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ONE-DIMENSIONAL BROWNIAN PARTICLE SYSTEMS WITH
RANK-DEPENDENT DRIFTS

BY SOUMIK PAL1 AND JIM PITMAN2

Cornell University and University of California, Berkeley

We study interacting systems of linear Brownian motions whose drift
vector at every time point is determined by the relative ranks of the coordinate
processes at that time. Our main objective has been to study the long-range
behavior of the spacings between the Brownian motions arranged in increas-
ing order. For finitely many Brownian motions interacting in this manner, we
characterize drifts for which the family of laws of the vector of spacings is
tight and show its convergence to a unique stationary joint distribution given
by independent exponential distributions with varying means. We also study
one particular countably infinite system, where only the minimum Brownian
particle gets a constant upward drift, and prove that independent and identi-
cally distributed exponential spacings remain stationary under the dynamics
of such a process. Some related conjectures in this direction are also dis-
cussed.

1. Introduction. In this paper, we consider systems of interacting one-
dimensional Brownian motions X = (Xi(t), i ∈ I, t ≥ 0), where i ranges over
an index I which is either the finite set {1, . . . ,N} or the countable set of positive
integers N.

For I = {1,2, . . . ,N}, if we define ordered coordinates of any vector x ∈ R
N

by

x(1) ≤ x(2) ≤ · · · ≤ x(N),

then the locations Xi(t) of the Brownian particles evolve according to the system
of stochastic differential equations

dXi(t) = ∑
j∈I

δj 1
{
Xi(t) = X(j)(t)

}
dt + dBi(t) (i ∈ I )(1)

for some sequence of drifts δ1, δ2, . . . ∈ R. Here, the Bi ’s are assumed to be inde-
pendent (Ft )-Brownian motions for some suitable underlying filtration (Ft ). Less
formally, the Brownian particles evolve independently, except that the ith-ranked
particle is given drift δi .
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For these finite systems, with arbitrary initial distribution of (Xi(0), i ∈ I ), and
arbitrary drifts δi , the existence and uniqueness in law of such an N -particle sys-
tem is guaranteed by the standard theory of SDE’s; see Lemma 6 for more details.
We would also like to define SDE (1) when I is the entire countably infinite collec-
tion N. This is more problematic since the ordered process may no longer remain
well defined and the existence of the solution of SDE (1) depends both on the
initial distribution and the sequence of drifts. We consider one such system in Sec-
tion 3, with a drift sequence (δ,0,0, . . .) (δ > 0) for which the finite-dimensional
arguments can be suitably extended. For this system to exist in the weak sense,
starting from an initial vector X1(0) < X2(0) < · · · , we show that it suffices to
assume that

lim inf
n→∞

(Xn(0) − X1(0))2

n
> 0;

see Lemma 11 for the details of the proof.
Now, consider the Brownian spacings system derived from this ordered Brown-

ian particle system with rank-dependent drifts, that is,

�k(t) := X(k+1)(t) − X(k)(t) for k, k + 1 ∈ I.

The ordered particle system derived from independent Brownian motions with
no drift (meaning δi ≡ 0) was studied by Harris [15], Arratia [1] and Sznitman
[29], [30], page 187. By Donsker’s theorem, this system can be interpreted as
a scaling limit of ordered particle systems derived from independent symmetric
nearest-neighbor random walks on Z. Harris [15] considers the spacings of an
infinite ordered Brownian particle system defined by

�∗
i (t) := B(i+1)(t) − B(i)(t), i ∈ Z,

where {Bi} is a family of independent Brownian motions with no drifts and initial
states Bi(0) = B(i)(0) such that B0(0) = 0 and the Bi(0) for i ∈ Z\{0} are points
of a Poisson process of rate λ on R. That is, (B(i)(t), t ≥ 0)i∈Z is the almost surely
unique collection of processes with continuous paths such that B(i)(t) ≤ B(i+1)(t)

for all i ∈ Z, t ≥ 0 and the union of the graphs of these processes is identi-
cal to the union of the graphs of the Brownian paths (Bi(t), t ≥ 0)i∈Z. We call
(B(i)(t), i ∈ Z, t ≥ 0) the Harris system of ordered Brownian motions with rate λ

and their differences (�∗
i (t), i ∈ Z, t ≥ 0) the Harris system of Brownian spacings

with rate λ.
As observed by Arratia [2], Section 4, the corresponding stationary system of

spacings between particles of the exclusion process associated with a nearest-
neighbor random walk on Z can be interpreted as a finite or infinite series of
queues, also known as the zero-range process with constant rate; see [16–20,
24] for background on systems of Brownian queues. Such connections between
systems of queues and one-dimensional interacting particle systems have been ex-
ploited by a number of authors, in particular Kipnis [22], Srinivasan [28], Ferrari
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and Fontes [13, 14] and Seppäläinen [27]. Ferrari [12] surveys old and new results
on the limiting behavior of a tagged particle in various interacting particle systems.
Also see articles by Baryshnikov [4] and O’Connell and Yor [24] for some recent
studies of Brownian queues in tandem, connected to the directed percolation and
the directed polymer models, and the GUE random matrix ensemble.

More recently rank-dependent SDEs have been considered by several authors as
possible models for financial or economic data. Fernholz, in [10], introduces the
so-called Atlas model which we study in this paper. It is a model of finitely many
Brownian particles where, at every time point, the minimum Brownian motion gets
a constant positive drift, while the rest get no drift. The general rank-dependent in-
teracting Brownian models, whose drifts and volatilities depend on time-varying
ranks, have been considered by Banner, Fernholz and Karatzas in [3], with whom
our work in this paper bears close resemblance. For SDE (1), they work under
a specific condition on the drift sequence required for stability of the solution
process. We prove in Theorem 8 [condition (13)] that this condition is indeed nec-
essary and sufficient. Although their method is mostly based on a beautiful analy-
sis of the local times of intersections of different Brownian motions, they also note
the connection with the Harrison–Williams theory of reflected Brownian motions
which we use extensively in this paper; see Lemma 4 for a complete statement.

In that same article [3], the authors establish marginal convergence of spacings
�k to exponential distributions. They leave open the question of joint convergence,
which we settle in this paper (in Theorem 8) by proving that the vector of spacings
converges in law to a vector of independent exponentials with different means.
They also study ergodic properties of such processes, including a demonstration of
the exchangeability of the indices of the Brownian particles under rank-dependent
drifts and volatilities. In their later papers, Fernholz and Karatzas also consider
generalized versions of (1), where the drifts and the volatilities depend on both
the index and the rank of a Brownian particle. As expected, in most such cases,
explicit descriptions of their properties become very difficult to obtain. However,
many interesting results can still be recovered. A good source for what has been
done thus far can be found in the recent survey article by Fernholz and Karatzas
[11]. Also, see the article by Chatterjee and Pal [5] for a follow-up in this direction,
where the authors consider an increasing number of Brownian particles in a rank-
dependent motion and establish a connection with the Poisson–Dirichlet family of
point processes.

McKean and Shepp, in [23], also consider Brownian motions interacting via
their ranks. They start with two Brownian motions, their objective being to find
the optimal drift under constraints (as a control) such that the probability that both
Brownian motions never hit zero is maximized. The solutions is, as they establish,
the Atlas model for the two particle system.

An interesting related model, studied by Rost and Vares in [26], replaces the
ordered particles in the Harris model by linear Brownian motions repelled by their
nearest neighbors through a potential. The authors study stationary measures for
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the spacings of such processes and show that rescaled combinations of spacings
converge to an Ornstein–Uhlenbeck process.

Our purpose here is to draw attention to the general class of Brownian particle
systems with rank-dependent drifts, as considered in [3]. Many natural questions
about these systems remain open. We are particularly interested in an infinite ver-
sion of the Atlas model, with a drift sequence (δ,0,0, . . .), with Atlas drift δ > 0.
One result we obtain for this system is the following.

THEOREM 1. For each δ > 0, a sequence of independent Exponential(2δ)

variables provides an equilibrium distribution of spacings for the infinite Atlas
model with the Atlas drift δ.

Theorem 1, which essentially follows from Theorem 14, suggests a number
of interesting conjectures and open problems. In particular, we can immediately
formulate the following.

CONJECTURE 2. For each δ > 0, Theorem 1 describes the unique equilibrium
distribution of spacings for the infinite Atlas particle system with Atlas drift δ.

