjþklÞ
: (73)

By the same method as in the Lieb-Liniger gas, Eq. (73) can
be turned into an integral equation for the density of pseudo-

momenta. The energy of the eigenstates is given by

E ¼ �2t
XN

j¼1

coskj: (74)

For half-filling, solving Eq. (73) shows that the quantum

lattice gas model has a period 2 density-wave ground state
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(with gapped excitations) for V > 2t. This state corresponds

to the more general Mott phenomenon to be examined in

Sec. VI.A. For V <�2t, the system has a collapsed ground

state. Using the mappings described in Sec. II.D, in the spin
language the collapsed state becomes a ferromagnetic ground

state, while the charge-density wave state becomes an Ising-

like antiferromagnetic ground state. For jVj< 2t, the ground
state has a uniform density and the excitations above the

ground state are gapless. For incommensurate filling, no

density-wave phase is obtained.
The Bethe-ansatz equations also allow the determination

of the dispersion of excitations. In the half-filled case, for

jVj< 2t, a continuum is obtained where the excitation energy

ℏ! obeys

�t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðV=2tÞ2
p

arccosðV=2tÞ j sinðqaÞj


 ℏ! 
 �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðV=2tÞ2
p

arccosðV=2tÞ j sinðqa=2Þj: (75)

For small momentum, the upper and lower bounds of the

continuum merge, yielding a linearly dispersion branch

ℏ!ðqÞ ¼ ½�t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðV=2tÞ2
p

= arccosðV=2tÞ�jqaj. In the case

of attractive interactions (� 2t < V < 0) there are also bound
states above the continuum with dispersion

ℏ!nðqÞ¼�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ðV=2tÞ2
p

arccosðV=2tÞ jsinðqa=2Þj

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�cos2yncos
2q=2

p

sinyn
; (76)

where

yn ¼
n�

2

�
�

arccosðV=2tÞ � 1

�

; (77)

and yn <�=2. For V > 2t and at half-filling, a density-wave

state is formed. The transition between the liquid and the

density wave was reviewed by Shankar (1990). The gap in the
density-wave state is

EG ¼ �t ln

�

2e��=2
Y1

1

�
1þ e�4m�

1þ e�ð4m�2Þ�

�
2
�

; (78)

where cosh� ¼ V=2t. For V ! 2t, the gap behaves as EG �
4t exp½��2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ð1� V=2tÞ
p

�. The expectation value of the

particle number on site n is hb̂yn b̂ni ¼ ½1þ ð�ÞnP� where

P ¼
Y1

1

�
1� e�2m�

1þ e�2m�

�
2

: (79)

The order parameter P of the density wave for

V � 2t ! 0þ vanishes as P� ð�
ffiffiffi

2
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V=2t� 1
p

Þ	
exp½��2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32ðV=2t� 1Þ
p

� and goes to 1 for V � 2.
Besides the t-V model, other integrable models of interact-

ing lattice bosons have been constructed. These models are

reviewed by Amico and Korepin (2004). They include corre-
lated hopping and interactions beyond next nearest neighbor,

finely tuned in order to produce integrability. In the contin-

uum limit, they reduce to the Lieb-Liniger model.

D. Correlation functions of integrable models

Recent progress in the theory of integrable systems has

found that the form factors (i.e., the matrix elements between

two Bethe-ansatz eigenstates) of a given operator can be

obtained by computing a determinant. These methods have

been applied to the Lieb-Liniger and t-V models by Caux,

et al. (2005, 2007), Caux and Maillet (2005), Caux and

Calabrese (2006).
For the Lieb-Liniger model, Caux, and Calabrese

(2006) and Caux, et al. (2007) computed the dynamic

structure factor Sðq;!Þ ¼ R
dxd�eið!��qxÞh	̂ðx; �Þ	̂ð0; 0Þi

and the single-particle Green’s function G<ðk;!Þ ¼
R
dxd�eið!��kxÞh�̂yðx; �Þ�̂ð0; 0Þi. For Sðq;!Þ, the matrix el-

ements of 	̂ðkÞ ¼ R
dxe�iqx	̂ðqÞ were calculated for up to

N ¼ 150 particles. It was checked that the f-sum rule,
R
d!!Sðq;!Þ ¼ 2�	0q

2, was fulfilled to a few percent

accuracy. Results for Sðq;!Þ are shown in Fig. 3. There,

one can see that for � < 1, most of spectral weight of

Sðk; !Þ is found for ℏ! in the vicinity of the dispersion of

the type I excitation �IðkÞ (cf. discussion in Sec. III.B) so that
Sðq;!Þ ’ Nk2

L�IðqÞ�ðℏ!� �IðqÞÞ, i.e., Bogoliubov’s theory pro-

vides a good approximation for the dynamic structure factor.

For larger �, the most spectral weight of Sðq;!Þ is found

when �IIðqÞ< ℏ!< �IðqÞ. Finally, at very large �, the dy-

namical structure factor of the TG gas, with its characteristic

particle-hole excitation spectrum becomes essentially identi-

cal to that of the free Fermi gas. For arbitrary �, the exponents
of the singularities of Sðq;!Þ for ℏ! near �IðqÞ and �IIðqÞ
have been nonperturbatively computed by Imambekov and

Glazman (2008). An interpolation formula for the structure

factor encompassing these properties was proposed by

Cherny and Brand (2009).

In the case of the one-particle correlation functions, Fig. 4,

similar results were obtained. For small �, the spectral weight
of the single-particle correlation function peaks in the vicinity

of the type I dispersion, in agreement with the Bogoliubov

picture. For larger �, the support of the spectral weight broad-
ened, with the type II dispersion forming the lower threshold.

For the t-V model, similar calculations have been carried out

by J.-S. Caux, et al. (2005) and Caux and Maillet (2005).

In addition, local correlations of the form gnð�; TÞ ¼
h½�̂yðxÞ�n½�̂ðxÞ�ni have also been investigated for the Lieb-

Liniger model by relying on its integrability. Indeed, g2ð�; TÞ
follows, by virtue of the Hellman-Feynman theorem, from the

free energy, which can be computed using the thermodynamic

Bethe ansatz (Kheruntsyan et al., 2005). For n > 2, one needs
to resort to more sophisticated methods. Gangardt and

Shlyapnikov (2003) obtained the asymptotic behavior of g3
at large and small � for T ¼ 0. Later, Cheianov et al. (2006)

computed g3 for all� atT ¼ 0 by relating it to the ground-state
expectation value of a conserved current of the Lieb-Liniger

model. More recently, Kormos et al. (2009) and (2010)

obtained general expressions for gnð�; TÞ for arbitrary n, �,
and T by matching the scattering matrices of the Lieb-Liniger

model and (the nonrelativistic limit of) the sinh-Gordon

model, and then using the form factors of the latter field theory

along with the thermodynamic Bethe-ansatz solution at finite

T and chemical potential. In Sec.VIII, some of these results are

reviewed in connection with the experiments.
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E. The Calogero-Sutherland model

We finish our tour of integrable models with the Calogero

model introduced in Sec. II. This model has the advantage of

leading to relatively simple expressions for its correlation

functions. Moreover, the ground-state wave function of this

model (11) in the presence of a harmonic confinement po-
tential 1

2
m!2

P

nx
2
n is exactly known (Sutherland, 1971a). It

takes the form

c 0
Bðx1; . . . ; xNÞ / e

�ðm!=2ℏÞ
P

k¼1

x2
k YN

j>i¼1

jxi � xjj�;

where � is related to the dimensionless interaction parameter
via �ð�� 1Þ ¼ mg=ℏ2. For � ¼ 1=2, 1, 2, the probability

density of the particle coordinates jc Bðx1; . . . ; xNÞj2 can be

related to the joint probability density function of the eigen-

values of random matrices. More precisely, � ¼ 1=2 corre-

sponds to the Gaussian orthogonal ensemble, � ¼ 1 to the

Gaussian unitary ensemble (GUE), and � ¼ 2 to the Gaussian
symplectic ensemble. Many results for the random matrices
in the Gaussian ensembles are available (Mehta, 2004), and

translate into exact results for the correlation functions of the

Calogero-Sutherland models in the presence of a harmonic

confinement. In particular, the one-particle density is known

to be exactly (R2 ¼ 2Nℏ�=m!)

	0ðxÞ ¼
2N

�R2

ðR2 � x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � x2
p

: (80)

In the homogeneous case with periodic boundary condi-

tions, c Bðx1; . . . ; xn þ L; . . . ; xNÞ ¼ c Bðx1; . . . ; xn; . . . ; xNÞ,
the Hamiltonian reads

Ĥ ¼ � ℏ
2

2m

XN

i¼1

@2

@x2i
þ

XN

i>j¼1

g�2

L2sin2½�ðxi�xjÞ
L �

; (81)

and the ground state is (Sutherland, 1971b)

c 0
Bðx1; . . . ; xnÞ /

Y

n<m

sin

��������

�ðxn � xmÞ
L

��������

�

: (82)

The energy per unit length E=L ¼ �2�2	3
0=3 (Sutherland,

1971b). For � ¼ 1 (i.e., g ¼ 0), Eq. (82) reduces to the TG

gas wave function (29) thus illustrating that the Bijl-Jastrow
product form is generic of the ground state of various 1D

interacting models in the infinitely strong interaction limit.

FIG. 3. Intensity plots of the dynamical structure factor [Sðq;!Þ]. Data obtained from systems of length L ¼ 100 at unit density, and

� ¼ 0:25, 1, 5, and 20. From Caux, and Calabrese, 2006.
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For � ¼ 1=2 and � ¼ 2, the results for the circular orthogo-

nal ensemble and circular symplectic ensemble random
matrices, respectively, can be used (Mehta, 2004). In par-

ticular, for � ¼ 2, the one-particle density matrix is g1ðxÞ ¼
Sið2�	0xÞ=2�x, where Si is the sine-integral function

(Abramowitz and Stegun, 1972). Hence, the momentum

distribution is nðkÞ ¼ 
ð4�2	2
0 � k2Þ lnð2�	0=jkjÞ=4�.

These results show that long-range repulsive interactions
(the case for � ¼ 2) further weaken the singularity at k ¼ 0
in the momentum distribution with respect to hard-core

repulsion. The above results can also be used to obtain the

static structure factor SðkÞ ¼ R
dxh	̂ðxÞ	̂ð0Þi (Sutherland,

1971b; Mucciolo et al., 1994):

SðkÞ¼ jkj
�	0

�

1�1

2
ln

�

1þ jkj
�	0

��

ðjkj<2�	0Þ;

SðkÞ¼2� jkj
2�	0

ln

��������

jkjþ�	0

jkj��	0

��������
ðjkj>2�	0Þ;

(83)

for � ¼ 1=2,

SðkÞ ¼ jkj
2�	0

ðjkj< 2�	0Þ;

SðkÞ ¼ 1 ðjkj> 2�	0Þ;
(84)

for � ¼ 1, and

SðkÞ ¼ jkj
4�	0

�

1� 1

2
ln

�

1� jkj
2�	0

��

ðjkj< 2�	0Þ;

SðkÞ ¼ 1 ðjkj> 2�	0Þ; (85)

for � ¼ 2. The Fourier transform of the density-density

response function was also obtained (Mucciolo et al.,

1994). It was shown that for � ¼ 2, the support of Sðq;!Þ
touched the axis ! ¼ 0 for q ¼ 0, 2�	0, and q ¼ 4�	0. The

general case of rational � can be treated using Jack poly-

nomial techniques (Ha, 1994; 1995). The dynamical structure

factor Sðk;!Þ is nonvanishing only for !�ðkÞ<!<!þðkÞ,
where !�ðkÞ ¼ ðℏ��	0=mÞjkj � ℏ�k2=2m for jkj< 2�	0

[!�ðkÞ is a periodic function of jkj with period 2�	0]. Near
the edges (Pustilnik, 2006), Sðk;! ! !�ðkÞÞ / ½!�
!�ðkÞ�1=��1 and Sðk;! ! !þðkÞÞ / ½!þðkÞ �!���1. For

� > 1 (repulsive interactions), this implies a power-law di-

vergence of the structure factor for ! ! !�ðkÞ and a struc-

ture factor vanishing as a power law for ! ! !þðkÞ. For
� < 1 (attraction), the behavior is reversed, with a power-law

divergence only for ! ! !þ reminiscent of the results of
Caux and Calabrese (2006) for the Lieb-Liniger model near

the type I excitation. Using replica methods (Gangardt and

FIG. 4 (color online). Intensity plots of the logarithm of the dynamical one-particle correlation function of the Lieb-Liniger gas. Data

obtained from systems of length L ¼ 150 at unit density, and � ¼ 0:5, 2, 8, and 32. From J.-S. Caux, et al. (2007).
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Kamenev, 2001), the long-distance behavior of the pair-

correlation function is obtained as

D2ðxÞ¼1� 1

2�2�ð	0xÞ2
þ

X1

m¼1

2dmð�Þ2cosð2�	0mxÞ;
ð2�	0jxjÞ2m

2=�
;

(86)

where

dlð�Þ ¼
Q

l
a¼1 �ð1þ a=�Þ

Q
l�1
a¼1 �ð1� a=�Þ : (87)

For � ¼ p=q rational, the coefficients dl vanish for l > p.
Equation (86) then reduces to the one derived (Ha, 1995) for

rational �. The replica method can be generalized to time-

dependent correlations (Gangardt and Kamenev, 2001). For

long distances, the one-body density matrix behaves as

(Astrakharchik et al., 2006)

g1ðxÞ¼	0

A2ð�Þ
ð2�	0jxjÞ�=2

�

1þ
X1

m¼1

ð�ÞmD
2
mð�Þcosð2�	0xÞ
ð2�	0jxjÞ2m

2=�

�

;

(88)

where

Að�Þ ¼ �ð1þ �Þ1=2
�ð1þ �=2Þ

	 exp

�Z 1

0

dt

t
e�t

�
�

4
� 2½coshðt=2Þ � 1�

ð1� e�tÞðet=� � 1Þ

��

;

Dmð�Þ ¼
Yk

a¼1

�ð1=2þ a=�Þ
�½1=2þ ð1� aÞ=�� : (89)

The asymptotic form (88) is similar to the one derived for the

TG gas, Eq. (33) differing only by the (nonuniversal) coef-

ficients Dmð�Þ.

IV. COMPUTATIONAL APPROACHES

The exactly solvable models discussed in the previous
section allow one to obtain rather unique insights into the

physics of 1D systems. However, exact solutions are re-

stricted to integrable models, and it is difficult to ascertain

how generic the physics of these models is. Besides, as we

saw in the previous section, it is still extremely difficult to

extract correlation functions. One thus needs to tackle the

various models in Sec. II by generic methods that do not rely
on integrability. One such approach is to focus on the low-

energy properties as discussed in Sec. V. In order to go

beyond low energies, one can use computational approaches.

We thus present in this section various computational tech-

niques that are used for 1D interacting quantum problems,

and discuss some of the physical applications.

A. Bosons in the continuum

1. Methods

Several methods have been used to tackle boson systems in
the continuum. We examine them before moving to the

physical applications.

a. Variational Monte Carlo (VMC):Within this approach a

variational trial wave function c TðR; �; ; . . .Þ is introduced,
where R � ðr1; . . . ; rNÞ are the particle coordinates, and

�;; . . . are variational parameters. The form of c T depends
on the problem to be solved. One then minimizes the energy

EVMC ¼
R
dr1 . . .drNc

�
TðRÞĤc TðRÞ

R
dr1 . . . drNc

�
TðRÞc TðRÞ (90)

with respect to the variational parameters, using the

Metropolis Monte Carlo method of integration (Umrigar,

1999). EVMC is an upper bound to the exact ground-state

energy. Unfortunately, the observables computed within this

approach are always biased by the selection of c T , so the

method is only as good as the variational trial wave function

itself.
b. Diffusion Monte Carlo: This is an exact method, within

statistical errors, for computing ground-state properties of

quantum systems (Kalos et al., 1974; Ceperley and Kalos,

1979; Reynolds et al., 1982). The starting point here is the

many-body time-dependent Schrödinger equation written in

imaginary time �E

½ĤðRÞ � ��c ðR; �EÞ ¼ �ℏ
@c ðR; �EÞ

@�E
; (91)

where Ĥ ¼ �ℏ
2=2m

P
N
i¼1 r2

i þ V̂ intðRÞ þ V̂extðRÞ. Upon

expanding c ðR; �EÞ in terms of a complete set of eigenstates

of the Hamiltonian c ðR; �EÞ ¼
P

ncn exp½�ð�n � �Þ�E=ℏ�	
c nðRÞ. Hence, for �E ! þ1, the steady-state solution of

Eq. (91) for � close to the ground-state energy is the ground

state c 0ðRÞ. The observables are then computed from aver-

ages over c ðR; �E ! þ1Þ.
The term diffusion Monte Carlo stems from the similarity

of Eq. (91) and the diffusion equation. A direct simulation of
(91) leads to large statistical fluctuations and a trial function

c TðRÞ is required to guide the Metropolis walk, i.e.,

c ðR; �EÞ ! c ðR; �EÞc TðRÞ. c TðRÞ is usually obtained us-

ing variational Monte Carlo. c TðRÞ can introduce a bias into

the calculation of observables that do not commute with Ĥ,

and corrective measures may need to be taken (Kalos et al.,

1974).
c. Fixed-node diffusion Monte Carlo: The diffusion

Monte Carlo method above cannot be used to compute

excited states because c ðR; �EÞc TðRÞ is not always positive
and cannot be interpreted as a probability density. A solution

to this problem is provided by the fixed-node diffusion

Monte Carlo approach in which one enforces the positive
definiteness of c ðR; �EÞc TðRÞ by imposing a nodal con-

straint so that c ðR; �EÞ and c TðR; �EÞ change sign together.

The trial wave function c TðRÞ is used for that purpose and

the constraint is fixed throughout the calculation. The calcu-

lation of c ðR; �EÞ then very much follows the approach used

for the ground state. Here one just needs to keep in mind that
the asymptotic value of c BðR; �E ! þ1Þ is only an approxi-
mation to the exact excited state, and depends strongly on the

parametrization of the nodal surface (Reynolds et al., 1982).

2. The Lieb-Liniger gas

We next discuss the application of the above methods to

the Lieb-Liniger model, Eq. (10). As mentioned in Sec II.B
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(see also Sec. VIII for a brief description of the experimental

methods), in order to realize such a system, a strong trans-

verse confinement must be applied to an ultracold atomic gas.

Olshanii (1998) pointed out that doing so modifies the inter-
action potential between the atoms, from the Lee-Huang-

Yang pseudopotential (cf. Sec. II.A) that describes their

interactions in the 3D gas in terms of the s-wave scattering

length as, to a delta-function interaction described by the

Lieb-Liniger model. The strength of the latter is given by

the coupling g, which is related to as and the frequency of the
transverse confinement !? by means of (Olshanii, 1998)

g ¼ 2ℏ2as
ma2?

1

1� Cas=a?
; (92)

where a? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=m!?
p

, C ¼ j�ð1=2Þj=
ffiffiffi

2
p

¼ 1:0326, and

�ð� � �Þ is the Riemann zeta function. The coupling g can

also be expressed in terms of an effective 1D scattering length

a1D, g ¼ �2ℏ2=ma1D, where a1D ¼ �a?ða?=as � CÞ.
Hence, g increases as !? increases and the bosonic density

profiles will start resembling those of noninteracting fermions

as correlations between bosons are enhanced and the 1D

Tonks-Girardeau regime is approached. These changes occur

through a crossover that was studied theoretically, by means

of diffusion Monte Carlo simulations (Astrakharchik and

Giorgini, 2002; Blume, 2002).
In order to simulate the crossover from the 3D to 1D

gas, two different models for the interatomic potential

V̂ int¼
P

i<jvðrijÞ (rij¼jri�rjj) in the Hamiltonian (Ĥ) of

Eq. (91) were considered in the numerical studies: (i) a hard-
core potential vðrijÞ ¼ 1 for rij < as and vðrijÞ ¼ 0 other-

wise, where as corresponds to the 3D s-wave scattering

length, a quantity that is experimentally measurable; and

(ii) a soft-core potential vðrijÞ¼V0 for rij<R and vðrijÞ¼0

otherwise, where R and as are related by as ¼
R½1� tanhðK0RÞ=K0R�, with K2

0 ¼ V0m=ℏ2 and V0 > 0

[note that for V0 ! 1, the potential ðiiÞ ! ðiÞ]. The external
potential, whose shape drives the 3D to 1D crossover, was

taken to be VextðrÞ ¼ mð!2
?r

2
? þ!2x2Þ=2 to closely re-

semble actual experimental traps.

For the Monte Carlo sampling, �TðRÞ was chosen to have

a Bijl-Jastrow form (Bijl, 1940; Jastrow, 1955)

�TðRÞ ¼
YN

i¼1

’ðriÞ
YN

j<k;j¼1

fðrjkÞ; (93)

which had been successfully used in a variational

Monte Carlo study of the trapped bosonic gas in 3D
(DuBois and Glyde, 2001). In Eq. (93), the single-particle

orbital ’ðrÞ accounts for the effect of the external potential

and was taken to be ’ðrÞ ¼ expð��?r
2
? � �x2Þ, which is a

harmonic-oscillator ground-state wave function with two

variational parameters �? and �. These parameters were

optimized using variational Monte Carlo simulations. The

two-particle function fðrjkÞ was selected to be the exact

solution of the Schrödinger equation for two particles inter-

acting via corresponding two-body interatomic potential.

By changing the aspect ratio � ¼ !=!?, the numerical

simulations revealed the expected crossover between the
mean-field Gross-Pitaevskii regime (Sec. II.A) and the

strongly interacting Tonks-Girardeau limit (Sec. III.A.1),

both for the ground-state energy and for the density profiles

(Astrakharchik and Giorgini, 2002; Blume, 2002). For large

anisotropies (� � 1), a comparison of the full 3D simulation

with the Lieb-Liniger theory (Sec. III.B) was also presented.
The agreement between them was remarkable and validated

the analytical expressions for a1D and g in terms of as and!?
(Astrakharchik and Giorgini, 2002).

The ground-state one-particle, and two-particle correlation

functions of the Lieb-Liniger model, for which no closed

analytic expressions are known, were calculated using the
diffusion Monte Carlo method by Astrakharchik and Giorgini

(2003 and 2006). For x ! 1, the one-particle correlations

were found to exhibit the power-law decay predicted by the

Tomonaga-Luttinger liquid theory described in Sec. V, while

two-particle correlations were seen to fermionize as the TG

limit was approached. Local (Kheruntsyan et al., 2003; 2005)

and nonlocal (Sykes et al., 2008; Deuar et al., 2009) two-
particle correlations, as well as density profiles, have been

studied at finite temperatures by exact analytical methods and

perturbation theory in some limits, and numerical calcula-

tions using the stochastic gauge method (Drummond et al.,

2004).

3. The super-Tonks-Girardeau gas

For negative values of g, the low-energy eigenstates of the

Hamiltonian (10) are clusterlike bound states (McGuire,

1964) and their energy is not proportional to N (Lieb and

Liniger, 1963). In order to access g < 0 starting from a 3D

gas, Astrakharchik et al. (2004a; 2004b) considered a

short-range two-body potential of the form vðrijÞ ¼
�V0=cosh

2ðrij=r0Þ, where r0 was fixed to be much smaller

than a?, and V0 was varied. The inset in Fig. 5 shows how as
changes with V0 as a resonance is crossed. Following the

effective theory of Olshanii (1998), g and a1D vs as are

depicted in Fig. 5. Figure 5 shows that there is a value of

as, a
c
s , at which a1D ¼ 0 and jgj ! 1. This is known as a

confinement-induced resonance. The Lieb-Liniger regime
(g > 0) is only accessible for 0< as < acs , where a1D < 0.
On the other hand, g < 0 occurs for as < 0 and as > acs ,
where a1D > 0. It is also important to note that, at the 3D

FIG. 5. g [dashed line, Eq. (92)] and a1D (solid line) as a function

of a3d ¼ as. The vertical arrow indicates the value of the s-wave

scattering length as where g diverges, acs=a? ¼ 0:9684. Horizontal

arrows indicate the asymptotic values of g and a1D, respectively, as

as ! �1 (g ¼ �1:9368a?ℏ!? and a1D ¼ 1:0326a?). Inset: as as
a function of the well depth V0. From Astrakharchik et al., 2004b.
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resonance as ! 1, g, and a1D reach an asymptotic value and

become independent of the specific value of as.
Experimentally, for g < 0, one is in general interested in

the lowest energy solution without bound states (a gaslike

solution). This solution describes a highly excited state of the

system. A computational study of this gaslike solution was

done by Astrakharchik et al. (2004a, 2004b) using fixed-node

diffusion Monte Carlo simulations for both 3D and effective

1D systems. In that study, the result of the exact diagonaliza-

tion of two particles was used to construct the many-body

nodal surface (expected to be a good approximation in the

dilute limit). The many-body energy was then found to be

remarkably similar for the highly anisotropic 3D case and the

effective 1D theory using g from Eq. (92). A variational

Monte Carlo analysis of the stability of such a solution

suggested that it is stable if
ffiffiffiffiffiffiffi

N�
p

a1D=a? & 0:78, i.e., the
stability can be improved by reducing the anisotropic pa-

rameter �.
For small values of the gas parameter 	0a1D (0< 	0a1D &

0:2), the energy of the gaslike solution is well described by a

gas of hard rods, i.e., particles interacting with the two-body

potential vðrijÞ ¼ 1 for rij < a1D and VðrijÞ ¼ 0 otherwise

(Astrakharchik et al., 2005; Girardeau and Astrakharchik,

2010). One- and two-particle correlation functions for g < 0
display unique behavior. They were computed both for the

Hamiltonian (10) and for the hard-rod model, and were

shown to behave similarly. The one-particle correlations

decay faster than in the hard-core limit (Sec. III.A), for that

reason, in this regime, the gas was called the ‘‘super-Tonks-

Girardeau’’ gas. The structure factor (the Fourier transform of

the two-particle correlation matrix) exhibits a peak at �	0,
3

and, with increasing 	0a1D, the speed of sound was shown to

increase beyond the TG result (Astrakharchik et al., 2005;

Mazzanti et al., 2008). Analytically, it can be seen that for

g ! 1 Eq. (29) for the homogeneous gas and Eq. (39) for the

trapped gas describes the ground state of the system.

For negative values of g, those states can be obtained as

highly excited states of the model with attractive interactions

(Batchelor et al., 2005a; Girardeau and Astrakharchik,

2010), which warrant their stability and suggest how to

realize gaslike states when g < 0 in experiments (see dis-

cussion in Sec. VIII.D.3). As in the repulsive case, one

possible method of detection may rely upon the measurement

of the local correlations. Kormos et al. (2010) obtained the

exact expression of the local correlators gn ¼ h½�yð0Þ�n 	
½�ð0Þ�i of the super-Tonks gas at finite temperature and at

any value of the coupling using the same method employed

for Lieb-Liniger gas (Kormos et al., 2009, 2011).

B. Bosons on a lattice

1. Methods

For lattice systems, in addition to the standard techniques

valid in all dimensions, some specific and very powerful

techniques are applicable in 1D.

a. Exact diagonalization and density-matrix renormaliza-

tion group:A natural way to gain insight into the properties of

a quantum system using a computer is by means of exact

diagonalization. This approach is straightforward since one
only needs to write the Hamiltonian for a finite system in a

convenient basis and diagonalize it. Once the eigenvalues and

eigenvectors are computed, any physical quantity can be

calculated from them. A convenient basis to perform such

diagonalizations for generic lattice Hamiltonians, which may

lack translational symmetry, is the site basis fj�ig. The
number of states in the site basis depends on the model,

e.g., two states for hard-core bosons (j0i and j1i) and infinite

states for soft-core bosons.

Given the site basis, one can immediately generate the

basis states for a finite lattice with N sites as

jmi � j�i1 � j�i2 � � � � � j�iN ; (94)

from which the Hamiltonian matrix can be simply deter-

mined. Equation (94) reveals the main limitation of exact
diagonalization, namely, the size of the basis (the Hilbert

space) increases exponentially with the number of sites. If the

site basis contains n states, then the matrix that one needs to

diagonalize contains nN 	 nN elements.

Two general paths are usually followed to diagonalize

those matrices: (i) full diagonalization using standard dense
matrix diagonalization approaches (Press et al., 1988), which

allow one to compute all eigenvalues and eigenvectors re-

quired to study finite temperature properties and the exact

time evolution of the system; and (ii) iterative diagonalization

techniques such as the Lanczos algorithm (Cullum and

Willoughby, 1985), which gives access the ground-state and

low-energy excited states. The latter enable the study of
larger system sizes, but they are still restricted to a few tens

of lattice sites.

