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ABSTRACT Cardiovascular diseases are considered the number one cause of death across the globe which
can be primarily identified by the abnormal heart rhythms of the patients. By generating electrocardio-
gram (ECG) signals, wearable Internet of Things (IoT) devices can consistently track the patient’s heart
rhythms. Although Cloud-based approaches for ECG analysis can achieve some levels of accuracy, they
still have some limitations, such as high latency. Conversely, the Fog computing infrastructure is more
powerful than edge devices but less capable than Cloud computing for executing compositionally intensive
data analytic software. The Fog infrastructure can consist of Fog-based gateways directly connected with
the wearable devices to offer many advanced benefits, including low latency and high quality of services.
To address these issues, a modular one-dimensional convolution neural network (1D-CNN) approach
is proposed in this work. The inference module of the proposed approach is deployable over the Fog
infrastructure for analysing the ECG signals and initiating the emergency countermeasureswithin aminimum
delay, whereas its training module is executable on the computationally enriched Cloud data centers. The
proposed approach achieves the F1-measure score ≈1 on the MIT-BIH Arrhythmia database when applying
GridSearch algorithm with the cross-validation method. This approach has also been implemented on a
single-board computer and Google Colab-based hybrid Fog-Cloud infrastructure and embodied to a remote
patient monitoring system that shows 25% improvement in the overall response time.

INDEX TERMS Internet of Things, ECG analysis, 1D-CNN, fog computing, hybrid fog-cloud, heart disease.

I. INTRODUCTION

According to the World Health Organisation (WHO), cardio-
vascular diseases are the causes of an estimated 17.9 million
deaths each year [1]. There are different forms of cardio-
vascular diseases, including coronary heart disease and heart
failure. Although some of them cannot be completely cured,
they can be controlled by adequately monitoring the heart
status and taking preventive measures accordingly [2]. Sev-
eral measures such as blood tests for troponin levels, chest
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X-ray, electrocardiogram (ECG), stress tests, and angiogram
are available to determine whether the heart of a person is in
stable condition or not [3]. Among them, ECG is preferable
for continuous tracking as it is non-invasive, highly indica-
tive, and requires less sophisticated machines [4].

Electrical impulses coordinate the contractions of differ-
ent heart parts for blood circulation. During ECG, these
impulses are read externally to determine their strength and
the rhythm of the heartbeats [5]. Since the heart rhythms of
any normal person follow a specific trend, any changes in the
ECG signals indicate a cardiac condition. Several Internet of
Things (IoT) devices, including smart vest, fitbit, and chest
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strap, are utilised for perceiving the ECG signals at home and
complement the realisation of remote cardiac patient moni-
toring system [6], [7]. However, to detect the cardiovascular
diseases, the ECG signals collected from IoT-based systems
should be analysed accurately.
A notable number of Edge computing or sensor

device-centric approaches for ECG signal processing have
been developed recently. Particularly, ECG signals are anal-
ysed at the wearable devices to detect abnormalities such
as abnormal heartbeats or arrhythmia. In many cases, such
approaches can achieve some levels of the accuracy and
provide fast ECG analysis results in terms of a few seconds.
However, these can be mainly used for normal daily usage
but might not be suitable for sensitive healthcare applications
as there are strict requirements for accuracy and low latency.
In addition, Edge computing-based approaches still have lim-
itations due to the resource constraints of wearable devices.
For example, the ECG analysis at the wearable devices can
reduce the life time of their batteries.
Recently, Artificial Intelligence (AI) based on Machine

Learning (ML) and Deep Learning (DL) models have been
widely adopted to perform disease analysis and classifica-
tion of different healthcare diseases [8]–[12]. In such cases,
the Cloud computing resources [13] are predominantly used
for training and assessing these models [14]. However, the
data centres of commercial Cloud service providers such
as Google Cloud Platform and Amazon Web Services are
located at a multi-hop distance from the IoT devices that
significantly increases the communication delay while trans-
ferring the healthcare data [15]. Conversely, the reaction
time or latency tolerance for any severe cardiac condition is
very stringent that urges for real-time processing of the ECG
signals and faster initiation of emergency services. Hence, the
Cloud-based execution of MLmodels is considered to be less
feasible for ECG signal analysis [16].
To overcome the high latency constraints of Cloud com-

