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In this paper, an implicit logarithmic finite difference method (I-LFDM) is imple-

mented for the numerical solution of one dimensional coupled nonlinear Burgers’

equation. The numerical scheme provides a system of nonlinear difference equations

which we linearise using Newton’s method. The obtained linear system via Newton’s

method is solved by Gauss elimination with partial pivoting algorithm. To illustrate

the accuracy and reliability of the scheme, three numerical examples are described.

The obtained numerical solutions are compared well with the exact solutions and

those already available. C© 2014 Author(s). All article content, except where other-

wise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4869637]

I. INTRODUCTION

Let us consider one dimensional coupled nonlinear Burgers’ equation1, 2 in generalized form:

∂u

∂t
+ δ

∂2u

∂x2
+ ηu

∂u

∂x
+ α

(

u
∂v

∂x
+ v

∂u

∂x

)

= 0, (1)

∂v

∂t
+ μ

∂2v

∂x2
+ ξv

∂v

∂x
+ β

(

u
∂v

∂x
+ v

∂u

∂x

)

= 0, (2)

subject to the initial conditions

u (x, 0) = a1 (x) ,

v (x, 0) = a2 (x) ,

}

x ∈ �, (3)

and the Dirichlet boundary conditions

u (x, t) = b1 (x, t) ,

v (x, t) = b2 (x, t) ,

}

x ∈ �, t > 0, (4)

where � = {x : c ≤ x ≤ d} is the computational domain; δ, μ, η and ξ are real constants, α and β

are arbitrary constants depending on the system parameters such as Peclet number, stokes velocity of

particles due to gravity and the Brownian diffusivity,3 u (x, t) and v (x, t) are the velocity components
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TABLE I. Comparison of errors for u (x, t) with 	t = 0.001 for the test case 1.

I-LFDM Mittal [12]

Number of Number of Number of Number of

partition = 200 partition = 400 partition = 200 partition = 400 Rashid [11]

t L2 L∞ L2 L∞ L2 L∞ L2 L∞ L2 L∞

0.1 9.95e-04 9.02e-04 9.87e-04 8.95e-04 8.21e-06 7.45e-06 2.05e-06 1.86e-06 — —

0.5 9.91e-04 6.04e-04 9.84e-04 6.01e-04 2.49e-05 4.10e-05 1.02e-05 6.22e-06 — —

1.0 9.83e-04 3.65e-04 9.70e-04 3.64e-04 3.00e-05 8.21e-05 2.04e-05 7.56e-06 2.88e-05 1.16e-05

to be determined, a1, a2, b1 and b2 are the known functions, ∂u
∂t

is unsteady term, u ∂u
∂x

is the nonlinear

convection term, ∂2u
∂x2 is the diffusion term.

The one dimensional coupled Burgers’ equation can be taken as a simple model of sedi-

mentation and evolution of scaled volume concentrations of two kinds of particles in fluid sus-

pensions and colloids under the effect of gravity. Various researchers have proposed analytical

solution to one dimensional coupled Burgers’ equation, e.g. Kaya4 used Adomian decomposition

method, Soliman5 applied a modified extended tanh-function method, whereas numerical solutions

to this system of equation have been attempted by many researchers. Esipov6 had given numer-

ical solutions and compared the obtained results with those given by the experiment. Abdou7

used variational iteration method to solve coupled Burgers’ equation, whereas Wei8 used a con-

jugate filter approach, Khater9 applied the Chebyshev spectral collocation method, Dehghan10

gave numerical solutions of coupled viscous Burgers equations by applying the Adomian- Pade

technique; Rashid11 applied Fourier pseudo-spectral method. Mittal12 has applied a cubic B-

spline collocation scheme while Mokhtari13 used a generalized differential quadrature method.

Recently, Srivastava et al.1, 2 used a fully implicit scheme and Crank-Nicolson scheme for solv-

ing this system of coupled Burgers’ equation. Further, Srivastava et al.14, 15 proposed two new

finite difference schemes, namely an implicit exponential finite-difference and an implicit logarith-

mic finite-difference method for solving the two dimensional coupled viscous Burgers’ equation.