An alternative to such a brute force approach and an

extremely accurate and efficient algorithm to study 1D lattice

systems is the density-matrix renormalization group (DMRG)

proposed by White (1992, 1993). This approach is similar in
spirit to the numerical renormalization group (NRG) pro-

posed by Wilson (1975) to study the single-impurity Kondo

and Anderson problems. The NRG is an iterative nonpertur-

bative approach that allows one to deal with the wide range of

energy scales involved in those impurity problems by study-

ing a sequence of finite systems with varying size, where

degrees of freedom are integrated out by properly modifying
the original Hamiltonian. However, it was early found by

White and Noack (1992) that the NRG approach breaks down

when solving lattice problems, even for the very simple

noninteracting tight-binding chain, a finding that motivated

the development of DMRG.

There are several reviews dedicated to the DMRG for
studying equilibrium and nonequilibrium 1D systems

(Hallberg, 2003; Manmana et al., 2005; Noack and

Manmana, 2005; Schollwöck, 2005; Chiara et al., 2008),

in which one can also find various justifications of the specific

truncation procedure prescribed by DMRG. A basic under-

standing of it can be gained using the Schmidt decomposition.

Suppose we are interested in studying the ground-state (or an
excited-state) properties of a given Hamiltonian. Such a state

j�i, with density matrix 	̂ ¼ j�ih�j, can in principle be

3In the Tonks-Girardeau regime, for which the structure factor is

identical to the one of noninteracting fermions, only a kink is

observed at kF.
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divided into two partsM and N with reduced density matrices

	̂M ¼ TrN½	̂� and 	̂N ¼ TrM½	̂�, where TrM½�� and TrN½��
mean tracing out the degrees of freedom of M and N,

respectively. Remarkably, using the Schmidt decomposition
(Schmidt, 1907) one can write j�i in terms of the eigenstates

and eigenvalues of the reduced density matrices of each part

j�i ¼
X

�

ffiffiffiffiffiffiffi
w�

p jm�ijn�i; (95)

where 	̂Mjm�i ¼ w�jm�i and 	̂Njn�i ¼ w�jn�i, and the

sum runs over the nonzero eigenvalues w�, which can be

proven to be identical for both parts. Hence, a convenient

approximation to j�i can be obtained by truncating the sum

above to the first l eigenvalues, where l can be much smaller

than the dimension of the smallest of the Hilbert spaces of M
and N provided the w�’s decay sufficiently fast. This ap-

proximation was shown to be optimal to minimize the dif-

ference between the exact j�i and the approximated one

(White, 1993).

The DMRG is a numerical implementation of the above

truncation. We stress that the DMRG is variational and that
two variants are usually used: (i) the infinite-system DMRG,

and (ii) the finite-system DMRG. We will explain them for

the calculation of the ground state, but they can also be used

to study excited states.

In the infinite-system DMRG, the idea is to start with the

Hamiltonian HL of a lattice with L sites, which can be
diagonalized, and then (1) use an iterative approach to com-

pute the ground state j�i of HL (Hamiltonian of the super-

block), and its energy. (2) Compute the reduced density

matrix of one half of the superblock (the ‘‘system’’ block).

For definiteness, we assume that the system block is the left

half of the superblock. (3) Use a dense matrix diagonalization

approach to compute the eigenvectors with the l largest
eigenvalues of the reduced density matrix from point 2.

(4) Transform the Hamiltonian (and all other operators of

interest) of the system block to the reduced density-matrix

eigenbasis, i.e., H0
L=2 ¼ RyHL=2R, where R is the rectangu-

lar matrix whose columns are the l eigenvectors of the

reduced density matrix from point 3. (5) Construct a new

system block fromH0
L=2 by adding a site to the right,H

0
L=2þ1

.

Construct an ‘‘environment’’ block using the system block

and an added site to its left, H00
L=2þ1

. Connect H0
L=2þ1

and

H00
L=2þ1

to form the Hamiltonian of the new superblockHLþ2.

(The same is done for all operators of interest.) Here we note
that (i) we have assumed the original Hamiltonian is reflec-

tion symmetric, (ii) the superblock has open boundary con-

ditions, and (iii) the superblock Hamiltonian (and any other

superblock operator) will have dimension 2ðlþ nÞ (n is the

number basis states for a site) at most, as opposed to the

actual lattice Hamiltonian (or any other exact operator),
which will have a dimension that scales exponentially with

L. At this point, all steps starting from 1 are repeated with

L ! Lþ 2. When convergence for the energy (for the

ground-state expectation value of all operators of interest)

has been reached at point 1, the iterative process is stopped.

There are many problems for which the infinite-size algo-

rithm exhibits poor convergence or no convergence at all. The
finite-system DMRG provides the means for studying such

systems. The basic idea within the latter approach is to reach

convergence for the properties of interest in a finite-size

chain. Results for the thermodynamic limit can then be

obtained by extrapolation or using scaling theory in the

vicinity of a phase transition. The finite-system DMRG uti-
lizes the infinite-system DMRG in its first steps, namely, for

building the finite-size chain with the desired length. Once the

chain with the desired length has been constructed, one needs

to perform sweeps across the chain by (i) increasing the

system block size to the expense of the environment block

size, up to a convenient minimum size for the latter, and then
(ii) reversing the process by increasing the environment block

size to the expense of the system block size, again up to a

convenient minimum size for the latter. Those sweeps are

repeated until convergence is reached. In general, this ap-

proach yields excellent results for the ground state and low-

lying excited states properties. However, care should always

be taken to check that the system is not trapped in some
metastable state. Problems with incommensurate fillings and

disordered potentials are particularly challenging in this re-

spect. For the estimation of the errors as well as extensions of

DMRG to deal with systems with periodic boundary condi-

tions, higher dimensions, finite temperatures, and nonequi-

librium dynamics, see the reviews previously mentioned.
b. Worldline quantum Monte Carlo: Quantum Monte Carlo

(QMC) approaches provide a different way of dealing with

many-body systems. They can be used to efficiently solve

problems in one and higher dimensions. However, for fermi-

onic and spin systems, QMC algorithms can be severely

limited by the sign problem (Loh et al., 1990; Troyer and

Wiese, 2005).
One of the early QMC algorithms devised to deal with

lattice problems is the discrete-time worldline algorithm,

introduced by Hirsch et al. (1982). It is based in the path

integral formulation of the partition function in imaginary

time. The goal is to compute observables within the canonical

ensemble hÔi ¼ TrfÔe�Ĥg=Z, where Z ¼ Trfe�Ĥg is the

partition function. For example, for a 1D Hamiltonian that

only couples nearest-neighbor sites, i.e., Ĥ ¼ P
L
i¼1 Ĥi;iþ1

and ½Ĥi;iþ1; Ĥj;jþ1� ¼ 0 if j � iþ 2, the Hamiltonian can

then be split as the sum of two terms Ĥ ¼ Ĥodd þ Ĥeven,

where ĤoddðevenÞ ¼
P

i oddðevenÞĤi;iþ1. Since Ĥodd and Ĥeven do

not commute, one can use the Trotter-Suzuki (TS)

decomposition (Trotter, 1959; Suzuki, 1976) to write

e���ðĤoddþĤevenÞ ¼ e���Ĥodde���Ĥeven þO½ð��Þ2�; (96)

and Z is approximated by ZTS:

ZTS¼Tr

�
YL

m¼1

e���Ĥodde���Ĥeven

�

¼
X

m1���m2L

hm1je���Ĥodd jm2Lihm2Lje���Ĥeven jm2L�1i���

	hm3je���Ĥodd jm2ihm2je���Ĥeven jm1i; (97)

where L�� ¼ , and fjm‘ig are complete sets of states

introduced at each imaginary time slice. Since Ĥodd and

Ĥeven consist of a sum of mutually commuting pieces, the

matrix elements in Eq. (97) can be reduced to products of the

matrix elements of e���Ĥi;iþ1 . A graphical representation of

each term of the sum in Eq. (97) leads to a checkerboard
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picture of space-time, where particles ‘‘move’’ along the so-

called worldlines (the particle number must be the same at

each �, and periodic boundary conditions are applied to the

imaginary time axis). The systematic error introduced by the
Trotter-Suzuki decomposition can be proven to be Oðð��Þ2Þ
for the partition function and also for Hermitian observables

(Fye, 1986; Assaad, 2002).

The formulation above has been succeeded by a continu-

ous time one with no discretization error (Prokof’ev et al.,

1996; Prokof’ev and Svistunov, 1998). The starting point for
the latter is the operator identity

e�Ĥ ¼ e�Ĥde�
R



0
d�Ĥodð�Þ; (98)

where the Hamiltonian Ĥ has been split as the sum of its

diagonal Ĥd, which now can contain a term��N̂ so that one

can work in the grand-canonical ensemble, and off-diagonal

Ĥod terms in the site basis fj�ig introduced with Eq. (94). In

addition, Ĥodð�Þ ¼ e�ĤdĤode
��Ĥd and

e�
R



0
d�Ĥodð�Þ¼1�

Z 

0
d�Ĥodð�Þþ���þð�1Þn

Z 

0
d�n ���

	
Z �2

0
d�1Ĥodð�nÞ���Ĥodð�1Þþ��� (99)

Once again, each term in the expansion of e�Ĥ has a graph-

ical representation in terms of worldlines and the partition

function Z ¼ Trfe�Ĥg can be written as a sum over all

possible paths of these worldlines.

The Monte Carlo technique is then used to avoid the

exponential sum over all the possible worldline configura-

tions by sampling them in such a way that accurate results for

physical quantities of interest are obtained in polynomial
time. The challenge is then to develop efficient update

schemes to perform such a sampling.

The updates within the discrete-time formulation are based

on local deformations of the worldlines (Hirsch et al., 1982).

Observables that are diagonal in the occupation number (such

as the density and the density-density correlations), as well as

observables that conserve the number of particles in two
contiguous sites (such as the kinetic energy and the current

operator), can be easily computed while other observables

that do not conserve the particle number locally, such as the

one-particle density matrix g1ði; jÞ ¼ hb̂ib̂yj i, are almost im-

possible to calculate (Scalettar, 1999). This local update

scheme may lead to long autocorrelation times (Kawashima
et al., 1994) in a way similar to classical simulations with

local updates. However, those times can be reduced by global

moves in cluster (loop) algorithms, as proposed by Swendsen

and Wang(1987) for the classical Ising model, and extended

to quantum systems by Evertz et al. (1993), Kawashima

et al. (1994), and Evertz (2003). In addition, other problems
with this worldline formulation were removed by the loop

algorithm, which works in the grand-canonical ensemble, and

for which the time continuum limit �� ! 0 in the Trotter-

Suzuki decomposition was also implemented (Beard and

Wiese, 1996).

Loop algorithms also have their limitations since they are

difficult to construct for many Hamiltonians of interest and
may suffer from ‘‘freezing’’ when there is a high probability

of a single cluster occupying the entire system (Evertz et al.,

1993; Kawashima et al., 1994; Evertz, 2003). These draw-

backs can be overcome by the continuous-time worldline

approach with worm updates, which works in an extended

configuration space with open loops and for which all updates
are local (Prokof’ev et al., 1996; Prokof’ev and Svistunov,

1998; 2009) and by the stochastic series expansion (SSE)

algorithm with nonlocal updates (Sandvik, 1992; 1999).

c. Stochastic series expansions: The SSE algorithm is

based on the power series expansion of the partition function

Z ¼ Trfe�Ĥg ¼
X

m

X1

n¼0

ð�Þn
n!

hmjĤnjmi; (100)

where fjmig is a convenient basis [such as the one in Eq. (94)].
It is useful to write the Hamiltonian as the sum of symmetric

bond operators Ĥai;bi , where ai denotes the operator type in the

bond, bi 2 f1; . . .Lbg the bond index, and Lb the number of

bonds. For example, if the basis in Eq. (94) is used, then the

operator types in the bonds could be selected to be (i) diagonal,

i.e., containing terms related to the density; and (ii) off-

diagonal, i.e., containing the hopping related terms.

The partition function can then be written as

Z ¼
X

m

X1

n¼0

X

Sn

ð�Þn
n!

hmj
Yn

i¼1

Ĥai;bi
jmi; (101)

where Sn is the set of all concatenations of n bond operators.

The average expansion order can be shown to be hni � L,

and the width is proportional to
ffiffiffiffiffiffiffi

hni
p

, so that one can truncate

the sum over n at a finite cutoff nmax without introducing
systematic errors (nmax can be adjusted during the warm

up phase of the simulation) (Sandvik, 1999). By inserting

nmax � n unit operators Ĥ0;0 ¼ 1 one can rewrite Z as

Z ¼
X

m

X

Snmax

ð�Þnðnmax � nÞ!
nmax!

hmj
Ynmax

i¼1

Ĥai ;bi
jmi; (102)

where now n is the number of nonunit operators in Snmax
. This

last expression simplifies the Monte Carlo sampling, which

once again is used to avoid summing over an exponentially

large number of terms. Various update schemes have been
implemented within the SSE approach, such as the ‘‘operator

loop updates’’ (Sandvik, 1999) and the ‘‘directed loops’’

(Syljuåsen and Sandvik, 2002; Alet et al., 2005).

In general, the SSE as well as the continuous-time world-

line formulation with worm updates have been found to be

very efficient when dealing with both spin and boson systems.
We note that within these two approaches (i) the superfluid

density 	s is calculated through the fluctuations of the wind-

ing number W in the worldline configurations generated

during the simulations 	s ¼ hW2iL=ð2tÞ (Pollock and

Ceperley, 1987), where W is the net number of times that

the worldlines wound around the periodic system; and (ii) the
one-particle Green’s function can also be efficiently com-

puted (Dorneich and Troyer, 2001; Prokof’ev and Svistunov,

2009).

2. The Bose-Hubbard model and its phase diagram

We now analyze the Bose-Hubbard model (15). As dis-

cussed in Sec. VIII, this model is relevant in a wide variety of
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contexts such as 4He in various confined geometries (such as

in porous media or between surfaces), granular superconduc-

tors, Josephson arrays, and ultracold gases in optical lattices.

As with several other models on a lattice, and as discussed in

Sec. VI.A, this model contains the necessary ingredients to

describe a quantum phase transition between a superfluid and

an insulator. This transition, which takes place only at integer

fillings and is driven by quantum fluctuations rather than by

thermal fluctuations, is the consequence of the competition

between the delocalization effects of the kinetic term, pro-

portional to t, which reduce the phase fluctuations, and the

localization effects of the interaction term, proportional to U,

which reduce the on-site particle-number fluctuations.

The phase diagram of this model is qualitatively similar in

all spatial dimensions. In 1D, it can be calculated by boson-

ization techniques (Haldane,, 1981a), which will be intro-

duced in Secs. V and VI.A. Its general properties in any

dimension can be easily understood in terms of perturbative

arguments starting from the atomic limit and scaling argu-

ments (Fisher et al., 1989). For t ¼ 0, n̂i commutes with the

Hamiltonian and each site is occupied by an integer number

of bosons n (we drop the site index because of the transla-

tional invariance). The site occupation can be computed

minimizing the on-site energy E ¼ ��nþ Unðn� 1Þ=2.
One finds that for n� 1 
 �=U < n (where n > 0) the

occupation per site is n and for �< 0 is zero. Now we

analyze what happens if one takes �=U ¼ n� 1=2þ �,
where �1=2< �< 1=2 so that the site occupation is n, and
adds some small hopping t. If t is smaller than the smallest of

the energies required to add a particle Ep � ð1=2� �ÞU or a

hole Eh � ð1=2þ �ÞU, then one immediately realizes that n
will not change. This is because the kinetic energy (� t)
gained by the hopping of the added particle (hole) will be

smaller that the interaction energy that is needed to be over-

come to add it. Hence, there are finite regions in the plane

�=U-t=U in which n is fixed at their values in the atomic

limit. Hopping in energetically unfavorable in those regions

and the bosons remain localized, i.e., the system is insulating.

This insulating state, known as a Mott insulator, is charac-

terized by an energy gap (the energy required to add or

remove a particle), which leads to a vanishing compressibility

� ¼ @n=@� ¼ 0. The lowest lying particle conserving ex-

citations in the Mott insulator are particle-hole excitations.

By changing � for any finite value of t within the Mott-

insulating phase, one realizes at some point �þðU; tÞ
[��ðU; tÞ] the kinetic energy gained by the added particle

(hole) balances the interaction energy required to add it. At

that point, the added particle (hole) will be free to hop and a

finite density of those particles (holes) will led to BEC (in

dimensions higher than 1) and superfluidity. Following the

perturbative arguments given before, one can also realize that

the gap [�ðU; tÞ ¼ �þðU; tÞ ���ðU; tÞ] in the Mott insula-

tor should decrease as the hopping amplitude increases, and

this leads to a phase diagram with a lobelike structure (see,

e.g., Fig. 6).

As discussed in Sec. VI.A, two different universality

classes exist for the Mott transition. (i) A transition that

occurs by changing the chemical potential (density), which

is driven by density fluctuations and belongs to the mean-field

universality class. (This transition has du ¼ 2 as the upper

critical dimension.) (ii) A transition that occurs by changing

t=U at fixed density, which is driven by phase fluctuations and

belongs to the (dþ 1)-dimensional XY universality class.

(This transition has du ¼ 3 as the upper critical dimension

and dl ¼ 1 as the lower critical dimension.)

Several analytical and computational approaches have

been used to study the phase diagram of the Bose-Hubbard

model in one, two, three, and infinite dimensions. Among the

most commonly used ones are mean-field theory, which is

exact in infinite dimensions but qualitatively correct in di-

mensions higher than 1 (Fisher et al., 1989; Rokhsar and

Kotliar, 1991), quantum Monte Carlo simulations (Batrouni

et al., 1990; Batrouni and Scalettar, 1992; Capogrosso-

Sansone et al., 2007; 2008), strong-coupling expansions

(Freericks and Monien, 1996; Elstner and Monien, 1999;

Freericks et al., 2009), and density-matrix renormalization

group (Pai et al., 1996; Kühner and Monien, 1998).

In what follows, we restrict our discussion to the 1D case.

It is interesting to note that despite the close relation of the

Bose-Hubbard model in 1D to the Lieb-Liniger model, the

former is not Bethe-ansatz solvable (Haldane,, 1980; Choy

and Haldane, 1982). The phase diagram for this model was

first computed by Batrouni et al. (1990) by means of the

worldline quantum Monte Carlo approach. In that work, the

transition driven by changing the chemical potential was

confirmed to have Gaussian exponents as proposed by

Fisher et al. (1989).

Studying the transition at constant density turned out to be

a more challenging task. This transition, as shown by Haldane

(1981a) (see also Sec. VI.A and references therein), is in the

same universality class as the two-dimensional Berezinskii-

Kosterlitz-Thouless (BKT) transition. As a consequence, the

gap vanishes as � / exp½�const=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt=UÞcrit � t=U
p

�. This be-
havior makes the determination of ðt=UÞcrit in 1D much more
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FIG. 6. Phase diagram for the 1D Bose-Hubbard model obtained

by means of two different sets of quantum Monte Carlo results [þ ]

(Batrouni et al., 1990) and [	 ] (Kashurnikov et al., 1996), a Padé

analysis of 12th order strong-coupling expansions [solid line]

(Elstner and Monien, 1999), earlier DMRG results [filled circles]

(Kühner and Monien, 1998), and the DMRG results [empty boxes]

from Kühner et al. (2000). The dashed lines indicate the area with

integer density. The error bars in the �=U direction are smaller than

the circles, the error bar in the t=U direction is the error of ðt=UÞc
for the BKT transition. The Mott-insulating phase is denoted by MI

and the superfluid phase by SF. From Kühner et al., 2000.
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difficult than in higher dimensions. Early attempts for n ¼ 1
led to a wide range of values, such as ðt=UÞcrit ¼ 0:215�
0:01 from worldline quantum Monte Carlo simulations

(Batrouni et al., 1990), ðt=UÞcrit ¼ 1=ð2
ffiffiffi

3
p

Þ ¼ 0:289 from

a Bethe-ansatz approximation (Krauth, 1991), ðt=UÞcrit ¼
0:304� 0:002 from a combination of exact diagonalization

and renormalization-group theory (Kashurnikov and

Svistunov, 1996), ðt=UÞcrit ¼ 0:300� 0:005 from worldline
QMC simulations (Kashurnikov et al., 1996) and ðt=UÞcrit ¼
0:298 from DMRG (Pai et al., 1996) after fitting the gap to

the exponential form given before, and ðt=UÞcrit ¼ 0:265
from a third order strong-coupling expansion after a con-

strained extrapolation method was used (Freericks and

Monien, 1996).
A remarkable feature about the superfluid to Mott insulator

transition that is unique to the phase diagram in 1D, and

which was found in some of the previous studies, is that the

Mott lobe exhibits a reentrant behavior with increasing t.
Later studies using DMRG (Kühner and Monien, 1998;

Kühner et al., 2000), and higher order strong-coupling ex-
pansions combined with Padé approximants (Elstner and

Monien, 1999), provided some of the most accurate results

for the phase diagram. Those are depicted in Fig. 6 and

compared with the results of quantum Monte Carlo simula-

tions. The ratio ðt=UÞcrit ¼ 0:297� 0:010 at the tip of the

Mott lobe was determined using DMRG (Kühner et al.,

2000) by finding the value of t=U at which the Luttinger
parameter K ¼ 2 (see Sec. VI.A). Using directed loop

Quantum Monte Carlo method, the spectral functions and

the dynamical structure factor of the Bose-Hubbard model in

the superfluid as well as in the Mott insulator phase have been

obtained (Pippan et al., 2009).

3. The Bose-Hubbard model in a trap

In relation to the experiments with ultracold bosons in

optical lattices, a problem that has been extensively studied

recently is that of the Bose-Hubbard model (BHM) in the

presence of a confining potential. The Hamiltonian in this
case is Ĥtrap ¼ ĤBHM þP

iVin̂i, where Vi is usually taken to

represent the nearly harmonic trap present in the experiments

Vi ¼ Vði� L=2Þ2.
The effect of the trapping potential can be qualitatively,

and in most instances quantitatively, understood in terms of
the LDA. Within the LDA, one approximates local quantities

in the inhomogeneous system by the corresponding quantities

in a homogeneous (HOM) system with a local chemical

potential equal to

�HOM ¼ �i � �0 � Vði� L=2Þ2: (103)

Hence, density profiles in the trap can be constructed from
vertical cuts across the homogeneous phase diagram, which

in 1D is depicted in Fig. 6, by starting at a point with � ¼ �0

and moving towards the point � where the density vanishes.

This leads to a wedding cake structure in which superfluid

and Mott-insulating domains coexist space separated. Such a

structure was originally predicted by means of mean-field

theory by Jaksch et al. (1998) and, for 1D systems, obtained
by means of worldline QMC simulations by Batrouni et al.

(2002).

A consequence of the coexistence of superfluid and Mott-

insulating domains is that the total compressibility in a trap

never vanishes (Batrouni et al., 2002). This has motivated the

definition and use of various local quantities such as the local
density fluctuations �i ¼ hn2i i � hnii2 and local compressi-

bility (Batrouni et al., 2002; Wessel et al., 2004; Rigol et al.,

2009)

�l1
i ¼ @ni

@�i

¼ 1



�	�Z 

0
d�n̂ið�Þ

�
2



�
	Z 

0
d�n̂ið�Þ



2
�

(104)

and

�
l2
i ¼ @N

@�i

¼
Z 

0
d�½hn̂ið�ÞN̂i � hn̂ið�ÞihN̂i�; (105)

to characterize trapped systems. We note that �l2
i � @ni=@�,

i.e., it can also be computed as the numerical derivative of

experimentally measured density profiles. This quantity van-
ishes in the Mott-insulating domains and as such it can be

taken as a local order parameter (Wessel et al., 2004).

In Sec. III.A.2, we used a dimensional argument to intro-

duce the characteristic density ~	 ¼ Na=� as the appropriate

quantity to define the thermodynamic limit in a trapped

system. Hence, for each value of U=t, this quantity uniquely
determines the local phases that are present in the trap. A

more rigorous derivation follows from the local density ap-

proximation (Batrouni et al., 2008; Roscilde, 2010). Within

the LDA hnii ¼ nð�i=t; U=tÞ, where nð�i=t; U=tÞ is the

density in a homogeneous system with a chemical potential

�i as defined in Eq. (103), and �0 is determined by the

normalization condition N ¼ P

ihnii ¼
P

inð�i=t; U=tÞ.
Approximating the sum by an integral, and taking into ac-

count the reflection symmetry of the trapped system, N ¼
2
R1
0 dxnðð�0 � Vðx=aÞ2Þ=t; U=tÞ. Finally, by making a

change of variables �x ¼ �0 � Vðx=aÞ2, one gets4

~	 � Na
ffiffiffiffiffiffiffiffi

V=t
p

¼
Z �0

�1
d�x

nð�x=t; U=tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tð�0 ��xÞ
p : (106)

As discussed, within the LDA �0 uniquely determines the

density profiles, and Eq. (106) shows that �0 is uniquely

determined by ~	, so that indeed, ~	 uniquely determines the

local phases in the trap. This fact has been recently used to
construct state diagrams for trapped systems in 1D and 2D

(Rigol et al., 2009), which are useful in order to compare

experimental and theoretical results in which different trap

curvatures and system sizes are considered. Those state dia-

grams can be seen as the equivalent to phase diagrams for

homogeneous systems.

A word of caution is needed when using the LDA. For
example, for a homogeneous noninteracting bosonic gas in

2D there is no finite temperature transition to a BEC, from

which, within the LDA, one could wrongly conclude that

condensation cannot take place in the two-dimensional

trapped case. This is incorrect because condensation does

occur in the latter case (Dalfovo et al., 1999). Equally, as the
system is driven through the superfluid to Mott insulator

transition in a homogeneous system in any dimension, or

4This result can be easily generalized to higher dimensions where

~	 � NaðV=tÞd=2 (Batrouni et al., 2008).
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any other second order transition for that matter, the system

becomes critical and long-range correlation will preclude the

local density approximation from being valid in the finite-size

region where such a transition occurs in a trap. A finite-size

scaling approach is required in those cases (Campostrini and

Vicari, 2010a; 2010b). Finally, of particular relevance to the

1D case, the superfluid phase in 1D is already a critical phase

with power-law decaying correlations, so that one needs to be

particularly careful when using the LDA in 1D (Bergkvist

et al., 2004; Wessel et al., 2004).

With that in mind, theoretical studies have addressed how

correlations behave in the 1D trapped Bose-Hubbard model.

Kollath et al. (2004) found that the same power-law decay of

the one-particle correlations that is known from homogeneous

systems can still be observed in the trap, in the regime of weak

and intermediate interaction strength, after a proper rescaling

~g1ði; jÞ ¼ hb̂yi b̂ji=
ffiffiffiffiffiffiffiffiffi
ninj

p
is considered. In the infinite repulsive

limit (Sec. III.A.2), on the other hand, Rigol and Muramatsu

(2005c) concluded that a different rescaling is required, and

~g1ði; jÞ ¼ hb̂yi b̂ji=½nið1� niÞnjð1� njÞ�1=4 was proposed.

The latter rescaling is consistent with the results in the contin-

uum (equivalent to the low-density limit in the lattice)

presented in Sec. III.A.1, where analytical expressions for the

one-particle density matrix in the trap are available.

In the early experiments, the momentum distribution func-

tion nðkÞ of the trapped gas (measured after time of flight) was

one of the few probes available to extract information about

those systems (see Sec. VIII). Hence, various numerical studies

were devoted to identify how (i) the peak height and half

width of nðkÞ (Kollath et al., 2004; Wessel et al., 2004),

(ii) the visibility V ¼½nmaxðkÞ�nminðkÞ�=½nmaxðkÞþnminðkÞ�
(Sengupta et al., 2005), and (iii) other observables such as the

total energy measured after time of flight (Rigol et al., 2006),

can be used to detect the formation of the Mott-insulating

domains in 1D. More recently, local measurements have be-

come available in trapped systems (Bakr et al., 2009; 2010;

Gemelke et al., 2009) so that the local compressibility in

Eq. (105) can be determined from the experiments and the

local phases and transitions identified (Kato et al., 2008; Zhou

et al., 2009). However, it has been argued (Pollet et al., 2010)

that nðkÞ is nevertheless the best quantity to determine the

parameters for the onset of critical correlations in the trap.

V. LOW-ENERGY UNIVERSAL DESCRIPTION

At low temperatures, the models discussed in the previous

sections exhibit a liquid phase in which no continuous or

discrete symmetry is broken. This phase has two salient

features: (i) The low-energy excitations are collective modes

with linear dispersion. (ii) At zero temperature, the correla-

tion functions exhibit an algebraic decay characterized by

exponents that depend on the model parameters. These two

properties are intimately related to the MWH theorem, which

rules broken continuous symmetry in 1D.5 Haldane (1981b)

noticed that these features are quite ubiquitous in 1D and thus

defined a universality class of 1D systems that encompasses a

large number of models of interacting bosons (both integrable

and nonintegrable) in 1D (Gogolin et al., 1999; Giamarchi,
2004). This universality class, known as TLLs, is a line of

fixed points of the renormalization group (RG) characterized

by a single parameter called the Tomonaga-Luttinger

parameter.