puting and meet the real-time processing requirements of
critical healthcare data including IoT device-generated ECG
signals, Fog computing solutions have been employed in
many remote patient monitoring systems [17]. By acting as
an intermediate layer between Cloud data centres and edge
devices, the Fog paradigm brings the computing facilities in
the vicinity of the data sources that reduce the data transfer
delay and improve the overall response time in data process-
ing [18]. In this paper, the proposed Fog computing plat-
form consists of smart gateways which are interconnected
and communicate together [19]. The Fog-based gateways
receive data directly from the wearable devices via a wire-
less communication protocol such as Bluetooth-Low-Energy
(BLE) or Wi-Fi. The convergence network of Fog-based
gateways forms a Fog computing infrastructure that can offer
many advantages such as distributed local data storage, dis-
tributed data processing, energy efficiency, and low latency
[16], [20]. Nevertheless, Fog nodes such as single board
computers, smart gateways, network switches and micro
data centers are constrained in resource capacity that resists

the execution of compute-intensive ML models for ECG
analysis [21].

Focusing on the respective challenges of Cloud computing
in processing ECG signals, we have proposed a modular
1D-CNN approach in this work. The inference module of the
proposed approach exploits a trained ML model to predict
cardiovascular diseases based on the ECG signals captured
from the IoT wearable devices. This approach is feasible to
deploy on the Fog computing infrastructure. It also helps
to optimise the delay in initiating countermeasures such as
calling an ambulance or medical assistance during emergency
cardiac situations of remote patients. Similarly, the training
module of the proposedDL approach (i.e., that creates theML
model based on historical evidence) is made executable on the
Cloud data centres. This solution reduces the computational
overhead from the Fog infrastructure and enables the periodic
updates of the ML model for the inference module with
new data. The major contributions of this work are listed
below.

• A system architecture for remote cardiac patient mon-
itoring that can ensure optimized delay in actuating
emergency services.

• A modular 1D-CNN approach for analysing ECG sig-
nals captured from IoTwearable devices, that can simul-
taneously operate on hybrid Fog-Cloud infrastructure.

• A proof-of-concept prototype implemented on a
single-board computer and Google Colab that detects
arrhythmia cardiovascular disease with an accuracy of
99.46% on MIT-BIH Arrhythmia database.

The remainder of this paper is organised as follows. section II
outlines the existing literature related to the remote car-
diac patient monitoring systems. section III describes the
remote patient monitoring system architecture. section IV
discuses the proposed DL approach. The performance eval-
uation of the proposed system is presented and discussed in
section V. Finally, section VI concludes the paper with the
future directions.

II. RELATED WORKS

A considerable number of advanced IoT frameworks and
systems are available in the literature that focuses on heart
diseases and ECG signal analysis. Some of them aims at
developing advanced methods (e.g., machine learning and
deep learning) for ECG analysis while other approaches tar-
get to develop system architectures (i.e., fog and edge com-
puting) for providing advanced services that help improve
quality of ECG analysis. This section discusses the advanced
method for ECG analysis on the Fog IoT system. In [16],
the authors developed a Fog-based IoT system for remote
and real-time monitoring. The system introduced a Fog
computing multi-layer architecture that can offer advanced
services such as distributed data storage, data process-
ing, data compression, data analysis and push notifica-
tion. Particularly, the system analysed the ECG data by
applying the four-level discrete wavelet transformation with
Daubechies 4 wavelet. Correspondingly, useful information
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from the acquired bio-signals (such as ECG, oxygen satura-
tion, heart rate, and body temperature) and contextual data
(such as room temperature, humidity, and air quality) can
be extracted. Depending on the situation, the collected data
could be analysed at the Fog or Cloud layer. The system
could also provide some security solutions, including fire-
wall, advanced encryption standard (AES), and lightweight
security algorithms. When the system detects any abnormal-
ities, it sends push notification messages to the medical care-
givers accordingly. Although the system provided advanced
services, including low-latency distributed ECG analysis, the
accuracy of the analysis was limited (e.g., when comparing
with the Cloud-based ECG analysis approaches).
In [22], the authors presented an intelligent Fog-based

