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Abstract
We studied the active transport of intracellular components along neuron processes using a
new method developed in our laboratory: dispersion-relation phase spectroscopy. This method
is able to quantitatively map spatially the heterogeneous dynamics of the concentration field of
the cargos at submicron resolution without the need for tracking individual components. The
results in terms of density correlation function reveal that the decay rate is linear in
wavenumber, which is consistent with a narrow Lorentzian distribution of cargo velocity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Cells rely on their ability to actively transport macromolecules
and even organelles, since the passive diffusive transport of
such low mobility objects would simply be too slow. This
directed transport of intracellular components is particularly
apparent during cell division, but is known to occur during all
phases of the cell cycle [1]. The necessity of active transport
is especially acute where intracellular cargos need to be
carried over long distances, as in the case of the transport of
intracellular vesicles and other large objects up and down the
axonal and dendritic processes of neurons. In such narrow and
elongated structures, the spatial distribution of these cellular
transport highways is particularly simple: intracellular traffic

is directed along an essentially one-dimensional, tortuous path
in a three-dimensional space. This bidirectional (i.e. to and
from the cell’s soma) transport is known to be mediated by
some combination of thermal diffusion and active stochastic
transport driven by molecular motors (e.g. kinesin and
dynein) [2–4], but these transport phenomena could be better
understood through quantitative analysis. The reduction of
complex transport networks commonly found in cell bodies
to a one-dimensional system provides an opportunity for
refining experimental techniques for transport measurement
and theoretical modeling.

Using single molecule tracking, precise measurements of
individual cargos that are transported by molecular motors
have been made previously, see, e.g., [5]. In addition, the
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motion of externally driven particles and the observation
of their fluctuating position have been successfully used
to monitor the viscoelastic properties of living cells [6,
7] and the ‘active’, or molecular motor-driven, strain
fluctuations and cargo transport [8–10] in cytoskeletal
networks. The fluctuations of one- and two-dimensional
objects (e.g. filaments [1] and membranes [11]) have also been
studied to measure the elastic properties and motor activity
in living cells. In this paper we examine a complementary
technique that does not require the tracking of individual
particles and which investigates more globally the spatial and
temporal nature of cargo transport over tens of microns and
thousands of seconds. While we do not resolve the motion
of individual cargos, we can quantitatively and spatially map
the heterogeneous dynamics of the concentration field of
the cargos with submicron resolution. Our method relies on
quantifying interferometrically the path length map produced
by cells [12].

Quantifying cell-induced shifts in the optical path-lengths
permits nanometer scale measurements of structures and
motions in a non-contact, non-invasive manner [13]. Thus,
quantitative phase imaging (QPI) has recently become an
active field of study and various experimental approaches
have been proposed [14–23]. We have shown that the
knowledge of the amplitude and phase associated with the
image plane is equivalent to extremely sensitive elastic and
quasi-elastic light scattering measurements [24–26]. This
new approach represents the spatial equivalent of Fourier
transform spectroscopy and is, thus, referred to as Fourier
transform light scattering (FTLS). Recently, FTLS proved
sensitive enough to quantify actin dynamics in unlabeled live
cells [27].

Despite all these advances, the range of QPI applications
in cellular biophysics has been largely limited to red blood cell
imaging [11, 28–30] or assessment of global cell parameters
such as dry mass [15, 31], average refractive index [32], and
statistical parameters of tissue slices [25, 33]. This limitation
is mainly due to the speckle generated by the high temporal
coherence of the light used (typically lasers), which averages
out the morphological details. Thus the contrast in QPI images
has never matched that exhibited in white light techniques
such as phase contrast and Nomarski.

Recently we developed SLIM (spatial light interference
microscopy), a novel, highly sensitive QPI method, which
promises to enable unprecedented structure and dynamics
studies in biology and beyond [34]. SLIM reveals the
intrinsic contrast of transparent samples like phase con-
trast microscopy [35], while rendering quantitative phase
information, like holography [36]. Taken together, SLIM’s
features advance the field of quantitative phase imaging
in several ways: (i) it provides speckle-free images, which
allow for spatially sensitive optical path length measurement
(0.3 nm); (ii) it uses common path interferometry, which
enables temporally sensitive optical path length measurement
(0.03 nm); (iii) it renders 3D tomographic images of
transparent structures; (iv) due to the broad band illumination,
SLIM grants immediate potential for spectroscopic (i.e. phase
dispersion) imaging; (v) it is likely to make a broad impact

by implementation with existing phase contrast microscopes;
and (vi) it inherently multiplexes with fluorescence imaging
for multimodal, in-depth biological studies.