A. Bosonization method

The collective nature of the low-energy excitations in 1D

can be understood as follows: In the presence of interactions,

a particle must push its neighbors away in order to propagate.

Thus, when confinement forces particles to move on a line,

any individual motion is quickly converted into a collective
one. This collective character motivates a field-theoretic

description in terms of collective fields, which is known as

the ‘‘harmonic fluid approach’’ [also called ‘‘bosonization’’

(Mattis and Lieb, 1965; Luther and Peschel, 1974; Haldane,

1981a; 1981b; Giamarchi, 2004) for historical reasons]. For

bosons, the collective fields are the density 	̂ðx; �Þ and the

phase 
̂ðx; �Þ out of which the boson field operator �̂yðx; �Þ is
written in polar form

�̂yðx; �Þ ¼ ½	̂ðx; �Þ�1=2e�i
̂ðx;�Þ: (107)

The above equation is the continuum version of Eq. (24). The

quantum mechanical nature of harmonic fluid description

requires that we also specify the commutation relations of

the fields 	̂ðx; �Þ and 
̂ðx; �Þ:

½	̂ðxÞ; 
̂ðx0Þ� ¼ i�ðx� x0Þ: (108)

Equation (108) is consistent with ½	̂ðxÞ; e�i
̂ðx0Þ� ¼
�ðx� x0Þe�i
̂ðx0Þ, which is required by the canonical commu-
tation relations of the field operator (Haldane, 1981a;

Giamarchi, 2004). It expresses the well-known fact in the

theory of superfluids that phase and density are canonically

conjugated fields. Equation (107) can be derived from the

commutation relation between the momentum current

|̂PðxÞ ¼ 1
2

P
N
j¼1½p̂j�ðx� x̂jÞ þ �ðx� x̂jÞp̂j� and the density

operators

½	̂ðxÞ; |̂Pðx0Þ� ¼ iℏ	̂ðx0Þ@x0�ðx� x0Þ; (109)

which follows directly from ½x̂i; p̂j� ¼ iℏ�ij. Using Eqs. (112)

and (113), and retaining only the slowly varying terms,

this equation leads to |̂PðxÞ ¼ ℏ
ffiffiffiffiffiffiffiffiffiffi

	̂ðxÞ
p

@x
̂
ffiffiffiffiffiffiffiffiffiffi

	̂ðxÞ
p

. Using

Eq. (109), Eq. (108) is recovered.

In a translationally invariant system, the ground-state den-

sity is a constant, h	̂ðx; �Þi ¼ 	0 ¼ N=L. At small excitation
energies, we expect that 	̂ðx; �Þ does not deviate much from

	0. In a simple-minded approach, these small deviations

would be described by writing the density operator as

	̂ðx; �Þ ’ 	0 �
1

�
@x�̂ðx; �Þ; (110)

where �̂ðx; �Þ is a slowly varying quantum field, which means

that its Fourier components are predominantly around q ’ 0.
Such description is, however, insufficient, especially when

the interactions are strong. For example, in the case of the TG

5Actually, the Calogero-Sutherland models (see Sec. III.E) escape

one of the conditions of the theorem, which require the interactions

to be short ranged. However, as the exact solution demonstrates,

they also exhibit these properties.
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gas (cf. Sec. III.A) the pair-correlation function, Eq. (30), is

such that D2ðxÞ � 1 ¼ ½1� cosð2�	0xÞ�=ð2x2Þ. The first

term in the right-hand side of this expression stems from

the q � 0 density fluctuations and it can be recovered using
the method of Popov (1972), Andersen et al. (2002), and

Mora and Castin (2003), which is valid for weakly interacting

bosons. However, the second oscillating term stems from

density fluctuations of wave number q0 � 2�	0 and cannot

be recovered from Eq. (110). The oscillating contribution

reflects the discreteness of the constituent particles, which
locally (but not globally) tend to develop a crystal-like order-

ing with a lattice spacing of order 	�1
0 . Similar oscillating

terms involving harmonics of 2�	0 also appear in other

correlation functions of the TG gas such as the one-particle

density matrix, cf. Eq. (33), as well as in the correlations

of other models of interacting bosons in general. Efetov
and Larkin (1975) argued that the density operator must

contain, besides the @x�̂ term, a term proportional to

cos2�
R
x dx0	̂ðx0Þ ¼ cos½2�	0x� 2�̂ðxÞ� in order to repro-

duce the oscillating contribution in D2ðxÞ.
A more complete derivation of the oscillating terms, which

also automatically includes all higher harmonics of 2�	0x,
was given by Haldane (1981a), and is reviewed here. One

enumerates the particles on the line by assigning them an

index j ¼ 1; . . . ; N, such that two consecutive values of j
correspond to two neighboring particles. Next, a labeling field

�̂lðx; �Þ is introduced. This field is smooth on the scale of 	�1
0

and such that �̂lðx; �Þ ¼ �j for x ¼ xjð�Þ, where xjð�Þ is the
position of the jth particle. Hence,

	̂ðx; �Þ ¼
XN

j¼1

�½x� x̂jð�Þ�

’ @x�̂lðx; �Þ
X

j

�½�̂lðx; �Þ � j��

¼ 1

�
@x�̂lðx; �Þ

Xþ1

m¼�1
e2im��̂lðx;�Þ: (111)

The last expression follows from Poisson’s summation for-

mula. If we imagine that the particle positions xjðtÞ fluctuate
about the 1D lattice defined by x0j ¼ j	�1

0 , it is possible to

reintroduce �̂ðx; �Þ as �̂lðx; �Þ ¼ �	0x� �̂ðx; �Þ. In terms of

�̂ðx; �Þ,

	̂ðx; �Þ ’
�

	0 �
1

�
@x�̂ðx; �Þ

�
Xþ1

m¼�1
�me

2im½�	0x��̂ðx;�Þ�;

(112)

which reduces to Eq. (110) only when the m ¼ 0 term of the

series is retained.

The harmonic fluid approach also provides a representation

for the boson field operator (Haldane, 1981a; Didier et al.,

2009) in terms of �̂ðx; �Þ and 
̂ðx; �Þ. From Eq. (107) it can be

seen that this relies on finding a representation for the opera-

tor ½	̂ðx; �Þ�1=2. This can be achieved by noting that (by virtue
of Fermi’s trick) the square root of the sum of Dirac delta

functions in Eq. (111) is also proportional to a sum of delta

functions. Thus, ½	̂ðx; �Þ�1=2 in Eq. (107) lends itself to the
same treatment as 	̂ðx; �Þ, which leads to the following result

(Haldane, 1981a; Cazalilla, 2004b; Giamarchi, 2004):

�̂yðx; �Þ ’
�

	0 �
1

�
@x�̂ðx; �Þ

�
1=2

	
�

Xþ1

m¼�1
me

2imð�	0x��̂ðx;�ÞÞ
�

e�i
̂ðx;�Þ:

(113)

Equations (112) and (113) must be understood as low-energy

representations of the density and field operators as an infinite

series of harmonics of 2½�	0x� �̂ðxÞ�. They can be used, for
instance, to compute the asymptotic behavior of correlation
functions in 1D systems. However, it must also be empha-

sized that the coefficients �m, m of each term in these series

are not determined by the harmonic fluid approach and, in

general, depend on the microscopic details of the model (i.e.,

they are nonuniversal). In some integrable models, such as

the t-V model, it is possible to obtain these coefficients
analytically (Lukyanov, 1998; 1999; Shashi et al., 2010).

In the case of the TG gas, they can be deduced from Eqs. (33)

and (30). Similarly, for the Calogero-Sutherland models,

Eqs. (89) and (87) can be used to derive the coefficients �m

and m. However, in the general case, one must resort to

seminumerical (Caux and Calabrese, 2006) or fully numerical

(Hikihara and Furusaki, 2004; Bouillot et al., 2011) methods
to compute them.

Finally, we provide a representation of the Hamiltonian

and total momentum operators describing the (low-energy

part of the) spectrum. For a system of bosons of mass m
interacting via a two-body potential VðxÞ, such as (1) (with

Vext) one can substitute Eqs. (112) and (113) to obtain the
following effective Hamiltonian:

Ĥ¼ ℏ

2�

Z

dx

�

vK½@x
̂ðxÞ�2þ
v

K
½@x�̂ðxÞ�2

�

þ��� (114)

The ellipsis stands for an infinite series of irrelevant operators

in the renormalization-group sense, which yield subleading

corrections to the system properties. Similarly, applying the
same identities, the momentum operator [P̂ ¼ R

dx|̂PðxÞ]
becomes

P̂ ¼ ℏ

�

Z

dx

�

	0 �
1

�
@x�̂ðxÞ

�

@x
̂ðxÞ þ � � � (115)

The Hamiltonian (114) and Eqs. (112) and (113) thus allow

one to compute the low-energy behavior of all correlation

functions of the initial problem. Since Eq. (114) is a simple

quadratic Hamiltonian, with ½
̂ðxÞ; @x0�̂ðx0Þ� ¼ i��ðx� x0Þ,
this is a remarkable simplification. The parameters vJ ¼ vK
and vN ¼ v=K in Eq. (114) are model dependent but can be

related to the ground-state properties. All interaction effects

are then encoded into the two effective parameters v and K.
Moreover, it can be shown that the Hamiltonian (114) leads to

ground-state wave functions of the Bijl-Jastrow form

(Fradkin et al., 1993; Cazalilla, 2004b). As we will see in

Sec. V.B, K controls the behavior of correlation functions at

long distance. As to v, one can immediately see that Eq. (114)

leads to a linear dispersion ! ¼ vjkj so that v is the velocity

of propagation of density disturbances. The bosonization
technique can reproduce the Bogoliubov spectrum simply

by approximating the kinetic energy term as
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Z

dx
ℏ
2

2m
ð@x�̂yÞð@x�̂Þ’

Z

dx
ℏ
2

2m

�

	0ð@x
̂Þ2þ
�
@x	̂

2
ffiffiffiffiffiffi
	0

p
�
2
�

;

(116)

leading to the Hamiltonian

Ĥ ’ ℏ

2�

Z

dx

�
�ℏ	0

m
½@x
̂ðxÞ�2 þ

g

�ℏ
½@x�̂ðxÞ�2

þ ℏ

4m�	0

½@2x�̂ðxÞ�2
�

þ � � � (117)

and yielding a spectrum �ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g	0ðℏ2k2=mÞ þ ðℏ2k2=2mÞ2
p

, which is identical to the

Bogoliubov spectrum discussed in Sec. II.A. Note, however,
that here no condensate fraction assumption was made. We

return to this point in Sec. V.E.

Since all of the low-energy properties only depend on v
and K, it is enough to determine these two nonuniversal

parameters to fully describe the system. There are very

efficient ways to do such a calculation, based on either

analytical or computational approaches. First, in a Galilean
invariant system such as Eq. (10), the value of vJ (Haldane,

1981a) is independent of interaction as shown by the follow-

ing argument. From Galilean invariance, the center of mass

position X̂ ¼ ð1=N̂ÞR dxx	̂ðxÞ obeys the equation of motion

dX̂

dt
¼ 1

iℏ
½X̂; Ĥ� ¼ P̂

N̂m
: (118)

Using (112), X̂ ¼ �ð1=N̂�ÞR dxx@x�̂ðxÞ þ � � � , along with

Eq. (108)), in order to compute ½X̂; Ĥ�=iℏ, and comparing the

result with P̂=N̂m, where P̂ is given by Eq. (115), yields vJ ¼
ℏ�	0=m. Furthermore, this argument shows that Galilean

invariance also requires the existence of an irrelevant operator

[included in the ellipsis of Eq. (114)] of the form

�ðℏ2=2�mÞR dx@x�̂ðxÞ½@x
̂ðxÞ�2, which describes the cur-

vature of the quadratic free-particle dispersion. Various

works (Pereira et al., 2006; Khodas et al., 2007) have

emphasized that such irrelevant operators lead to a damping

rate �q � q2=m for the collective excitations in 1D.

If Galilean invariance is absent, as in lattice models such as

the Bose-Hubbard or the t-V models, then vJ can be renor-

malized by the interactions. Yet, vJ can be still related to the

zero-temperature response of the system to an infinitesimal

phase twist �� in the boundary conditions (Schulz, 1990;

Shastry and Sutherland, 1990; Giamarchi, 1991; Maslov
et al., 1996; Prokof’ev and Svistunov, 2000; Cazalilla,

2004b; Giamarchi, 2004). Physically, this corresponds to

the existence of a persistent current flowing through the

system at zero temperature upon connecting it to two large

phase-coherent reservoirs, whose phase differs by ��. Thus,
it is tempting to think that vJ is related to the superfluid

fraction at zero temperature, 	sðT ¼ 0Þ ¼ 	0
s by means of the

relation vJ ¼ ℏ�	0
s=m. However, this can be misleading. To

clarify this point, we define

	twistðT; LÞ ¼
�L

ℏ

@2FðT; L;��Þ
@��2

����������¼0

; (119)

where FðT;��Þ is the free energy of a system of length L
computed assuming twisted boundary conditions, that is

�̂ðLÞ ¼ ei���̂ð0Þ. The superfluid fraction is a thermody-
namic property obtained in the limit limL!þ1	twistðT; LÞ ¼
	sðTÞ. However, it is important to stress that the limits

L ! þ1 and T ! 0 of 	twistðT; LÞ do not commute

(Giamarchi and Shastry, 1995; Prokof’ev and Svistunov,

2000). For example, for the TG gas, whose thermodynamics

is equivalent the 1D free Fermi gas thermodynamics,

limT!0limL!þ1	sðTÞ ¼ 	sðT ¼ 0Þ ¼ 0 because the free
Fermi gas is not superfluid. However, when the limits of

the free Fermi gas 	twistðT; LÞ are taken in the reverse order,

limL!þ1limT!0	twistðT; LÞ ¼ 	0. This corresponds to the

result vJ ¼ vF, which follows from Galilean invariance.

The product vK is thus related to Kohn’s stiffness (Kohn,

1964) which is the weight of the �ð!Þ in the conductivity, and
is related to the capability of the system to sustain persistent

currents.

As to the other stiffness parameter, vN ¼ v=K, it can be

related to the inverse of the macroscopic compressibility at

T ¼ 0 (Haldane, 1981a; Cazalilla, 2004b; Giamarchi, 2004),

which is defined as

��1
s ¼ 	2

0L

�
@2E0ðNÞ
@N2

�

; (120)

where E0ðNÞ is the ground-state energy with N particles. To

relate ��1
s and vN , first note that the operator �N̂ ¼ N̂ �

N ¼ �Rðdx=�Þ@x�̂ðxÞ, which means that, by shifting

�̂ðxÞ ! �̂ðxÞ � �x�N̂=L in Eq. (114), and taking the expec-

tation value over the ground state, it is possible to obtain

@2E0ðNÞ=@N2 as the coefficient of the Oð�N2
0Þ term. Hence,

��1
s ¼ ℏ�vN	

2
0 ¼ ℏ�	2

0v=K. For Galilean invariant sys-

tems, this relationship can be written as �s ¼
mK2=ℏ2�2	3

0, which means that as K increases, the system

becomes more and more compressible. In particular, for a

noninteracting boson system �s ¼ þ1, as the energy cost of
adding new particles in the ground state vanishes and there-

fore K ¼ þ1. Repulsive interactions reduce the value of K.
For instance, in the Lieb-Liniger and Bose-Hubbard models

K � 1 (cf. Fig. 8), and K ¼ 1 for TG gas, which stems from

its equivalence to a free Fermi gas. In 1D boson systems with

longer range interactions [such as dipolar interactions
(Arkhipov et al., 2005; Citro et al., 2008)] and the t-V
model, a regime where K < 1 is also possible.

B. Correlation functions: Temperature, boundaries,

and finite-size effects

Realization of 1D ultracold atomic systems (see Sec. VIII),

where the number of bosons confined to 1D typically ranges

from a few tens to a few hundred, has renewed the interest

in understanding finite-size systems (Cazalilla, 2004b;

Batchelor et al., 2005c). In a finite-size system, the low-
energy excitation spectrum as well as the asymptotic behavior

of correlation functions depend on the boundary conditions

(BCs) obeyed by the field operator. These can be either

periodic (PBCs) or open (OBCs). In physical realizations,

PBCs are more convenient to describe systems near the

thermodynamic limit, as they include translational invariance

from the start, whereas OBCs are more realistic for finite or
semi-infinite systems. Moreover, numerical methods such as

the DMRG described in Sec. IV.B.1 work better with OBCs
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than with PBCs. The effects of temperature can also be

treated in the framework of finite-size effects. Indeed, in

the Matsubara formalism, a finite temperature  ¼ 1=kBT
corresponds to PBCs on the imaginary time of size ℏ. The
harmonic fluid approach introduced in the previous section

can be extended to deal with both finite-size and boundary

effects. The conformal invariance of the theory (114) greatly

simplifies that extension (Giamarchi, 2004) by enabling the

use of conformal transformations (Cardy, 1996) to compute

the finite-size effects. Finite-size, boundary, and finite tem-
perature correlations can be also obtained by relying on this

method (Eggert et al., 2002).

1. Infinite systems and periodic boundary conditions

Since the effects of temperature are already discussed

elsewhere (Giamarchi, 2004), we focus here on the spatial

boundary conditions. We begin our discussion with the case

where the field operator obeys twisted periodic BCs, that is,

�̂yðxþ LÞ ¼ e�i���̂yðxÞ. Without the twist (�� ¼ 0),
these are simply the usual periodic boundary conditions

used to describe many thermodynamic systems. One physical

realization of such PBCs, corresponds to loading an ultracold
Bose gas in a tight toroidal trap, which can be created by, e.g.,

combining a Gaussian laser beam with a magnetic harmonic

trap (Ryu et al., 2007).

In order to determine the appropriate boundary conditions

for the fields �̂ðxÞ and 
̂ðxÞ, we note that Eq. (113) implies

that the boson field operator obeys (twisted) periodic BCs

provided

�̂ðxþ LÞ ¼ �̂ðxÞ � �ðN̂ � NÞ; (121)


̂ðxþ LÞ ¼ 
̂ðxÞ þ �

�

Ĵ þ ��

�

�

; (122)

where the operator N̂ has integer eigenvalues whereas the

eigenvalues of Ĵ obey the selection rule ð�1ÞĴ ¼ 1 (Haldane,
1981a). The conditions (121) and (122) must be taken into

account when expanding 
̂ðxÞ and �̂ðxÞ in Fourier series,

which for the present system read

�̂ðxÞ¼ �̂0��N̂
x�

L
� i

2

X

q�0

�
2�K

Ljqj

�
1=2
sgnðqÞe�iqx½âyqþâ�q�;


̂ðxÞ¼ 
̂0þ Ĵ
x�

L
þ i

2

X

q�0

�
2�

LjqjK

�
1=2

e�iqx½âyq� â�q�;

(123)

where q ¼ 2�m=L (m being an integer), ½âq; âyq0 � ¼ �q;q0 ,

commuting otherwise, ½N̂; e�i
̂0� ¼ e�i
̂0 and ½Ĵ; e�i�̂0 � ¼
e�i�̂0 . The operator �̂0 is related to the center of mass

position of the liquid [and therefore ��1d�̂0=dt is the

mean current operator (Haldane,, 1981a)], while 
̂0 is related
to the global phase.

Introducing these expressions into Eqs. (114) and (115)

leads to

Ĥ¼
X

q�0

ℏvjqjâyq âqþ
ℏ�

2LK
ðN̂�NÞ2þℏ�vK

2L

�

Ĵþ��

�

�
2

;

(124)

P̂ ¼ ℏ�N̂ Ĵ

L
þ

X

q�0

ℏqâyq âq: (125)

Thus, the elementary excitations of the system are running

waves carrying momentum ℏq and energy ℏvjqj (v is the

sound velocity). The system can also sustain persistent cur-

rents, quantized in values proportional to the eigenvalues of Ĵ,
which for bosons must be even integers.

Furthermore, from Eqs. (121) and (122) the asymptotic

behavior of correlation functions obeying PBCs can be

obtained. For the one-particle density matrix and the pair-

correlation function, it was obtained by Haldane (1981a)

g1ðxÞ¼ h�̂yðxÞ�̂ð0Þi

¼	0

�
1

	0dðxjLÞ

�
1=2K

�

A0þ
Xþ1

m¼1

Am

�
1

	0dðxjLÞ

�
2m2K

	cosð2�m	0xÞ
�

; (126)

D2ðxÞ¼	�2
0 h	̂ðxÞ	̂ð0Þi

¼
�

1� K

2�2

�
1

	0dðxjLÞ

�
2

þ
X

m>0

Bm

�
1

	0dðxjLÞ

�
2m2K

	cosð2�m	0xÞ
�

: (127)

A more detailed treatment of the operator ð	0 � @x�̂=�Þ1=2
in Eq. (113), showing how to obtain also the subleading

corrections to Eq. (126), was presented by Didier et al.

(2009). As mentioned, the coefficients Am ¼ j�mj2 and

Bm ¼ jmj2 are nonuniversal; dðxjLÞ ¼ Lj sinð�x=LÞj=� is

the chord function.

We first examine these expressions for an infinite system.
In the thermodynamic limit (L ! 1) dðxjLÞ ! jxj, and thus

we retrieve the well-known power-law correlations controlled

by the single parameter K. Furthermore, conformal invari-

ance of the theory ensures that a similar power-law occurs in

Matsubara time. We thus see that the system is in a critical

state, exhibiting quasi-long-range order both in the phase and
in the density correlations. Whereas, the latter measures the

tendency of the system to form a charge-density wave of

bosons, the former measures the tendency towards BEC.

Thus, although there is no long-range order in 1D, one can

still define a ‘‘phase diagram’’ depending on the dominant

correlations (i.e., ‘‘fluctuating’’ type of orders) in the system,

i.e., the one showing the slowest decay. Indeed, such fluctu-
ating order is realized as true long-range order whenever

identical 1D systems are coupled, as discussed in

Sec. VII.B. Such a phase diagram is shown in Fig. 7.

Upon comparison with, e.g., Eqs. (33) and (30), it can be

seen that the above series contains only the leading (i.e., the

slowest decaying) term for each harmonic. The remaining
subleading corrections stem from less relevant operators,

which have been neglected in the derivation of Eqs. (126) and

(127).

2. Open boundary conditions

In the case of a system of bosons trapped in a box with

sufficiently high walls, OBCs of Dirichlet type must be used,
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i.e., the field operator must obey �̂ðxÞ ¼ 0 and hence

	̂ðxÞ ¼ 0 for x ¼ 0; L. Thus, Eq. (111) implies that, for

x ¼ 0, L, the labeling field �̂lðxÞ � �j, where j is an integer.
This is the minimum requirement to ensure that no particle

exists at x ¼ 0, L. Hence, �̂ðxÞ ¼ �	0x� �̂lðxÞ ¼ �0 � �j
at x ¼ 0. If the number of particles (that is the eigenvalue

of N̂) is fixed (as corresponds to a system of trapped

ultracold atoms), then it follows from �N̂¼ N̂�N¼
�R

L
0 ðdx=�Þ@x�̂ðxÞ¼ �̂ð0Þ��̂ðLÞ that �̂ðx ¼ LÞ ¼ �̂ð0Þ �

�N̂.

When expanded in a Fourier series of modes that obey the

open BC’s,

�̂ðxÞ¼ �̂0��N̂
�x

L
�

X

q>0

�
�K

qL

�
1=2

sinðqxÞ½âyq þ âq�;


̂ðxÞ¼ 
̂0� i
X

q>0

�
�K

qL

�
1=2

cosðqxÞ½âyq � âq�;
(128)

where ½�N̂; e�i
̂0� ¼ e�i
̂0 , but �̂0 is a real (noninteger)

number, i.e., it is not an operator. The Hamiltonian operator
becomes

Ĥ ¼
X

q>0

ℏvqâyq âq þ
ℏ�v

2LK
ðN̂ � NÞ2: (129)

Thus, the low-energy elementary excitations are standing

waves characterized by a wave number q > 0 and an energy
ℏvq. However, the total momentum operator P̂ vanishes

identically as the center of mass position of the system is

fixed (e.g., hX̂i / �0 ¼ const) by the confinement. This

means that the operator Ĵ undergoes large fluctuations and

therefore its canonical conjugate operator �0 acquires a

constant expectation value.

The existence of boundaries leads to a dramatic change in
the nature of the correlations as translational invariance is

lost. Thus, for example, to leading order

	0ðxÞ¼	0þC1

�
1

	0dð2xj2LÞ

�
K
cosð2�	0xþ�1Þ; (130)

g1ðx; yÞ ¼ 	0B0

�
	�1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dð2xj2LÞdð2yj2LÞ
p

dðxþ yj2LÞdðx� yj2LÞ

�
1=2K

; (131)

where C1; �1, and B0 are nonuniversal coefficients. For the
full asymptotic series in harmonics of 2�	0 of these and

other correlation functions, see the literature for zero

temperature (Cazalilla, 2002; Cazalilla, 2004b) and positive

temperature (Eggert et al., 2002) cases. Thus, because the

system has boundaries, the ground-state density 	0ðxÞ ¼
h	̂ðxÞi is no longer uniform, and two-point correlation func-

tions such as g1ðx; yÞ ¼ h�̂yðxÞ�̂ðyÞi depend on both x and y
(Eggert and Affleck, 1992; Hikihara and Furusaki, 2001;

Cazalilla, 2002; 2004b; Giamarchi, 2004). It is also important

to note that the boundaries do modify the asymptotic behavior
of the correlation functions. This can be seen in the previous

expressions if we consider, for instance, the behavior of

g1ðx; yÞ. Away from the boundaries, in the bulk of the system,

the leading behavior is the same as for PBCs, that is jxj�1=2K.

However, for y � 0 and 	�1
0 � x � L, the decay of the

asymptotic behavior is, jxj�3=4K controlled by the (boundary)
exponent 3=4K. The same remarks apply to the behavior of

other correlation functions near the boundaries at x ¼ 0, L.
Another type of OBCs (Neumann) corresponds to

�̂yðx ¼ 0Þ ¼ ��
0 and �̂yðx ¼ LÞ ¼ ��

L, where �0;L ¼
j�0;Lje�i�0;L � 0 (Maslov et al., 1996). This amounts to

enforcing that 
̂ðx ¼ 0; LÞ ¼ �0;L. In this case, the results

obtained for open BCs of Dirichlet type can used upon

interchanging the roles of 
 and � and making the replace-

ment K ! K�1.

The form of the effective Hamiltonian, however, is different,

Ĥ ¼
X

q>0

ℏvqâyq âq þ
ℏ�vK

2L

�

Ĵ þ ��

�

�
2

; (132)

where �� ¼ �L � �0 the phase difference across the system.

Note that, in this case, the global phase h
̂0i ¼ �� is well

defined, which means that the canonically conjugate operator,
N̂, undergoes large fluctuations about the ground-state value

N ¼ hN̂i that fixes the zero-temperature chemical potential.

3. The t-V, Lieb-Liniger, and Bose-Hubbard

models as Tomonaga-Luttinger liquids

Let us now establish a relation between some of the micro-

scopic models that were examined in Sec. II and the TLL

liquids. We examine, in particular, the t-V, Lieb-Liniger, and
Bose-Hubbard models. Indeed these three models display

TLL behavior at low energies, as can be seen from the exact
results in Sec. III or the numerical ones in Sec. IV.B.1.

The phase diagram of the Lieb-Liniger model is the sim-

plest, being described by the TLL fixed point for all values of

the single dimensionless parameter that characterizes the

model, namely � ¼ mg=ℏ2	0. The existence of the Bethe-

ansatz solution allows us to compute the ground-state energy

as described in Sec. III.B. From that result, the compressibil-
ity and hence the Tomonaga-Luttinger parameter, K ¼ Kð�Þ
are obtained. The sound velocity then follows from the

Galilean invariance of the model (Haldane, 1981a): vð�Þ ¼
ℏ�	0=½mKð�Þ�. These two functions are plotted in Fig. 8. In

general, analytical expressions are not available for arbitrary

values of �. However, in the limit large and small �, the
following asymptotic formulas are known (Büchler et al.,

2003; Cazalilla, 2004b):

Kð�Þ ¼

8
><

>:

1þ 4
�2 þOð��3Þ for � � 1

�ffiffiffi
�

p
�

1�
ffiffiffi
�

p
2�

�

for � � 1
: (133)

K1/2

SFCDW

FIG. 7. ‘‘Phase diagram’’ indicating the slowest decaying fluctua-

tion for 1D interacting bosons. The correlations are totally

controlled by the Tomonaga-Luttinger liquid parameter K. For

K > 1=2 the dominant order is superfluid (SF), while for K < 1=2

the system exhibits dominant charge-density wave (CDW) fluctua-

tions. Note that for a model with purely local interactions, one has

1<K <1 so the system is always dominated by superfluid order.

Nearest-neighbor repulsion on a lattice can allow one to reach the

point K ¼ 1=2.
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The asymptotic formulas for the sound velocity vð�Þ follow
from Galilean invariance.