IoT system for real-time healthcare applications. The sys-
tem had an advanced Fog-based architecture support-
ing distributed computation at the edge of the network.
Particularly, the system had a collaborative machine learning
approach distributed over different layers, including Edge,
Fog and Cloud environment to enable real-time actionable
insights that enhance decision making. A lightweight shallow
feed-forward neural network was executed at the endpoint
IoT device while the Convolution Neural Network having
ECG images as inputs was run at the Fog layer. The results
showed that the approach based on CNN could achieve accu-
racy and sensitivity of 98% and 96%, respectively. Although
the latency of running the CNN-based approach at the Fog
layer had not been shown in the paper, the system might not
achieve very low latency as it uses ECG images as an input
for the CNN model.
In [17], the authors presented a Fog-based IoT system

for remote health monitoring. The system had an advanced
Fog architecture in which smart gateways are interconnected
and communicate with each other. Based on the architecture,
various Fog services, including local data storage and man-
agement, data processing, data analysis, fault detection, inter-
operability and security, were provided. The system was able
to collect and process three-dimensional (3-D) acceleration
and 3-D angular velocity to detect fall. Particularly, when
a sum vector magnitude of 3-D acceleration or a sum vec-
tor magnitude of 3-D angular velocity trespasses predefined
threshold levels and satisfy verification requirements, a fall
event is detected. The system was also able to extract ECG
features and detect heart rate variability. Notably, an auto-
mated QT interval extraction algorithm was designed and run
at smart Fog-based gateways to achieve real-time detection
of heart abnormalities. Due to the lightweight ECG analysis
algorithms, this system might not achieve highly accurate
results compared to deep learning-based approaches.
In [25], the authors developed a low-cost Fog-based

ECG monitoring system. The proposed system architecture
had a Fog layer consisting of smart gateways that were
built from the low-cost embedded board. The system had
energy-efficient and low-cost wearable sensor devices that
were able to collect and transmit 2-channel ECG in real-time
to Fog-based gateways via nRF wireless communication

protocol. At Fog-based gateways, several Fog services push
notification, channel management, distributed data storage
and lightweight security were provided. Particularly, ECG
data were processed with an algorithm based on wavelet
transform and threshold estimation to extract ECG features,
including heart rate and RR intervals. End-users could access
real-time raw or analysed ECG data via Cloud or Fog servers,
depending on the situation. Although this approach helped
achieve low-latency ECG analysis, the accuracy of the ECG
analysis was not high.

In [27], the authors proposed a Fog-based IoT system for
healthcare applications. The proposed system architecture
used a smartphone, laptop or tablet as a gateway device
that acts as a fog node to forward the collected data to
broker/worker nodes. The broker node was responsible for
receiving job requests from a gateway, managing resources
and deciding the suitable worker node to which the job should
be sent. The worker node was able to enable lightweight
automatic heart patient data diagnosis using deep learning.
The proposed system was tested and measured in a Fog com-
puting environment in terms of network bandwidth, latency,
jitter, execution time, and power consumption. Similar to
other Fog-based approaches, the proposed lightweight deep
learning approach achieved approximately 87-94% accuracy
depending on the test cases.

Additionally, in [23], the authors proposed a health mon-
itoring system with hierarchical Fog-based architecture. The
proposed system ensuresmachine learning-based data analyt-
ics and autonomous adjustment with respect to the patient’s
conditions via a closed-loop management technique. The
system was evaluated via a use case of arrhythmia detection
and the results showed that the system can achieve a high
level of accuracy with low latency. In [24], the authors also
presented a Fog-based health motoring system for cardio-
vascular diseases. The collected ECG signals were sent via
LoRa to Fog-based LoRa gateways where Fog-AI having
deep learning module for the detection of Atrial fibrillation
and other heart rhythms. The system was evaluated via a
dataset of single-lead ECG and achieve an accuracy of 90%
for atrial fibrillation. Although ECG analysis approaches in
these systems could achieve quick response, the accuracy
level was not as high as other machine learning and deep
learning-based approaches (i.e., that often reached higher
than 95% accuracy).