Let (�1(t),�2(t), . . .)t≥0 denote the equilibrium state of spacings of the infinite
Atlas Brownian particle system described by Theorem 1. This process has some
subtle features. For each k = 1,2, . . . and each t > 0,

(�k(t),�k+1(t), . . .)
d= (�1(t),�2(t), . . .)(2)

and the common distribution of these sequences is that of independent exponen-
tial (2δ) variables. But, while both sides of (2) define stationary sequence-valued
processes as t varies, these processes do not have the same law for all k. In
particular, the finite-dimensional distributions of nonnegative stationary process
(�k(t), t ≥ 0) depend on k.

Harris [15], equation (7.1), gave an explicit formula for the law of B(0)(t), the
location at time t of the particle initially at 0 in the Harris system of ordered
Brownian motions, from which he deduced for 2λ = 1 that

B(0)(t)

t1/4
d→

(
2

π

)1/4 1√
2λ

B(1) as t → ∞,(3)

where B(1) is standard Gaussian. As remarked by Arratia [1], page 71, the con-
clusion for general λ > 0 follows from the case 2λ = 1 by Brownian scaling; see
also De Masi and Ferrari [6], Rost and Vares [26] and Arratia [1], where variants
(or generalizations) of (3) are proved for a tagged particle in the exclusion process
on Z associated with a simple symmetric random walk. Harris conjectured that the
process B(0) is not Markov and left open the problem of describing the long-run
behavior of paths of B(0). These questions were answered by Dürr, Goldstein and
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Lebowitz in [7], Theorem 7.1, where they prove that the tagged process B(0)(t),
suitably rescaled, converges to fractional Brownian motion with Hurst parameter
1/4. In fact, they show a general theorem where convergence to fractional Brown-
ian motion holds for systems with processes which have stationary increments and
perform elastic collisions as in the Harris model; see also [8] where the same au-
thors generalize their results in the case where an external potential is present.

In this connection, we have the following conjecture.

CONJECTURE 3. For each δ > 0, in the infinite Atlas model with Atlas drift
δ > 0 and initially ordered values X(k)(0), k = 1,2, . . . , which are the points of a
Poisson process with rate 2δ on (0,∞),

X(k)(t) − X(k)(0)

t1/4
d→

(
2

π

)1/4 ck√
2δ

B(1) as t → ∞
for some sequence of constants ck > 0 with ck → 1 as k → ∞.

The paper is organized as follows. In the next section, we analyze the finite
Brownian particle system with rank-dependent drifts. The main result is Theo-
rem 8, which describes the convergence in total variation of the laws of the spac-
ings to that of independent exponential distributions. The precise condition needed
on the drift sequence for such stability is also proved. In Section 3, we look at
countably infinite Brownian particles with the dynamics of the Atlas model. The
main result, Theorem 1, follows readily from Theorem 14.

2. The finite Brownian particle system. We first present some results re-
garding the asymptotic behavior of spacings for the N -particle system with arbi-
trary rank-dependent drifts δi , 1 ≤ i ≤ N . We start by recording the following two
lemmas, which clarify the issues of existence and uniqueness of the N -particle
system with arbitrary drifts δi , and characterize the associated ordered particle
system. See the book by Revuz and Yor [25] for a background and the definitions
of concepts from the calculus of continuous semimartingales.

LEMMA 4. Let Xi,1 ≤ i ≤ N , be a solution of the SDE (1) defined on some
filtered probability space (�,F , {Ft },P ), for some arbitrary initial condition and
arbitrary drifts {δj }. Then, for each 1 ≤ j ≤ N , the j th ordered process X(j) is a
continuous semimartingale with decomposition

dX(j)(t) = dβj (t) + 1√
2

(
dL(j−1,j)(t) − dL(j,j+1)(t)

)
,(4)

where the βj ’s for 1 ≤ j ≤ N are independent (Ft )-Brownian motions with unit
variance coefficient and drift coefficients δj , where L(0,1) = L(N,N+1) = 0 and, for
1 ≤ j ≤ N − 1,

L(j,j+1)(t) = lim
ε↓0

1

2ε

∫ t

0
1
((

X(j+1)(s) − X(j)(s)
)
/
√

2 ≤ ε
)
ds, t ≥ 0,(5)
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which is half of the continuous increasing local time process at 0 of the semimartin-
gale (X(j+1) − X(j))/

√
2. Moreover, the ordered system is a Brownian motion in

the domain {(
x(i),1 ≤ i ≤ N

) ∈ R
N :x(1) ≤ x(2) ≤ · · · ≤ x(N)

}
(6)

with constant drift vector (δj ,1 ≤ j ≤ N) and normal reflection at each of the
N − 1 boundary hyperplanes {x(i) = x(i+1)} for 1 ≤ i ≤ N − 1.

PROOF. Sznitman [29], page 594, [30], Lemma 3.7, gave these results in
the case of zero drifts. As he observed, they follow from Tanaka’s formula [25],
page 223, and the definition of Brownian motion in a polyhedron with normal re-
flection; see, for example, Varadhan and Williams [31]. Sznitman further proves
that the Brownian motions {βj } are independent, which is essentially due to
Knight’s theorem [25], page 183. The factors of

√
2 are most easily checked in

the case N = 2. That they are the same for all N follows by a localization argu-
ment. The results of the lemma for general drifts δj are deduced from the results
with no drift by application of the next two lemmas. �

LEMMA 5. Let X1,X2, . . . be a sequence of independent Brownian motions
indexed by a finite set I . Consider the ordered process X(1),X(2), . . . . The follow-
ing then holds almost surely

|I |∑
i=1

∫ t

0
1
{
Xi(s) = X(j)(s)

}
ds = t ∀j < |I | + 1,∀t ∈ [0,∞).(7)

Moreover, the points of increments of the finite variation processes L(j,j+1) are
almost surely disjoint.

When I is countable, equation (7) still holds true, as long as the assumptions
on the initial values X1(0) < X2(0) < · · · are sufficient to guarantee the existence
of the ordered processes for all finite times.

PROOF. For any two indices k < l, the Lebesgue measure of the set {t ∈
[0,∞) :Xk = Xl} is zero. This follows because the zero set of Brownian motion is
of Lebesgue measure zero almost surely.

Now, the event
∑|I |

i=1

∫ t
0 1{Xi(s) = X(j)(s)}ds > t for some j and some t im-

plies that there exists some pair (k, l) such that the Lebesgue measure of the set
{0 ≤ s ≤ t :Xk(s) = X(j)(s) = Xl(s)} is positive. This is of measure zero accord-
ing to the previous paragraph, and by countable additivity.

The other possibility of
∑|I |

i=1

∫ t
0 1{Xi(s) = X(j)(s)}ds < t is trivially ruled out

by our assumption that the ordered processes are always achieved.
For the second assertion, note that, according to the general theory of semi-

martingale local times [25], the process L(j,j+1) increases only on the random
closed set of times t when X(j)(t) = X(j+1)(t). These random sets are almost
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surely disjoint as j varies. This is because, with probability 1, there is no triple
collision, meaning a time t > 0 at which Xi(t) = Xj(t) = Xk(t). It follows from
the fact that the bivariate process (Xi −Xj,Xj −Xk) is a linear transformation of
a standard planar Brownian motion which does not hit points. �

Call (�,F , {Ft },P ) the canonical set-up if (�,F , {Ft },P ) is the usual space
of continuous paths in R

N , with the usual right-continuous filtration, and Xi is the
ith coordinate process.

LEMMA 6. Let δ = (δi,1 ≤ i ≤ N) ∈ R
N and let μ be a probability distribu-

tion on R
N .

(i) In the canonical setup there is a unique probability measure P
δ,μ under

which the coordinate processes (Xi,1 ≤ i ≤ N) solve the system of SDEs (1) with
initial distribution μ. In particular, for δ = 0, the law P

0,μ is the Wiener measure
governing standard Brownian motion in R

N with initial distribution μ.
(ii) In the canonical setup, for each t > 0, the law P

δ,μ is absolutely continu-
ous with respect to P

0,μ on Ft , with density

exp

(
N∑

j=1

δjβj (t) − 1
2

N∑
j=1

δ2
j t

)
,(8)

where βj , which is the same as in (4), can be defined by the expression

βj (t) =
N∑

i=1

∫ t

0
1
{
Xi(s) = X(j)(s)

}
dXi(s), 1 ≤ j ≤ N.(9)

Under P
δ,μ, the βj ’s are independent Brownian motions on R with drift coefficients

{δj } and unit diffusion coefficients.
(iii) If (Xi,1 ≤ i ≤ N) is a realization of the N -particle system with drifts {δi}

and initial distribution μ on an arbitrary probability space (�,F ,P), then the
P joint distribution of the processes Xi is identical to the P

δ,μ distribution of the
coordinate processes on the canonical space, as specified in (ii).