The remainder of this paper is organized as follows:
in section 2 we describe SLIM in more detail, focusing on
its application to one-dimensional transport in neurites in
section 3. In section 4 we discuss our analysis of the data in
terms of simple advection diffusion models. We present the
results of that analysis in section 5. Finally, we conclude with
a discussion of the results and our interpretation thereof in
section 6.

2. Spatial light interference microscopy (SLIM)

SLIM is described in more detail elsewhere [34]. In short, it
is implemented as an extension to an existing phase contrast
microscope that makes the instrument capable of quantifying
phase shifts across the field of view. Both SLIM and phase
contrast microscopy exploit the concept of imaging as an
interference phenomenon, which was recognized more than
a century ago by Abbe in the context of microscopy: ‘the
microscope image is the interference effect of a diffraction
phenomenon’ [37]. Describing an image as a (complicated)
interferogram later set the basis for Gabor’s development of
holography [36].

Unlike the traditional phase contrast microscope, where
a phase ring with a fixed phase shift of π/2 is introduced at
the back focal plane of the phase contrast objective [37], in
SLIM we map the back focal plane onto a phase-only spatial
light modulator that introduces additional phase delays of 0,
π/2, π , 3π/2, as shown in figure 1(a). The Fourier lenses L2
and L1 form a 4f system, such that the spatially modulated
image of the sample is recorded by the CCD. The phase
shift distribution associated with the object, φ(r), can thus be
retrieved from a combination of four phase shifted intensity
images,

φ(r) = arg
[

β(r) sin[1φ(r)]
1+ β(r) cos[1φ(r)]

]
. (1)

In equation (1), β(r) = |U1(r)|/|U0| is the ratio between
the amplitudes of the scattered (U1) and unscattered (U0)

fields; 1φ is the phase difference between the scattered and
unscattered light, defined as

1φ(r) = arg
[

I(r; 3π/2)− I(r; π/2)
I(r; 0)− I(r;π)

]
, (2)

where I(r; δ) is the intensity image associated with each
phase shift δ. Equations (1) and (2) show how the quantitative
phase image is retrieved via four successive intensity images
measured for each phase shift.

Compared with existing methods for quantitative phase
imaging, SLIM benefits from a number of features, such
as spatial sensitivity (0.3 nm) and temporal sensitivity
(0.03 nm) in measuring optical path-lengths [34]. Since
a minimal modification is brought to the existing phase
contrast microscope, SLIM can also overlay with fluorescence
imaging at the same time and render the high quality phase
images as one channel for multimodal imaging.
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Figure 1. (a) The microscope as a scattering instrument: dashed
line, scattered field; green (solid line), unscattered field; L1,L2,
lenses; CCD, charged coupled device; ki, wavevector associated
with the incident plane wave. (b) Quantitative phase images of live
supraoptic magnocellular neurons in culture. The objective was
40×, 0.65NA for (b). The color bar indicates the phase in radians.
Scale bar: 10 µm.

The ability of SLIM to render quantitative phase images
of live, unlabeled cells is shown in figure 1(b). Due to
the white light illumination, which alleviates the detrimental
effects of speckle, SLIM reveals the structure of the cell in
great detail. The measured path length fluctuations report
on the dry mass transport within the cell [31]. Since most
neuronal processes exhibit microtubule-mediated transport
along their elongated structures, we can assume 1D dry mass
density fluctuations, i.e., mass transport along the neurite,
ρ(s) ∝ 1n(s), with s =

√
x2 + y2. From the time-lapse data,

the microtubule-mediated transport along these neurites can
be observed very clearly. However, the quantitative analysis
of mass transport in these 1D structures is difficult due to their
nonlinear shape. Therefore, first we numerically processed the
images to ‘straighten’ the neurites, as described in section 3.