One can refer16–21 for various numerical schemes for two dimensional coupled Burgers’ equations

whereas the exact solution of two, three and (n + 1)-dimensional Burgers’ equation can be seen

in.22–24

In this article, an implicit logarithmic finite-difference method (I-LFDM) has been applied for

the numerical solution of one dimensional coupled Burgers’ equation, proposed by Srivastava et al.15

The obtained results are compared well with the exact solutions and those already available in the

literature. The accuracy and computational reliability of the I-LFDM scheme are demonstrated in

terms of error norms by considering the following three test cases.

Test case 1: Consider the coupled Burgers’ equation

∂u

∂t
−

∂2u

∂x2
− 2u

∂u

∂x
+

(

u
∂v

∂x
+ v

∂u

∂x

)

= 0, (5)

∂v

∂t
−

∂2v

∂x2
− 2v

∂v

∂x
+

(

u
∂v

∂x
+ v

∂u

∂x

)

= 0. (6)

The initial and boundary conditions are taken from the exact solution. Exact solutions to

Eqs. (5) and (6) can be expressed as3

u (x, t) = exp (−t) sin (x)

v (x, t) = exp (−t) sin (x)

}

, x ∈ [−π, π ] , t > 0. (7)
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FIG. 1. Comparison between numerical and exact solutions (a) u (x, t) and (b) v (x, t) for the test case 1.

Test case 2: Consider the coupled equation

∂u

∂t
−

∂2u

∂x2
+ 2u

∂u

∂x
+ α

(

u
∂v

∂x
+ v

∂u

∂x

)

= 0, (8)

∂v

∂t
−

∂2v

∂x2
+ 2v

∂v

∂x
+ β

(

u
∂v

∂x
+ v

∂u

∂x

)

= 0. (9)
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TABLE II. Comparison of errors for u (x, t)for the test case 2.

Khater [9] Rashid [11] Mittal [12] Mokhtari[13] I-LFDM

t α β L2 L∞ L2 L∞ L2 L∞ L2 L∞ L2 L∞

0.5 0.1 0.3 1.44e-

03

4.38e-

05

3.245e-

05

9.619e-

04

6.736e-

04

4.167e-

05

2.02e-

03

1.00e-

04

4.02852e-

04

2.64018e-

05

0.1 0.03 6.68e-

04

4.58e-

05

2.733e-

05

4.310e-

04

7.326e-

04

4.590e-

05

5.07e-

03

2.52e-

04

3.91814e-

04

2.62182e-

05

1.0 0.1 0.3 1.27e-

03

8.66e-

05

2.405e-

05

1.153e-

03

1.325e-

03

8.258e-

05

4.03e-

03

2.01e-

04

7.93158e-

04

5.20361e-

05

0.1 0.03 1.30e-

03

9.16e-

05

2.832e-

05

1.268e-

03

1.452e-

03

9.182e-

05

1.00e-

02

5.04e-

04

7.71339e-

04

5.16796e-

05

TABLE III. Comparison of errors for v (x, t) for the test case 2.

Khater [9] Rashid [11] Mittal [12] Mokhtari [13] I-LFDM

t α β L2 L∞ L2 L∞ L2 L∞ L2 L∞ L2 L∞

0.5 0.1 0.3 5.42e-

04

4.99e-

05

2.746e-

05

3.332e-

04

9.057e-

04

1.480e-

04

1.56e-

03

3.80e-

05

2.21424e-

04

1.04139e-

05

0.1 0.03 1.20e-

03

1.81e-

04

2.454e-

04

1.148e-

03

1.591e-

04

5.729e-

04

1.59e-

03

1.85e-

04

4.25241e-

04

3.0721e-

05

1.0 0.1 0.3 1.29e-

03

9.92e-

05

3.745e-

05

1.162e-

03

1.251e-

03

4.770e-

05

3.10e-

03

7.58e-

05

4.24639e-

04

1.97588e-

05

0.1 0.03 2.35e-

03

3.62e-

04

4.525e-

04

1.638e-

03

2.250e-

03

3.617e-

04

3.15e-

03

3.67e-

04

8.37842e-

04

6.09557e-

05

The exact solutions to Eqs. (8) and (9) are expressed as4

u (x, t) = a0

(

1 − 2A

(

2α − 1

4αβ − 1

)

tanh (A (x − 2At))

)

,

v (x, t) = a0

((

2β − 1

2α − 1

)

− 2A

(

2α − 1

4αβ − 1

)

tanh (A (x − 2At))

)

,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

x ∈ [−10, 10] , t > 0,

(10)

where A = a0
(4αβ−1)

(4α−2)
and a0, α, β are arbitrary constants. The initial and boundary conditions are

taken from the exact solution.