In [26], the authors proposed a Fog-based health monitor-
ing system for diabetic people with cardiovascular diseases.
The proposed system architecture consists of energy-efficient
wearable sensor nodes able to collect different types of
data, including motion-related data, ECG, body tempera-
ture and glucose. The collected data was sent to a net-
work of Fog-based gateways where many advanced services
(e.g., real-time push notification, human activities categori-
sation, nRF channel management and fall detection) were
provided. These services were lightweight and able to provide
fast results. Particularly, QT’s length extraction algorithms
for detecting hypoglycemia and hyperglycemia in real-time
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FIGURE 1. The hybrid Fog-Cloud system architecture.

were linear and based on several threshold values. The entire
system was implemented and evaluated via several use cases
of ECG monitoring and fault detection. The results showed
that the system could achieve a high level of accuracy and
help to improve the quality of healthcare services. However,
the ECG analysis algorithms have not been evaluated with a
large dataset collected from different patients or participants.
A summary of the related works is presented in Table 1.

In comparison to the existing works, the proposed cardiac
patient monitoring system balances a load of ECG signal pro-
cessing effectively across hybrid Fog-Cloud environments.
As a result, the proposed DL approach is capable of running
even in single-board computers like Raspberry Pi with higher
accuracy and faster response during critical scenarios. Our
policy also facilitates the periodic update of the MLmodel so
that it can operate by overcoming the concept drifting issues.

III. SYSTEM ARCHITECTURE

The proposed remote patient monitoring system encapsulates
a three-layer architecture as shown in Figure 1.

• Sensor Layer: This layer is composed of wearable IoT
devices that collects ECG signals of cardiac patients. These
devices perform the sensing operation in a consistent manner
and transmit the ECG signals to the Fog computing nodes
instantly located at the Fog layer. Periodicity can also be set
in the signal transmission as per the supervision of the med-
ical professionals. Moreover, the sensor layer incorporates
actuators, including alert systems and ambulance services
that receive commands from the Fog layer and function as
per the outcome of the ECG signal analysis operations. The
sensor layer also notifies the Fog layer whether the response is
applicable for the situation or not, using a feedback message.

• Fog Layer: This layer consists of a cluster of Fog nodes
that performs the following operations.

- Local Data Storage: To ensure the faster processing of
patient’s ECG signals, Fog nodes preserve the incoming

data in a local storage. Additionally, when the processing
of ECG signals cannot be conducted by the Fog nodes
due to overhead, these data are forwarded to Cloud in a
prioritized order for further processing. The priority of a
data flow can be set dynamically based on the criticality
of the patients and the respective location and time.
During such operations, the local storage is considered
as a cache to ensure a persistent data flow. Moreover,
the local storage can be either encrypted or compressed
based on the privacy preferences of the patients.

- Data Filtering: Due to various reasons such as the elec-
tromagnetic interference from the nearby devices, the
oscillations in electric power or the improper attach-
ment of sensors to the patients’ body, noises are usually
aggregated to the ECG signals. Because of the inter-
nal mechanical complexities, the EEG signals perceived
by the wearable IoT devices can also include complex
shapes with small amplitude and different frequencies.
Such noises can affect the faster processing of ECG sig-
nals and degrade the accuracy significantly. Therefore,
the Fog nodes apply complex and robust data filtering
techniques on the ECG signals to eliminate these noises
and unnecessary or incomplete data.

- Data Analysis: In this remote patient monitoring system
architecture, the inference module of the proposed ML
model is executed at the Fog layer. Based on the sensed
ECG signal, the inference module classifies the signals
and detects the abnormal cases of the patients. As a
result, the system can offer real-time responses, thus
enhancing the response time of the system. Furthermore,
once an event of interest is detected by the inference
module, the necessary command is forwarded to the
sensor layer for the actuation of emergency services and
the applicability of the operation is monitored. Later, the
ECG signals, actuation command and the feedback from
the sensor layer are sent to the Cloud layer so that the
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FIGURE 2. 1D Convolution Neural Network architecture.