PROOF. This is an instance of a well-known general construction of the so-
lution of an SDE with drift terms from one with no drift terms [25], Chapter IX,
Theorem (1.10).

Under P
0,μ, the fact that {βj } is a collection of independent Brownian motions

also follows from expression (9) and equation (7). Under P
δ,μ, the process βj is a

stochastic integral with respect to Brownian motions with drifts. By expanding the
drift term, it is obvious that βj is a Brownian motion itself with drift δj . �

Note that the SDE defining the N -particle system with drifts is a typical example
of an SDE for which there is uniqueness in law, but not pathwise uniqueness.
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For a solution X of SDE (1), let

X̄(t) := 1

N

N∑
i=1

Xi(t) = 1

N

N∑
j=1

X(j)(t),

which is the center of mass of the particle system, where we regard each particle
as having mass 1/N . We call the R

N -valued process

(Xi − X̄,1 ≤ i ≤ N)

the centered system. Note that the N − 1 spacings defined by taking differences of
order statistics of the original system are identical to the N −1 spacings defined by
differences of the order statistics of the centered system. So, the N order statistics
of the centered system, which are constrained to have average 0, are an invertible
linear transformation of the N − 1 spacings of the original system.

LEMMA 7. For the N -particle system, with arbitrary drifts and initial distri-
bution:

(i) the center of mass process is a Brownian motion with drift

δ̄N := N−1
N∑

j=1

δj(10)

and diffusion coefficient 1/N ; explicitly,

X̄(t) = X̄(0) + δ̄N t + B(t)√
N

,(11)

where B(t) := N−1/2 ∑N
j=1 Bj(t) is a standard BM on R. Consequently,

X̄(t)

t
→ δ̄N almost surely as t → ∞.

(ii) The shifted center of mass process X̄(t) − X̄(0) is independent of the cen-
tered system (Xi(·) − X̄(·)), 1 ≤ i ≤ n.

PROOF. Part (i) clearly follows from the SDE (1) by summing over i.
For part (ii), note that if σ1 and σ2 are two independent sub-σ -algebras of a

probability space (A,A,P ) and we change P to another probability Q via defin-
ing dQ/dP = fg, where f ∈ σ1, g ∈ σ2, then σ1 and σ2 remain independent
under Q.

Now, as in Lemma 6, when (Xi) denotes N independent Brownian motions with
initial distribution μ, the shifted average X̄(t) − X̄(0) and the centered process
Y = X − X̄1 are independent. This follows from the facts that, conditionally on
X0, the processes are Gaussian with zero covariance, and that X̄(t) − X̄(0) is
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independent of X0. Now, to get to P
δ,μ, the Radon–Nikodym derivative is given

by (8). Note that, from expression (9), we get

βj (t) =
N∑

i=1

∫ t

0
1
{
Yi(s) = Y(j)(s)

}
dYi(s) + X̄(t) − X̄(0).

Thus, from (8), it is clear that dP
δ,μ/dP

0,μ can be written as fg, where f ∈ σ(Y )

and g ∈ σ(X̄(·) − X̄(0)). Now, by first localizing at finite time, and using the
argument in the preceding paragraph, we establish the claim in part (ii). �

THEOREM 8. For 1 ≤ k ≤ N , let

αk :=
k∑

i=1

(δi − δ̄N ),(12)

where δ̄N is the average drift, as in (10). For each fixed initial distribution of
the N -particle system with drifts {δi, i = 1,2, . . . ,N}, the collection of laws of
X(N)(t) − X(1)(t) for t ≥ 0 is tight if and only if

αk > 0 for all 1 ≤ k ≤ N − 1,(13)

in which case the following results all hold:

(i) The distribution of the spacings system (X(j+1) − X(j),1 ≤ j ≤ N − 1) at
time t converges in total variation norm as t → ∞ to a unique stationary distrib-
ution for the spacings system, which is that of independent exponential variables
Yj with rates 2αj , 1 ≤ j ≤ N − 1. Moreover, the spacings system is reversible at
equilibrium.

(ii) The distribution of the centered system at time t converges in total variation
norm as t → ∞ to a unique stationary distribution for the centered system, which
is the distribution of (

Sπ(i)−1 − S̄,1 ≤ i ≤ N
)
,

where S0 := 0 and Si := Y1 + · · · + Yi for 1 ≤ i ≤ N − 1, where π is a uniform
random permutation of {1, . . . ,N} which is independent of the Yi , and

S̄ := 1

N

N∑
i=1

Sπ(i)−1 = 1

N

N−1∑
i=1

Si = 1

N

N−1∑
i=1

(N − i)Yi.

Moreover, the centered system is reversible at equilibrium.
(iii) As t → ∞,

Xi(t)/t → δ̄N almost surely for each 1 ≤ i ≤ N

and the same is true for X(i)(t)/t instead of Xi(t)/t .

REMARK. Regard the system as split into left-hand particles of rank 1 to k and
right-hand particles of rank k + 1 to N . If these two parts of the system are started
at some strictly positive distance from each other, they evolve independently like
copies of the k-particle system and the (N − k)-particle system, respectively, until
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the first time there is a collision between a left-hand particle and a right-hand
particle. It follows by summing over the corresponding drifts that the centers of
mass of the two subsystems left to themselves would have almost sure asymptotic
speeds δ̄k and δ̂k , respectively, where

δ̄k := 1

k

k∑
i=1

δi and δ̂k := (N − k)−1
N∑

i=k+1

δi .

Since

αk = kδ̄k − kδ̄N = k(N − k)

N
(δ̄k − δ̂k),

we see that αk > 0 if and only if δ̄k > δ̂k , which ensures that the right-hand system
cannot avoid an eventual collision with the left-hand system. According to (12),
for arbitrary prescribed δ̄N ∈ R, and αk > 0, the unique drift vector determining
an ergodic N -particle system whose average drift is δ̄N and whose asymptotic
spacings are independent exponential variables with rates 2αk is given by

δi = δ̄N + αi − αi−1, 1 ≤ i ≤ N,(14)

where α0 := αN := 0. Given an arbitrary cumulative probability distribution func-
tion F on the line, and arbitrary δ̄ ∈ R and ε > 0, it is clear that by taking N

suitably large, we can choose (αk,1 ≤ k ≤ N − 1) and hence (δj ,1 ≤ j ≤ N) so
that, for all sufficiently large t ,

P

(
sup
x

∣∣∣∣∣ 1

N

N∑
i=1

1
(
Xi(t) − X̄(t) ≤ x

) − F(x)

∣∣∣∣∣ > ε

)
< ε

and X̄(t)/t → δ̄ almost surely as t → ∞. Thus, no matter what its initial distri-
bution, the N -particle system looks asymptotically like a cloud of particles with
mass distribution close to F drifting along the line at speed δ̄.

We would also like to mention here that a special case of the above theorem has
been considered in a recent article by Jourdain and Malrieu [21]. They consider
SDE (1) with an increasing sequence of δi’s and establish joint convergence of the
spacing system to independent exponentials as t goes to infinity.

PROOF OF THEOREM 8. According to Lemma 4, the ordered N -particle sys-
tem is a Brownian motion (X(k)(t),1 ≤ k ≤ N)t≥0 in the domain (6) with identity
covariance matrix, constant drift vector (δj ,1 ≤ j ≤ N) and normal reflections at
each of the N − 1 boundary hyperplanes {x(i) = x(i+1)} for 1 ≤ i ≤ N − 1. Note
that the vector (1,1, . . . ,1) of all ones is in the intersection of these boundary
hyperplanes.