Test case 3: Consider the following coupled Burgers’ equation

∂u

∂t
−

∂2u

∂x2
+ ηu

∂u

∂x
+ α

(

u
∂v

∂x
+ v

∂u

∂x

)

= 0, (11)

∂v

∂t
−

∂2v

∂x2
+ ξv

∂v

∂x
+ β

(

u
∂v

∂x
+ v

∂u

∂x

)

= 0. (12)

where η, ξ , a0, α, β are arbitrary constants.

With the initial conditions12

u (x, 0) =

{

sin (2πx) , x ∈ [0, 0.5] ,

0, x ∈ (0.5, 1] ,
(13)
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FIG. 2. Comparison between numerical and analytical solutions (a) u (x, t) and (b) v (x, t) at number of partitions = 10, 	t

= 0.1, t = 1, α = 1, β = 2 for the test case 2.

v (x, 0) =

{

0, x ∈ [0, 0.5] ,

− sin (2πx) , x ∈ (0.5, 1] ,
(14)

and zero boundary conditions.

The rest of the paper is organized as follows: in section II, the I-LFDM scheme is described;

in section III, results and discussions are illustrated, and a concluding discussion is presented in

section IV.



037119-6 Srivastava et al. AIP Advances 4, 037119 (2014)

TABLE IV. Maximum values of u and v for α = β = 10 for the test case 3.

I-LFDM Mittal [9]

Max value At point Max value At point Max value At point Max value At point

t of u (x) of v (x) of u (x) of v (x)

0.1 0.14047 0.54 0.15058 0.66 0.14456 0.58 0.14306 0.66

0.2 0.054552 0.52 0.050969 0.58 0.05237 0.54 0.04697 0.56

0.3 0.021168 0.52 0.019627 0.52 0.01932 0.52 0.01725 0.52

0.4 0.0082883 0.48 0.0077130 0.50 0.00718 0.50 0.00641 0.50

II. NUMERICAL SCHEME (I-LFDM)

In this section, we illustrate the implicit logarithmic finite-difference method (I-LFDM).

Assume X (u) and Y (v) be any two continuously differentiable functions. Multiplying

Eqs. (1) and (2) by the derivatives of X and Y , respectively, yielding

∂ X

∂t
= −X ′ (u)

[

δ
∂2u

∂x2
+ ηu

∂u

∂x
+ α

(

u
∂v

∂x
+ v

∂u

∂x

)]

, (15)

∂Y

∂t
= −Y ′ (v)

[

μ
∂2v

∂x2
+ ξv

∂v

∂x
+ β

(

u
∂v

∂x
+ v

∂u

∂x

)]

. (16)

Using the forward differences for
(

∂ X
∂t

, ∂Y
∂t

)

, and the usual central finite-differences for the convection

and diffusion terms of Eqs. (15) and (16), one can get the following implicit finite-difference scheme

X
(

un+1
i

)

= X
(

un
i

)

− 	t X ′
(

un
i

)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

δ

(

un+1
i+1 − 2un+1

i + un+1
i−1

(	x)2

)

+ ηun+1
i

(

un+1
i+1 − un+1

i−1

2	x

)

+αun+1
i

(

vn+1
i+1 − vn+1

i−1

2	x

)

+ αvn+1
i

(

un+1
i+1 − un+1

i−1

2	x

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(17)

Y
(

vn+1
i

)

= Y
(

vn
i

)

− 	tY ′
(

vn
i

)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

μ

(

vn+1
i+1 − 2vn+1

i + vn+1
i−1

(	x)2

)

+ ξvn+1
i

(

vn+1
i+1 − vn+1

i−1

2	x

)

+βun+1
i

(

vn+1
i+1 − vn+1

i−1

2	x

)

+ βvn+1
i

(

un+1
i+1 − un+1

i−1

2	x

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

Now if we consider X (u) = eu and Y (v) = ev, then one can obtain an implicit logarithmic finite-

difference method (I- LFDM) as

un+1
i = un

i + log

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 − 	t

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

δ

(

un+1
i+1 − 2un+1

i + un+1
i−1

(	x)2

)