3. Image processing for studying 1D transport

For image processing, we used ImageJ, a Java-based program
developed at the National Institutes of Health [38]. This
platform allows the implementation of a plugin, referred to
as NeuronJ, which was originally developed by Meijering
et al to numerically trace neurites in fluorescence images [39].
We used this algorithm for SLIM images to delineate and
segment neurites of arbitrary trajectories. Further, we used a
cubic-spline interpolation method to straighten the neurites
from a 2D path, s =

√
x2 + y2, to a 1D trajectory. This

computational tool was developed by Kocsis et al in the
context of electron microscopy (for more details, see [39]).

Figures 2 and 3 illustrate how the path length information
along individual neurites is extracted and represented along
single lines. This numerical procedure was repeated for all
the frames in the time-resolved data. The resulting x–t phase
images were analyzed in terms of the dispersion relation, as
detailed below.

4. Dispersion-relation phase spectroscopy (DPS)

The data from the phase images of many neurities are
combined to compute the two-point correlation function of the
mass density fluctuations ρ(x, t) (assumed to be proportional
to the fluctuations in the local index of refraction) in them:

g(x, τ ) = 〈ρ(x′ + x, t + τ)ρ(x′, t)〉x′,t, (3)

where the angled brackets here denote a spatial and temporal
average. The observed temporal decay of this correlation
function allows us to interpret the experimental data in terms
of the stochastic dynamics of mass transport in the system.
Fourier transforming the data,

g̃(q, τ ) =
∫

dx g(x, τ )e−iqx, (4)

we find that the decay of g̃(q, τ ) is well fitted by a single
exponential so that we can determine the q-dependence of
that rate constant 0(q), characterizing stochastic dynamics on
length scales of ` = 2π/q. Representative examples of these
extracted decay rates are shown in figure 3 as a function of
wavenumber q.

The decay of correlations reflects the net effect of the
motion of the material having various indices of refraction
and velocities. We cannot distinguish a priori the independent
contributions to the signal coming from various equilibrium
(e.g. diffusion) and non-equilibrium processes such as the
molecular motor-driven motion of vesicles or the dynamics of
polymerization and depolymerization of, e.g., microtubules.
Examining the data—see figure 2 ((d)–(g))—one notes that
the observable dynamic heterogeneities appear to be localized
or point-like objects, consistent with vesicles or groups of
vesicles moving within the neurites. For brevity we refer
to the mass transport dynamics generating the decay of
correlations as ‘vesicle motion’ hereafter, although this cannot
be concluded from the phase images alone. Independently
of the ultimate identification of these mobile structures,
we propose to characterize their dynamics in terms of an
advection diffusion model in one dimension,

D∇2ρ(x, t)− v∇ρ(x, t)−
∂

∂t
ρ(x, t) = 0, (5)

describing the dynamics of the mass density field in terms
of the combination of diffusion with the collective diffusion
constant D and advection or active transport with speed v. We
note that the effective diffusion constant is not expected to
coincide with the equilibrium one as active stochastic active
transport processes contribute to the effective diffusion of
mass density in the system. We then assume that the observed
decay of correlations results from the incoherent motion
of many compact bodies having a distribution of advection
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Figure 2. (a) Phase image of a neuron at 40× with a frame rate of about 15 s/frame to determine mass transport in neurites, labeled with a
pink highlighted line. (b) Path length static distribution along an individual neurite (d). (c) Path length dynamic fluctuations over time at two
locations (labeled blue circle (point1) and red square (point2)) of a neurite (d); (d)–(g) neurites of image (a) were traced and straightened
with ImageJ plugins—NeuronJ and Straighten.

speeds P(v). We discuss the suitability of these assumptions
below.