Let β be an independent one-dimensional Brownian motion (β0 = 1) with a
negative drift −θ (θ > 0) which is reflected at the origin. The process defined by

Y ′
i (t) := Xi(t) − X̄(t) + β√

N
, i = 1,2, . . . ,N,
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has the same spacings as the original process X. Moreover, by the independence
of the centered system and the center of mass process established in Lemma 7,
and the fact that Ȳ ′ = β/

√
N is the projection of Y ′ on the subspace generated by

the vector (1,1, . . . ,1), it follows that the vector (Y ′
1, Y

′
2, . . . , Y

′
N) is a Brownian

motion with identity covariance matrix which is normally reflected in the wedge{
y ∈ R

N :
N∑

i=1

yi ≥ 0, y1 ≤ y2 ≤ · · · ≤ yN

}
.

The drift vector in this wedge can be written as a linear combination of spacings
by summation by parts:

N∑
i=1

(
δi − δ̄N − θ√

N

)
yi = −

N−1∑
k=1

(
k∑

i=1

(δi − δ̄N )

)
(yk+1 − yk) − θ√

N

N∑
i=1

yi.(15)

Noting that Y ′
(k+1) − Y ′

(k) ≡ X(k+1) − X(k) for all k, condition (13) for stability
and part (i) of the lemma are now read from the general result about equilibrium
distributions of reflecting Brownian motions stated in the following lemma, and
standard theory of Harris recurrent Markov processes (see, e.g., [9]).

Part (ii) is established by showing that the centered system (Xi(t) − X̄(t),1 ≤
i ≤ N), t ≥ 0, is a Harris positive recurrent diffusion with the indicated invariant
measure. The recurrence property has been proven in detail in [3]. The invariance
is evident because a uniform randomization of labels relative to the centered order
statistics is clearly invariant for the centered motion. This convergence in distri-
bution, combined with part (i) of Lemma 6, gives convergence in probability of
Xi(t)/t to δ̄N for each 1 ≤ i ≤ N . Almost sure convergence can now be justified
by appeal to an ergodic theorem for the Harris recurrent centered diffusion. �

The proof of Theorem 8 is completed by the following lemma, which we deduce
from the general theory of stationary distributions for reflecting Brownian motions
in polyhedra due to Williams [32].

LEMMA 9. Let R := (Rt , t ≥ 0) be a Brownian motion in the domain

{x ∈ R
K :bi(x) ≥ 0 for i = 1, . . . ,K}

for some collection of K linearly independent linear functionals bi , with R having
identity covariance matrix, normal reflection at the boundary and constant drift δ

with
K∑

i=1

δixi = −
K∑

i=1

aibi(x), (x1, . . . , xK) = x ∈ R
K.(16)

This process R has a stationary probability distribution if and only if ai > 0 for
all i = 1, . . . ,K , in which case, in the stationary state, the bi(Rt ) are indepen-
dent exponential variables with rates 2ai and the process in its stationary state is
reversible.
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PROOF. This is read from the particular case of [32], Theorem 1.2, when the
matrix Q is identically 0. According to that theorem, R is in duality with itself
relative to the measure ρ on the domain whose density function with respect
to Lebesgue measure at x is exp(2δ · x). Using (16), the linear change of vari-
ables to yi = bi(x) shows that the ρ distribution of the bi(x) has joint density at
(y1, . . . , yK) equal to c

∏K
i=1 exp(−2aiyi) for some c > 0. It follows that

ρ has finite total mass if and only if ai > 0 for all i,(17)

in which case, when ρ is normalized to be a probability, the ρ distribution of the
bi(x) is that of independent exponential variables with rates 2ai . The “if” part of
the conclusion is now evident. For the “only if” part, we argue that if a stationary
probability distribution ρ ′ existed, it would obviously have a strictly positive den-
sity on the domain. Then, R sampled at time 0,1,2, . . . would be an irreducible
Harris recurrent Markov process with respect to ρ ′, hence ρ = cρ′ for some c > 0
by the uniqueness of the invariant measure of a Harris recurrent Markov chain, and
then ai > 0 for all i by (17). �

From Theorem 8 we immediately deduce the following.

COROLLARY 10. For each δ > 0, the N -particle Atlas system with drift vector
(δ,0, . . . ,0) is ergodic with average speed δ/N . The stationary distribution of(

X(j+1) − X(j),1 ≤ j ≤ N − 1
)

is that of independent exponentials (ζj ,1 ≤ j ≤ N − 1), where the rate of ζj is
2δ(1 − j/N).

3. The infinite Atlas model. The infinite Atlas model can be described
loosely as a countable collection of linear Brownian motions such that at every
time point, the minimum Brownian motion is given a positive drift of δ > 0 and
the rest are left untouched. This is an example of (1), where I = N, δ1 = δ and all
other δi = 0. Throughout this section, we take δ = 1, since for our purposes here,
the general case follows from the case when δ = 1 by scaling.

The infinite Atlas model for δ = 1 can be constructed rigorously in the weak
solution framework in the following way. Start with the canonical setup (as in
Lemma 6) of Brownian path space,

(C[0,∞], {Ft}0≤t<∞,W
x),(18)

where {Ft } is the right-continuous filtration generated by the coordinates which
satisfy the usual conditions and W

x is the law of the Brownian motion start-
ing from x ∈ R. We now look at the countable product of a sequence of spaces
like (18),

� = C[0,∞]N, Gt =
∞⊗
1

Ft (i), P x =
∞⊗
1

W
xi ,(19)
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where the natural coordinate mapping is a countable collection of independent
Brownian motions under P x starting from the sequence x = (x1, x2, . . .).

Let x be a sequence such that x(1) > −∞ and let X = (X1,X2, . . .) denote the
sequence of infinite independent Brownian motions starting from x. We have the
following lemma whose proof will follow later.

LEMMA 11. Assume that the initial sequence x is arranged in increasing or-
der, x1 ≤ x2 ≤ · · · , and satisfies

lim inf
n→∞

(xn − x1)
2

n
> 0.(20)

Then, P x-almost surely, X(1)(t) > −∞ for all t ≥ 0 and the process

Nt :=
∞∑
i=1

∫ t

0
1{Xi(s)=X(1)(s)} dXi(s)(21)

is a {Gt }-martingale whose quadratic variation 〈N〉t ≡ t . The stochastic exponen-
tial of N , given by

Dt = exp(Nt − t/2),(22)

is hence, again, a nonnegative {Gt }-martingale.

We change the measure P x by using the martingale D, that is, define Q by

Qx |Gt := Dt · P x |Gt , t ≥ 0.

By Girsanov’s theorem, the probability measure Qx exists and is well defined,
and the coordinate process under Qx is a solution of the infinite Atlas model (1).
Hence, Qx is the unique law of the Atlas model starting at x.

Our aim is the following: suppose the initial points X1(0) < X2(0) <

X3(0) < · · · are spread according to the Poisson process with rate two on the
positive half-line and we run the infinite Atlas model starting from these points.
We shall prove that the product law of independent Exponential(2) is invariant
under the dynamics of the vector process � of spacings given by

�i(t) = X(i+1)(t) − X(i)(t), i = 1,2, . . . .(23)

The proof is achieved through a series of lemmas, the main argument involving
the comparison of the infinite Atlas model with the finite Atlas model and suitably
passing to the limit. Throughout the proof, the probability space is given by (19).

We start with the following lemma, whose proof follows directly from Lemma 5.
We will find it convenient to use the following notation for the operator which sorts
a given finite vector. If x ∈ R

n,1 ≤ n < ∞, define

S(x) = (
x(1), x(2), . . . , x(n)

)
.(24)
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LEMMA 12. Every ω ∈ � comprises a sequence processes ω(t) = (ω1(t),

ω2(t), . . .). For any N ∈ N, let us denote the ordered values of the processes with
the first N indices by

ZN(ω) = (ZN
1 ,ZN

2 , . . . ,ZN
N )(ω) = S((ω1,ω2, . . . ,ωN)).

Then,

DN(t) = exp

(
N∑

i=1

∫ t

0
1{Xi(s)=ZN

1 (s)} dXi(s) − t/2

)
(25)

is a Gt -martingale. We denote by Qx
N the probability measure obtained by chang-

ing the measure P x by the martingale DN .

Since, under every P x , each of the Brownian motions is independent, it fol-
lows, by applying Girsanov’s theorem, that, under Qx

N , the first N coordinates
(ω1, . . . ,ωN) evolve according to the finite Atlas model, while the rest of the coor-
dinates are independent Brownian motions with the corresponding initial starting
points.