TABLE 1. A summary of related work and their comparison.

training module can be updated in a consistent manner
using these information. However, as most of the Fog
nodes have limited physical resources (i.e., processing

power and main memory) and could have energy limi-
tations for performing data and compute-intensive oper-
ation, the inference module should be lightweight and
capable of detecting cases accurately.

•Cloud Layer: The Cloud data centre operates as the back-
bone for the proposed patient monitoring system. It receives
ECG signals, corresponding responses and service outcomes
from the Fog layer and stores the information in a global
database for location-independent sharing and access. The
Cloud layer also supports the consistent training of the pro-
posed ML model with new information. Once the training
module completes execution, the old inference module at the
Fog layer is replaced with the latest one. This approach resists
the effect of concept drifting and enable the model to cope
with the change in the distribution of the data over time [28].
Thus, the proposed system always retains an acceptable rate
in case of prediction as time passes. Nevertheless, considering
the high frequency and variations of ECG signals, the execu-
tion of the training module should be faster. This requirement
makes the efficient allocation of the Cloud resources [29],
[30] a must, which is also subject to extensive research.

IV. ECG DATA ANALYTIC MODULE

Recently, Deep Learning (DL) models have achieved very
promising performances in the healthcare domain. They have
the ability to extract high-level features from the healthcare
input data using a stack of hidden layers. Among the variants
of DL models, Convolution Neural Networks (CNN) are
widely adopted in processing medical images [31], whereas
Recurrent Neural Network (RNN) and Long short-termmem-
ory (LSTM) networks are used for analysing bio-signals
including ECG, electroencephalogram (EEG), photoplethys-
mogram (PPG) [32].

A. 1D-CNN MODEL DESCRIPTION

In this work, we have proposed a 1D-CNN architecture for
ECGArrhythmia classification. It permits data extraction and
classification. The extraction part includes batch normaliza-
tion, convolution, activation and max-pooling layers, while
the classification part is composed of flatten, fully-connected
and SoftMax layers (Figure 2).
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FIGURE 3. 1D CNN architecture.

In the 1D-CNN input layer, the data is organised in 2D
format. The vertical direction represents the time axis, while
the horizontal direction corresponds to the features relative
to each timestamp. The batch normalisation layer aims to
standardise the input data by reducing internal co-variate
shift [33]. In the one-dimensional convolution layer, each
neuron is connected to a local window from the previous
layer, called the receptive field, that shifts along the times-
tamp axis and share the synaptic weights(Figure 3). This
model allows reducing the number of weights and facilitat-
ing the generalisation process. The neurons over the vertical
direction represent the evolution of the input data over time
that depends on the receptive field and delay values. The
number of neurons along the horizontal direction can be
defined manually that allow transforming the input features
into another sequence of higher order. For each neuron, the
rectified linear unit function (ReLU) is applied to return the
weighted sum of the input data if it is positive and zero if
not. Thereafter, we applied a one-dimensional max-pooling
layer to preserve for each activation map the neuron with the
higher value. The classification part is similar to a multi-layer
perceptron. The flatten layer consists of converting the data
of the extraction part to a 1D-vector format. We implemented
one hidden layer with the dropout function, and the neurons
of the output layer corresponds to the classes of heartbeats
disease.

B. 1D-CNN MODEL CONFIGURATION

The proposed 1D-CNN input layer is composed of 319 nodes
representing the ECG heartbeat segments length. The extrac-
tion part includes two blocks of convolutions, activation
and max-pooling layers. In the training stage, the Dropout
function is applied to avoid the over-fitting [34]. It is a

TABLE 2. 1D-CNN network configuration.

regularisation method that consists of temporarily dropping
out random units from the neural network. In the simplest
case, each unit is retained with a fixed probability p inde-
pendent of the other units. The classification part contains
one hidden layer of 512 nodes fully connected to the units
of the Flatten layer. The output layer nodes of the proposed
model represent 6 different heartbeats groups as specified by
the Association for the Advancement of Medical Instrumen-
tation (AAMI) standard. Table 2 provides a summary of the
proposed 1D-CNN model.

V. PERFORMANCE EVALUATION

In this section, we have evaluated the performance of the pro-
posedDLmodel and demonstrated the efficiency of Fog com-
puting in processing ECG signals and dealing with critical
cardiac scenarios. The findings of the performance evaluation
are discussed below.