The t-V model is also integrable by the Bethe ansatz and

thus it is found to be a TLL when the lattice filling n0 is away
from 0, 1

2
, and 1. In the half-filled case (n0 ¼ 1

2
), for 2t < V

the system also belongs to the TLL universality class, and it is

possible to obtain an analytic expression for the Tomonaga-

Luttinger parameter and the sound velocity

Kð�Þ ¼ 1

2�ð2=�Þcos�1ð�Þ ; vð�Þ ¼�vF

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
p

cos�1ð�Þ ;

(134)

where � ¼ V=2t and vF ¼ 2ta=ℏ, a being the lattice pa-

rameter. Away from half-filling, one has to resort in general to

solving numerically the Bethe-ansatz equations to obtain K
and v (Giamarchi, 2004).

Finally, the Bose-Hubbard model is a TLL for noninteger

filling and also for sufficiently weak interactions at integer

filling [U=t < 0:297� 0:001 for lattice filling n0 ¼ 1
(Kühner et al., 2000)]. Being a nonintegrable model, no

analytic expressions are available for the Tomonaga-

Luttinger parameter and the sound velocity. These parameters
must be therefore obtained from numerical calculations.

Nevertheless, for n0 
 1 and U=t � 1, the following results

have been obtained, to leading order in U=t from a strong-

coupling expansion (Cazalilla, 2004a)

K’1þ 4t

�U
sin�n0; v’vB

�

1�4t

U
n0cos�n0

�

; (135)

where vB ¼ ta sinð�n0Þ=ℏ.
The Tomonaga-Luttinger liquid parameters can be com-

puted numerically for more complicated models [see, e.g., the

case of spin ladders (Hikihara and Furusaki, 2001; Bouillot

et al., 2011)]. Typically one determines numerically the
compressibility. For DMRG, it is convenient to determine

K directly from the static correlation functions, but methods

based on twisted boundary conditions, finite-size effects, or

direct computation of the spectrum (Giamarchi, 2004) are

also possible. Proceeding in such a way, one efficiently

combines numerical and analytical insights since thermody-
namic quantities are less sensitive to finite-size effects and

can thus be accurately obtained numerically. It is then pos-

sible to plug the obtained values of v and K in the analytic

expressions of the asymptotics of the correlation functions,

which are more sensitive to finite-size effects and thus harder

to calculate purely numerically. Such a combination has
allowed for quantitative tests (Klanjšek et al., 2008;

Thielemann et al., 2009a) of the Tomonaga-Luttinger liquid

as we will see in Sec. VIII.

C. The Thomas-Fermi approximation in 1D

In the presence of harmonic trapping along the longitudinal

direction, 1D Bose gases become inhomogeneous, finite-size

systems. As a result of the finite size, a crossover between the

noninteracting BEC regime and the quasi-long-range ordered

regime becomes observable. Meanwhile, inhomogeneity

makes the excitation spectrum different from the uniform
case previously discussed. The equilibrium properties have

been discussed theoretically (Dunjko et al., 2001; Petrov

et al., 2004), while the consequences of harmonic trapping on

the collective excitations were analyzed by an hydrodynamic

approach (Ma and Ho, 1999; Petrov et al., 2000; Menotti and

Stringari, 2002; Gangardt and Shlyapnikov, 2006).
As we saw in Sec. III.B the dimensionless parameter � ¼

c=	0 ¼ mg=ℏ2	0 distinguishes the weakly (� � 1) and

strongly (� � 1) interacting regimes. In the presence of the

axial harmonic potential VðxÞ ¼ m!2x2=2, one can introduce
another dimensionless quantity,

� ¼ c‘HO ¼ mg‘HO
ℏ
2

; (136)

where ‘HO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=m!
p

is oscillator length. This parameter can
be regarded as the ratio between the oscillator length and the

interaction length rs ¼ ℏ
2=mg. The weakly interacting re-

gime is characterized by � � 1, which means that the rela-

tive motion of two particles approaching each other is

governed by the harmonic trapping rather than the interpar-

ticle distance.

In the weakly interacting limit (� � 1), we expect the
system to behave almost like a BEC, and thus the GP equation

(2) introduced in Sec. II.A can be used to estimate the

(ground-state) density profile as 	0ðxÞ ¼ j�0ðxÞj2, where

we write the order parameter as �0ðrÞ ¼ �0ðxÞ�0ðr?Þ
[cf. Eq. (8)]. For N � 1 and � � 1, the Thomas-Fermi

(TF) approximation becomes accurate (see discussion in
Sec. II.A and references therein). Hence,

	0ðxÞ ¼
�

g

�

1� x2

R2
TF

�

; (137)

where RTF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�=m!2
p

is the Thomas-Fermi radius.

Imposing the normalization condition
RRTF

�RTF
dx	ðxÞ ¼ N,

one obtains the expression of the chemical potential � as a

function of the number of particles N,

FIG. 8 (color online). Tomonaga-Luttinger liquid parameters for

the Lieb-Liniger model (cf. Sec. III.B) as a function of � ¼
Mg=ℏ2	0. vF ¼ ℏvF ¼ ℏ�	0=m is the Fermi velocity of a Fermi

gas of the same density 	0. The dashed lines correspond to the

asymptotic results following from Eq. (133). From Cazalilla, 2004b.
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� ¼ ℏ!

�
3N�

4
ffiffiffi

2
p

�
2=3

; (138)

where the parameter � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mg2=ℏ3!
p

. The condition for the

validity of the approximation � � 1 then takes the form

ð�2=NÞ2=3 � 1, i.e., either � � 1 and any N or � � 1,
but N � �2. The latter condition reflects the fact that the

weakly interacting regime requires a sufficiently large num-

ber of particles. Since 	0ð0Þ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2�=ð2mg2Þ

p

, the regime of

a weakly interacting gas also is characterized by the healing

length � being much larger than the interparticle distance

1=	0ð0Þ.
The limit � � 1 and N � �2 corresponds to the case of

the TG gas. In this case, the mapping to a free-fermion

Hamiltonian gives a chemical potential � ¼ Nℏ! and the

density distribution (Mehta, 2004)

	0ðxÞ ¼
m!RTF

�ℏ

�

1� x2

R2
TF

�
1=2

: (139)

Note that a similar density profile was also obtained in the
case of the Calogero-Sutherland model, as discussed in

Sec. III.E. Finally, when the healing length � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2=m�

p

�
RTF, i.e., � � ℏ!, we can neglect the nonlinear term in the

GP equation and find the density profile of the ground state in

the form of a Gaussian�0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi

�=g
p

e�x2=ð2‘2
HO

Þ. The chemi-
cal potential is then � ¼ N�ℏ!=

ffiffiffiffi
�

p
, and this regime is

obtained for � � 1=N. This regime corresponds to interac-

tions so weak that the system is forming a true BEC at zero

temperature. The resulting zero temperature crossover dia-

gram is represented on Fig. 9.

A more general approach to the interacting Bose gas in a
trap can be developed (Dunjko et al., 2001). If the trapping

potential is sufficiently shallow, one can assume, in the spirit

of the Thomas-Fermi approximation, that the ground-state

energy for a given density profile 	0ðxÞ can be written as the

integral P½	0� ¼
R
dxe½	0ðxÞ�, where eð	0Þ is the energy per

unit length of a uniform interacting Bose gas of mean density

	0. The ground-state energy in the presence of the trapping

potential Vext and chemical potential � can be approximated

as

P½	0ðxÞ� þ
Z

ðVextðxÞ ��Þ	0ðxÞdx: (140)

Varying the functional (140) with respect to the particle
density 	0ðxÞ, one obtains

�
@eð	0Þ
@	0

�

	0¼	0ðxÞ
þ VextðxÞ ¼ �: (141)

In the weakly interacting (‘‘mean-field’’) limit eð	0Þ ¼
g	2

0=2, and for a harmonic trap, Eq. (141) reduces to

Eq. (137). In the opposite TG limit, Eq. (139) is recovered.

Density profiles in the intermediate regime can be computed

using eð	0Þ derived from the numerical solution of the Bethe-

ansatz equation (Dunjko et al., 2001).

D. Trapped bosons at finite temperature

We now turn to the properties of trapped 1D Bose gases at

finite temperature and, in particular, the different regimes of

quantum degeneracy (Petrov et al., 2000; Petrov et al.,

2004). In a noninteracting 1D Bose gas in a harmonic trap,
a sharp crossover from the classical regime to the trapped

BEC is obtained (Ketterle and van Druten, 1996). The origin

of the sharp crossover is related to the discrete nature of the

levels in the trap. Interactions can suppress this sharp cross-

over by smearing out the discreteness of the levels. The

criterion for the persistence of the sharp crossover is that
the average interaction between particles is much smaller

than the level spacing ℏ!. With a Gaussian profile for

the density, the average interaction per particle is

�gNðm!=ℏÞ1=2. The criterion for persistence of the sharp

crossover is then � � 1=N.

In the Thomas-Fermi regime, it is convenient to expand the

Hamiltonian to second order in terms of phase and amplitude
as was done in Eqs. (4) and (5),

Ĥ ¼
Z

dx

�
ℏ
2	0ðxÞ
2m

ð@x
̂ðxÞÞ2 þ
ℏ
2½@x�	̂ðxÞ�2
8m	0ðxÞ

þ g

2
½�	̂ðxÞ�2

�

: (142)

In the limit of high temperature, we can treat the fluctuations

of �	̂ ¼ 	̂ðxÞ � 	0ðxÞ and 
̂ as purely classical. We consider

first the fluctuations of the operator �	̂. Since the

Hamiltonian equation (142) is quadratic, we can easily com-

pute the correlation functions h½�	̂ðxÞ � �	̂ðx0Þ�2i. In order to
simplify further the calculation, we make 	0ðxÞ ¼ 	0ð0Þ
in Eq. (142). We then find that h½�	̂ðxÞ��	̂ðx0Þ�2i¼
kBT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8m	0ð0Þ=ℏ2g
p

ð1�e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mg	0ð0Þ

p
jx�x0j=ℏÞ. The relative den-

sity fluctuation (Petrov et al., 2000), h½�	̂ðxÞ � �	̂ðx0Þ�2i=
	0ð0Þ2 � kBT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8mg2=ℏ2�3
p

, and is negligible provided T <

Td ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2�3=8mg2

p

. With Eq. (138), we have Td ¼ 3
16
Nℏ!,

and Td is just the degeneracy temperature. Below Td, the

density profile of the gas is given by Eq. (137) and above Td it
reduces to the one of a classical gas. We now turn to the phase

fluctuations, using this time the Hamiltonian Hphase ¼
R
dxℏ2	0ðxÞð@x
̂Þ2=ð2mÞ. By the change of variable 	0ð0Þs ¼

R
x
0 	0ðx0Þdx0, we obtain the phase fluctuations as h½
̂ðxÞ �


̂ðx0Þ�2i ¼ ½�kBTm=2ℏ2	0ð0Þ�jsðxÞ � sðx0Þj. With the den-

sity profile (137), sðxÞ ¼ RTF ln½ðRTF þ xÞ=ðRTF � xÞ�=2
and (Petrov et al., 2000) h½
̂ðxÞ� 
̂ðx0Þ�2i ¼ ½�kBTm=
4ℏ2	0ð0Þ�RTF lnfðRTF þ xÞðRTF � x0Þ=½ðRTF � xÞðRTF þ x0Þ�g.
This time, the overall amplitude of the fluctuation is controlled

by the parameter T=Tph, where Tph ¼ ðℏ!=�ÞTd � Td since

1E-3 0.01 0.1 1 10 100

10

100

1000

Tonks

gas
Gaussian

BEC

Thomas-Fermi

BEC

N

α

FIG. 9. Zero-temperature crossover diagram for a 1D Bose gas in

a harmonic potential. For � � 1=N, the ground state is a BEC. For

� �
ffiffiffiffi

N
p

, the ground state is a TG gas. In between, the ground state

is in the Thomas-Fermi regime. From Petrov et al., 2004.
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we are in the Thomas-Fermi regime. For T < Tph, both phase

and density fluctuations are negligible, and the system behaves

as a true BEC when Tph < T < Td, there are no density

fluctuations, but phase fluctuations are present. Such a regime

is called quasicondensate. ForT > Td, we have a classical gas.

We note that Tph � ℏ!ðN=�2Þ1=3, so as N is increased, the

width of the quasicondensate regime broadens.

The resulting crossover diagram at finite temperature, as

computed by Petrov et al. (2000), is shown in Fig. 10. It can

be summarized as follows: For N � �2, the decrease of the

temperature to below Td leads to the appearance of a quasi-
condensate that becomes a true condensate below Tph. For

N < �2, the system lies in the Tonks regime.

E. Collective excitations

We now turn to the collective excitations of the trapped

gas. We generalize the Tomonaga-Luttinger liquid

Hamiltonian and bosonization method to an inhomogeneous

system (Petrov et al., 2004; Citro et al., 2008). The inho-
mogeneous Tomonaga-Luttinger liquid Hamiltonian is

Ĥ¼
Z R

�R
dx

ℏvðxÞ
2�

�

KðxÞ½@x
̂ðxÞ�2þ
½@x�̂ðxÞ�2

KðxÞ

�

; (143)

where the Tomonaga-Luttinger parameters are given by

vðxÞKðxÞ ¼ ℏ�	0ðxÞ
m

;
vðxÞ
KðxÞ ¼

1

�
@	0

�½	0ðxÞ�: (144)

The field �̂ðx; �Þ obeys the boundary conditions

�̂ðR; �Þ ¼ �1 and �̂ð�R; �Þ ¼ �0; (145)

which amount to require that no current is going in or out at
the edges of the system. The fields satisfy the following

equations of motion (Safi and Schulz, 1995):

@��̂ðx; �Þ ¼ vðxÞKðxÞ@x
̂ðx; �Þ;

@�
̂ðx; �Þ ¼ @x

�
vðxÞ
KðxÞ @x�̂ðx; �Þ

�

:
(146)

Noting that density operator �	̂ ¼ �@x�̂=� and v̂ ¼
ℏ@x
̂=m, the above equations are the operator 1D equivalent
of the linearized hydrodynamic equations discussed in

Sec. II.A and employed by Menotti and Stringari (2002).

Combining the two equations (146), using the boundary

condition (145), and Fourier transforming one obtains the

eigenvalue equation for the normal modes of the operator

�̂ðxÞ:

�!2
n’nðxÞ ¼ vðxÞKðxÞ@x

�
vðxÞ
KðxÞ @x’nðxÞ

�

; (147)

with boundary conditions ’nð�RÞ ¼ 0. The eigenfunctions

’n are normalized as

Z

dx
’nðxÞ’mðxÞ
vðxÞKðxÞ ¼ �n;m: (148)

The solution of the eigenvalue equation (147) gives access to

the eigenmodes of the trapped gas. The zero frequency

solution is immediately obtained by substituting @x’ ¼
KðxÞ=uðxÞ into Eq. (147). With ’ðxÞ ¼ �	0ðxÞ, a solution

with !n ¼ !, that describes that the harmonic oscillations of

the center of mass of the cloud (the Kohn mode) is obtained.
For the particular case (Petrov et al., 2004; Citro et al., 2008)

vðxÞ ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

R2

s

; KðxÞ ¼ K0

�

1� x2

R2

�
�
; (149)

the solutions ’nðxÞ of Eq. (147) are obtained in terms of

Gegenbauer (or ultraspherical) polynomials (Abramowitz
and Stegun, 1972):

’nðxÞ ¼ An

�

1� x2

R2

�
�þ1=2

Cð�þ1Þ
n

�
x

R

�

; (150)

!2
n ¼

v2
0

R2
ðnþ 1Þðnþ 2�þ 1Þ; (151)

where An is a normalization factor. The frequencies in

Eq. (151) are in agreement with the results of Menotti and

Stringari (2002). In the case of � ¼ 1=2, the dependence of

vðxÞ and KðxÞ is the one predicted by the mean-field approach

of Sec. V.C [Eq. (5)]. The Gegenbauer polynomials in

Eq. (151) can then be expressed in terms of the simpler
Legendre polynomials (Petrov et al., 2000). Another inter-

esting limit is � ¼ 0, which corresponds to the case of the

Tonks-Girardeau gas, where the Gegenbauer polynomials

reduce to Chebyshev polynomials. Then, !n ¼ ðnþ 1Þ!,

as expected for fermions in a harmonic potential.

VI. PERTURBATIONS ON 1D SUPERFLUIDS

Since the Tomonaga-Luttinger liquid theory reviewed in

Sec. V incorporates the interaction effects into a relatively
simple quadratic Hamiltonian, it provides a convenient start-

ing point to study the effects of various external potentials on

1D superfluid systems. In this section, we consider the effect

FIG. 10. Crossover diagram for a trapped 1D gas at finite tem-

perature for � ¼ 10. For N � �2, the system is forming a TG gas

below the degeneracy temperature Td � Nℏ!. For N � �2, the

system is a quasicondensate when Tph � T � Td. For T � Tph �
N1=3, phase fluctuations are suppressed and the system is a true

BEC. From Petrov et al., 2000.
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that three different kinds of external potentials have on 1D

superfluids. First, we discuss the effect of a periodic potential,

i.e., a lattice. As mentioned in Sec. IV.B, this can lead to

interaction driven insulating phases (Mott insulators). Then
we introduce the random potential and disorder driven insu-

lating phases (Anderson insulators). We conclude with the

intermediate case of a quasiperiodic potential, for which

recent cold atomic experiments have provided an experimen-

tal realization (Roati et al., 2008).

A. Mott transition

1. Periodic potentials and the sine-Gordon model

In this section, we consider the effect of a periodic poten-
tial on an interacting boson system. Its effect can be described

in two complementary ways. If the potential is weak, it can be

added as a perturbation on the interacting bosons in the

continuum. However, if the potential is strong, as described

in Sec. II.C, it is better to start from a lattice model such as the

extended Bose-Hubbard model (14), or its descendants. As

we show below, both approaches lead to the same low-energy
field theory.

We begin by considering a weak periodic potential

VextðxÞ ¼ V0 cosðGxÞ. The addition of this term to the

Hamiltonian (9) reduces its invariance under continuous

space translations to the discrete group of lattice translations

x ! xþ 2�m=G, with integer m. As noted by Haldane,
(1981a), using Eq. (112) for the density leads to an additional

term ĤV [see, e.g., Giamarchi (2004) for a detailed deriva-

tion] in the TLL Hamiltonian, Ĥ [cf. Eq. (114)]

ĤV ¼ ~gu
�

Z

dx cos½2p�̂ðxÞ þ x��: (152)

For a weak potential, ~gu � �	0V0ðV0=�Þn�1 is the bare

coupling. In Eq. (152), we have retained the term with the

smallest value of � ¼ nG� 2p�	0 (n, p being integers),

which measures the degree of incommensurability of the

potential; � ¼ 0 corresponds to a commensurate number
of bosons per site. For p ¼ 1, there is an integer number of

bosons per site since 	0 ¼ nG=ð2�Þ, while higher values of

p, such as p ¼ 2, correspond (modulo an integer) to one

boson every two sites, etc. � is thus a measure of the doping

of the system away from this commensurate value. There are

some subtle issues depending on whether one works at con-

stant density or at constant chemical potential, and we refer
the reader to Giamarchi (2004) for more details on that point.

Remarkably, the same effective model is obtained if one

starts directly from a lattice model, such as the Hubbard

model. In that case, the perturbation (152) arises because,

in a lattice system, the quasimomentum is only conserved

modulo a reciprocal lattice vector. Terms in which the qua-
simomentum of the final state differ from the one of the initial

state by a nonzero multiple of G, called umklapp terms, can

be obtained by using Eq. (112) and the condition that on a

lattice (e.g., for one particle per site) one has 2�	0rn ¼ 2�n
and thus ei2�	0rn ¼ 1. For one particle per site the role of

umklapp processes is to create a Mott insulator. The role of

higher order umklapps, allowing an interaction process to
transfer several times a vector of the reciprocal lattice, and its

role in leading to Mott-insulating phases was pointed out by

Giamarchi (1997), Giamarchi and Millis (1992). The final

result is exactly Eq. (152) with the same condition for �. The
main difference is in the amplitude of this term which now is

proportional to the interaction itself.
Hence, the model (114), and ĤsG ¼ Ĥ þ ĤV [after

Eq. (152)], is thus able to give a complete description of

the effects of periodic potential or lattice in a 1D interacting

bosonic system. This description depends on the value of the

Tomonaga-Luttinger parameter, which is a measure of the

interactions, the lattice potential, and the doping � away from
commensurability. One immediately sees that two different

types of transition can be expected. In one case, one remains

commensurate � ¼ 0. The term ĤV is a simple cosine. The

corresponding model is known as the ‘‘sine-Gordon’’ (sG)

model for historical reasons (Coleman, 1988). The transition

can then occur as a function of the strength of the interactions,

or in our low-energy model, as a function of the change of the
Tomonaga-Luttinger parameter K. Alternatively, we can fix

the interactions and change the degree of incommensurability

� inside the term ĤV . Next we examine these two type of

transitions.

2. Commensurate transition

The first type of transition, which we denote Mott-U
transition, corresponds to keeping the density fixed, and

commensurate � ¼ 0 and varying the Luttinger parameter.
The physics of such a transition can be easily understood by

looking at the term ĤV to the Hamiltonian. When ĤV (rather

than Ĥ) dominates the low-temperature properties of the

system, the fluctuations of the field �̂ðxÞ are strongly sup-

pressed, and �̂ can order. Since ordering �̂ðxÞmeans ordering

the density, it follows that the bosons are localized at the

potential minima and the system becomes a Mott insulator
(MI). To see this, consider the limit ~gu ! �1 for � ¼ 0. In

this limit, hcos2p�̂ðxÞi ! 1 and the ground-state density

following from Eq. (112) is h	̂ðxÞi ’ 	0 þ 	0

P

m>0Am	
cosmðnGx=pÞ. This function is periodic for x ! xþ 2�p

nG
l

(l being an integer). The insulating state is thus a system

where, on average, n0 ¼ n=p bosons are localized per

potential minimum. Note that there is no violation of the

Mermin-Wagner-Hohenberg theorem since, in the presence

of the potential, the symmetry that is being broken is the
discrete invariance under lattice translations, which is pos-

sible at T ¼ 0 even in 1D.

To quantitatively study the effects of Eq. (152) on the

low-temperature properties of the system, first consider a

commensurate potential, and write renormalization-group

equations. The RG flow maps one effective Hamiltonian

ĤsG ¼ Ĥ þ ĤV characterized by a set of parameters

ðv;K; guÞ and a short-distance cutoff a0 onto a new Ĥ0
sG

characterized by ðv0; K0; g0uÞ and a new cutoff scale a00 > a0
by progressively integrating out high-energy degrees of free-
dom. This method is well documented (see, e.g., Giamarchi,

2004) so we only quote the results. To lowest order in gu, the
RG flow is described by the following set of differential

equations for ½vð‘Þ; Kð‘Þ; guð‘Þ� as functions of ‘ ¼
lnða00=a0Þ,

dgu
d‘

¼ ð2� p2KÞgu;
dK

d‘
¼ �g2uK

2; (153)
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where gu ¼ ~gua
2
0=ℏv � 1 is a dimensionless coupling. In

addition to these equations, dvð‘Þ=d‘ ¼ 0 to all orders due to
the Lorentz invariance of the theory. Equations (153) describe

a BKT flow (Kosterlitz and Thouless, 1973; Kosterlitz, 1974).

This flow has two different regimes, which asymptotically

correspond to two different phases. For weak coupling, the

separatrix between them is given by K ¼ 2=p2 þ 2gu=p
3. It

delimits two phases. (i) A phase in which guðlÞ ! 0: This
corresponds to a Tomonaga-Luttinger liquid phase, in which

the decay of the correlations is algebraic, and the lattice plays

asymptotically no role beyond a renormalization of the pa-

rameters entering in the Tomonaga-Luttinger Hamiltonian.

(ii) A phase in which guðlÞ scales up: This phase corresponds
to ordering of �̂. As discussed, this means that the particles

are localized and correspond to a Mott insulator. It follows

from the RG, or a variational treatment of the Hamiltonian

(Giamarchi, 2004), that a gap G opens in the spectrum.

Perturbative values are G=�� g1=ð2�KÞ
u for 2� K � 1, but

since the sine-Gordon model is integrable, exact values are

also available (Gogolin et al., 1999; Lukyanov and

Zamolodchikov, 2001; Giamarchi, 2004).

Hence, generically for any commensurate filling, the sys-

tem can undergo a transition between a TLL and a MI. At the

transition point, the Luttinger parameter K takes a universal

value that depends only on the lattice filling: K� ¼ 2=p2.

Since K=v is proportional to the compressibility and vK to

the Kohn stiffness (cf. Sec. V.A), both compressibility and

Kohn stiffness jump discontinuously to zero when entering

the MI phase. The exponents of the various correlations have

a universal algebraic decay at the transition. In the MI phase,

the spectrum is gapped and the correlation functions decay

exponentially.

We next examine some simple cases of the above transi-

tion. For p ¼ 1, which corresponds to an integer number of

particles per site, relevant the Bose-Hubbard model or the

Lieb-Liniger gas in a periodic potential, the critical value is

K�
1 ¼ 2. The TLL phase is thus dominated by superfluid

fluctuations since K > 2. One has a superfluid-MI transition.

At the transition the one-particle correlation function is thus

g1ðxÞ � jxj�1=4. For one particle every two sites, one has

p ¼ 2 and thus K�
2 ¼ 1=2. Note that this critical value is

beyond the reach of a model with only local interactions such

as the Lieb-Liniger or the Bose-Hubbard (BH) models, as for

such models 1<K <1. A MI phase with one particle every

two sites can thus never occur in those models. This is quite

natural since it would correspond to an ordered phase of the

form 1010101010 and a purely local interaction cannot hold

the particles one site apart. In order to stabilize such MI

phases, one needs longer range interactions, for example,

nearest neighbor ones as in the t� V or extended BH models,

or dipolar interactions (Citro et al., 2008; Burnell et al.,

2009). In those cases, K�
2 ¼ 1=2 can be reached, and the MI

phase appears. Note that the critical behavior of such a

transition is also BKT-like but with different values for the

universal jump and for the correlation functions. For the

transition with one particle every two sites g1ðxÞ � jxj�1.

Moreover, logarithmic corrections to this scaling results exist

in some cases (Giamarchi and Schulz, 1989; Giamarchi,

2004). The transport properties can be also computed near

these phase transitions and we refer the reader to the literature

(Giamarchi, 1991; 1992; 2004; Rosch and Andrei, 2000;

Controzzi et al., 2001) for an extended discussion. Finally,

in systems with nearest-neighbor interactions such as the

extended BH model at unit lattice filling, other interesting

phases, besides the MI, can also appear (Dalla Torre et al.,

2006; Lee, Lee, and Yang, 2007; Berg et al., 2008).

The properties discussed above and summarized in Fig. 11

agree very well with the numerical results for the BH model

of Sec. IV.B.2 and with results on the extended BH model

(Kühner et al., 2000), in which a value K� ¼ 1=2 was

numerically found for the transition from the TLL and the

MI with one boson every two sites.
As a final remark, we note that although for the BH model,

which corresponds to the strong lattice case, the phase dia-

gram is more or less independent on the dimension, 1D

systems in presence of a weak periodic potential present a

very interesting feature. Indeed from the scaling properties

above, we see that in 1D one can realize a MI phase even for a

very weak periodic potential provided that the interactions are

strong enough (e.g., K < 2 for one boson per site). This is a

true quantum effect coming from the interferences of the

particles on the periodic potential that can lead to localization

even if the periodic potential is much weaker than the kinetic

energy. In the TG limit (K ¼ 1) this would simply correspond

to free fermions moving in a periodic potential with exactly

2kF periodicity, where kF is the Fermi wave vector. In that

case, an arbitrarily weak potential will open a gap. Such a

feature would not be present in higher dimensions where a

strong lattice potential is needed to stabilize the Mott insula-

tor phase, at least for the case of local interactions.

3. Incommensurate transition

The situation is drastically different when the system is

incommensurate. Consider the case for which the commen-

surate system � ¼ 0 is a MI, i.e., K < K� and consider the

effect of increasing � on the physics of the system. Naively,

the presence of a x� term in the argument of the cosine means

FIG. 11 (color online). Phase diagram for commensurate bosons

as a function of the chemical potential � and the interactions. Only

the commensurabilities of one boson per site and one boson every

two sites have been shown. The Mott phase for the bosons occurs

for a commensurate filling and depends on the strength of the

interactions. The Tomonaga-Luttinger liquid (TLL) parameters

take a universal value both for the Mott-U and Mott-� transitions.