There is a long history of studying transport in
one-dimensional (1D) or nearly (to be defined below) 1D
structures, which has implications for any analysis of mass
transport in neurites. The long length scale properties of 1D
transport are strongly influenced by two features. First the
effect of steric interactions between the moving elements
can be significant, an effect commonly encountered in traffic
jams [40]. Alexander and Pincus showed that the non-driven
or equilibrium dynamics of particles on a 1D track is
actually subdiffusive, due to such steric effects [41]. The
dynamics of the transport system of current interest is,
however, expected to be dominated by the non-equilibrium
advective effects of molecular motors at long length scales.
Two classes of models have been studied that generate
such steady-state currents, i.e. net mass transport that is
distinguished by how the left/right symmetry of the problem
is broken in order to generate such currents. In the first
class the symmetry breaking term is introduced via boundary
conditions by attaching the 1D track to a particle source
and sink on opposite sides, as done in, e.g., [52]. In
the second class one postulates a nonzero mean force
acting on the particles. We expect this latter class of
models to be appropriate for the system of current interest
since it is known that molecular motors actively transport
cargos in fixed directions relative to polarized tracks within
neurites [40, 42]. More generally, both inherently symmetric
models driven by boundary conditions, known as symmetric
exclusion processes (SEP), and symmetry breaking systems or
asymmetric exclusion processes (ASEP) have been explored
in a variety of contexts including models of proton transfer in
water channels [43], mRNA translation [44], in addition to the

problem under consideration, the motion of cargos driven by
molecular motors along microtubules [40, 42, 45]. The more
idealized system of perfectly unidirectional stochastic motion
(i.e. no backwards steps allowed) motion, known as totally
asymmetric exclusion processes (TASEP), has also generated
intense interest in part from its role as a tractable model
system with which to explore nontrivial non-equilibrium
steady states [46].

Our approach to the dynamics is in the spirit of various
hydrodynamic approximations to the ASEP models used to
treat the long wavelength and low frequency dynamics of such
systems. These models, often including binding/unbinding
or Langmuir kinetics in addition to the 1D motion, result
in complex dynamics for the particle density field [47–49].
These dynamics can be described by a Burgers equation for
the density field, which is well known to exhibit moving
shock fronts [47] or rapid jumps in particle density. Of course,
transport in the neurite takes place along a bundle of 1D tracks
with driven transport in both directions. Such generalizations
having multiple tracks [50, 51] have been explored for both
ASEP [52–54] and SEP systems.

Our analysis of the dynamics as the sum of a variety
of independent advection/diffusion processes neglects large
correlated motions resulting from the excluded volume
interaction. We believe that this linearized model is a
reasonable starting point for data analysis for two reasons.
There is evidence that multiple tracks or allowance for
slippage of cargos past each other (i.e. ‘nearly 1D models’)
minimizes the role of large correlated motions [52]. In the
presence of such strong interactions, however, we expect the
collective excitations of the particle density (e.g. Burgers
shocks) to move roughly independently so that, even in the
case of strong correlations in the density of moving particles,
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Figure 3. (a)–(c) Dispersion-relation curves (blue) for straightened
neurites (d)–(f) of figure 2. The solid lines indicate the linear fit. The
fit parameter, 1v, represents the bandwidth of the directed motion
speed distribution.

the index of refraction changes, to which we are sensitive,
should reflect the dynamics of weakly interacting collective
phenomena when viewed at long length scales.

Returning to our advection diffusion model, we
determine from equation (5) the temporal decay of the
autocorrelation function of the mass density g̃ (defined by
equations (3) and (4)). It is straightforward to show that at
wavenumber q, this function takes the form

g̃(q, τ ) = g0e[iqv−Dq2
]τ . (6)

Equation (6) relates the measured temporal autocorrelation
function to the diffusion coefficient, D, and advection velocity,
v, of the matter in the system. The experimental data, however,

reflect the net effect of the motion of many vesicles, each
having its own local transport velocity depending on, e.g., the
size of the vesicle and the number of molecular motors
attached to it. The observed autocorrelation function then
should be the sum or average over a broad distribution of
advection velocities P(v). The advection-velocity-averaged
autocorrelation function is proportional to the Fourier
transform of the advection velocity distribution