+ ηun+1
i

(

un+1
i+1 − un+1

i−1

2	x

)

+αun+1
i

(

vn+1
i+1 − vn+1

i−1

2	x

)

+ αvn+1
i

(

un+1
i+1 − un+1

i−1

2	x

)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (19)

vn+1
i = vn

i + log

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 − 	t

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

μ

(

vn+1
i+1 − 2vn+1

i + vn+1
i−1

(	x)2

)

+ ξvn+1
i

(

vn+1
i+1 − vn+1

i−1

2	x

)

+βun+1
i

(

vn+1
i+1 − vn+1

i−1

2	x

)

+ βvn+1
i

(

un+1
i+1 − un+1

i−1

2	x

)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (20)
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FIG. 3. Solution profile of u (x, t) when (a) η = ξ = 1, (b) η = ξ = 10 and (c) η = ξ = 100, for α = β = 10 in test case 3.
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FIG. 4. Solution profile of v (x, t) when (a)η = ξ = 1, (b) η = ξ = 10 and (c) η = ξ = 100, for α = β = 10 in the test

case 3.

where un
i and vn

i denote the discrete approximations of u (x, t) and v (x, t), respectively, at the grid

point (i	x, n	t) for i = 0, 1, 2..., nx , n = 0, 1, 2,..., 	x = 1/nx is the grid size in x-direction, and

	t represents the time step.

The nonlinear systems of equations obtained from Eqs. (19) and (20) can be written in the form

Q(s) = 0, (21)
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where

Q = (q1, q2, ........, q2n)T , s =
(

un+1
1 , vn+1

1 , un+1
2 , vn+1

2 , ........, un+1
n , vn+1

n

)T
, n = nx − 1,

and q1, q2, ..., q2n are the nonlinear equations obtained from the nonlinear equations.

The system of equations (21) is solved by Newton’s method. The linear system obtained by

Newton’s iterative method, is solved by Gauss elimination method with partial pivoting.

The accuracy and consistency of the I-LFDM scheme is measured in terms of error norms which

are defined as12

L2 := ‖uexact − ucomputed‖2 =

√

√

√

√

√

√

√

√

n
∑

j=0

|u j
exact − u j

computed |2

n
∑

j=0

|uexact
j |2

L∞:=‖uexact − ucomputed‖∞ = max
j

|u j
exact − u j

computed |

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (22)

where uexact and ucomputed denote exact and computed solutions, respectively.

III. RESULTS AND DISCUSSIONS

In this section, we describe the numerical computations considering the uniform grid. For the

test case 1, the numerical solutions have been carried out in the domain x ∈ [−π, π ] with 	t =0.001

and are shown in Table I at different t ∈ [0, 1] and different number of partitions. From Table I, it

can be observed that the scheme is consistent since the errors reduce as the number of partitions

refines. Fig. 1 depicts the numerical and exact solutions of u and v.

For the problem 2, the numerical computations have been described for x ∈ [−10, 10],

	t = 0.01 and number of partitions as 100. Tables II and III depict the comparison of L2 and

L∞ error norms with those already available in the literature. Computed and exact solutions of u

and v are shown in Fig. 2 with number of partitions as 10, and 	t = 0.1, t = 1, α = 1, β = 2.

In the test case 3, the solutions have been carried out on x ∈ [0, 1] with 	t = 0.01 and number

of partitions as 50. Maximum values of u and v at different time levels for α = β = 10 have been

given in Table IV. Figs. 3 and 4 show the numerical results obtained for different time levels t ∈ [0, 1]

at α = β = 10 for u and v when η = ξ = 1, 10, 100, respectively. From the Figs. 3 and 4, it can be

seen that the numerical solution decays to zero with increasing time levels and with the increasing

η and ξ .

IV. CONCLUSIONS

A numerical approximation is proposed for solving one dimensional coupled Burgers’ equation

using an implicit logarithmic finite difference scheme. The efficiency and reliability of the I-LFDM

scheme is illustrated through three numerical examples. The obtained numerical outputs show that

the described scheme performs well in case of one dimensional coupled Burgers’ equation.
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