The value depends on the order of commensurability. From

Giamarchi, 2004.
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that this operator oscillates in space and thus at long length

scales it will be wiped out, its sole effect being a renormal-

ization of the TLL parameters. This would lead us back to the

purely quadratic TLL Hamiltonian. This is a reflection of how
the doped system at low energies always behaves as a TLL

with algebraically decaying correlations. In order to have

finite doping, since the MI phase is gapped, one needs to

apply a chemical potential that exceeds the gap G. Therefore,

there is the possibility of having another kind of MI-SF

transition, this time driven by a change of the system density.
This transition is sometimes referred to as a Mott-� transition.

Although it is not obvious in terms of the original boson

degrees of freedom, the bosonization representation allows

us to relate the Mott-� transition to a two-dimensional

classical phase transition, known as the commensurate-

incommensurate (C-IC) phase transition (Japaridze and

Nersesyan, 1978; Pokrovsky and Talapov, 1979; Schulz,
1980). The latter describes absorption of classical particles

on a periodic substrate. The particle density is tuned from a

value that is commensurate to one that is incommensurate

with the substrate periodicity. It is thus possible to use the

previous knowledge on the critical exponents of the C-IC

transition to obtain the Mott-� transition critical exponents.
In other words, the universality class of the Mott-� and C-IC

transitions is the same.

In order to obtain the critical properties of the Mott-�
transition, two approaches are possible. One is to use the

standard renormalization-group procedure and establish

equations involving the doping � (Giamarchi, 1991; 2004).

Although these equations are very useful in deriving some of
the physical quantities, especially away from the transition

itself, they flow to strong coupling when one approaches the

transition line, making it difficult to extract the critical ex-

ponents. It is thus especially useful to use a technique known

as fermionization (Luther and Emery, 1974; Schulz, 1980;

Giamarchi, 2004) to deal with this issue. The idea is simply to
use the fact that, in a similar way, one can represent bosonic

single-particle operators by collective variables as described

by Sec. V, one also represent fermionic particles. It is thus

possible to map the sine-Gordon Hamiltonian to a fictitious

Hamiltonian of interacting ‘‘fermions.’’ We will not detail

here the relation between fermions and collective variables

(the density operator is the same than for bosons, but a single-
particle operator is slightly different) since it has been well

described (Giamarchi, 2004) and simply quote the following

final result (Schulz, 1980):

Ĥ¼
X

k

ℏvkðĉ y
k;R ĉ k;R� ĉ y

k;L ĉ k;LÞþ Ĥint

þgu
X

k

ðĉ y
k;R ĉ k;LþH:c:Þ��

X

k

ðĉ y
k;R ĉ k;Rþĉ y

k;L ĉ k;LÞ;

(154)

where Ĥint is an interaction term between the fermions. The

above Hamiltonian describes right and left moving fermions

(R and L) indices, with a Dirac-like linear dispersion con-

trolled by the velocity v. The fermions represent the soliton

excitations of the density field �̂ðxÞ, i.e., configurations in

which �̂ðxÞ goes from one of the minima of the cosine to the
next, thereby changing by ��=p2. The interaction term

depends on the commensurability of the system and is

proportional to Kp2 � 1=ðKp2Þ. So while in general the

fermions interact making the fermionic theory as difficult to

solve as the original sine-Gordon one, for a special value K0

of the Luttinger parameter, this interaction disappears leading
to a free fermionic theory. For p ¼ 1, one has K0 ¼ 1 that

corresponds to the TG limit, in which case the fermions in

Eq. (154) are nothing but the spinless fermions of Eq. (28).

This technique, introduced by Luther and Emery (1974), has

been used in several contexts for 1D systems (Giamarchi,

2004). It provides a useful solution when the nonlinear
excitations of the sine-Gordon model are important to keep

and when a simple quadratic approximation of the cosine

would be insufficient.

The former Mott term is now hybridizing the right and

left movers and thus opens a gap in the initially gapless

spectrum. The energy spectrum is ��ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvkÞ2 þ g2u
p

.

Fermionization also allows us to make quite rigorous in this

context the concept of the upper and lower Hubbard bands,
which now correspond to the two possible signs of ��ðkÞ. The
corresponding ‘‘free’’ particles are the solitons of �̂ðxÞ,
which correspond to the defects in the perfect arrangement
existing in the MI phase. For example, starting from

10101010101010, configurations such as 10110101010010

would contain one soliton and one antisoliton. Thus, � cor-

responds to the average density of fermions. If � is nonzero,

the chemical potential lies in either the upper or lower

Hubbard band, and one thus recovers that there are gapless

excitations described by the fermions. Therefore, in this
language the Mott-� transition can be understood

(Giamarchi, 1997) as the doping of a band insulator.

Using the fermionization approach, one can also extract

the critical behavior, which is markedly different from the

commensurate case. Right at the transition � ! 0þ, the

dynamical exponent relating space and time !� kz is
z ¼ 2 contrary to the commensurate case for which z ¼ 1
because of Lorentz invariance. The effective velocity of

excitations is for 0< � � gu=v

v� ¼
�
d�ðkÞ
dk

�

k¼��
’ �v2�

gu
; (155)

and goes to zero at the transition. The compressibility, which

can be computed by dN=d�, diverges at the transition, before

going to zero in the Mott phase. The Kohn stiffnessD / v�K�

vanishes continuously with the doping � since the Tomonaga-

Luttinger parameter is a constant. Interestingly, the exponents
of the various correlation functions at the transition are

universal and can be determined by using the free-fermion

value. For example, the density correlator of the fermions

decays as jxj�2. Since before the mapping the correlation

would have corresponded to an exponent 2=K, this means that

at the Mott-� transition the Tomonaga-Luttinger parameter
takes the universal value K0 ¼ 1. For a generic commensu-

rability p, it is easy to check that K0 ¼ 1=p2. This is exactly

half of the universal value of the commensurate Mott-U
transition. A summary of is shown in Fig. 11. Interestingly,

several of these scalings for both the commensurate and

incommensurate case are also valid and extendable to higher

dimensions (Fisher et al., 1989).
These considerations also directly apply to the case of spin

chains and ladders with a gapped phase and we refer the
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reader to the literature (Chitra and Giamarchi, 1997; Furusaki

and Zhang, 1999; Giamarchi and Tsvelik, 1999) and to

Sec. VIII for more details on this point.

B. Disorder

Another type of perturbation is provided by a disordered

potential. For noninteracting particles, disorder can give rise

to Anderson localization: the single-particle eigenfunctions
of the Hamiltonian decay exponentially over a characteristic

length �l, called the localization length (Anderson, 1958).

Indeed, the effect of disorder depends on dimensionality. In

1D, all eigenstates are localized for any nonzero disorder

strength (Mott and Twose, 1961). Exact solutions

(Berezinskii, 1974; Abrikosov and Rhyzkin, 1978; Gogolin,

1982; Efetov, 1983) can be devised. For noninteracting par-
ticles, the localization length is of the order of the mean-free

path in 1D. Higher dimensions (Abrahams et al., 1979; Efetov

et al., 1980; Efetov, 1983) lead either to a full localization,

albeit with a potentially exponentially large localization length

in 2D, or to the existence of a mobility edge separating

localized states (near band edges) from diffusive states (at
band center) in 3D. Recently, cold atomic gases have allowed

one to directly observe the localization of noninteracting 1D

particles (Billy et al., 2008; Roati et al., 2008).

Although the noninteracting case is conceptually well

understood, taking into account the combined effects of

disorder and interactions is a formidable problem. For
fermions, the noninteracting case is a good starting point

and the effects of interactions can be at least tackled in a

perturbative fashion (Altshuler and Aronov, 1985; Lee and

Ramakhrishnan, 1985) or using renormalization-group tech-

niques (Finkelstein, 1984).

Such an approach is impossible with bosons since the

noninteracting disordered bosonic case is pathological. The
ground state in the noninteracting case is a highly inhomoge-

neous Bose condensate in which all particles are in the lowest

eigenstate of the Hamiltonian (which is necessarily local-

ized). In the absence of repulsion, a macroscopic number of

particles are thus trapped in a finite region of space. Such a

state is clearly unstable to the introduction of even the weak-
est interaction. The interactions should thus be included from

the start. Alternatively, the limit of very strong interactions

can be considered starting from a crystal phase of particles

(fermions or bosons since statistics in that case does not

matter) (Giamarchi, 2003).

1. Incommensurate filling

We next consider the Hamiltonian of disordered interacting

bosons. For convenience and generality, we deal with the case

of bosons on a lattice. Similar results and methods are of

course applicable in the continuum. The Hamiltonian reads

Ĥ¼
XL

i¼1

�

� tiðb̂yi b̂iþ1þH:c:Þ��in̂iþ
U

2
b̂yi b̂

y
i b̂ib̂i

�

: (156)

The ti describe random hopping from site to site. This type of

disorder is particularly pertinent for spin chains (see
Sec. II.D) since in that case it corresponds to the case of

random spin exchange (Hong et al., 2010). �i is a random

chemical potential. Note that in the case of cold atomic gases

�i also contains in general the confining potential. Other types
of disorder (random interactions, etc.) can of course also be

treated, but we confine our discussion to the above two cases.
Note that for the case of hard-core bosons (or spins) these two

types of disorder have an important difference. The first one

respects the particle-hole symmetry of the problem (for soft-

core bosons no such particle-hole symmetry exists), while the

second, being a random chemical potential, breaks it for each

realization of the disorder, even if it is still respected in
average.

Just as for the case of a periodic potential, we use the

bosonization method introduced in Sec. V. We start with the

on-site disorder. Similar results and equations can be derived

for the random hopping. Microscopic disorder is in general

rarely Gaussian. For example, impurities scattered in random

positions represent a Poissonian disorder. It might be impor-
tant for practical cases to carefully take into account the

precise form of such correlations (see, e.g., Lugan et al.,

2009). However, the Gaussian limit is generic if the length

scales over when the properties of the system vary (e.g., the

localization length) and are large compared to the micro-

scopic scale of the disorder. In that case, the central limit
theorem applies. We thus for simplicity discuss the case of

�i�i0 ¼ D�ii0 , where D is the disorder strength.

For the case of incommensurate filling, or for bosons in the

continuum, one can rewrite the coupling to a weak disorder

potential as

Ĥdis ¼
Z

dxVðxÞ	̂ðxÞ; (157)

where VðxÞV?ðx0Þ ¼ D�ðx� x0Þ. Using the boson represen-

tation for the density of Sec. V and keeping only the most

relevant harmonics, one has (Giamarchi and Schulz, 1988)

Ĥdis¼
Z

dxVðxÞ
�

� 1

�
@x�̂ðxÞþ	0ðei2½�	0x��̂ðxÞ�þH:c:Þ

�

:

(158)

The term proportional to @x�̂ describes ‘‘forward’’ scattering

by the random potential. It corresponds to a slowly (compared

to the interparticle spacing 	�1
0 ) varying chemical potential.

This term can be absorbed, for incommensurate cases, in the

quadratic part of the Hamiltonian. It is straightforward to

check that although it leads to exponential decay of density
correlations, it cannot affect the superfluid ones nor change

the conductivity.

The main disorder effects are thus coming from the ‘‘back-

scattering’’ term, i.e., the term for which the momentum

exchanged with the impurities is of the order of 2�	0. This

term can be treated by an RG procedure (Giamarchi and

Schulz, 1988). The RG equations read

dK

dl
¼ �K2

2
~D;

d ~D

dl
¼ ð3� 2KÞ ~D; (159)

where ~D ¼ D=�2u2	0. There is also an additional equation

for the velocity showing that the compressibility is not re-

normalized at this order of the flow. These equations indicate
that both disorder and interactions are renormalized when

disorder (and interactions) is present. The equations for ~D and
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K have a BKT form like those of the Mott transition. There is

a separatrix, depending on both K and ~D, which terminates at

K� ¼ 3=2 and separates a phase in which ~D scales to zero and

a phase in which ~D is relevant. The former clearly corre-

sponds to a superfluid one. In the latter, ~D scales to strong

coupling, and the above equations, which are obtained per-

turbatively, cannot be trusted beyond a certain scale l� such

that ~Dðl�Þ � 1. One can nevertheless infer the properties of

such a strong-coupling phase using various approaches. The

simplest is to note that this phase contains the TG line K ¼ 1

for which the bosons behave as noninteracting fermions,

which in a disordered potential undergo Anderson localiza-

tion. This line has same long-distance properties as a 1D

Anderson insulator, in which all particles are localized for

arbitrary disorder strength. This Anderson localized phase

has been discussed for the Tonks gas by Radić et al. (2010).

The critical properties of the transition can be extracted

from the flow. Since the transition is of the BKT type, K
jumps discontinuously at the transition. Note that contrary to

what happens for the periodic case, the system remains

compressible in the localized phase, as one can see from

the free-fermion limit, or the RG flow. The jump of K
indicates that the Kohn stiffness, which is finite in the super-

fluid, goes to zero in the localized phase. The localization

length, which can be extracted from the flow, diverges at the

transition, in the usual stretched exponential way character-

istic of BKT transition. Note that if one defines a critical

exponent � for the divergence of the localization length, one

has � ¼ 1 in 1D. Disordered bosons in 1D provided the first

derivation of a superfluid-localized transition and the exis-

tence of a localized bosonic phase (Giamarchi and Schulz,

1988). This phase, called Bose glass (BG), was surmised to

exist in higher dimensions as well, and the critical properties

of the SF-BG transition were obtained by general scaling

arguments (Fisher et al., 1989). In addition to 1D bosons, the

same RG methodology has been applied to several systems

using the mapping of Sec. II.D, such as spin chains and

ladders or bosonic ladders. We refer the reader to the litera-

ture for details on those points (Doty and Fisher, 1992;

Orignac and Giamarchi, 1998a; 1998b; Giamarchi, 2004).

If the value of K becomes too large (i.e., the interactions

between the bosons become too weak), then the bosonization

description becomes inadequate to describe the system since

the chemical potential becomes smaller than the disorder

strength. Since the noninteracting line is localized irrespec-

tive of the strength of the disorder, it was suggested that the

separatrix bend down to the point K ¼ 1, ~D ¼ 0, to lead to

the reentrant phase diagram of Fig. 12.

These predictions were confirmed by different methods.

On the analytic side, after bosonization the Hamiltonian bears

resemblance to the one describing the pinning of charge-

density waves (Fukuyama and Lee, 1978). This leads to a

physical interpretation of the Bose-glass phase as a pinned

density wave of bosons. The phase � adjusts in Eq. (158) to

the random phase 2�	0xi, where xi would be the position of

the impurities. For small disorder, the boundary between the

superfluid and the localized phase has recently been reinvesti-

gated (Lugan et al., 2007; Falco et al., 2009; Aleiner et al.,

2010), confirming the general shape of Fig. 12, and giving the

precise position of the boundary.

The transition itself can be studied by two methods,

slightly more approximate than the RG, since they amount

to neglecting the first RG equation and consider that the

interactions are not renormalized by the disorder. The first

method is a self-consistent harmonic approximation, devel-

oped for the pinning of charge-density waves (Suzumura and

Fukuyama, 1983). The second method is a variational ap-

proach based on the replica trick (Giamarchi and Le Doussal,

1996). Although they do not give the correct critical proper-

ties for the reasons just stated, they predict the transition at

K ¼ 3=2. The later method also allows the calculation of the

correlation functions in the localized phase. It, in particular,

shows that a second localization length corresponding to the

localization of the particles in time exists. It also gives access

to the frequency dependence of the conductivity at zero

temperature.

The TG limit allows one to also obtain some of the

properties in the localized phase. The density correlations

can directly be extracted and the single-particle Green’s

function, which can be represented as a Pfaffian (Klein and

Perez, 1990) as discussed in Sec. III.A. This allows one to

show rigorously that for large distance the single-particle

Green’s function of the bosons decays exponentially, and

thus that there is no off-diagonal quasi-long-range order.

For a fixed disorder realization hi, one can compute numeri-

cally the Pfaffian and then average over the different disorder

realizations (Young and Rieger, 1996; Henelius and Girvin,

1998). A similar numerical study of the effect of disorder has

also been done for a discrete binary probability distribution of

random on-site energies (Krutitsky et al., 2008). The proba-

bility distribution of on-site energies �i is given by pð�Þ ¼
p0�ð�Þ þ ð1� p0Þ�ð��U0Þ, where 1� p0 is the concentra-

tion of impurities U0 is the boson-impurity interaction term.

This type of disorder can be obtained in experiments by the

interaction of the bosons with impurity atoms having a large

effective mass (Gavish and Castin, 2005). Hard-core bosons

FIG. 12 (color online). Phase diagram of interacting disordered

bosons (Giamarchi and Schulz, 1987), for incommensurate filling,

in 1D. K is the Tomonaga-Luttinger parameter (K ¼ 1 for non-

interacting bosons, and K decreases for increasing repulsion). ~D is

the strength of the disorder. Noninteracting bosons are localized in a

finite region of space and have thus no thermodynamic limit. The

solid line is the separatrix computed from the RG (see text). The

limit of the superfluid region must bend down (dashed line) for

small interactions to be compatible with the noninteracting limit,

leading to a reentrant superconducting phase. The Bose-glass phase

is a localized, compressible bosonic phase (see text). The question

on whether distinct localized phases could exist (dash-dotted line)

or whether there is only one single localized phase is still open.
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also allow for an exact calculation of the superfluid fraction

defined by Fisher et al. (1973) and Pollock and Ceperley

(1987).

The numerical results show that for small t=U0 the binary
disorder destroys the superfluidity in the thermodynamic

limit in a similar manner as for Gaussian disorder. A study

of binary disorder in case of finite but large U has been

performed with strong-coupling expansions and exact diago-

nalization by Krutitsky et al. (2008).

Although the bosonization approach is very efficient to
describe the moderately and strongly interacting bosons, it is,

as mentioned, not applicable when the interactions become

weak or alternatively if the disorder become strong. If the

disorder is very strong, one has a priori even to take into

account broad distributions for the various parameters. An

efficient real space renormalization-group technique (Fisher,

1994) has been developed to renormalize distribution of
coupling constants. If the distributions are broad to start

with, they become even broader, making the RG controlled.

This RG has been applied with success to the study of

strongly disordered bosons (Altman et al., 2004b; 2010).

This technique gives a transition between a Bose glass and the

SF phase. It is interesting that in the limit of strong disorder,
the transition is also of the BKT type but with some diver-

gences of the distributions. Whether this indicates the pres-

ence of two different localized phases, one for weak

interaction and one for strong interactions (see Fig. 12), or

whether the two can be smoothly connected is an interesting

and still open question. A proper order parameter separating

the two phases would have to be defined. Note that the
computational studies give conflicting results on that point

(Batrouni and Scalettar, 1992; Rapsch et al., 1999).

At finite temperature, the question of the conductivity of

the Bose-glass phase is a very interesting and still open

problem. If the system is in contact with a bath, an instanton

calculation (Nattermann et al., 2003) leads back to Mott’s

variable range hopping (Mott, 1990) �ðTÞ � e�ðT0=TÞ1=2 . This
technique can also be used to compute the ac conductivity

(Rosenow and Nattermann, 2006). In the absence of such a

bath, the situation is more subtle (Gornyi et al., 2005; Basko
et al., 2006; Gornyi et al., 2007; Aleiner et al., 2010). In

particular, it has been suggested that the conductivity could

be zero below a certain temperature, and finite above, signal-

ing a finite-temperature many-body localization transition.

Consequences for bosonic systems have been investigated

by Aleiner et al., 2010.

2. Commensurate filling

We now turn to the case for which the system is at a

commensurate filling. If the interactions is such that the

commensurate potential could open a Mott gap, then there
will be a competition between Mott and Anderson localiza-

tion. To describe such a competition one must add to the

Hamiltonian a term such as Eq. (152) at � ¼ 0, where p
describes the order of commensurability and is defined by

p ¼ 1=	0a. In the case of a commensurability p > 1, i.e., of
an atom density wave competing with disorder, it can be

shown (Shankar, 1990) that even a weak disorder turns the
atom density wave into an Anderson insulator, by breaking it

into domains. Indeed, a density wave has a ground-state

degeneracy p, which allows the formation of domain walls.

Since the energy cost of a domain wall is a constant propor-

tional to the excitation gap of the pure atom density-wave

phase, while the typical energy gained by forming a domain

of length L can be estimated to be of order / �
ffiffiffiffiffiffiffiffi

DL
p

by a

random walk argument (Imry and Ma, 1975), it is always

energetically advantageous to break the density-wave phase

into domains as soon as D> 0. The resulting ground state is

gapless and thus a Bose glass.

In contrast, a Mott phase with each site occupied by an

integer number of atoms has no ground-state degeneracy, and

thus is stable in the presence of a weak (bounded) disorder.

There will thus be several additional effects in that case that

have to be taken into account. First, at variance with the

incommensurate case, it is not possible anymore to eliminate

the forward scattering by a simple shift of �. Indeed, the

forward scattering which is acting as a slowly varying chemi-

cal potential is in competition with the commensurate term

cosð2�Þ just as was the case for the doping in the Mott

transition in Sec. VI.A. The disorder will thus reduce the

gap and ultimately above a certain threshold destroy the

commensurability. Generally, it will reduce the stability of

the Mott region compared to Fig. 11. The forward scattering

part of the disorder thus leads to a delocalization by a

reduction of the Mott effects. This is quite general and

extends to higher dimensions as well. On the other hand,

the effect of the backward potential will be to induce the

Anderson localization and leads to the Bose-glass phase, as

discussed in the previous section. It is easy to see that even if

such a backward scattering was not present to start with, the

combination of the forward scattering and the commensurate

potential would always generate it. One can thus expect

naively, when the disorder is increased, a transition between

a Mott insulator, which is incompressible and localized to a

Bose glass, which is compressible and also localized due to

the backward scattering.

One interesting question (Fisher et al., 1989) is whether

the Bose-glass phase totally surrounds the shrunk Mott lobes

in Fig. 11, or whether at commensurate filling, a direct MI-SF

transition would be possible. In 1D, this question can be

easily answered by looking at the combined renormalization

of the commensurate potential, and the one of the backward

scattering. For small forward scattering, the commensurate

flow (153) is essentially unperturbed. It reaches strong cou-

pling before the forward disorder can cut the RG, which

signals the existence of the Mott gap. If the disorder is

increased, the flow will now be cut before the scale at which

the Mott gap develops. The Mott phase is thus destroyed by

the disorder, which corresponds to the shrinking of the Mott

lobe. On the other hand, as seen in Eq. (153),K has now being

renormalized to small values K�. Since when the commensu-

rate potential flow is cut, backward scattering is present

(or generated) one should then start with the flow for the

backward scatting disorder (159). Just at the destruction of

the Mott lobe K � 0 one has K < 3=2 and the system is

always in the Bose-glass phase. As the forward scattering is

increased (or alternatively as the initial value of K would be

increased), the flow can be cut early enough such that K� >
3=2 and one can be in the superfluid phase where the back-

ward scattering is irrelevant. One thus sees that in 1D the RG
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always predicts a sliver of Bose glass between the Mott and

superfluid phase. Further analysis confirms these arguments

(Svistunov, 1996; Herbut, 1998) and the topology of the

phase diagram where the Mott lobes are surrounded by a
Bose-glass phase applies to higher dimension as well (Pollet

et al., 2009). The Mott insulator Bose-glass phase transition

has been understood to be of the Griffiths type (Gurarie et al.,

2009). This is to be contrasted with the transition between the

Bose glass and the superfluid phase, which is a second order

phase transition. The dynamical critical exponent of the latter
transition has been suggested to be z ¼ d, with no upper

critical dimension dc ¼ 1 (Fisher et al., 1989). This relation

is in agreement with the 1D result where the Lorentz invari-

ance of the bosonized theory implies indeed z ¼ 1 at the

transition.

On the numerical side, the combined effects of disorder

and commensurability have been intensively studied. One of
the first studies of the effect of bounded disorder on the Mott

lobes in 1D (Scalettar et al., 1991; Batrouni and Scalettar,

1992) confirmed the shrinking of the Mott lobes, and the

generation of a compressible Bose-glass phase in the weakly

and strongly interacting regimes. The phase boundary be-

tween the Mott insulator and the Bose glass was further
studied by means of strong-coupling expansions, both for

finite systems and in the thermodynamic limit (Freericks

and Monien, 1996). While for finite systems the results

agreed with the ones obtained in Scalettar et al. (1991),

Batrouni and Scalettar (1992), and Freericks and Monien

(1996) pointed out the difficulty in obtaining the thermody-

namic limit result from extrapolations of finite-system calcu-
lations because of the effect of rare regions imposed by the

tails of the bounded disorder distribution.

In the thermodynamic limit, the effect of a bounded and

symmetric distribution with j�ij 
 � in the grand-canonical

phase diagram (depicted in Fig. 6) is to shift the Mott-

insulating boundaries inward by �. Later studies, using
QMC simulations (Prokof’ev and Svistunov, 1998) and

DMRG (Rapsch et al., 1999), mapped out the full phase

diagram for the Bose-Hubbard model in the presence of

disorder [see also Pai et al.(1996)]. The phase diagram at

fixed density n ¼ 1 is shown in Fig. 13. It exhibits, when

starting from the Mott-insulating phase, a reentrant behavior

into the Bose-glass phase with increasing disorder strength. It
also fully confirms the reentrance of the localized phase at

small repulsion in agreement with Fig. 12.

Another interesting class of effects occur when the filling is

commensurate and the disorder respects particle-hole sym-

metry. This is not the case of the random on-site potential, and

is traduced by the presence of the forward scattering term. On
the contrary, for hard-core bosons this would be the case of

the random hopping term. This is a rather natural situation for

spin chains, for which random exchange can be realized. In

that case, there is an important difference with the case (158).

Because of the commensurability ei2�	0x ¼ 1, the disorder

term is

Ĥdis ¼
Z

dxVðxÞ	0 cos½2�̂ðxÞ�: (160)

Although the two terms look superficially similar, there is
thus no random phase on which �ðxÞ must pin. �ðxÞ is thus
oscillating between the two minima � ¼ 0 and � ¼ �=2,

and the physics of the problem is totally controlled by the

kink between these two minima. Thus, although the initial
steps of the flow (159) are identical for the two problems, the

strong-coupling fixed points are different. In the particle-hole

symmetric case, a delocalized state exists in the center of the

band, leading to various singularities. This is a situation

which is well adapted to the above mentioned real space

RG (Fisher, 1994), and the system is dominated by broad
distributions (so-called random singlet phase).

3. Superlattices and quasiperiodic potentials

As seen in the previous sections, the periodic and disor-

dered potentials albeit leading to very different physical

phases, seem to share some common features. In particular,
disorder can be viewed as a potential for which all Fourier

harmonics would be present. It is thus a natural question on

whether one could generalize the case of a simple periodic

potential to potentials with several periodicities or even to

quasiperiodic potentials. In addition to the pure theoretical

interest of this problem, it has become, thanks to optical

lattices in cold atomic gases, an extremely relevant question
experimentally. Consider first the case of a superlattice, i.e.,

of a potential with two commensurate periodsQ1 andQ2. For

simplicity, we assume in what follows that the first periodic

potential is very large and thus defines the model on a lattice,

and that the second potential is superimposed on this lattice.

This defines a variant of the Bose-Hubbard Hamiltonian

Ĥ¼
XL

i¼1

�

�tiðb̂yi b̂iþ1þH:c:Þþ�in̂iþ
U

2
b̂yi b̂

y
i b̂ib̂i

�

;

(161)

where tiþl ¼ ti and �i ¼ �iþl with l � 2.
The case of a commensurate superlattice (i.e., when Q1

and Q2 are commensurate) falls in the problems already
described in Sec. VI.A. This situation allows one to obtain

Mott-insulating states with fractional filling (Buonsante

max∆     

Bose glass

4

2 4

2

∆

super-
fluid

Mott insulator

glass
Bose

n = 1

0

U

FIG. 13. Phase diagram of the Bose-Hubbard model, for com-

mensurate filling n ¼ 1, with an additional uniformly distributed

disorder in the interval ½��;��. Notice the presence of the Bose-

glass phase between the Mott insulator and the superfluid, and the

reentrant behavior in the Bose-glass phase when increasing the

disorder amplitude for 2 & U & 5. From Rapsch et al., 1999.
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et al., 2004; Buonsante and Vezzani, 2004; 2005; Rousseau

et al., 2006). The physics can be easily understood in the TG

limit. In that case, one has free fermions in a periodic

potential. The eigenstates of the noninteracting fermion

Hamiltonian form l distinct bands separated by energy

gaps. Within a given band, the eigenstates are indexed by a

quasimomentum defined modulo 2�=l, so that quasimomenta

can be taken in the interval ½��=l; �=l� (called the first

Brillouin zone in solid state physics). The filling is deter-

mined by the condition n0 ¼ N=L ¼ P
l
n¼1

RkF;n
�kF;n

dk=2�,

where n is the band index and kF;n is the Fermi wave vector

in the nth band. As the density is increased, bands get

progressively filled. From this picture, it is clear that when

the highest nonempty band is partially filled, the system

will be in a gapless state, which as we saw previously can

be described as a Tomonaga-Luttinger liquid with exponent

K ¼ 1. However, when the highest nonempty band is com-

pletely filled, there is a gap to all excitations above the ground

state and one obtains a Mott insulator. This situation is

obtained every time the filling is an integer multiple of 1=l,
thus allowing the observation of a Mott-insulating state for a

filling with less than one boson per site. In some cases, two

energy bands may cross and, since there will be no gap, the

system may not be insulating for some integer multiples of

1=l (Rousseau et al., 2006).