A. EFFICIENCY OF THE ECG SIGNAL ANALYSIS MODEL

First, we present the efficiency of the proposed 1D-CNN
model in classifying ECG signals. To evaluate the
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FIGURE 4. MIT-BIH Arrhythmia heartbeats.

performance of the proposed 1D-CNNmodel, accuracy, loss,
recall, precision, and F1-score are used as the performance
metrics.

1) DATASET OVERVIEW

The performance evaluation experiments are conducted on
MIT-BIH database [35]. It is a publicly available database,
which provides standard benchmark investigation material
for the detection of heart arrhythmia. This database includes
48 ECG record files of 47 individuals. Each record file
with two-lead ECG signals lasts approximately thirty minutes
long and samples at 360 Hz. The ECG records and their
annotations are saved in CSV and TXT files, respectively,
and are then classified into 6 groups according to the AAMI
standard. For each record file, the ECG signal is segmented
into heartbeats according to the PQRST (Preview, Question,
Read, Study, Test) sequence. The P-wave represents the atrial
depolarization process, the QRS complex denotes the ven-
tricular depolarisation process and a T-wave representing the
ventricular repolarization. An illustration of the heartbeats
is depicted in Figure 4. Furthermore, based on the afore-
mentioned specifications, we obtain a total of 42021 ECG

heartbeat segments of length 319ms. The details of the ECG
heartbeat segments is presented in Table 3.

For the experiments, we have divided MIT-BIH database
into train, validation and test subsets. The training dataset

TABLE 3. ECG heartbeat segments distribution.

have been used for training the 1D-CNNmodel, while the val-
idation dataset is useful to give an estimate of the model skill
while tuning model’s hyper-parameters. The testing dataset
is used to evaluate the skill of the final tuned model on the
unseen data. Moreover, we have applied the cross-validation
method to avoid the over-fitting problem and improve the
model generalisation. This method involves randomly divid-
ing the dataset into k folds with different training, and vali-
dation samples [36]. Thus, each sample has the opportunity
to be used in the hold out set 1 time and used to train the
model (k − 1) times. The result of k-fold cross-validation
runs are often summarised with the mean of the model skill
scores [37].

2) EXPERIMENTS RESULTS

In the training stage, we run the proposed 1D-CNN model
with different values of batch size, learning rate, and opti-
miser using GridSearchCV algorithm. Table 4 presents the
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TABLE 4. Hyper-parameters tuning.

FIGURE 5. Training and validation accuracy per epoch.

FIGURE 6. Training and validation Losses per epoch.

specification of these hyper-parameters. Moreover, we have
applied the cross-validation method with a number of folds
k equal to 10. Interestingly, we have obtained an accuracy
of 99.46% with a number of 44 epochs. The best values of
the hyper-parameters are 64, 10−3, and Adam for batch-size,
learning rate, and optimiser, respectively.

Figure 5 and Figure 6 show the evolution of accuracy and
value losses in training and validation subsets during the
inference. Table 5 demonstrates the performance measures in
terms of precision, recall and F1-score in different classes.
These measures are defined as per the True Positive (TP),
False Positive (FP) and False Negative (FN) values using
Equation 1.



























Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1score =
2TP

(2TP+ FP+ FN )

(1)

Figure 7 represents the Average Receiver Operating Char-
acteristic (ROC) curve. It shows the trade-off between TP
and FP rates. We have noticed that ROC curve is close to

TABLE 5. 1D-CNN performance measures.

FIGURE 7. Average ROC curve of ECG Arrhythmia classes.

the left-hand border and therefore the proposed model is very
accurate. The average Area Under the Curve rate is greater
than 0.99 which is very close to 1.

Moreover, we have compared our proposed 1D-CNN
model with some existing models evaluated over the same
dataset. The results of this comparison are shown in Table 6.
In comparison with other models applied on ECG Arrhyth-
mia classification and evaluated on MIT-BIH database, the
proposed model has shown promising results with a limited
number of epochs. Furthermore, our model has reached these
performances with only two 1D-convolution layers contrary
to the existing systems where a stack of convolution and
LSTM hidden layers were implemented (Table 6). Another
strength of the proposed model is concerning the speed of
the training stage. This can be explained by the small number
of trainable parameters, due to the shared weights between
receptive fields of the same convolution layer. In fact, the
training stage was completed in less than ten minutes.