Let μ denote the probability measure whereby the points 0 = X1(0) <

X2(0) < · · · are such that the spacings Xi+1(0) − Xi(0) are i.i.d. Exponential(2).

LEMMA 13. For μ-almost every x, the measure Qx exists and we can define

Q · μ =
∫

Qx dμ(x).

PROOF. The proof follows from Lemma 11 and the law of large numbers. �

We now have our main theorem in this section which proves that μ is an invari-
ant measure for the spacings of the infinite Atlas model.

THEOREM 14. For any K ∈ N, any function F : RK → R which is smooth
and has compact support and any time t , we have

EQ·μ[F(�1,�2, . . . ,�K)(t)] = Eμ[F(�1,�2, . . . ,�K)(0)].(26)

Here, as defined in (23), �i is the ith spacing X(i+1) − X(i).

PROOF OF THEOREM 1. Since the previous result holds for a class of func-
tions which determines the marginal distributions of a sequence-valued process,
Theorem 1 follows readily for δ = 1. The theorem for the infinite Atlas model
with a general δ > 0 follows by scaling. �

PROOF OF LEMMA 11. Fix an arbitrary time T > 0 and consider x as in the
assumption of the lemma. We have the following claim.
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CLAIM 15.

P x

(
ω :∃M(ω) s.t. ∀n ≥ M, inf

0≤s≤T

(
Xn(s) − X(1)(s)

)
> 0

)
= 1.

We prove the above claim by establishing the following:

P x

(
ω :∃M(ω) s.t. ∀n ≥ M, inf

0≤s≤T

(
Xn(s) − X1(s)

)
> 0

)
= 1.(27)

This follows by defining the events

Ai :=
{

inf
0≤s≤T

(
Xi(s) − X1(s)

) ≤ 0
}
, i = 1,2, . . . .(28)

Since Xi −X1 is a Brownian motion starting from (xi −x1), which for sufficiently
large i is strictly positive [by (20)], by Bernstein’s inequality [25], page 153, one
can easily estimate P x(Ai) ≤ exp(−(xi − x1)

2/2T ) for all sufficiently large i.
Again, by assumption (20), we get

lim sup
n→∞

(P x(An))
1/n ≤ lim sup

n
exp

(−(xn − x1)
2/2T n

)

= exp
(
− 1

2T
lim inf

n

(xn − x1)
2

n

)
< 1.

Thus, by Cauchy’s root test, it follows that the series sum
∑∞

i=1 P x(Ai) < ∞. One
can now apply the Borel–Cantelli lemma to obtain that P x(lim supi Ai) = 0, which
proves (27) and hence the required claim.

We now prove that the process N exists and is a martingale in the time interval
[0, T ]. Since T is arbitrary, this proves Lemma 11. Define the finite approximations

Bk(t) =
k∑

i=1

∫ t

0
1{Xi(s)=X(1)(s)} dXi(s), 0 ≤ t ≤ T , k = 1,2, . . . .

Each Bk is a stochastic integral with bounded, progressively measurable inte-
grands. It is clear that they are martingales with quadratic variations

〈Bk〉t =
k∑

i=1

∫ t

0
1{Xi(s)=X(1)(s)} ds

= L

{
0 ≤ s ≤ t : min

1≤i≤k
Xi(s) = X(1)(s)

}
,

where L refers to Lebesgue measure on the line. We shall show that the sequence
of martingales {Bk} is a Cauchy sequence in the H

2-norm and hence has a limit
which is denoted by N , as in (21).

To see this, observe that for any n, k ∈ N, we get

〈Bn+k − Bn〉T = L

{
0 ≤ s ≤ T : min

n+1≤i≤n+k
Xi(s) = X(1)(s)

}
.
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By Claim 15, we see that P x(limn,k→∞〈Bn+k −Bn〉T = 0) = 1. It is also clear that
〈Bn+k − Bn〉T ≤ T , for all n, k ∈ N. It follows from the dominated convergence
theorem that

lim
n,k→∞EP x

(〈Bn+k − Bn〉T ) = 0.

This, by definition, shows that the sequence of martingales {Bn} is a Cauchy se-
quence in the H

2-norm. Since the space of continuous martingales under that
norm is complete, the sequence {Bn} converges to a limiting martingale, which
we denote N . It also follows that 〈N〉t = limn→∞〈Bn〉t = t . Thus, N is actually a
{Gt }-Brownian motion. This completes the proof of Lemma 11. �

REMARK. The condition in (20) is clearly loose. In fact, if we consider Ai as
in (28), all we require is that, for every T > 0, one should have

∞∑
i=1

P x(Ai) ≤
∞∑
i=1

exp
(−(xi − x1)

2/2T
)
< ∞,

which is a much weaker condition than required by (20).

The proof of Theorem 14 relies on probability estimates proved in the next three
lemmas (17, 18 and 19). The second one is actually a generalization of the first.
But, we choose to treat the first separately since it is simpler and more transparent.
But, first, we will perform some basic computations.

LEMMA 16. If Y ∼ Gamma(r, λ) for some r ≥ 1, then, for any t > 0, we have

E(e−Y 2/2t ) ≤ etλ2/2(2λ2t)r/2 �(r/2)

2�(r)

= √
π

(
λ2t

2

)r/2 etλ2/2

�((r + 1)/2)
.

PROOF.

E(e−Y 2/2t ) =
∫ ∞

0
e−y2/(2t) λr

�(r)
yr−1e−λy dy

= λr

�(r)
etλ2/2

∫ ∞
0

yr−1e−(y+tλ)2/(2t) dy(29)

= λr

�(r)
etλ2/2

∫ ∞
√

tλ

(√
tz − tλ

)r−1
e−z2/2√t dz, z = y + tλ√

t
.

For z ≥ √
tλ, since r ≥ 1, one has(√

tz − tλ
)r−1 ≤ (√

tz
)r−1

.
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Thus, one can bound the (29) by

E(e−Y 2/2t ) ≤ λr

�(r)
etλ2/2

∫ ∞
√

tλ

(√
tz

)r−1
e−z2/2√t dz

= (λ2t)r/2

�(r)
etλ2/2

∫ ∞
√

tλ
zr−1e−z2/2 dz

= (λ2t)r/2

�(r)
etλ2/2

∫ ∞
tλ2/2

(2w)(r−1)/2e−w(2w)−1/2 dw, w = z2/2

= (λ2t)r/2

�(r)
etλ2/22r/2−1

∫ ∞
tλ2/2

wr/2−1e−w dw

≤ (2λ2t)r/2

2�(r)
etλ2/2�(r/2).

The final identity in the lemma is due to the duplication formula:

�(r/2)

�(r)
= √

π
21−r

�((r + 1)/2)
. �

LEMMA 17. For any t > 0 and all positive integers N satisfying N +1 ≥ 16et ,
under P · μ, we have the following estimate of the probability of the event that
during time [0, t], the globally lowest ranked process is in fact the lowest ranked
process among the processes with the first N indices:

P · μ{
X(1)(s) = ZN

1 (s),0 ≤ s ≤ t
} ≥ 1 − C1e

2t

(√
4et

N + 1

)N

,

where C1 is a positive constant. To remind the reader, the processes (ZN
k ,

1 ≤ k ≤ N ) have been defined in Lemma 12.

PROOF. Note that the complement of the event has the following upper bound:

1 − P · μ{
X(1)(s) = ZN

1 (s),0 ≤ s ≤ t
}

≤ P · μ
( ⋃

i≥N+1

{Xi(s) ≤ ZN
1 (s), for some s ∈ [0, t]}

)

(30)

≤ P · μ
( ⋃

i≥N+1

{Xi(s) ≤ X1(s), for some s ∈ [0, t]}
)

≤
∞∑

i=N+1

P · μ(
Xi(s) ≤ X1(s), for some s ∈ [0, t]).

The final bound above is the so-called union bound.
We will now use exponential bounds for Brownian suprema to estimate P ·

μ(Xi(s) ≤ X1(s), for some s ∈ [0, t]) which is the same as P ·μ(inf0≤s≤t (Xi(s)−
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X1(s)) ≤ 0). Note that under P · μ, the process Xi − X1 is a Brownian motion
whose initial distribution is the law of Xi(0)−X1(0). This law is Gamma(i −1,2)

since it is the sum of (i − 1) i.i.d. Exp(2). Conditional on X(0) = x, such that
{Xi(0) − X1(0) = y}, it follows from Bernstein’s inequality that

P x

(
inf

0≤s≤t

(
Xi(s) − X1(s)

) ≤ 0
)

≤ exp(−y2/2t).