For finite U, one can use bosonization and is back to the

situation described in Sec. VI.A where one has added a

periodic potential leading to an operator with p > 1. These
terms will be relevant for K < 2=p2, so that they can only

contribute in the case of systems with long-range interaction,

as discussed in Sec. VI.A.

An instructive way to understand the effect of the compe-

tition between U and the superlattice potential is to consider

the atomic limit. For concreteness, assume that �i ¼
A cosð2�i=lÞ with l ¼ 2. In this case, we have to deal with

a two-site problem and n ¼ N=2 (N is the number of bosons).

In order to minimize the energy, the first particle should be

added to the site with � ¼ �A, i.e., the boundary between

n ¼ 0 and n ¼ 1=2 occurs at ��Eðn¼1=2Þ�Eðn¼0Þ¼
�A, and for �<�A the system is empty. The fate of the

second particle added will depend on the relation between A
and U. If A < U, the energy is minimized by adding it to the

site with � ¼ A, i.e., the energy increases in A, while if A > U
then the second particle should be added to the site with �i ¼
�A, i.e., the energy increases in U� A. As a result, the

boundary between n ¼ 1=2 and n ¼ 1 occurs at � ¼
minðA;U� AÞ, so that for �A <�<minðA;U� AÞ the

density in the system is n ¼ 1=2 (this phase is also referred

to in the literature as a charge-density wave), and so on (see

left panel in Fig. 14). As in the Bose-Hubbard model
(Sec. IV.B.2), starting from the atomic limit result, one can

perturbatively realize that the effect of a very small hopping

amplitude will be to generate compressible superfluid phases

between the boundaries of the insulating phases. An exact

phase diagram for finite hopping from Rousseau et al.

(2006), obtained using QMC simulations, is presented in

the right panel in Fig. 14.
Incommensurate superlattices exhibit quite a different be-

havior. The case of two incommensurate periodicities is

known as the Harper model (Hiramoto and Kohmoto,

1992), and constitutes one of the cases of quasiperiodic

potentials. How such quasiperiodic potentials lead to proper-

ties similar or different from disordered ones is a long
standing question. For noninteracting particles, the question

can be addressed analytically. In a lattice, the model is known

as the Aubry-André model (Hofstadter, 1976; Aubry and

Andre, 1980; Jitomirskaya, 1999)

Ĥ ¼
XL

i¼1

½�tðb̂yi b̂iþ1 þ H:c:Þ þ V2 cosð2�iÞn̂i�: (162)

Here t is the tunneling rate and V2 is the amplitude of the

quasiperiodic modulation of the potential energy, while  is

an irrational number. Such a model exhibits a localization

transition even in 1D with a critical value V2=t ¼ 2. A duality

transformation maps the Aubry-André model at V2=t > 2 on
the same model at V2=t < 2 (Aubry and Andre, 1980). Below
criticality, all states are extended Bloch-like states character-

istic of a periodic potential. Above criticality, all states are

exponentially localized and the spectrum is pointlike. At

criticality, the spectrum is a Cantor set, and the gaps form a
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FIG. 14 (color online). (Left panel) Phase diagram of soft-core bosons in the atomic limit (t ¼ 0) in a superlattice with l ¼ 2. A is the

amplitude of the periodic potential, T is its period, � is the chemical potential, and 	 is the number of particle per site. (Right panel) Phase

diagram computed with QMC simulations for U ¼ 8t. In the latter, notice the appearance of superfluid phases (SF in the figure) in between

the insulating ones. From Rousseau et al., 2006.
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devil’s staircase (Harper, 1955). Some differences at the

semiclassical level between this type of potential and local-

ization by disorder were pointed out (Albert and Leboeuf,

2010). A generalization of the Aubry-André model to the

presence of a nonlinear term in the dynamics was discussed

by Flach et al. (2009). The crossover between extended to

localized states in incommensurate superlattices has been

experimentally observed for a noninteracting 39K BEC where

the effect of interactions has been canceled by tuning a static

magnetic field in proximity of a Feshbach resonance to set the

scattering length to zero (Roati et al., 2008).

What remains of such a transition in the presence of

interactions is of course a very challenging question. Here

the effects of interactions can be taken into account within a

mean-field type of approach (Larcher et al., 2009) or by a

bosonization technique. A unifying description of all types of

potentials including periodic, disordered, and quasiperiodic

(QP) was proposed by Vidal et al. (1999, 2001), by general-

izing Eqs. (153) and (159) to a potential with arbitrary Fourier

components VðqÞ. For quasiperiodic potentials, such as the

Fibonacci sequence, the transition between a superfluid phase

and a phase dominated by the QP potential was found. The

critical point Kc depends on an exponent characteristic of the

QP potential itself. These conclusions were confirmed by

DMRG calculations on quasiperiodic spin and Hubbard

chains (Hida, 1999; 2000; 2001). The case of the Aubry-

André potential was studied by exact diagonalization (Roth

and Burnett, 2003a; 2003b) on 8 and 12 site systems and also

for the case of a specific choice of the height of the secondary

lattice (Roscilde, 2008).
DMRG approaches (Deng et al., 2008; Roux et al., 2008),

combined with the above analytical considerations, allowed

for a rather complete description of the physics of such

quasiperiodic systems. As discussed, for fillings commensu-

rate with either the primary or the secondary lattice, the

periodic potential changes the simple quadratic Hamiltonian

of the Tomonaga-Luttinger liquid into a sine-Gordon

Hamiltonian, which describes the physics of the Mott tran-

sition (Giamarchi, 2004). A Mott insulator is obtained in a

case of filling commensurate with the primary lattice, and a

pinned incommensurate density wave (ICDW) for filling

commensurate with the secondary lattice. For fillings incom-

mensurate with both lattices, the potential is irrelevant under

RG flow and one expects from perturbative analysis a super-

fluid phase for all values of the interaction strength. As a
consequence, when one of the potentials is commensurate, no

Bose-glass phase can be created by the other potential in the

vicinity of the Mott insulator superfluid transition in the

regime where bosonization is applicable. In agreement with

the limiting cases of free and hard-core bosons described by

an Aubry-André problem, the transition towards the Bose-

glass phase is found at V2=t � 2, the critical value of V2 being
higher for bosons with finite interaction strength. Another

feature of an interacting Bose gas in quasiperiodic potential is

the shrinking of the Mott lobes as a function of V2. The

computed phase diagram in the (V2=J, U=J) plane for both

commensurate and incommensurate fillings is reported in

Fig. 15.
The Bose-glass phase has been shown to be localized by

computing the expansion of the 1D cloud (Roux et al., 2008),

as is relevant for the experimental situation. Although from

the point of view of the phase diagram, the localized nature of

the phase in interacting quasiperiodic and disordered systems

are found to be very similar, some experimental probes have

been found to show some marked differences between the
two cases (Orso et al., 2009). Interacting quasiperiodic

potentials are a problem deserving more experimental and

theoretical investigations. We should add that the influence of

a third harmonic as well as confining potentials in such

systems have already been investigated by Roscilde (2008).

VII. MIXTURES, COUPLED SYSTEMS, AND

NONEQUILIBRIUM

In this section, we briefly examine several developments

going beyond the simple case of 1D bosons in the presence of
an external potential. We present three main directions where

new physics is obtained by either (i) mixing bosonic systems,

FIG. 15 (color online). Phase diagrams of the bichromatic Bose-Hubbard model for densities n ¼ 1, r (the ratio of the potential wave

lengths), and n ¼ 0:5. SF stands for the superfluid phase, MI for the Mott-insulating phase, BG for the ‘‘Bose-glass’’ phase (meaning

localized but with zero one-particle gap), and ICDW for incommensurate charge-density wave phase. The U ¼ V2 line on the phase diagram

with n ¼ 1 indicates the J ¼ 0 limit for which the gap of the one-particle excitation vanishes. In the phase diagram with density n ¼ 1, the

darker region in the BG phase is localized but could have a small gap which cannot be resolved numerically. From Roux et al., 2008.
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or bosonic and fermionic systems; (ii) going away from the

1D situation by coupling chains or structures. This leads to

quasi-1D systems which links the 1D world with its higher

dimensional counterpart; and (iii) setting systems out of
equilibrium.

A. Multicomponent systems and mixtures

Compared to the case of a single component bosonic sys-

tem, described in the previous sections, novel physics can be
obtained by mixing several components in a 1D situation or

giving to the bosons an internal degree of freedom.

1. Bose-Bose mixtures

Internal degrees of freedom for bosons lead to a wider
range of physical phenomena. We focus here on the case of

two internal degrees of freedom and refer the reader to the

literature for the higher symmetry cases (Cao et al., 2007;

Essler et al., 2009; Lee et al., 2009; Nonne et al., 2010). For

two components, this is similar to giving a ‘‘spin’’ 1=2 to the

bosons. The corresponding case for fermions is well under-

stood (Giamarchi, 2004). Because of the Pauli principle, a
contact interaction in such a system can only exist between

opposite spins U ¼ U";#. The ground state of the two-

component fermionic systems is in the TLL universality

class, with dominant antiferromagnetic correlations. Quite

remarkably, because in the TLL’s everything depends on
collective excitations, the Hilbert space separates into two

independent sectors, one for the collective charge excitations,

one for the spins. This phenomenon, known as spin-charge

separation, is one of the hallmarks of the 1D properties.

For the case of two-component bosons, the situation is

much richer. First, even in the case of contact interactions,

interactions between the same species must be considered.
The properties of the system thus depend on three interaction

constants U";", U#;#, and U";#. The dominant magnetic ex-

change will be crucially dependent on those interactions

(Duan, et al., 2003), and can go for dominantly antiferro-

magnetic if U";", U#;# � U";# while they are dominantly fer-

romagnetic in the opposite case. In particular, the isotropic

case corresponds to a ferromagnetic ground state (Eisenberg

and Lieb, 2002). The phase diagram of such systems can be

obtained by using either a TLL description or numerical

approaches such as DMRG or time evolving block decima-

tion (Kleine et al., 2008a; 2008b; Mathey, Danshita, and
Clark, 2009; Takayoshi, Sato, and Furukawa, 2010). Probes

such as noise correlations, as will be discussed in the next

section, can be used to study the phases of such binary

bosonic mixtures (Mathey, Vishwanath, Altman, 2009).

When the exchange is dominantly antiferromagnetic, the

physics is very similar to the fermionic counterpart, with
two collective modes for the charge and spin excitations,

and can be described in the TLL framework. Such bosonic

systems thus provide an alternative to probe for spin-charge

separation (Kleine et al., 2008a; 2008b) compared to the

electronic case for which this property could only be probed

for quantum wires (Auslaender et al., 2002; Tserkovnyak

et al., 2002). Depending on the interactions, one of the
velocities can vanish, signaling an instability of the two-

component TLL. This signals a phase separation that

corresponds to entering into the ferromagnetic regime which

we now examine.

When the ground state of the system is ferromagnetic, a

phenomenon unusual to 1D takes place. Indeed, the system

has now spin excitations that have a dispersion behaving as k2

(Sutherland, 1968; Li, et al., 2003; Fuchs et al., 2005; Guan

et al., 2007), which cannot be described by a TLL framework.

This leads to the interesting question of the interplay between

charge and spin excitations, and it has been proposed

(Zvonarev et al., 2007) that such a system belongs to a

new universality class, called ‘‘ferromagnetic liquid.’’ This

field is currently very active (Akhanjee and Tserkovnyak,

2007; Guan et al., 2007; Matveev and Furusaki, 2008;

Kamenev and Glazman, 2009; Caux et al., 2009; Zvonarev

et al., 2009a; 2009b), and we refer the reader to the literature

for further discussions on this subject and references.

2. Bose-Fermi mixtures

Cold atomic systems have allowed for the interesting

possibility to realize Bose-Fermi mixtures. Such systems

can be described by the techniques described in the previous

sections, both in the continuum case and on a lattice. In the

continuum, a Bose-Fermi mixture can be mapped, in the limit

when the boson-boson interaction becomes hard core, to an

integrable Gaudin-Yang model (Gaudin, 1967; Yang, 1967).

For special symmetries between the masses and couplings, a

mapping to an integrable model exists (Lai and Yang, 1971;

Lai, 1974; Batchelor et al., 2005b; Frahm and Palacios, 2005;

Imambekov and Demler, 2006, 2006; Guan, et al., 2008). In

the case of a lattice, the system can be described by a

generalized Bose-Hubbard description in which the parame-

ters can be obtained from the continuum description (Albus

et al., 2003). Similar to the continuum case, if the boson-

boson repulsion becomes infinite, the hard-core bosons can be

mapped onto fermions either by using the boson-fermion

mapping (Girardeau and Minguzzi, 2007) or by using the

Jordan-Wigner transformation of Sec. II.D leading (Sengupta

and Pryadko, 2007) to a 1D Fermi-Hubbard model that can be

described by Bethe ansatz (Lieb and Wu, 1968) or by the

various low energy or numerical methods appropriate for

fermionic systems (Giamarchi, 2004).

Quite generally, the low energy of Bose-Fermi mixtures

can be described by the TLL description (Cazalilla and Ho,

2003; Mathey et al., 2004). As for Bose-Bose mixtures, the

resulting low-energy Hamiltonian has a quadratic form and

can be diagonalized by a linear change of variables (Muttalib

and Emery, 1986; Loss and Martin, 1994; Cazalilla and Ho,

2003), which leads to two collective modes with two different

velocities. The elementary excitations are polaronic modes

(Mathey et al., 2004; Mathey and Wang, 2007). In a similar

way, the exponents of the correlation functions are given by

the resulting TLL Hamiltonian (Mathey and Wang, 2007;

Orignac et al., 2010). Also, similar to the Bose-Bose mix-

tures, when the velocity of one of the mode vanishes, the two-

component Tomonaga-Luttinger liquid shows an instability.

This instability can be, depending on the coupling constants,

either a phase separation or a collapse of the system. This is

the analog of the Wentzel-Bardeen instability (Bardeen,

1951; Wentzel, 1951) obtained in 1D electron-phonon sys-

tems (Loss and Martin, 1994).
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Several interesting extensions to this physics exist when

the components of the mixture are close in density (Cazalilla

and Ho, 2003; Mathey et al., 2004). In particular, bound

states of bosons and fermions can form leading to a TLL of

composite particles (Burovski et al., 2009). In the presence

of a lattice, commensurability with the lattice can give rise to

partially gapped phases, in a similar way to the Mott physics

described in the previous section (Mathey and Wang, 2007;

Mathey, Danshita, and Clark, 2009), and, in general, to very

rich phase diagrams (Sengupta and Pryadko, 2007; Pollet

et al., 2006, 2008; Hébert et al., 2007, 2008; Rizzi and

Imambekov, 2008; Zujev et al., 2008). Similarly, disorder

effects can be investigated for Bose-Fermi mixtures (Crépin

et al., 2010).

The lattice Bose-Fermi Hubbard model has also been

studied by worldline quantum Monte Carlo simulations

(Takeuchi and Mori, 2005a; 2005b) and phase separation

was found as a function both of the interparticle interaction

and of the fermion density. The mixed phase was instead

studied using stochastic series expansions by Sengupta and

Pryadko (2007). For weak coupling, two-component TLL

behavior was found, whereas, at strong coupling and com-

mensurate filling, a phase with total gapped density mode was

identified. Doping the gapped phase nF þ nB ¼ 1 with fer-

mions was shown to lead to supersolid order (Hébert et al.,

2008). The ground-state phase diagram was obtained using

the canonical worm algorithm for nF ¼ nB ¼ 1=2 by Pollet

et al. (2006) and for other commensurate as well as incom-

mensurate fillings by Zujev et al. (2008). The effect of a

harmonic trapping potential was considered using both

DMRG and quantum Monte Carlo calculations by Pollet

et al. (2008) and a complete analysis of the boson visibility

appeared in Varney et al. (2008).

B. Coupled systems

Although the extended Bose-Hubbard model [Eq. (14)],

describes a single chain system, its bosonization description

requires doubling the number of degrees of freedom, which

means that it effectively becomes two coupled (hard-core

boson or spin- 1
2
) systems. Here, we pursue further this issue

and consider the rich physics that arises when coupling many

such 1D systems. Reasons for studying coupled 1D boson

systems are manifold. The main motivation is, of course, an

experimental one, since many experimental realizations of

1D systems are typically not created in isolation but in arrays

containing many of them. Considering the possible ways they

can be coupled such as via quantum tunneling and/or inter-

actions leads to many interesting theoretical questions. These

include the understanding of the way in which the properties

and excitations of the system evolve, as a function of the

temperature or the energy scale at which the system is probed,

from the fairly peculiar properties of 1D to the more familiar

ones of higher dimensional systems (Giamarchi, 2010). Other

important questions concern the competition between differ-

ent ordered phases, which are stabilized by either interactions

or tunneling between the different 1D systems. We next

review the work done on some of these questions.

One of the simplest situations allowing one to transition

from a low-dimensional to a high-dimensional system is

provided by coupling zero dimensional objects. This is, for

example, the case in spin systems where pairs of spins can

form dimers. Such dimers form zero dimensional objects that

can then be coupled into a higher dimensional structure by
additional magnetic exchanges. Since the dimers are nor-

mally in a singlet state, separated by a gap from the triplet,

a weak coupling between them is irrelevant and the ground

state still consists in a collection of uncoupled singlets. A

quantum phase transition can thus be obtained in two ways:

(i) one can increase the coupling up to a point at which the
ground state changes and becomes an antiferromagnetic one

(Sachdev, 2008) or (ii) one can apply a magnetic field leading

to transitions between the singlet and triplet states. As can be

seen from the mappings of Sec. II.D, this model corresponds

then to hard-core bosons (representing the triplet states) on a

lattice and can lead to Bose-Einstein condensation and vari-

ous interesting phases (Giamarchi et al., 2008), which will be
further described in the next section on experiments.

For bosonic chains, a typical coupling between the 1D

systems is provided by a Josephson coupling

ĤJ ¼ �t?
Z X

hR;R0i
½�̂y

RðxÞ�̂R0 ðxÞ þ H:c:�: (163)

Such a term will combine with the 1D physics and lead to

novel phases. In the case for which the physics of the 1D

systems is described by a Tomonaga-Luttinger liquid, the

interchain coupling is strongly renormalized by the 1D fluc-

tuations (Efetov and Larkin, 1975; Ho et al., 2004; Cazalilla

et al., 2006). Using the various mappings of Sec. II.D, such
physics is relevant in various context ranging from spin

chains (Schulz, 1996) to classically coupled XY planes

(Benfatto et al., 2007; Cazalilla et al., 2007; Mathey,

Polkovnikov, and Neto, 2008). Although the system becomes

essentially an anisotropic 3D ordered system (superfluid or

magnetically ordered), new modes (Higgs modes) appear

(Schulz, 1996; Cazalilla et al., 2006; Huber et al., 2007;
Huber et al., 2008; Menotti and Trivedi, 2008) due to the

quasi-1D nature of the system. Such modes have also been

observed in strongly correlated anisotropic 3D systems.

When the 1D physics is gapped, such as in a Mott insulator,

an interesting competition occurs between the 1D gap and the

Josephson coupling. This leads to a quantum phase transition
for which the system goes from a 1D Mott insulator to a

higher dimensional superfluid. Such a deconfinement

(Giamarchi, 2010) is relevant for a variety of systems ranging

from spins to fermions. In the case of coupled bosonic

systems, it can be studied (Ho et al., 2004; Cazalilla

et al., 2006) by the low-energy methods described in the

previous sections. Interesting results are also found in the
case of a finite number of coupled chains [so-called ladder

systems (Dagotto and Rice, 1996)] or planes. We refer the

reader to the literature (Donohue and Giamarchi, 2001;

Luthra et al., 2008) for more on this subject.

C. Nonequilibrium dynamics

Another topic of much current interest is the nonequilib-

rium dynamics of 1D quantum systems (Dziaramga, 2010;
Cazalilla and Rigol, 2010; Polkovnikov et al., 2011).

Research on this topic is mainly motivated by ultracold gases
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experiments, where the unique degree of tunability, isolation,

and long coherent times have enabled the exploration of

phenomena not previously accessible in condensed matter

experiments. In the latter, a strong coupling to the environ-

ment, combined with the short time scales associated to their

microscopic properties, usually lead to rapid decoherence.

As discussed in Sec. VIII.D, driving cold gases with time-

dependent potentials can be used to probe several properties

of interest, such as the excitation spectra. However, the

physics out of equilibrium is far richer than that. Optical

lattices and Feshbach resonances can be used to transition

between weakly and strongly interacting regimes in control-

lable time scales, and to generate exotic out of equilibrium

states (Greiner et al., 2002b; Winkler et al., 2006;

Strohmaier et al., 2010; Will et al., 2010). Those could

lead to new phenomena and phases not present in systems in

thermal equilibrium. Studying the dynamics of cold gases can

also help us gain a better understanding of the inner working

of statistical mechanics in isolated quantum systems (Rigol

et al., 2008). Furthermore, now that nearly integrable systems

can be realized in experiments (Kinoshita et al., 2004;

Paredes et al., 2004), one can study their dynamics and

address questions previously considered purely academic,

such as the effect of integrability in the properties of the

gas after relaxation (Kinoshita et al., 2006).

Some of the early studies of the nonequilibrium dynamics

in 1D geometries addressed the effect of a lattice potential

and the onset of the superfluid to Mott insulator transition on

the transport properties of a bosonic gas (Stöferle et al.,

2004b; Fertig et al., 2005b). In those experiments, the

systems were loaded in deep two-dimensional optical lattices

with a weaker lattice along the 1D tubes (see Sec. VIII.D).

The harmonic trap along the 1D tubes was then suddenly

displaced by a few lattice sites and the dynamics of the center

of mass studied by time-of flight (TOF) expansion.

Surprisingly, it was found that even very weak optical lattices

could produce large damping rates,6 and that, in some re-

gimes, overdamping took place with the center of mass

staying away from the center of the trap. The former effect

was related to the large population of high momenta resulting

from the strong transverse confinement (Ruostekoski and

Isella, 2005), while the latter was related to the appearance

of a Mott insulator in the trap (Rey et al., 2005; Rigol et al.,

2005; Pupillo et al., 2006). More recently, time-dependent

DMRG studies have accurately reproduced the experimental

findings in the regime where the one-band Bose-Hubbard

model is a valid representation of the experiments

(Danshita and Clark, 2009; Montangero et al., 2009).
Correlations in 1D systems can manifest themselves in

surprising ways out of equilibrium. As noted by Sutherland

(1998), if a gas of interacting bosons is allowed to expand

under a 1D geometry, the resulting momentum distribution

after long expansion times can be very different from the

initial momentum distribution of the trapped system, as

opposed to what will happen in the usual TOF expansion in

three dimensions. In fact, it has been shown both for the

lattice (Rigol and Muramatsu, 2005a; 2005b) and continuum

(Minguzzi and Gangardt, 2005; del Campo and Muga, 2006;

del Campo, 2008) TG gas that free expansion results in the

‘‘dynamical fermionization’’ of the bosonic momentum dis-

tribution function. This is something that only occurs out of

equilibrium and leads to a bosonic momentum distribution

with a Fermi edge. The expansion of the more generic Lieb-

Liniger gas has been studied by Jukić et al. (2008) using a

Fermi-Bose transformation for time-dependent states (Buljan

et al., 2008). They found that, asymptotically, the wave

functions acquire a Tonks-Girardeau structure but the prop-

erties of the gas are still very different from those of a TG gas

in equilibrium. Gritsev, Barmettler, and Demler (2010) used a

scaling transformation that mapped the time-dependent

many-body Schroedinger equation on a time-independent

model. A similar fermionization was observed for the mo-

mentum distribution function, even though the effective in-

teraction parameter remained constant throughout, ruling out

dilution as a cause of the fermionization. An analysis of the

Lieb Liniger gas based on integrability was pioneered in

Gritsev, Rostunov, and Demler, 2010.

The ultimate effect of one dimensionality in the dynamics

of isolated systems may be the lack of thermalization asso-

ciated to integrability. In a remarkable experiment, Kinoshita

et al. (2006) studied the relaxation dynamics of an array of

1D bosonic gases created by a deep 2D optical lattice. They

found that, as long as the system remained 1D, no relaxation

occurred towards the expected thermal result. In the TG limit,

in which the 1D system is integrable, the lack of thermaliza-

tion can be understood to be a result of the constraints im-

posed by conserved quantities that make the TG gas inte-

grable. Interestingly, in that regime, few-body observables

after relaxation can still be described by a generalization of

the Gibbs ensemble (GGE) (Rigol et al., 2007). The GGE

density matrix can be constructed following Jaynes (1957a,

1957b) principle of maximization of the many-body entropy

subject to constraints, which in this case are a complete set of

integrals of motion. The relevance of the GGE to different 1D

integrable systems and few-body observables, as well as its

limits of applicability, have been the subject of several studies

during the last years (Cazalilla, 2006; Rigol, Muramatsu,

Olshanii, 2006; Calabrese and Cardy, 2007; Rigol et al.,

2007; Barthel and Schollwöck, 2008; Cramer et al., 2008;

Kollar and Eckstein, 2008; Iucci and Cazalilla, 2009; Rossini

et al., 2009; Cassidy et al., 2011; Fioretto and Mussardo,

2010; Iucci and Cazalilla, 2010).

In the opposite limit of nonintegrable systems, i.e., far

from any integrable point, thermalization has been found to

occur in general, despite the fact that the dynamics is unitary.

Early studies in 1D lattice models resulted in mixed results in

which thermalization was reported in some regimes and not

in others (Kollath et al., 2007; Manmana et al., 2007; Roux,

2009). In 2D lattices, thermalization was observed in rather

small systems (Rigol et al., 2008) and was understood in

terms of the eigenstate thermalization hypothesis (ETH)

(Deutsch, 1991; Srednicki, 1994). Later systematic studies

in 1D lattices have shown that, in general, thermalization

occurs in nonintegrable 1D systems as it does in higher

dimensions. However, the eigenstate thermalization hypothe-

sis, and thermalization, break down as one approaches

6In a harmonic trap, in the absence of a lattice, no damping should

occur as the center of mass follows the classical equation of motion

of a harmonic oscillator.
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integrable points (Rigol, 2009a, 2009b; Roux, 2010). This

may be the reason behind the lack of thermalization observed

by Kinoshita et al. (2006) for all 1D regimes, while relaxa-

tion to thermal equilibrium was inferred to occur in 1D
experiments on atom chips (Hofferberth et al., 2007).

While the former were not sufficiently away from integra-

bility, the latter were (Mazets et al., 2008; Mazets and

Schmiedmayer, 2010).

Many questions remain open in this exciting area of re-

search. We mention some of them in the Outlook section at
the end.

VIII. EXPERIMENTAL SYSTEMS

Experimentally, 1D quantum liquids have been created in

various forms. We review several of them in this section. In

the first three subsections, we examine condensed matter

realizations, whereas the last subsection is devoted to ultra-

cold atom realizations. Some of the former, such as spin

ladder compounds subject to strong magnetic fields, have

yielded a wealth of experimental evidence for exotic behavior
related to the Tomonaga-Luttinger liquid. Ultracold atomic

systems have properties that are largely tunable and therefore

hold many promises for reaching regimes that are hardly

accessible in condensed matter systems. However, their prop-

erties can only be tested by a still rather limited number of

probes. Hence, the discussion of these systems is intimately
linked to the developments related to the probes used to

investigate their properties.

A. Josephson junctions

a. Theory: In a superconductor, electrons with opposite

spins form Cooper pairs. The pairs have bosonic statistics so

that a superconductor can be seen as a system of interacting

bosons. In a Josephson junction, two grains (�m sized) of

superconducting metal are separated by a barrier of insulating

or nonsuperconducting material. Each grain is small enough

to have a well-defined superconducting phase 
j. The opera-

tor measuring the number of Cooper pairs transferred to the

jth grain is N̂j ¼ Q̂j=ð2eÞ, where Q̂j measures the charge

imbalance of the grain and 2e is the Cooper-pair charge. The

electrostatic energy of the charged grain is ECN̂
2
j=2� ��N̂j,

where EC ¼ 4e2=C and �� ¼ Vg=2e, C being the capacity

of the grain and Vg the gate potential. The phase rigidity of

the superconductor leads to a contribution �EJ

P

j cos½
̂j �

̂jþ1 � ð2e=ℏÞRrjþ1

rj dr �AðrÞ� in the case of a chain, whereA
is the electromagnetic vector potential. Since ½N̂i; 
̂j� ¼ i�ij,

the Josephson junction chain is a realization of the model

(25), where Vg controls the chemical potential �� of the

Cooper pairs (Bradley and Doniach, 1984; Fazio and van der

Zant, 2001).