B. EFFICIENCY OF THE HYBRID FOG-CLOUD

INFRASTRUCTURE

To demonstrate the distributed deployment of the proposed
DL model in hybrid Fog-Cloud infrastructure, we have mod-
elled a Fog environment with Raspberry Pi 4 (4G RAM
and 1.5 GHz ARM Cortex-A72 Quad-core CPU) devices
and exploited the Cloud environment offered by Google
Colab using model Tesla K80 with 13GB RAM and a stor-
age of 68GB. The Fog environment has been developed
using theCon-Pi framework that provides various application
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TABLE 6. Performance comparison of DL models evaluated with MIT-BIH
dataset.

programming interfaces to i). run the inference and training
module of DL models in from of microservices, ii). make a
cluster of the single board computers, iii). initiate operations
through actuators and iv). integrate Cloud resources. The
performance of our proposed approach is compared with
two existing approaches, namely IoT-Cloud [45] and IoT-Fog
[24]. The IoT-Cloud solution uses AWS to run the DL model
for processing IoT-device generated ECG signals in Cloud,
whereas the IoT-Fog prototype exploits a cluster of 3 Rasp-
berry Pi devices having Intel Neural Compute Stick 2 (NCS
2) to conduct the same operation on the Fog. However, dur-
ing experiments, we have mainly focused on implementing
the operational infrastructure of these approaches. Figure 8
depicts the percentage of CPU utilization in IoT-Cloud,
IoT-Fog and proposed hybrid Fog-Cloud solution for both
training and inference module of our DL model. Since the
Fog resources are not computationally enriched, the exe-
cution of the DL model using IoT-Fog, more specifically,
the deployment of the compute-intensive training module on
resource-constrained devices, incur significant overhead. Our
proposed cardiac patient monitoring system overcomes this
issue by executing the training module at the Cloud and infer-
ence module on the Fog infrastructure. On the other hand,
for IoT-Cloud solution, the overall CPU utilisation of our
DL model is less compared to the proposed hybrid approach
because of using computationally enriched resources to run
the inference module. However, the purpose of the training
module is periodic, whereas the inference module functions
on a consistent basis. As our proposed solution extensively
exploits the local resources for continuous operations, thus
resulting in less financial cost than running the monolithic
DL model on the expensive Cloud resources [46].
Moreover, Figure 9 illustrates the relative latency for exe-

cuting the training and inference module of our DL model
in IoT-Cloud, IoT-Fog and proposed hybrid Fog-Cloud solu-
tion. When the inference module of the proposed DL model
is executed on the Cloud, the transfer of ECG signals and
actuation commands between the IoT devices and the remote
data centres adds additional delay to the overall response

FIGURE 8. Performance in balancing CPU usage.

FIGURE 9. Performance in optimising latency.

time of the system. The distribution of training and inference
modules in hybrid Fog-Cloud infrastructure according to their
resource requirements and sensitivity resolves this issue for
the proposed solution with 25% improvement in the response
time and helps in keeping the relative run-time latency for
both modules at the lower bound.

VI. CONCLUSION AND FUTURE WORK

In this work, we have developed a distributed DL model
that simultaneously harnesses the Fog and Cloud infras-
tructures to run the inference and training operations. For
the DL model, we have used a 1D-CNN architecture and
extensively evaluated our model on the MIT-BIH Arrhythmia
database. A proof-of-concept remote cardiac patient moni-
toring system is also implemented on top of the proposed
DL model. Through experiments, it has been proved that the
proposed solution can offer low-latency responses in identi-
fying emergency situations for cardiac patients by processing
the IoT device-generated ECG signals with higher accuracy
(around 99.46%).

As future work, we are planning to add more advanced
DL models to the remote patient monitoring system so that
other events, including blood volume. Moreover, the pro-
posed model will also be extended and employed for other
latency-sensitive health applications.
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