Thus, for i ≥ 2, we define Y = Xi(0) − X1(0) ∼ Gamma(i − 1,2) and use
Lemma 16 to get

P · μ
(

inf
0≤s≤t

(
Xi(s) − X1(s)

) ≤ 0
)

≤ E(exp(−Y 2/2t))

(31)

≤ √
π(2t)(i−1)/2 e2t

�(i/2)
.

Plugging the estimate into (30), we get

1 − P · μ{
X(1) = ZN

1 (s),0 ≤ s ≤ t
} ≤ √

πe2t
∞∑

i=N+1

(2t)(i−1)/2

�(i/2)
.(32)

By Stirling’s approximation, there exists some C, a positive constant, such that

�(z) ≥ C−1e−zzz−1/2 ∀z ∈ R
+.(33)

Thus, from (32), we get

1 − P · μ{
X(1) = ZN

1 (s),0 ≤ s ≤ t
}

≤ C
√

πe2t
∞∑

i=N+1

(2t)(i−1)/2ei/2

(i/2)(i−1)/2

= C
√

πe2t
∞∑

i=N

(
4et

i + 1

)i/2

e1/2 ≤ √
πCe2t+1/2

∞∑
i=N

(√
4et

N + 1

)i

≤ 2C
√

πe2t+1/2
(√

4et

N + 1

)N

, when
√

4et/(N + 1) ≤ 1/2.

This proves the estimate. �

LEMMA 18. For any t > 0 and all positive integers 1 ≤ k < N ∈ N satisfying
N − k + 2 ≥ 16et , under P · μ, we have the following estimate of the probability
of the event that in the time interval [0, t], the globally lowest k ranked processes
are, in fact, the lowest k ranked processes among the ones with the first N indices:

P · μ{(
X(1), . . . ,X(k)

)
(s) = (ZN

1 , . . . ,ZN
k )(s),0 ≤ s ≤ t

}
(34)

≥ 1 − C2(k)e2t (N − 1)k−1
(√

4et

N − k + 2

)N−k+1
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for some positive constant C2 depending on k. For k = 1, we recover the bound in
Lemma 17.

PROOF. As in the previous lemma, we bound the probability of complement
of the event:

1 − P · μ{(
X(1), . . . ,X(k)

)
(s) = (ZN

1 , . . . ,ZN
k )(s),0 ≤ s ≤ t

}
≤ P · μ

( ⋃
i≥N+1

{Xi(s) ≤ ZN
k (s), for some s ∈ [0, t]}

)
(35)

≤
∞∑

i=N+1

P · μ{Xi(s) ≤ ZN
k (s), for some s ∈ [0, t]}.

Now, if [N ] denotes the set {1,2, . . . ,N}, let us note that

ZN
k = max

i1<i2<...<ik−1
min

l∈[N]\{i1,i2,...,ik−1}
Xl.

Thus, to get an upper bound on P ·μ{Xi(s) ≤ ZN
k (s), for some s ∈ [0, t]}, one can

once more apply the union bound to obtain

P · μ{Xi(s) ≤ ZN
k (s), for some s ∈ [0, t]}

≤ ∑
i1<···<ik−1

P · μ
(
Xi(s) ≤ min

l∈[N]\{i1,...,ik−1}
Xl(s), for some s ∈ [0, t]

)
(36)

≤ ∑
i1<···<ik−1

P · μ(
Xi(s) ≤ Xi∗, for some s ∈ [0, t],

i∗ = min
{[N ]\{

i1, . . . , ik−1
}})

.

Now, we can count the frequency with which i∗ takes its possible values as the
choice i1 < i2 < · · · < ik−1 varies in {1,2, . . . ,N}. Let g(i) be the number of ways
to pick i1 < i2 < · · · < ik−1 such that i∗ = i. It is then straightforward to see that

g(1) = #
{{i} : i1 > 1

} =
(

N − 1
k − 1

)
,

g(2) = #
{{i} : i1 = 1, i2 > 2

} =
(

N − 2
k − 2

)
,

...

g(l) = #
{{i} : i1 = 1, i2 = 2, . . . , il−1 = l − 1, il > l

} =
(

N − l

k − l

)
, l ≤ k,

g(l) = 0 ∀l > k.
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Thus, by (36), we get∑
i1<i2<···<ik−1

P · μ
(
Xi(s) ≤ min

l∈[N]\{i1,...,ik−1}
Xl(s), for some s ∈ [0, t]

)
(37)

≤
k∑

l=1

(
N − l

k − l

)
P · μ(

Xi(s) ≤ Xl(s), for some s ∈ [0, t]).
Now, again as we did when deriving the last key estimate, Xi − Xl for i > l is a
Brownian motion under P · μ with the initial distribution Gamma(i − l,2). Thus,
by Lemma 16, we can bound

P · μ(
Xi(s) ≤ Xl(s), for some s ∈ [0, t]) ≤ √

π
(2t)(i−l)/2e2t

�((i − l + 1)/2)
.

Combining the above inequality with estimates (35), (36) and (37), we get

1 − P · μ{(
X(1), . . . ,X(k)

)
(s) = (ZN

1 , . . . ,ZN
k )(s),0 ≤ s ≤ t

}
(38)

≤
∞∑

i=N+1

k∑
l=1

(
N − l

k − l

)√
πe2t (2t)(i−l)/2

�((i − l + 1)/2)
.

We will again give a loose, but good enough, upper bound for the infinite sum.
But, first, we need to note that, for any n ≥ k, we have(

n

k

)/(
n − 1
k − 1

)
= n

k
≥ 1.

Thus, it follows that (
N − l

k − l

)
≤

(
N − 1
k − 1

)
∀1 ≤ l ≤ k.

We can use this to simplify (38):

1 − P · μ{(
X(1), . . . ,X(k)

)
(s) = (ZN

1 , . . . ,ZN
k )(s),0 ≤ s ≤ t

}

≤
∞∑

i=N+1

k∑
l=1

(
N − 1
k − 1

)√
πe2t (2t)(i−l)/2

�((i − l + 1)/2)
.

We again use Stirling’s approximation (33) to get
∞∑

i=N+1

k∑
l=1

(
N − 1
k − 1

)√
πe2t (2t)(i−l)/2

�((i − l + 1)/2)

≤ C

(
N − 1
k − 1

)√
πe2t

∞∑
i=N+1

k∑
l=1

(2t)(i−l)/2e(i−l+1)/2

((i − l + 1)/2)(i−l)/2(39)

= C

(
N − 1
k − 1

)√
πe2t+1/2

∞∑
i=N+1

k∑
l=1

(√
4et

i − l + 1

)i−l

.
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Since i − l ≥ N + 1 − k for l ≤ k < N + 1 ≤ i, it is clear that 4et/(i − l + 1) ≤
4et/(N + 2 − k). Hence,

k∑
l=1

(√
4et

i − l + 1

)i−l

≤
k∑

l=1

(√
4et

N − k + 2

)i−l

.

By our assumption, √
4et

N − k + 2
≤ 1

2
.(40)

Thus, (√
4et

N − k + 2

)i−l

≤
(√

4et

N − k + 2

)i−k

, l ≤ k < i,

and consequently

k∑
l=1

(√
4et

i − l + 1

)i−l

≤ k

(√
4et

N − k + 2

)i−k

.

Plugging this bound into (39), we get

∞∑
i=N+1

k∑
l=1

(
N − 1
k − 1

)√
πe2t (2t)(i−l)/2

�((i − l + 1)/2)

≤ C

(
N − 1
k − 1

)√
πe2t+1/2

∞∑
i=N+1

k

(√
4et

N − k + 2

)i−k

≤ Ck

(
N − 1
k − 1

)√
πe2t+1/2

(√
4et

N − k + 2

)N+1−k

(41)

×
∞∑

j=0

(√
4et

N − k + 2

)j

≤ C2(k)e2t (N − 1)k−1
(√

4et

N − k + 2

)N−k+1

, by (40),

for some positive constant C2 depending on k. This proves the lemma. �

LEMMA 19. For any N ∈ N, define μN to be the law under which

X1(0) = 0,

Xi+1(0) − Xi(0) ∼ Exp
(
2(1 − i/N)

)
, i = 1,2, . . . ,N − 1,(42)

and Xi+1(0) − Xi(0) ∼ Exp(2), i = N,N + 1, . . . ,
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and all of these spacings are independent.
For any t > 0 and any three integers k < J < N satisfying

J − k + 2 ≥ 16et,(43)

we have the following bound on the probability that under P · μN , during the time
interval [0, t], the lowest k ranked processes among the processes with the first N

indices are, in fact, the lowest k among those with the first J indices:

P · μN {(ZJ
1 , . . . ,ZJ

k )(s) = (ZN
1 , . . . ,ZN

k )(s),0 ≤ s ≤ t}

≥ 1 − C2(k)e2t (J − 1)k−1
(√

4et

J − k + 2

)J−k+1
(44)

×
[
1 −

(√
4et

J − k + 2

)N−J ]
.