The model defined by the Hamiltonian (25), the so-called
phase model, was shown (Bradley and Doniach, 1984) to

exhibit a zero-temperature superconductor-insulator phase

transition for Vg ¼ 0 (i.e., the particle-hole symmetric case)

driven by the ratio of Josephson to charging energy, analo-
gous to the transition between superfluid order and the bo-

sonic Mott insulator discussed in Sec. VI. The insulating

regime is called the Coulomb blockade of Cooper-pair

tunneling (CBPCT). Using an approximate mapping

of the Hamiltonian (25) onto the t-V model (Glazman and

Larkin, 1997), the nonparticle-hole symmetric case (Vg � 0)

can be analyzed. A CBPCT phase is predicted for integer

filling, recovering the result of Bradley and Doniach (1984)

while for fillings close to a half-integer number of particles

per site a density-wave phase is obtained. For incommensu-

rate filling or half-filling and weak or short-ranged electro-

static repulsion, a fluid phase is predicted. This model has

also been studied with quantum Monte Carlo simulations

(Baltin and Wagenblast, 1997).

b. Experiments: As we have seen previously, Josephson

junction arrays provide an experimental realization of

interacting boson systems. Experiments to probe the phase

transition between the bosonic Mott insulator and the

Tomonaga-Luttinger liquid have been reported. Chains of

Josephson junctions are prepared by lithography. The capaci-

ties and influence coefficients are determined by the geome-

try. Because of the finite dimension of the grains, the

application of a magnetic field can be used to create a

dephasing that reduces the tunneling amplitude of the

Cooper pairs ~EJ ¼ EJj cosð��=�0Þj, where � is the mag-

netic flux applied between the grains and �0 ¼ h=ð2eÞ is the
flux quantum for a Cooper pair. Since the repulsion between

Cooper pairs is not affected, this allows one to vary the ratio

of Coulomb to Josephson energy and induce the

superconductor-insulator transition by increasing the applied

magnetic field.

Experiments with Al=Al2O3=Al junctions of 200 nm size

show, as a function of magnetic field, a transition from a

regime of high electrical conductance to a regime with a

voltage threshold for electrical conduction (Chow et al.,

1998; Haviland et al., 2000; Watanabe and Haviland,

2002), in qualitative agreement with the theoretical predic-

tions (Bradley and Doniach, 1984). However, a study of

scaling near the quantum phase transition (Kuo and Chen,

2001) showed disagreement between the measured critical

exponent � and the theoretical expectations (Fisher et al.,

1989). A possible explanation is the presence of random

offset charges on the junctions (which in the boson language

correspond to a random potential) which might turn the

transition into an Anderson localization transition as dis-

cussed in Sec. VI.B. Another explanation could be related

to the dissipation which has been neglected in Sec. II.C.

Dissipation can be included by adding to the Matsubara

action a term proportional to ð1=ℏÞðRQ=RÞ
P

nj!njj
̂ð!nÞ2j,
where RQ ¼ h=ð4e2Þ is the quantum of resistance, R is the

resistance of the junction, and 
 is the phase difference across

the junction (Korshunov, 1989a, 1989b; Bobbert et al., 1990,

1992). In the presence of such terms, a richer phase diagram

is obtained with new superconducting phases. However, in

the vicinity of the superconductor-insulator critical point, the

dissipative contribution to the action could become relevant,

and change the universality class of the phase transition.

Although the problem of quantum phase transitions in

dissipative systems is interesting in its own right, this change

of universality class would make Josephson junctions arrays

unsuitable as an experimental realizations of the phase model

(25). Another more direct realization of interacting bosons
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using Josephson junctions is provided by the vortices in the

Josephson junction arrays (van Oudenaarden and Mooij,

1996; van Oudenaarden et al., 1998). In such systems, the

vortices introduced by an applied magnetic field behave as

bosonic quantum particles. The array acts on the vortices as a

periodic potential, and a Mott-insulating state of the vortices

is observable when the number of vortices per site is com-

mensurate. The advantage of this type of experiment is that

the vortices are insensitive to the random offset charges. The

main inconvenience is that the quantum effects are weak

(Bruder et al., 1999).

B. Superfluid helium in porous media

Mesoporous materials with pores of diameter of nanometer

scale have been available since the 1990s. Folded sheet mes-

oporous materials (FSM-16) synthesized from layered silicate

kanemite possess pore forming long straight channels arranged

in a honeycomb lattice. The diameter of the pores can be

controlled between 1 and 5 nm using appropriate surfactants

during the synthesis process. 4He atoms adsorbed in these

pores are confined in the transverse direction, and the pores

can only interact with each other via the free surface of the

materials. For temperatures that are low compared to the

transverse confinement energy scale, the 4He adatoms are

thus expected to exhibit the properties of a 1D Bose fluid

(Wada et al., 2001). With a typical phonon velocity u of the

order of 200 m=s, and pores of diameter d ¼ 18� 2 �A the

temperature scale belowwhich the 1D physics should appear is

T � ℏu=�kBd� 1 K. With pores of a larger diameter, one

dimensionalization occurs at lower temperatures. Experiments

have shown that the first layer of 4He adatoms on the surface of

nanopore was inert. For coverages n < n1 ¼ 2:4 mmol, the
4He atoms occupy only the inert layer, and heat capacity

measurements gave C=T ! 0 as T ! 0 for these low cover-

ages. For coverage n > 1:15n1 � 2:7 mmol, the specific heat
behaves as C=T � �ðnÞ þ bT, for T ! 0, with b ¼
1:4 mJK�3 independent of n. The bT contribution is attributed

to the inert layer, and the contribution �ðnÞ to the fluid layer.

As shown in Fig. 16, the T-linear behavior of the specific

heat is the one expected in a 1D Tomonaga-Luttinger liquid.

By fitting � to the Tomonaga-Luttinger liquid expression, it

was possible to measure u as a function of coverage. Since the

density of the 1D 4He fluid can be obtained from the coverage

knowing the pore diameters, the adsorption area S, and the

first layer coverage, by assuming a Lieb-Liniger interaction,

one can obtain the Lieb-Liniger interaction constant. For

n� 2:75 mmol, Wada et al. (2001) obtained an interaction

c� 0:7 �A�1. For higher densities, n > nf � 1:4n1, the pho-

non velocity u is found to diverge. This corresponds to the

hard-core repulsion between the 4He atoms turning the sec-

ond layer into a 1D Mott insulator. The hard-core area was

estimated to be A0 ¼ ð4:24 �AÞ2.
Recently, the superfluid properties of narrow 4He filled

nanopores have been probed by means of the torsional oscil-

lator by Taniguchi, Aoki, and Suzuki (2010). It was found that

these systems exhibit a superfluid onset at temperatures

�1 K, which can be strongly suppressed by pressurization.

It was argued by Eggel, Cazalilla, and Oshikawa (2011) that

this superfluid onset cannot be understood in terms of finite

size effects of the helicity modulus and must have a dynami-

cal origin.

C. Two-leg ladders in a magnetic field

Recently, quantum dimer spin systems in magnetic fields

became of great interest because the experimental data on

ladder geometries showed the possibility of a quantum phase

transition (QPT) driven by the magnetic field (Sachdev, 2000;

Giamarchi et al., 2008). In such systems, the application of a
magnetic field induces a zero-temperature QPT between a

spin-gap phase with all dimers in the singlet state and zero

magnetization and a phase where a nonzero density of spin

dimers are the triplet state giving a nonzero magnetization.

By increasing H, the spin gap between the singlet ground

state and the lowest triplet (Sz ¼ �1) excited states of the co-
upled dimers system decreases. It closes at hc1, where the
dimer system enters the gapless phase corresponding to the

partially magnetized state. At h > hc2, the system becomes

fully polarized and the gap reopens. This transition has been

shown (Giamarchi and Tsvelik, 1999) to fall in the universal-

ity class of BEC, where the dimers in the triplet state behave

as hard-core bosons, the magnetization is proportional to the

density of hard-core bosons, and the staggered magnetization
in the plane orthogonal to the applied field plays the role of

the BEC order parameter. Basic experimental evidence was

recently obtained by magnetization (Nikuni et al., 2000) and

neutron (Ruegg et al., 2003) measurements on the 3D

material class XCuCl3 ðX ¼ Tl;K;NH4Þ. We refer the reader

to Giamarchi et al. (2008) for more details and references.
As discussed in Sec. III, BEC cannot occur in 1D, but

quasi-long range order is expected in the magnetized phase.

In 1D systems, the continuous phase transition from the

commensurate spin gapped (C) zero uniform magnetization

phase to an incommensurate phase (IC) with nonzero mag-

netization has been studied theoretically by mapping the

spin-1=2 antiferromagnetic (AF) ladder in an external mag-
netic field H onto a 1D system of interacting hard-core

bosons (Chitra and Giamarchi, 1997; Hikihara and

FIG. 16. Specific heat over temperature Cv=T of helium 4 in

nanopores of 18 Å diameter. The T-linear contribution comes

from the inert layer, and the constant contribution from the quasi-

1D fluid. From Wada et al., 2001.
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Furusaki, 1998; Furusaki and Zhang, 1999; Giamarchi and

Tsvelik, 1999), where H acts as a chemical potential. The

interaction term in the hard-core boson picture is determined

by the exchange coupling constants, which can be experi-

mentally extracted, J? on the ladder rungs and Jk on the

ladder legs, and byH, which controls the density of hard-core

bosons. Thus the Hamiltonian is very well controlled, allow-

ing for a precise determination of the Tomonaga-Luttinger

parameters through the measurements of the magnetization

and transverse staggered spin-spin correlation function

hŜþðxÞŜ�ðx0Þi. By combining DMRG calculations with bo-

sonization, the Luttinger parameters can be obtained numeri-

cally for arbitrary H (Hikihara and Furusaki, 1998; Bouillot

et al., 2011).

These studies are relevant for several experimental

compounds. One of the first material studied was

Cu2ðC5H12N2Þ2Cl4 (Chaboussant et al., 1997), but questions

on whether its magnetic structure actually consists of coupled

spin ladders have been raised (Stone et al., 2002). Recently,

CuBr4ðC5H12NÞ2 [(bis(piperidinium)tetrabromocuprate(II)

(BPCB)] (Patyal et al., 1990) was shown to be an excellent

realization of a ladder system. Namely, the low-temperature

magnetization data was well described by the XXZ chain

model (Watson et al., 2001) in the strong-coupling limit (J? �
Jk) of a ladder (Tachiki and Yamada, 1970; Chaboussant et al.,

1997; Mila, 1998; Giamarchi and Tsvelik, 1999).

In connection with the magnon BEC, another important

question is the dimensional crossover, between the 1D and the

3D character in a system made of weakly coupled ladders as

discussed in Sec. VII.B. At temperatures much larger than the

interladder coupling, the system can be viewed as a collection

of 1D ladders (Sachdev et al., 1994; Chitra and Giamarchi,

1997; Furusaki and Zhang, 1999; Giamarchi and Tsvelik,

1999) in the universality class of Tomonaga-Luttinger liquids

at high field. At lower temperature, interladder coupling

cannot be ignored, and the system falls into the universality

class of magnon BEC condensates. From the experimental

point of view, such a change of regime between the 1D and

3D limits is relevant for the above mentioned compound
BPCB. Experimentally, to probe these different regimes and

TLL behavior characterized by power laws, nuclear magnetic

resonance Knight shift, and relaxation time T�1 measure-

ments have been performed and compared with the theoreti-

cal predictions from bosonization and DMRG (Giamarchi

and Tsvelik, 1999; Klanjšek et al., 2008; Rüegg et al.,
2008; Thielemann et al., 2009a, 2009b).

The above comparison allows for a quantitative check of

the TLL theory (Klanjšek et al., 2008). More generally, the

phase diagram and order parameter have been found in good

agreement with the theoretical predictions (Fig. 17). The

neutron scattering spectrum has been measured and com-

pared with exact solutions as described in Sec. III.D
(Thielemann et al., 2009b) or DMRG calculations

(Bouillot et al., 2011). Since they lead to a good realization

of interacting bosons, these ladder systems open interesting

possibilities such as the study of disordered bosons and the

Bose-glass phase (see Sec. VI.B) (Hong et al., 2010).

D. Trapped atoms

Atom trapping techniques allow for the realization of

ultracold vapors of bosonic atoms, thus offering another route

for the experimental study of low-dimensional interacting
bosons. In experiments, Bose-Einstein condensates are usu-

ally created in 3D geometries. However, by making the trap

very anisotropic (Dettmer et al., 2001; Görlitz et al., 2001;

Schreck et al., 2001), or by loading the condensate in 2D

optical lattices (Greiner et al., 2001; Moritz et al., 2003) or

by means of atom chips (Folman et al., 2000; van

Amerongen et al., 2008), the quasi-1D regime can be ac-
cessed. In this section, we first review the basic principles of

atom trapping techniques and the particular techniques de-

veloped for probing the atomic clouds. Then, we review the

experiments done on quasi-1D bosonic systems.

1. Atom trapping techniques

a. Optical trapping: In this method, ultracold atoms are

trapped in standing light patterns created by laser interfer-

ence. The atoms respond to the electric field of the laser light

by acquiring a small dipole moment, which in turn yields a
force on the atom proportional to the gradient of the electric

field. The optical potential thus created is proportional to the

square of the electric field, that is, to the laser intensity. The

proportionality factor is the atom polarizability. The latter, for

a two-level atom (a cartoon model of alkali atoms such as
87Rb or 133Cs), is positive when the laser is blue detuned from
a characteristic atomic transition and negative when it is red

detuned. Therefore, atoms accumulate in regions of high light

intensity when the laser is red detuned, whereas they are

attracted towards regions of low light intensity when the laser

is blue detuned. The two types of optical potentials are indeed

used in the experiments described below (Bloch et al., 2008).

The simplest type of optical potential is created by a retro-
reflected laser beam (propagating, say, along the z direction),
which produces a standing wave potential of the form

FIG. 17 (color online). Low T phase diagram of ðHpipÞ2CuBr4.
The top two gray lines represent field scans of the magnetocaloric

effect (MCE) for two different temperatures. The contour plot is

based on the MCE scans. The black solid lines represent crossover

temperatures from quantum disordered (QD) and fully magnetized

(FM) regimes to the spin Luttinger liquid regime deduced from the

MCE measurements. The bottom solid gray (online red) line is a

theoretical fit to the neutron scattering data. From Thielemann

et al., 2009a.
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VoptðxÞ ¼ V0zsin
2ðkzÞ, where V0z is proportional to the laser

intensity and k ¼ 2�=�, � being the laser wavelength. The

strength of the optical potentialV0z is conventionallymeasured

in units of the recoil energy of the atomER ¼ ℏ
2k2=2M, where

M is the atom mass. Combining three such mutually incoher-

ent standing waves perpendicular to each other yields the

following three-dimensional optical potential:

Voptðx; y; zÞ ¼
X3

i¼1

V0isin
2ðkxiÞ: (164)

Theminima of this potential occur at a cubic Bravais lattice. In

addition, in the experiments a (harmonic) potential is needed in

order to confine the gas. The lattermay ormay not be generated

by the same lasers that create the lattice.

b. Magnetic trapping and atoms on chip: Another tech-
nique for trapping atoms relies on magnetic fields. The

advantage of this technique is that the magnetic field can be

created by wires deposited on a surface (the so-called atom

chip trap) by microfabrication techniques. Atoms of total spin

F interact with a magnetic field BðrÞ by the Zeeman coupling

HZeeman ¼ �g�BF �B. When the magnetic field is slowly
varying in space, the spin follows adiabatically the direction

of the magnetic field resulting in a potential proportional to

jjBjjðrÞ (Folman et al., 2002). When the magnetic moment

g�BF is parallel to the magnetic field, this potential is

minimum where the strength of the magnetic field is maxi-

mum. The atom is then said to be in a strong field seeking

state. Since Earnshaw’s theorem (Ketterle and Pritchard,
1992) prohibits maxima of the magnetic field in vacuum, in

such a situation trapping is possible only if a source of

magnetic field is located inside the trap. With a magnetic

moment antiparallel to the magnetic field, the potential is

minimum when the magnetic field intensity is minimum. The

atom is then said to be in a weak field seeking state, which is
metastable. Since Earnshaw’s theorem does not prohibit min-

ima of the magnetic field in vacuum, no source of magnetic

field is needed to be present inside that trap.

Hence, most atom chip traps operate in the metastable weak

field seeking state. By superimposing the magnetic field cre-

ated by a wire and a uniform fieldBbias orthogonal to the wire,

one obtains a line of vanishing magnetic field which traps the
weak field seeking atoms called a side guide trap. However, in

this setup the adiabaticity condition g�BB=ℏ � ðdB=d�Þ=B
is not satisfied and Majorana spin flips switch atoms to the

strong field seeking state causing losses from the trap. Thus, a

second uniform offset magnetic field Bo parallel to the wire is

superimposed to the trapping field to ensure that the adiaba-
ticity condition remains satisfied in the trap. The trapping in

the transverse direction is then harmonic (Folman et al., 2002;

Fortagh et al., 2004).With a Z-shapedwire, the atoms can also

be confined along the central part of the wire by a shallow

harmonic confining potential. Since magnetic trapping de-

pends on the atoms remaining in the weak field seeking state,
Feshbach resonances cannot be used to reach a regime of

strong interactions. As a result, atom on chip trapping can

only be used to study the regime of weak interaction.

2. Probes

A usual probe in condensed matter physics is the measure-

ment of the structure factor,

Sðq;!Þ ¼
Z

dxd�e�iðqx�!�Þh	̂ðx; �Þ	̂ð0; 0Þi; (165)

a quantity which can be predicted via either computational

techniques or analytical approaches. Using linear response

theory, Brunello et al. (2001) showed that the structure factor

of a trapped gas could be measured with Bragg spectroscopy.
In Bragg spectroscopy measurements (Stenger et al., 1999)

two laser beams of different wavelengths are shone on an

atomic clouds. This creates a time-dependent potential acting

on the atoms,

ĤJ ¼ V0

Z

dx cosðqx�!�Þ	̂ðx; �Þ: (166)

After the perturbation has been applied, the total energy
E or the total momentum P of the system is measured.

Brunello et al. (2001) showed that both quantities are

proportional to the structure factor. The effect of the trap-

ping potential was considered by Golovach et al. (2009).

Clément et al. (2009) used Bragg spectroscopy techniques to

monitor the evolution of a trapped bosonic gas in a 1D lattice
from the superfluid to the Mott insulator as the potential is

ramped up.

a. Time-of-flight measurements

In a TOF measurement, the trapping potential containing

the atomic gas is suddenly switched off and, after expansion,

the density of the atomic cloud is measured using absorption

imaging techniques. Assuming that interactions between

atoms can be neglected and applying the stationary phase

approximation to the solution of the time-dependent
Schrödinger equation, the annihilation operator of a boson at

position r and time � � mL2=ℏ [where L is the original

(linear) size of the cloud] is found to be �̂ðr; �Þ�
�̂ðkðrÞÞ=�d=2, with kðrÞ ¼ mr=ℏ�. That is, TOF provides a

correspondence between the position of a boson after expan-

sion and its initial momentum in the trap (the factor �d=2

stems from the free propagation in d dimensions). After
some straightforward manipulations, the density distribution

measured after a TOF � at the position r is then found

to be proportional to the initial momentum distribution

function

h	̂ðr; �Þi / 1

�
h	̂½kðrÞ�i: (167)

Equation (167) implies that a BECwill show up as a prominent

peak in h	̂ðr ¼ 0; �Þi after TOF (Anderson et al., 1995;

Bradley et al., 1995; Davis et al., 1995). If a BEC is loaded
in the lowest band of an optical lattice, one needs to relate the

momentum distribution function 	̂ðkÞ to the quasimomentum

distribution function n̂k in the lattice. The latter satisfies n̂k ¼
n̂kþQ, where Q is an arbitrary reciprocal lattice vector. Using

the 3D version of Eq. (12), one finds that 	̂ðkÞ ¼ jw0ðkÞj2n̂k,
where w0ðkÞ is the Fourier transform of the Wannier orbitals.

This relation implies that after TOF expansion, a BEC released

from an optical lattice will exhibit Bragg peaks at kðrÞ ¼ Q

corresponding to reciprocal lattice vectors (Greiner et al.,

2002a).
We stress, however, that the density distribution after a

TOF can be different from the in-trap momentum distribution
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if interactions are nonnegligible during the expansion or

when the TOF is not sufficiently long to neglect the initial

size of the cloud (Pedri et al., 2001; Gerbier et al., 2008). For

optical lattice experiments with small filling factors, the
ballistic expansion is typically a good approximation.

Moreover, by applying the Feshbach resonance technique,

one can also always tune the collision interaction to a negli-

gible value at the beginning of the expansion to satisfy the

condition of ballistic expansion. Another deviation from the

true BEC behavior occurs when the temperature is increased
from zero, T > T�, T� being the temperature at which the

phase fluctuations become of order unity. In this quasi-BEC

regime, the detection signal decreases and Bragg peaks be-

comes less visible. If instead, the interaction is increased
while the temperature is still very low, i.e., in the Mott state,

coherence is destroyed and there is no interference pattern in

h	̂ðr; �Þi.
For a Tomonaga-Luttinger liquid, the boson creation op-

erator is represented by �̂yðxÞ � e�i
̂ðxÞ, thus h	̂ðkÞi /
k1=2K�1 displaying a characteristic power-law divergence at

zero momentum for K > 1=2. In particular, in the Tonks-

Girardeau limit, the Tomonaga-Luttinger parameter K ¼ 1
and the momentum distribution presents a square-root diver-

gence at k ¼ 0. During the past years, experimental groups
were able to increase the interactions to reach this regime

(Kinoshita et al., 2004; Paredes et al., 2004).

b. Noise correlations

Since atomic clouds are mesoscopic, the density fluctuates

between different time-of-flight experiments. Altman,
Demler, and Lukin (2004) thus proposed to use time-of-flight

spectroscopy to measure correlations between occupation

numbers for different momenta,

Gk;k0 ¼ hn̂kn̂k0i � hn̂kihn̂k0i; (168)

where n̂k is the occupation number for momentum k, and the

average is taken over the initial state. Altman, Demler, and

Lukin (2004) considered Fermi superfluids and bosonic Mott

insulators.

For 1D boson systems, the correlations (168) were studied

by Mathey, Vishwanath, Altman, 2009. For the Luttinger
parameter K � 1, the correlation functionGk;k0 shows a large

peak for k ¼ k0 ¼ 0, sharp power-law peaklike features for

k ¼ �k0, and power-law diplike features for k ¼ 0 or k0 ¼ 0.
The peak at k ¼ k0 is the result of boson bunching familiar
from quantum optics. The location of the other features is

predicted (Mathey, Vishwanath, Altman, 2009) by the

Bogoliubov approximation. However, their power-law char-

acter is a signature of the Tomonaga-Luttinger liquid physics

unique to one dimension (Mathey, Vishwanath, Altman,

2009). For lattice hard-core bosons, noise correlations have
been computed in the presence of commensurate and incom-

mensurate superlattices, and in the presence of a trap, by Rey

et al. (2006a, 2006b, 2006c) and their scaling has been

studied by He and Rigol (2011) using the methods described

in Sec. III.A.

A different approach to probe static quantum correlations

with noise measurement has been proposed by Polkovnikov
et al. (2006). The idea is to start from two independent 1D

condensates parallel to the x axis and separated by a distance

d, both tightly confined in the radial direction z. At time zero,

both condensates are allowed to expand in the radial direc-

tion. Because the condensates were tightly confined, expan-

sion is much faster in the radial direction z, and one can
neglect expansion along the direction x. Under this assump-

tion, the total annihilation operator of the bosons reads

�̂ðz; x; �Þ ’ �im

2�ℏ�

X

p¼1;2

�̂pðxÞe½im=ð2ℏ�Þ�ðzþspd=2Þ2 ; (169)

where sp¼1 ¼ �1 and sp¼2 ¼ þ1 and �̂1;2ðxÞ is the annihi-
lation operator of bosons initially trapped in the condensate 1
or 2. Absorption imaging techniques can then be used to

measure the density profile integrated along the beam axis

	̂ðz; �Þ ¼
Z L

0
dx�̂yðx; z; �Þ�̂ðx; z; �Þ: (170)

Using Eq. (169), one can express 	̂ðz; �Þ as a function of the

annihilation operators of condensate 1 or 2, which has an

oscillatory contribution (that accounts for the interference
fringes in the optical absorption images) proportional to

ÂQe
iQz, where we have introduced Q ¼ md=ℏ� and

ÂQ ¼
�

m

2�ℏ�

�
2 Z L

0
dx�̂y

1 ðxÞ�̂2ðxÞ: (171)

From one experimental realization to another, the quantity

AQ varies randomly. As a result, the amplitude of the fringes

varies from experiment to experiment, and one needs the

moments of the correlation function hðÂy
QÞnÂn

Qi to character-

ize the full probability distribution of ÂQ (Glauber, 1963;

Mandel and Wolf, 1965). As we will see, the probability

distribution of ÂQ is non-Gaussian, and depends on the

Luttinger parameter, thus permitting its experimental deter-

mination. The higher moments are given by

hðÂy
QÞnÂn

Qi¼
Z L

0
dx1 ���dxndx01 ���dx0n

	jh�̂yðx1Þ����̂yðxnÞ�̂yðx01Þ����̂yðx0nÞij2:
(172)

Using bosonization, this integral can be rewritten as

hðÂy
QÞnÂn

Qi � Lnð2�1=KÞ
Z 1

0
d!1 � � � d!nd!

0
1 � � � d!0

n

	
��������

Q

1
k<‘
n j!k �!‘jj!0
k �!0

‘j
Q

1
k;‘
n j!k �!0
‘j

��������

1=K

;

(173)

where the change of variables xi ¼ L!i, x
0
i ¼ L!0

i has been

used. Equation (173) shows that the higher moments are of

the form hðÂy
QÞnÂn

Qi � ðhðÂy
QÞÂQiÞnZ2nðKÞ, where Z2nðKÞ is a

dimensionless factor given by the multidimensional integral

in Eq. (173) that depends only on n and K. The quantities

Z2nðKÞ are the moments of the distribution function of the

normalized fringe interference contrast. The integrals in

Eq. (172) can be expressed using Jack polynomials

(Fendley et al., 1995), contour integration (Konik and

LeClair, 1996), or Baxter’s Q operator (Gritsev et al.,
2006) methods. Imambekov et al. (2008) related the distri-

bution function to the statistics of random surfaces, allowing
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for Monte Carlo computation. With periodic boundary

conditions, the normalized distribution ~Wð�Þ such that

Z2nðKÞ=Z2ðKÞn ¼ R
d��n ~Wð�Þ goes to a Gumbell distribu-

tionWGð�Þ ¼ K exp½Kð�� 1Þ � �� eKð��1Þ��� in the limit

K ! 1. This is the result of the rare events (Imambekov

et al., 2007) in the fluctuations of the equivalent random

surface model. The prediction of a Gumbel distribution of

interference fringe contrasts was checked experimentally

(Hofferberth et al., 2008) using 87Rb atoms in radio fre-

quency microtraps on atom chips.

3. One-dimensional bosons with cold atoms

On a chip, atoms can be trapped in a quasi-1D geometry,

allowing one to access the weakly interacting regime. A study

of the density profile of atoms on chip (Trebbia, et al., 2006)

showed that the Hartree-Fock approximation breaks down

already in the weakly interaction regime for quasi-1D trap-

ping. Later experiments (van Amerongen et al., 2008) showed

that the density profiles could be well fitted using the Yang-

Yang thermodynamics (Yang and Yang, 1969) of

the Lieb-Liniger gas (Lieb and Liniger, 1963). To access the

regime of strong interaction, optical lattices are more suitable.

In what follows, we consider ultracold quantum gases in

strongly anisotropic lattices. By ‘‘strongly anisotropic,’’ we

mean that the optical potential is of the form of Eq. (163) but

such that jV0zj � jV0xj ¼ jV0yj. Under this condition, it is

possible to confine atoms to 1D (Greiner et al., 2001; Moritz

et al., 2003; Kinoshita et al., 2004, 2005; Paredes et al., 2004;

Tolra et al., 2004; Stöferle et al., 2004a; Fertig et al., 2005a;

Haller et al., 2010). Indeed, this requires that the chemical

potential of the 1D gas � is much smaller than the trap

frequency, which for a deep lattice ’ kjV0z=Mj1=2. Thus, the
atoms are strongly localized about the minima of the potential

in the transverse directions (i.e., y and z in the previous

example), forming elongated clouds (referred to as ‘‘tubes’’).

Since the potential along the longitudinal (x) direction is much

weaker, all the dynamics will occur in that direction. The

resulting system is an ensemble of a few thousand (finite-

size) 1D ultracold gas tubes, which is sometimes called

a 2D optical lattice (in the case where V0x ¼ 0, see Fig. 18),
or, as we do in what follows, a quasi-1D lattice.