[g̃(q, τ )]P = g0e−Dq2τ

∫
dv P(v)eivqτ , (7)

where the square brackets [•]P denote an average over the
distribution of advection velocities P(v). This distribution
remains to be determined. The integral in equation (7)
is the moment generating function of P(v) with iqτ as
the independent variable. Thus the natural logarithm of
equation (7),

ln([g̃(q, τ )]P) = ln g0 − τ

{
Dq2
−

1
τ

K(iqτ)
}
, (8)

can be written in terms of the cumulant generating function
K(x) = ln

∫
dv P(v)eixv. For any distribution having a finite

second moment we find from equation (8) that

ln([g̃(q, τ )]P) = ln g0 − τDq2
− iqτ 〈v〉

−
1
2 q2τ 2

[〈v2
〉 − 〈v〉2] + · · · , (9)

where the higher order terms are proportional to the product
of the nth cumulant of the advection velocity distribution and
(qτ)n. Examining equation (9) we note that the dominant
terms controlling the time evolution of the correlation function
at small wavenumber consist of an oscillatory term linear
in q and proportional to the mean advection velocity plus
a term quadratic in q that depends on a combination of
the diffusion constant D and the variance of the advection
velocity distribution. Comparing this result with our data, we
observe two things. First, this result is not consistent with
the observed decay rate that is linear in wavenumber q and
does not exhibit oscillations. Second, we do not observe a
term proportional to τ 2. We conclude that the mean velocity
must be sufficiently small that the oscillatory contribution to
the correlation function is a frequency so low as to be not
observable over the time of observation. This is not surprising
in that we expect to observe the net effect of mass transport
along both directions in each neurite. Such bidirectional
transport is in itself not surprising. Since there is little or no
net transport of mass down these structures over the period
of observation, the observed mean velocity should vanish.
Moreover, we note that the advection velocity distribution
must be sufficiently broad to have a divergent second moment.

Based on this analysis we attempt to fit the data by
choosing a Lorentzian distribution with width 1v and small
but nonzero mean 〈v〉v 6= 0. This leads, by direct integration
of equation (7), to a linear dependence of the decay rate on
wavenumber

[g̃(q, τ )]P = e−Dq2τ ei〈v〉qτ−1v|qτ |. (10)

Of course it is not possible for the distribution of motor
velocities to be truly Lorentzian since the motors’ maximal
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Figure 4. (a) Phase image of mass transport in neurites of hippocampal neurons. The image was acquired at 63× with a frame rate of
2 s/frame, the pink highlighted lines represent the data subsets analyzed in (b)–(g). (b) Path length static distribution along an individual
neurite (g). (c) Path length dynamic fluctuations over time at two locations (labeled blue circle (point1) and red square (point2)) of a neurite
(d); (d)–(g) neurites of image (a) were traced and straightened with ImageJ plugins—NeuronJ and Straighten.

speed is finite. For kinesin motors, this maximum is known to
be approximately vmax = 0.8 µm s−1 [55]. Accordingly, we
take a P(v) to be Lorentzian with both a mean vm and width
1v much smaller than the cutoff velocity, vm, 1v� vmax:

P(v) =
P0

(v− vm)2 +1v2 Θ(vmax − |v|), (11)

where Θ(x) is the Heaviside step function and the
normalization constant P0 ≈ 1v/2 arctan(vmax/1v) for a
small mean velocity. The normalization is exact in the limit
that vm = 0. Since we expect to observe transport in both
directions with essentially equal probability, we expect the
mean advection speed to be significantly lower than the
maximum motor speed. Of course the assumption that both
the width and mean of the advection velocity distribution are
small compared to the maximum velocity can be checked
a posteriori.

Applying this cutoff Lorentzian model to the integral in
equation (10) one can show that

g̃(q, τ ) ≈ g0eiqτvm−Dq2τ e−qτ1v
[

1+
21veqτ1v cos(vmaxqτ)

πvmax

+
2qτ1veqτ1v

π

(
Si(vmaxqτ)−

π

2

)]
, (12)

where Si(x) is the sine integral. The final term in the
product may be neglected in the limit that 1v/vmax � 1
and vmaxqτ � 1, both of which are valid for the data in
question. Thus, the effect of the large velocity cutoff is
subdominant and the wavenumber dependent decay rate of the
autocorrelation function is a sum of linear and quadratic terms
in q, representing the effects of motor-generated advection and
diffusion, respectively. We may write this decay rate as

0(q) = 1vq+ Dq2. (13)

This relationship between the decay rate 0 and
its wavenumber q represents the dispersion relationship

associated with intracellular transport and provides insight
into the diffusion coefficient and velocity distribution. We
refer to this method as dispersion-relation phase spectroscopy
(DPS).