PROOF. We follow the same line of argument as in the last two estimates.
Thus,

1 − P · μN {(ZJ
1 , . . . ,ZJ

k )(s) = (ZN
1 , . . . ,ZN

k )(s),0 ≤ s ≤ t}

≤
N∑

i=J+1

P · μN

(
Xi(s) ≤ ZJ

k (s), for some s ∈ [0, t]).
Following similar counting arguments as in (36) and (37), we can bound

1 − P · μN {(ZJ
1 , . . . ,ZJ

k )(s) = (ZN
1 , . . . ,ZN

k )(s),0 ≤ s ≤ t}
(45)

≤
N∑

i=J+1

k∑
l=1

(
J − l

k − l

)
P · μN

(
Xi(s) ≤ Xl(s), for some s ∈ [0, t]).

Now, under μN , the gap Xi(0)−Xl(0) = ∑i−1
j=l Yj , where the Yj ’s are indepen-

dent and Yj is distributed as Exp(2(1 − j/N)). Thus, by the exponential bound
used before, we get

P · μN

(
Xi(s) ≤ Xl(s), for some s ∈ [0, t]) ≤ E

[
exp

(
− 1

2t

(
i−1∑
j=l

Yj

)2)]
.(46)

Now, since each Yj is Exponential(2(1 − j/N)), the random variables

Y ∗
j = (1 − j/N)Yj

are i.i.d. Exp(2), and each Y ∗
j ≤ Yj since j ≤ N . Thus,

∑i−1
j=l Y

∗
j ≤ ∑i−1

j=l Yj and,
hence,

E

[
exp

(
− 1

2t

(
i−1∑
j=l

Yj

)2)]
≤ E

[
exp

(
− 1

2t

(
i−1∑
j=l

Y ∗
j

)2)]
.
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But, each Y ∗
j is Exp(2) and, hence,

E

[
exp

(
− 1

2t

(
i−1∑
j=l

Y ∗
j

)2)]
= E[e−Y 2/2t ],

where Y is a Gamma(i − l,2) random variable. Thus, plugging the bound from
Lemma 16 into (46), we derive

P · μN

(
Xi(s) ≤ Xl(s), for some s ∈ [0, t]) ≤ √

π
e2t (2t)(i−l)/2

�((i − l + 1)/2)
.

We now follow approximations similar to (39) and (41) for the right-hand side
of (45), to obtain

1 − P · μN {(ZJ
1 , . . . ,ZJ

k )(s) = (ZN
1 , . . . ,ZN

k )(s),0 ≤ s ≤ t}

≤
N∑

i=J+1

k∑
l=1

(
J − 1
k − 1

)√
π

e2t (2t)(i−l)/2

�((i − l + 1)/2)

= C

(
J − 1
k − 1

)√
πe2t+1/2

N∑
i=J+1

k∑
l=1

(√
4et

(i − l + 1)

)i−l

≤ C

(
J − 1
k − 1

)√
πe2t+1/2

N∑
i=J+1

k

(√
4et

(J − k + 2)

)i−k

, by (43),

≤ C2(k)e2t (J − 1)k−1
(√

4et

J − k + 2

)J−k+1 N−J−1∑
j=0

(√
4et

J − k + 2

)j

.

Now, if we call r = √
4et/(J − k + 2), then r ≤ 1/2, by assumption (43). The

finite geometric sum can be easily bounded as

N−J−1∑
j=0

rj = 1 − rN−J

1 − r
≤ 2(1 − rN−J ).

Thus, suitably altering the constant C2, we get our desired bound,

1 − P · μN {(ZJ
1 , . . . ,ZJ

k )(s) = (ZN
1 , . . . ,ZN

k )(s),0 ≤ s ≤ t}

≤ C2(k)e2t (J − 1)k−1
(√

4et

J − k + 2

)J−k+1[
1 −

(√
4et

J − k + 2

)N−J ]
.

This proves the lemma. �

PROOF OF THEOREM 14. For every K ≤ N ∈ N, let

YN
i = ZN

i+1 − ZN
i , 1 ≤ i ≤ N.
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From Corollary 10, we know that the law of the first (N − 1) spacings under μN

(defined in Lemma 19) is exactly the stationary distribution of spacings for the fi-
nite Atlas model with N particles. Since, under QN (see Lemma 12), the dynamics
of the processes {X1(t), . . . ,XN(t)} is that of a finite Atlas model independent of
the rest of the Brownian motions, it follows by stationarity that for any t > 0, we
have

EQN ·μN [F(YN
1 , . . . , YN

K )(t)] = EμN [F(YN
1 , . . . , YN

K )(0)].(47)

We will show that for fixed t and K , as N tends to infinity, the two sides of the
above equation converge to the corresponding sides of (26). This will prove the
theorem.

However, to do this, we will need an intermediary stage where, for an integer
J < N , the dynamics of the process is according to QJ , while the initial distri-
bution of the spacings is either μ or μN . Define, for K < J < N , the following
quantities:

a = EQN ·μN [F(YN
1 , . . . , YN

K )(t)] − EQJ ·μN [F(Y J
1 , . . . , Y J

K)(t)],
b = EQJ ·μN [F(Y J

1 , . . . , Y J
K)(t)] − EQJ ·μ[F(Y J

1 , . . . , Y J
K)(t)],

c = EQJ ·μ[F(Y J
1 , . . . , Y J

K)(t)] − EQ·μ[F(�1, . . . ,�K)(t)]
and

d = Eμ[F(�1, . . . ,�K)(0)] − EμN [F(YN
1 , . . . , YN

K )(0)].
It is clear that a, b, c and d all depend on t,K,J and N , although we choose
to suppress this dependence in the notation. Also, it clearly follows from their
definitions, combined with equality (47), that

|EQ·μ[F(�1, . . . ,�K)(t)] − Eμ[F(�1, . . . ,�K)(0)]| ≤ |a| + |b| + |c| + |d|.
We will now show that a, b, c, d all go to zero if we select a sequence of J and N

such that J , N and N/J 2 go to infinity. This will prove the theorem.
Step 1 (Estimate of a). For x1 ≤ x2 ≤ · · · ≤ xK+1, define

G(x1, x2, . . . , xK+1) := F(x2 − x1, x3 − x2, . . . , xK+1 − xK).

Then, clearly, G is also a continuous bounded function. Assume that
supx |G(x)| ≤ α. Now, by changing the measures from QN and QJ to P , we
get

a = EQN ·μN [G(ZN
1 , . . . ,ZN

K+1)(t)] − EQJ ·μN [G(ZJ
1 , . . . ,ZJ

K+1)(t)]
(48)

= EP ·μN [DN(t)G(ZN
1 , . . . ,ZN

K+1)(t) − DJ (t)G(ZJ
1 , . . . ,ZJ

K+1)(t)],
where DN and DJ are the Radon–Nikodym derivative processes defined in (25).
Define the event

� := {(ZN
1 , . . . ,ZN

K+1)(s) = (ZJ
1 , . . . ,ZJ

K+1)(s),∀s ∈ [0, t]}.
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If ω ∈ �, then, by definition, P · μN -almost surely DN(t,ω) = DJ (t,ω). Thus,
(48) can be written as

a = EP ·μN
[(

DN(t)G(ZN
1 , . . . ,ZN

K+1) − DJ (t)G(ZJ
1 , . . . ,ZJ

K+1)
)
1�c

]
.