Nevertheless, once the condition for one dimensionality of

the tubes is achieved, two quasi-1D regimes are possible. This

is because, even if the atoms only undergo zero-point motion

transversally, the hopping amplitude between tubes t? is in

general nonvanishing. Regime (i): if over typical duration of a

experiment, �exp & 102 s, the characteristic hopping time

�hop � ℏ=t? * �exp, then hoping events will rarely occur

and therefore phase coherence between different tubes cannot

be established. In the RG language used in Sec. VII.B, the

energy scale associated with the observation time �h=�exp
behaves as an infrared cutoff of the RG flow preventing the

renormalized Josephson coupling gJ from becoming of order

1. Regime (ii): if �hop � �exp, then the establishment of long-

range phase coherence will be possible (but it may be pre-

vented by other terms of the Hamiltonian, see below and

Sec. VII.B). Indeed, experimental groups have explored the

two regimes, as we review in more detail below.

The regime of a phase-coherent ensemble of tubes and the

transition to the phase-incoherent regime was explored in the

early experiments by Greiner et al. (2001), where the 1D

regime was first reached in a quasi-1D lattice, and later more

thoroughly by Moritz et al. (2003) and Stöferle et al.

(2004a). However, other groups have focused directly in the

1D (phase-incoherent) regime (Kinoshita et al., 2004, 2005;

Paredes et al., 2004; Haller et al., 2010). In what follows,

these experiments are reviewed and the theoretical back-

ground for the probes used in some of them will also be

discussed. We begin with the experiments that explored the

phase-incoherent 1D regime, and near the end of this section,

discuss the experiments where intertube hoping may become

a relevant perturbation on the system.

a. Strongly Interacting 1D bosons in optical lattices: For

alkali atoms, which at ultracold temperatures (from �10 nK
to �1 �K) interact dominantly via the s-wave channel (see

Sec. II), the interaction is short ranged. When ultracold atoms

are loaded into an anisotropic optical lattice, they occupy the

lowest available (Bloch) band. This system is thus amenable

to a lattice description in terms of the (anisotropic) Bose-

Hubbard model. Furthermore, if the experimental conditions

are such that the hopping between tubes can be neglected (see

discussion above), the system can be described as an array of

independent tubes. Each tube is described by a 1D Bose-

Hubbard model Eq. (15). The particle number within each

tube is largest at the center and decreases towards the edges of

the lattice in response to the existence of the harmonic trap,

which makes the system inhomogeneous.

Tuning the longitudinal potential ð/ V0xÞ effectively

changes the ratio t=U of the 1D Bose-Hubbard model. For

deep potentials, it is thus possible to access the strongly

interacting regime of the model and to observe the transition

from the superfluid (i.e., Tomonaga-Luttinger liquid) phase to

the Mott insulator. Indeed, shortly after this transition was

observed in a 3D optical lattice (Greiner et al., 2002a), the

1D transition was observed by Stöferle et al. (2004a). More

recently, the Mott transition in a weak lattice, as discussed in

Sec. VI.A, was also observed (Haller et al., 2010). In order to

probe the excitation spectra of the phases realized by tuning

V0x in the quasi-1D optical lattice, Stöferle et al. (2004a)

followed a novel spectroscopic method, which relied on

modulating in time the amplitude of the longitudinal

potential. In equations, this amounts to replacing V0x !
V0x þ �V0x cos!� in Eq. (164). The time-dependent

x

z

x
y

BEC

Lattice Beams

FIG. 18 (color online). Experimental setup for the creation of a

2D optical lattice. The optical potential resulting form the interfer-

ence of a pair of retroreflected, mutually perpendicular, lasers splits

a BEC into an array of several thousand 1D gas tubes. From Greiner

et al., 2001.
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potential heats up the system, and the transferred energy can

be estimated in a time-of-flight experiment from the enhance-

ment of the width at half maximum of the peak around zero

momentum. The measured spectra for different values of the

lattice depth (V0x=ER) are displayed in Fig. 19. The superfluid

phase is characterized by a broad spectrum, whereas the

emergence of the 1D Mott insulator is characterized by the
appearance of two peaks: A prominent one at ℏ! ’ U and a

smaller one at ℏ! ’ 2U.

In order to qualitatively understand these spectra, Iucci

et al. (2006) employed linear response theory, and considered

the limit of both small and large potential V0x. When V0x is

smaller than �, the lattice modulation couples to the density
operator. Using the bosonization formula (112), the q � 0

term / @x�̂ gives a vanishing contribution to the energy

absorption within linear response and, to leading order, the

modulation of the amplitude of the optical potential is
described by the perturbation Ĥ1ð�Þ ¼ B	0�V0x cos!�	
R
dx cos½2�̂ðx; �Þ þ x��, where � ¼ 2G� 2�	0, that is,

the modulation couples to the density operator for q �
2�	0. In the limit of large V0x, it is most convenient to begin

with the Bose-Hubbard model. Within this framework, it

can be shown that the lattice modulation can be expressed

as a modulation of the hopping amplitude Ĥ1ð�Þ ¼
��t cos!�

P

m½b̂ymþ1b̂m þ H:c:�, where �t¼ðdt=dV0xÞ�V0x.

Hence, the (time-averaged) energy absorption rate per parti-

cle reads

_�ð!Þ ¼ �V2
0x

N
! Im½��Oð!Þ�; (174)

where �Oð!Þ is the Fourier transform of �ð�Þ ¼
�i=ℏh½Ôð�Þ; Ôð0Þ�i. The operator Ô ¼ R

dx cosð2�̂ðxÞ þ
x�Þ in the weak lattice regime, and Ô ¼ ��J

P

m½b̂ymþ1b̂m þ
H:c:� in the strong lattice regime.

For a weak commensurate lattice, in the superfluid
(Tomonaga-Luttinger liquid) phase, _�ð!Þ�ℏ!ðℏ!=�Þ2K�2,

where K is the Tomonaga-Luttinger liquid parameter and

� is the chemical potential. Since for the superfluid phase

(K * 2), the calculated low frequency part contains very little

spectral weight, using the f-sum rule, Iucci et al. (2006)

argued that the absorption spectrum of the superfluid phase

should be broad, in agreement with the experiment and the
calculations of Caux and Calabrese (2006) based on the Bethe

ansatz. For the Mott insulator phase, in the weak coupling

limit, a threshold behavior of the form _�ð!Þ �
ℏ!Fðℏ!Þ
ðℏ!� �Þ exists, where � is the Mott gap and

FðxÞ is a smooth function. This threshold behavior was

observed in the experiments of Haller et al. (2010), which
recently explored the phase diagram of the 1D Bose gas in a

weak periodic potential.

In the strong-coupling regime, the perturbation reads, in an

expansion to Oðt2=UÞ, in the subspace of particle-hole states

_�ð!Þ ¼ ð�tÞ2
2t

ℏ!

�
n0 þ 1

2n0 þ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
ℏ!� U

ð2n0 þ 1Þt

�
2

s

; (175)

and zero otherwise. The accuracy of this expression was
tested using time-dependent DMRG by Kollath et al.

(2006), and the results are shown in Fig. 20. The latter

numerical technique allows one to go beyond linear response

and to incorporate the effects of the trap and thus to deal with

the experiments of Stöferle et al. (2004a) for which

�V0x=V0x � 10%. Numerically investigating the inhomoge-
neity brought about by the trap, it was shown by Kollath et al.

(2006) that the smaller peak near ℏ! ¼ 2U is indeed a

measurement of the incommensurability in the 1D tubes.

An alternative interpretation of the broad resonance ob-

served in the superfluid phase was given in terms of a para-

metric instability of Bogoliubov modes and their nonlinear

dynamics (Krämer et al., 2005). This interpretation assumes
that the Bogoliugov approximation is also applicable for

strongly interacting bosons in 1D.

50

100

150

200

4 (2.3)

6 (4.6)

8 (8.4)

10 (14)

12 (23)

14 (36)

0 1 2 3 4 5 6

Potential

      Depth

          [E
R
]

        (U / J)

F
W

H
M

 [
µ

m
]

Modulation Frequency [kHz]

1D

FIG. 19 (color online). Energy absorption of a strongly interacting

1D Bose system measured as a function of the longitudinal potential

V0x=ER (ER is the atom recoil energy). Notice the broad spectrum of

the superfluid (small V0x=ER) and the double peak structure char-
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2004a.
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Approaching the Tonks-Girardeau limit: For bosonic

atoms, there are essentially two routes into the strongly

interacting regime, which asymptotically approaches the

Tonks-Girardeau limit where fermionization occurs. The

two routes were explored simultaneously by Kinoshita

et al. (2004) and Paredes et al. (2004). One of them

(Paredes et al., 2004) relies on reaching the strong interacting

limit of the 1D Bose-Hubbard model while ensuring that the

system remains incommensurate with the lattice potential

(e.g., at average filling n0 < 1). In the presence of a longitu-

dinal harmonic confinement, this is by no means straightfor-

ward, because, as discussed in Sec. IV.B.3, the center of the

cloud easily becomes Mott insulating as the ratio t=U de-

creases. Thus, carefully controlling the trapping potential,

Paredes et al. (2004) entered the strongly-interacting regime

where the bosons undergo fermionization. The signatures of

the latter were observed in the momentum distribution as

measured in time-of-flight experiments (cf. Sec. VIII.D.2.a).

After averaging over the distribution of tubes resulting from

the inhomogeneous density profile, Paredes et al. (2004)

were able to reproduce the experimentally measured momen-

tum distribution of the strongest interacting systems.

Computational studies of the approach to the Tonks-

Girardeau regime were done by Pollet et al. (2004) and

Wessel et al. (2005).

The other route into the strongly correlated regime for

bosons in 1D is to first load the atoms in a deep 2D optical

lattice [V0x ¼ 0 and V0y ¼ V0z * 30ER in Eq. (164)]. The

resulting system is described by the Lieb-Liniger model in a

harmonic trap. The strongly interacting regime of this model

is reached by making � ¼ Mg=ℏ	0 large. This can be

achieved either by decreasing the mean density 	0, which

for small atom numbers & 10 per tube ultimately poses

detection problems, or by increasing the coupling constant

g [cf. Eq. (92)]. As predicted by Olshanii (1998), this is

possible either by making the transverse confinement tighter

(Kinoshita et al., 2004, 2005) or by increasing the scattering

length using Feshbach resonance (Haller et al., 2010).

Kinoshita et al. (2004 and 2005) used a blue-detuned 2D

optical lattice potential (cf. Fig. 18) to confine an ultracold
87Rb gas into an array of 1D traps (�103 tubes). In addition,

the atoms were confined longitudinally by an optical (red-

detuned) dipole trap. The blue-detuned lattice potential

makes it possible to reach a tighter transverse confinement

without increasing the probability of spontaneous emission,

which due to the atom recoil may result in the latter being lost

from the trap. In addition, as mentioned, by virtue of Eq. (92),

a tighter confinement allows for the increase of the interaction

coupling g.
By measuring the mean atom energy after the expansion in

1D (turning off the optical dipole trap only), Kinoshita et al.

(2004) were able to detect the incipient signatures of fermio-

nization of the 1D gases. However, the most dramatic sig-

natures of strong interactions were observed in a later

experiment (Kinoshita et al., 2005), in which local pair

correlations g2ðxÞ were measured.
For the Lieb-Liniger model, g2 (note that we drop x

assuming translational invariance) is a thermodynamic quan-

tity that can be obtained from the free energy by using the

Hellman-Feynman theorem

g2ð�;#Þ¼	�2
0 h½�̂yðxÞ�2½�̂ðxÞ�2i¼�2

T

L

@FðTÞ
@g

; (176)

where F ¼ �T ln Tre�H=T is the free energy for the Lieb-

Liniger model [H is given by Eq. (10)], # ¼ T=Td, T is the

absolute temperature, and Td ¼ ℏ
2	0=2M is the character-

istic temperature for quantum degeneracy. Gangardt and

Shlyapnikov (2003) first obtained g2ð�; #Þ for � ¼ 0 for all

� values using the Bethe-ansatz result for the ground-state
energy. Kheruntsyan et al. (2005) extended these results to

finite temperatures. For large and small � values, the follow-

ing asymptotic limits have been derived (Gangardt and

Shlyapnikov, 2003; Kheruntsyan et al., 2005):

g2ð�; #Þ ’

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

4
3

�

�
�

�
2
�

1þ #2

4�2

�

� � 1 and # � 1;

2#
�2 1 � # � �2;

1� 2
�

ffiffiffiffi
�

p þ �#2

24�3=2 # � � � 1;

1þ #
2
ffiffiffi
�

p � � # � ffiffiffiffi
�

p
;

2� 4�
#2

ffiffiffiffi
�

p � # � 1;

2� �
ffiffiffiffiffi
2�
#

q

# � maxf1; �2g

:

(177)

The results for large � can also be reproduced from the

low-density limit of a strong-coupling expansion for the

Bose-Hubbard model (Cazalilla, 2004a).

The asymptotic expressions (177) show that for T ! 0,
g2 ! 0 as � ! þ1. The latter reflects the fermionization

that becomes complete in the Tonks-Girardeau limit, where
g2 ¼ 0 at all temperatures. The dramatic decrease in g2
(Kinoshita et al., 2005) as it crosses over from the behavior

for weakly interacting bosons (i.e., g2 � 1 for �� 0:1) to

strongly interacting bosons (i.e., g2 � 0:1 for � ’ 10) was

observed by tuning the interaction coupling g, as described
above. The measurements are depicted in Fig. 21, which also
show the excellent agreement with theory.

In order to measure g2, atoms in the optical lattice were

photo associated into molecules using a broad laser beam

resonant with a well-defined molecular state of the Rb-Rb

dimer. The molecule formation was subsequently detected as

a loss of atoms from the trap. One important issue that must

be addressed in order to compare theory and experiment is the
inhomogeneity of the 1D systems due to the harmonic trap.

Fortunately, the LDA allows one to obtain g2ðxÞ for the

trapped system from the g2ð�Þ calculated for the uniform

system.

Another experimentally accessible local correlation is

g3 ¼ 	�3
0 h½�̂yðxÞ�3½�̂ðxÞ�3i. This local correlation function

is related to the rate of three-body recombination processes

where molecules form out of three-atom encounters. The

calculation of g3 is less straightforward. Gangardt and
Shlyapnikov (2003) obtained the following asymptotic ex-

pressions for the Lieb-Liniger model at large and small � and

T ¼ 0:

g3ð�Þ ¼
8
<

:

4�2

3�2 � � 1;

1� 6
�

ffiffiffiffi
�

p
� � 1:

(178)
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Subsequently, in a mathematical tour de force, Cheianov

et al. (2006) computed the behavior of g3ð�Þ at T ¼ 0 for

the entire crossover from weakly to strongly interacting gas.

More generally, at any finite T and for intermediate of �, one
has to rely on the general expressions recently obtained by

Kormos et al. (2009). These results predict a strong reduction

in g3ð�Þ at low T as the 1D gas enters the strongly interacting

regime. This behavior should manifest itself in a strong

reduction of the atom losses due to three-body recombination.

Indeed, this is consistent with the experiments in optical

lattices in the 1D regime (Tolra et al., 2004).

Finally, in a recent experiment, Haller et al. (2009) have

been able to access the super-Tonks-Girardeau regime in a 2D

optical lattice by starting with a low-energy initial state in the

Tonks-Girardeau regime (with a large and positive value of g)
and quickly changing g across the confinement-induced reso-

nance (see Sec. IV.A) to a negative final value. In this

experiment, g was changed by means of a Feshbach reso-

nance. The ratio between the lowest compressional and di-

pole modes of oscillation in the highly excited state (with

g < 0) created in such a way was found to be larger than the

one in the Tonks-Girardeau regime, a hallmark of the super-

Tonks-Girardeau regime (Astrakharchik et al., 2005).

c. Coupled condensates The behavior of the Bose gas in the

quasi-1D optical lattice as the transverse potential is tuned

and phase coherence between the tubes emerges has been

explored by Moritz et al. (2003) and Stöferle et al. (2004a).

A theoretical discussion of these experiments has been given

by Cazalilla et al. (2006) and we thus refer the interested

reader to this work.

Using atom chips, a 1D Bose gas with a few thousand

atoms can be trapped in the 1D quasicondensate regime kBT,
� � ℏ�? (Hofferberth et al., 2007). Applying a radio

frequency (rf) induced adiabatic potential, the 1D gas can

be split into two 1D quasicondensates. The height of the

barrier between the two condensates can be adjusted by

controlling the amplitude of the applied rf field. This allows

one to achieve both Josephson coupled and fully decoupled

quasicondensates. The fluctuations of the relative phase of the

two condensates are measured by the quantity

Âð�Þ ¼ 1

L

��������

Z

dxei½
̂1ðx;�Þ�
̂2ðx;�Þ�
��������
; (179)

where 
̂1, 
̂2 are the respective phases of the two condensates
obtained after the splitting. From the theoretical point of

view, split condensates can be analyzed within the

Tomonaga-Luttinger liquid framework (Bistritzer and

Altman, 2007; Burkov et al., 2007). One introduces 
̂þ ¼
ð
̂1 þ 
̂2Þ=2 and 
̂� ¼ 
̂1 � 
̂2. The Hamiltonian Ĥ ¼
Ĥ½
̂1� þ Ĥ½
̂2� can be rewritten as Ĥ½
̂þ� þ Ĥ½
̂��. In the

initial state, the wave function factorizes �½
̂1; 
̂2� ¼
�þ½
̂þ� 	��½
̂��, where �þ is determined by the initial

state of the condensate and �� is initially localized near


̂�ðxÞ ¼ 0. Assuming an initial state with h
̂�ðxÞ
̂�ðx0Þi ¼
�ðx� x0Þ=2	, the quantum dynamics of the phase 
̂� under

the Hamiltonian (114) gives hÂi ¼ A0e
��=�Q with �Q ¼

2K2=�2v	 (Bistritzer and Altman, 2007). For long times,

� � ℏ=kBT, the symmetric and antisymmetric modes inter-

act with each other. The symmetric modes remain in thermal
equilibrium, and generate friction 1=�fðkÞ / k3=2 and noise

�ðx; �Þ (satisfying the fluctuation dissipation relation) for the

dynamics of the antisymmetric mode. The field 
̂� can then

be treated as a classical variable, satisfying the Langevin
equation

@2�
̂�ðk;�Þþ
@�
̂�ðk;�Þ

�fðkÞ
þðvkÞ2
̂�ðk;�Þ¼�ðk;�Þ: (180)

Solving this second order differential equation by the varia-

tion of the constant method with initial conditions 
̂ðk; �Þ ¼
@�
̂ðk; �Þ, one finds that h
̂�ðx; �Þ2i ¼ 2ð�=�CÞ2=3, and thus
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FIG. 22 (color online). Double logarithmic plot of the coherence

factor vs time for decoupled 1D condensates. Each point is the

average of 15 measurements, and error bars indicate the standard

error. The slopes of the linear fits are in good agreement with a 2=3

exponent. From Hofferberth et al., 2007.
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from photo association by Kinoshita et al. (2005) vs dimensionless

parameter �. The solid line is from the 1D interacting bosons theory
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Pcd ¼ 1 W; diamonds, Pcd ¼ 320 mW; up triangles, Pcd ¼
110 mW; and down triangles, Pcd ¼ 36 mW.

Cazalilla, Citro, Giamarchi, Orignac, and Rigol: One dimensional bosons: From condensed matter . . . 1457

Rev. Mod. Phys., Vol. 83, No. 4, October–December 2011



A / e�ð�=�CÞ2=3 . This behavior was indeed observed in

experiments in the case of a large potential barrier

(Hofferberth et al., 2007), as shown in Fig. 22.

IX. OUTLOOK

Quantum interacting bosons in 1D provide an exciting

research arena where solid state, low-temperature, and atomic

physics converge. In previous sections, we have seen that the

properties of these systems can be captured by a variety

of theoretical techniques ranging from exact solutions and

computational methods to low-energy effective theories such

as Tomonaga-Luttinger liquids. Although we now have a firm

understanding of several of these properties, many challenges

still remain. This is, in particular, prompted by many remark-

able experiments, some of which were discussed in Sec. VIII.

In the present section, we discuss some of the open problems

and recent developments in the field and provide an outlook

for future research. Our list is of course nonexhaustive and

many unexpected developments will certainly take place in

the future. These are all the ingredients of a very lively field

that will surely continue to provide exciting results in the

years to come.

a. Beyond Tomonaga-Luttinger liquid theory: The low-

energy, long wave length description based on the bosoniza-

tion technique introduces a particle-hole symmetry that is not

present in the original models that it intends to describe. In

the recent years, there has been intensive theoretical efforts

to improve bosonization by including nonlinear terms

(Bettelheim et al., 2006; Pereira et al., 2006; Khodas

et al., 2007; Imambekov and Glazman, 2009). In particular,

damping rates and universal crossover functions for the spec-

tral functions have been derived. A related problem is the

existence of a quantum critical regime at sufficiently large

temperature which does not obey Luttinger liquid scaling

(Guan and Batchelor, 2011). The search for experimental

signatures of these effects going beyond the simplest

Tomonaga-Luttinger liquid theory is one possible future

development of interacting bosons in 1D. In a similar way,

as discussed in Sec. VII.A, systems which do not obey the

paradigm of Tomonaga-Luttinger liquids (Zvonarev et al.,

2007) have been found and will lead to interesting further

developments.

b. Disorder and many-body localization: As discussed in

Sec. VI.B, important developments have occurred in the

understanding of the interplay between disorder and interac-

tions. However, many questions still remain open, in particu-

lar, the understanding of the finite temperature transport

properties of disordered quantum systems, a topic that should

lead to a wealth of future developments (Oganesyan and

Huse, 2007; Aleiner et al., 2010; Monthus and Garel,

2010; Pal and Huse, 2010).

Another interesting open problem is the far-from-

equilibrium dynamics of interacting bosons in the presence

of a random potential. This problem is relevant for the

expansion of condensates in experiments in which either a

quasiperiodic or speckle potential is present (Roati et al.,

2008). More generally, understanding how those systems

respond to quenches, and the steady states in the presence

of time-dependent (Dalla Torre et al., 2010) or time-

independent noise, are of very much interest. A related ques-

tion is the one of aging in disordered and glassy quantum

systems. It is well known that in disordered systems,

below a certain temperature, the relaxation may become

extremely slow so that the system never equilibrates on

any reasonable time scale. In such a regime, both corre-

lation Cð�; �0Þ and response Rð�; �0Þ functions depend on

both � and �0 and not just �� �0 as in equilibrium. Some

of these properties were understood for classical glasses

(Cugliandolo, 2003) but remain largely to be understood

for quantum glassy systems.

c. Dimensional crossover: In Sec. VII.B, we discussed

briefly the issue of the dimensional crossover. A particularly

interesting case is the one of coupled chains in a single plane.

In that case, the system possesses long-range order in the

ground state but, for any strictly positive temperature, long-

range order is replaced by quasi-long-range order with a

temperature-dependent exponent. At higher temperature, the

system undergoes a BKT transition and is fully disordered

above the transition. By contrast, a single chain has no long-

range order at any strictly positive temperature, with a corre-

lation length that diverges with temperature. There is thus an

important issue of understanding the crossover from between

the 1D decoupled chain regime and the 2D regime. Since both

regimes are strongly fluctuating, this crossover cannot be

tackled within a mean-field approximation, in contrast to

the 1D–3D crossover.

Another important problem is the magnon BEC in coupled

two-leg ladders when the interladder coupling is frustrated. In

that case, one has to understand whether the formation of the

magnon BEC is suppressed leaving the system in a critical

state (Emery et al., 2000; Vishwanath and Carpentier, 2001),

or whether a more exotic broken symmetry develops, making

the system off critical albeit with an unconventional spin

ordering. A related problem exists in arrays of Josephson

junctions (Tewari et al., 2005; Tewari et al., 2006) where

dissipative effects can also come into play.

d. Ergodicity, quantum chaos, and thermalization: In

Sec. VII.C, we briefly touched upon some of the recent

experimental and theoretical studies that have dealt with the

nonequilibrium dynamics of isolated quantum systems in 1D.

This field is in its infancy and many important questions are

currently being addressed by both experimentalists and

theorists.

Most of the computational works so far have considered

either small systems (with less than 10 particles), for which

all time scales are accessible by means of full exact diago-

nalization techniques, or systems with up to �100 particles,

for which only the short time scales (� 10ℏ=t) can be ad-

dressed with time-dependent DMRG and related techniques.

It is becoming apparent that in order to gain further under-

standing of the long-time limit in large systems (or in the

thermodynamic limit) a close collaboration will be needed

between cold gases experiments, with their ‘‘quantum analog

simulators,’’ and theory. Among the things we would like to

learn from those studies is what kind of memory of the initial

conditions few-body observables retain in isolated quantum

systems after relaxation (Olshanii and Yurovsky, 2011), the

relevance of typicality arguments (Tasaki, 1998; Goldstein

et al., 2006; Popescu et al., 2006; Reimann, 2008) to
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experimental systems, the relation between thermalization

and quantum chaos (Santos and Rigol, 2010a, 2010b), the

time scales for thermalization (Moeckel and Kehrein, 2008;

Barmettler et al., 2009; Eckstein et al., 2009), and the proper
definition of thermodynamic quantities (Polkovnikov, 2008,

2011; Santos, Polkovnikov, and Rigol, 2011).
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Svistunov, 2008, Phys. Rev. A 77, 015602.

Cardy, J., 1996, Scaling and Renormalization in Statistical Physics

(Cambridge University Press, Cambridge, England).

Cassidy, A. C., C.W. Clark, and M. Rigol, 2011, Phys. Rev. Lett.

106, 140405.

Caux, J., A. Klauser, and J. van den Brink, 2009, Phys. Rev. A 80,

061605.

Caux, J. S., and J.M. Maillet, 2005, Phys. Rev. Lett. 95, 077201.

Caux, J.-S., and P. Calabrese, 2006, Phys. Rev. A 74, 031605.

Caux, J.-S., P. Calabrese, and N.A. Slavnov, 2007, J. Stat. Mech.,

P01008.

Caux, J.-S., R. Hagemans, and J.M. Maillet, 2005, J. Stat. Mech.,

P09003.

Cazalilla, M.A., 2002, Europhys. Lett. 59, 793.

Cazalilla, M.A., 2003, Phys. Rev. A 67, 53606.

Cazalilla, M.A., 2004a, Phys. Rev. A 70, 41604.

Cazalilla, M.A., 2004b, J. Phys. B 37, S1.

Cazalilla, M.A., 2006, Phys. Rev. Lett. 97, 156403.

Cazalilla, M.A., and A. F. Ho, 2003, Phys. Rev. Lett. 91, 150403.

Cazalilla, M.A., A. F. Ho, and T. Giamarchi, 2006, New J. Phys. 8,

158.

Cazalilla, M.A., A. Iucci, and T. Giamarchi, 2007, Phys. Rev. A 75,

051603(R).

Cazalilla, M.A., and M. Rigol, 2010, New J. Phys. 12, 055006.

Ceperley, D.M., and M.H. Kalos, 1979, in Monte Carlo Methods in

Statistical Physics, edited by K. Binder (Springer Verlag, Berlin).

Chaboussant, G., P. Crowell, L. P. Lévy, O. Poivesana, A. Madouri,
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Greiner, M., O. Mandel, T.W. Hänsch, and I. Bloch, 2002b, Nature

(London) 419, 51.

Griesmaier, A., J. Werner, S. Hensler, J. Stuhler, and T. Pfau, 2005,

Phys. Rev. Lett. 94, 160401.

Gritsev, V., E. Altman, E. Demler, and A. Polkovnikov, 2006,

Nature Phys. 2, 705.

Gritsev, V., P. Barmettler, and E. Demler, 2010, New J. Phys. 12,

113005.

Gritsev, V., T. Rostunov, and E. Demler, 2010, J. Stat. Mech.,

P05012.

Gross, E. P., 1963, J. Math. Phys. (N.Y.) 4, 195.

Guan, X., and M. T. Batchelor, 2011, J. Phys. A 44, 102001.

Guan, X., M. T. Batchelor, and M. Takahashi, 2007, Phys. Rev. A

76, 043617.

Guan, X.-W., M. T. Batchelor, and J.-Y. Lee, 2008, Phys. Rev. A 78,

023621.

Gurarie, V., 2006, Phys. Rev. A 73, 033612.

Gurarie, V., L. Pollet, N. V. Prokof’ev, B. V. Svistunov, and M.

Troyer, 2009, Phys. Rev. B 80, 214519.

Ha, Z. N. C., 1994, Phys. Rev. Lett. 73, 1574.

Ha, Z. N. C., 1995, Nucl. Phys. B435, 604.

Haldane, F. D.M., 1980, Phys. Lett. A 80, 281.

Haldane, F. D.M., 1981a, Phys. Rev. Lett. 47, 1840.

Haldane, F. D.M., 1981b, J. Phys. C 14, 2585.

Hallberg, K., 2003, in CRM Series in Mathematical Physics, edited
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