Thus, |a| is bounded above by

EP ·μN |DN(t)G(·)1�c | + EP ·μN |DJ (t)G(·)1�c |
≤ α

(
EP ·μN |DN(t)1�c | + EP ·μN |DJ (t)1�c |)(49)

≤ α
(‖DN(t)‖N + ‖DJ (t)‖N

)√
P · μN(�c).

The final inequality is due to the Cauchy–Schwarz inequality, where the norm
‖ · ‖N refers to the L2-norm under the measure P · μN .

Now, under P · μN , both of the Radon–Nikodym derivatives DN(t) and DJ (t)

are equal in law to exp(Bt − t/2), where B is a standard Brownian motion. Thus,
it is straightforward to see that

‖DN(t)‖N = ‖DJ (t)‖N = exp(t/2).

Also, by Lemma 19 (put k = K + 1 in the statement), for large enough J and N ,
we have that P · μN(�c) is less than

C2(K + 1)e2t (J − 1)K
(√

4et

J − K + 1

)J−K[
1 −

(
4et

J − K + 1

)N−J ]
.

If we plug everything back into (49), we see that |a| goes to zero as J , N and
N/J 2 go to infinity, while keeping t and K fixed.

Step 2 (Estimate of b). Under Qx
J , the vector (Y J

1 , . . . , Y J
K) depends only on the

first J processes X1,X2, . . . ,XJ and is independent of Xi, i > J . Thus,

EQx
J [F(Y J

1 , . . . , Y J
K)] = H(x1, x2, . . . , xJ ),

where H is a bounded function since F is bounded. Thus, we have the following
equality:

|b| = |EμN (H(X1(0), . . . ,XJ (0))) − Eμ(H(X1(0), . . . ,XJ (0)))|.
If νN and ν denote the law of the vector (X1(0), . . . ,XJ (0)) under μN and μ,
respectively, then, since we have assumed G (or, equivalently, F ) to be bounded
in absolute value by α, we have |b| ≤ α‖νN − ν‖TV. Here, ‖ · ‖TV refers to the
total variation norm. We will now show that ‖νN − ν‖TV goes to zero as N , J and
N/J 2 go to infinity.

Under μN , X1(0) = 0 and each initial spacing Xi+1(0)−Xi(0), 1 ≤ i ≤ N − 1,
follows independent Exp(2(1 − i/N)). While, under μ, X1(0) = 0 and the spac-
ings follow i.i.d. Exp(2). Now, the law of the vector (Xi(0), 1 ≤ i ≤ J ) is deter-
mined by the first J spacings, (Xi+1(0) − Xi(0), 1 ≤ i ≤ J ), which gives us the



2204 S. PAL AND J. PITMAN

following inequality:

‖νN − ν‖TV ≤
∫

RJ

∣∣∣∣∣
J∏

i=1

2(1 − i/N)e−2(1−i/N)xi − 2J e−2
∑J

i=1 xi

∣∣∣∣∣dx

=
∫

RJ

∣∣∣∣∣
J∏

i=1

(1 − i/N)e2ixi/N − 1

∣∣∣∣∣2J e−2
∑J

i=1 xi dx.

By an application of Cauchy–Schwarz inequality, we get

‖νN − ν‖2
TV ≤

∫
RJ

∣∣∣∣∣
J∏

i=1

(1 − i/N)e2ixi/N − 1

∣∣∣∣∣
2

2J e−2
∑J

1 xi dx,

= 2J
J∏

i=1

(1 − i/N)2
∫

RJ
exp

{
−2

J∑
i=1

(1 − 2i/N)xi

}
dx(50)

− 2J+1
J∏

i=1

(1 − i/N)

∫
RJ

exp

{
−2

J∑
i=1

(1 − i/N)xi

}
dx + 1.

By the standard identity
∫

e−λx dx = λ−1 for λ > 0, we get

‖νN − ν‖2
TV ≤ 2J

J∏
i=1

(1 − i/N)2
J∏

i=1

(
2(1 − 2i/N)

)−1

− 2J+1
J∏

i=1

(1 − i/N)

J∏
i=1

(
2(1 − i/N)

)−1 + 1(51)

= (1 − 1/N)2(1 − 2/N)2 · · · (1 − J/N)2

(1 − 2/N)(1 − 4/N) · · · (1 − 2J/N)
− 1.

The following inequality is straightforward to prove:

e−2x ≤ 1 − x ≤ e−x for all 0 ≤ x ≤ 1
2 log 2.

By our assumption that J , N and N/J 2 are going to infinity, we can assume, for
all sufficiently large values of J and N , that 2J/N ≤ log 2/2. By the previous
inequality, we get

e−2i/N ≤ (1 − i/N) ≤ e−i/N , 1 ≤ i ≤ 2J/N,

and, consequently,

(1 − 1/N)2(1 − 2/N)2 · · · (1 − J/N)2

(1 − 2/N)(1 − 4/N) · · · (1 − 2J/N)
≤ exp(−2

∑J
i=1 i/N)

exp(−2
∑J

i=1 2i/N)
(52)

and
exp(−4

∑J
i=1 i/N)

exp(−∑J
i=1 2i/N)

≤ (1 − 1/N)2(1 − 2/N)2 · · · (1 − J/N)2

(1 − 2/N)(1 − 4/N) · · · (1 − 2J/N)
.
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Thus, we can give upper and lower bounds:

e−J (J+1)/N ≤ (1 − 1/N)2(1 − 2/N)2 · · · (1 − J/N)2

(1 − 2/N)(1 − 4/N) · · · (1 − 2J/N)
≤ eJ (J+1)/N .

Combining this with (51), we see that as N , J and N/J 2 go to infinity, we clearly
get that |b| converges to zero.

Step 3 (Estimate of c). This is similar to the methods we used to estimate a. As
in Step 1, we first employ a change of measure to obtain

c = EP ·μ[DJ (t)G(ZJ
1 , . . . ,ZJ

K+1)(t)] − EP ·μ[
D(t)G

(
X(1), . . . ,X(K+1)

)
(t)

]
.

Consider the event

�(t, J,K) = {(
X(1), . . . ,X(K+1)

)
(s) = (ZJ

1 , . . . ,ZJ
K+1)(s),0 ≤ s ≤ t

}
.(53)

On �(t, J,K), the random processes G(ZJ
1 , . . . ,ZJ

K+1)(s) are identical to
G(X(1), . . . ,X(K+1))(s) in time s ∈ [0, t]. Also, the processes ZJ

1 and X(1) are
the same in the time interval [0, t]. Thus, the processes D(t) and DJ (t) are also
the same. Since, by our assumption, |G| is bounded by α, the following upper
bound on |c| holds:

|c| ≤ αEP ·μ[(|D(t)| + |DJ (t)|)1�c(t,J,K)

]
(54)

≤ α
(‖Dt‖ + ‖DJ (t)‖)√

P · μ(�c(t, J,K)),

where, we denote by ‖ · ‖ the L2-norm under the measure P · μ.
Now, by Lemma 18 (for k = K + 1 and N = J in the statement), for large

enough J , we get

P · μ(�c(t, J,K)) ≤ C2(K + 1)e2t (J − 1)K
(√

4et

J − K + 1

)J−K

.(55)

Now, since t and K are fixed, as J tends to infinity, P · μ(�c(t, J,K)) goes to
zero. Finally, as in the estimate of a in Step 1, note that, by (22) and (25), we can
assert that

D(t) = exp(Xt − t/2) and DN(t) = exp(Yt − t/2),

where X and Y are Brownian motions. Thus, ‖D(t)‖ = et/2 = ‖DN(t)‖. If we
plug these values in (54), we get that |c| goes to zero as J tends to infinity.

Step 4 (Estimate of d). At time zero the indices are arranged in increasing or-
der and, hence, (�1,�2, . . . ,�K) is obviously equal to (YN

1 , YN
2 , . . . , YN

K ). Since
|F | ≤ α, it follows that |d| is bounded by α times the total variation distance
between the law of (�1,�2, . . . ,�K) under μ and μN . A computation exactly
like (50) gives us( |d|

α

)2

≤ (1 − 1/N)2(1 − 2/N)2 · · · (1 − K/N)2

(1 − 2/N)(1 − 4/N) · · · (1 − 2K/N)
− 1.
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But, since K is fixed and N grows to infinity, the right-hand side above goes to
zero by a logic similar to (52). This proves the estimate.

Thus, combining Steps 1,2,3 and 4, we have proven the theorem. �
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