5. Results

We applied DPS to various neuronal structures in different
cultures and over a broad range of temporal and spatial
scales. Figure 2 summarizes the results obtained by imaging
a field of neurites for 18 min at a rate of 1 frame per
15 s. A quantitative phase map measured by SLIM is shown
in figure 2(a), where the grayscale bar indicates the path
length in nanometers and the neuritic structures of interest
are highlighted. Figure 2(b) exemplifies the path length
fluctuation around a single neurite and indicates the highly
inhomogeneous nature of the neurite’s structure. Further, this
signal, which is, up to a constant, the mass density, ρ(x), is
characterized by high signal to noise, which translates into
high spatial sensitivity to density fluctuations. Temporally,
the density fluctuations associated with two arbitrary points
are shown in figure 2(c). These signals show that SLIM can
detect nanometer scale path length changes, which translate
into minute changes in local mass density.

We applied the algorithm described in section 3 to
numerically ‘straighten’ the neurites (figure 2(d)–(g)) such
that the 1D diffusion–advection equation can be employed
in a straightforward manner. For each neurite, the x–t data
were Fourier transformed both spatially and temporally and
the decay rate, 0(q), was retrieved. Remarkably, as shown
in figure 3, all the 0(q) plots exhibit linear behavior,
which is consistent with a signal resulting from a broad
distribution of advection velocities. It is not consistent with
an advection velocity distribution that has a finite second
moment. We do not observe a signal consistent with diffusive
transport. This is reasonable since it is known that diffusion
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is not an efficient mechanism for this type of long-range
transport associated with neurites [56] compared to active
or motor-driven mass transport. Interestingly, we found that
the bandwidths of the speed distributions for the three
neurites, 1v = 1.86, 1.48, 1.78 nm s−1, are very close in
value, which may indicate a universal mechanism for this
directed stochastic motion.

In order to confirm these findings on a different cell
culture, with different imaging resolution and acquisition
rates, we applied DPS to a neurite system where the
acquisition rate was 7.5 times faster and the spatial resolution
was higher by a factor of 2 (figure 4). The analysis procedure
is analogous to that shown in figures 2 and 3. Notably, the
results of these measurements at different spatio-temporal
resolutions match closely those obtained before. Thus, for
all neurites the results indicate deterministic transport, as
shown in figure 5. The speed bandwidth values, 1v =
2.08, 3.94, 1.92 nm s−1, are somewhat higher that in the
previous case, but still in the same range. This similarity
in the measured values suggests a commonality of transport
mechanisms in the dendritic arbor of neurons.

The mean advection velocity extracted from the data is
consistent with zero. From the resolution limit (≈1 µm) and
observation time (≈1000 s), we may set an upper limit on
the net drift velocity of 1 nm s−1. We do not observe net
mass transport down the neurites. Finally, we note that the
assumptions made in the use of the cutoff Lorentzian appear
to be justified.

6. Summary and discussion

We have found that the autocorrelation function in neurites
is inconsistent with purely passive diffusive motion of
cargos, but can be interpreted using a simple model of
advective transport in which individual cargos are moved
in both directions and with a Lorentzian range of speeds
having nearly zero mean (due to equal rates of mass
transport toward and away from the cell’s soma) and a
fairly narrow distribution about that vanishing mean, at
least compared with the maximum velocity associated with
active motors. This result is puzzling in that, given the
extracted distribution of advection velocities, one cannot
expect to observe cargos transported at speeds comparable to
the reported maximum motor velocities. We may speculate
as to the cause of the absence of fast movers. Assuming
that the observed mass transport reflects the motion of
individual motors, there are two possible interpretations of
this result. First, the motors may, in fact, be operating near
the stall force, where mean velocities are low and velocity
fluctuations become significant. This proposed scenario seems
to be physiologically inefficient and therefore unlikely.
Alternatively, the motors are operating at forces where cargo
detachment becomes frequent. If the cargos detach from the
motors sufficiently frequently in the crowded viscoelastic
environment of the neurites then, although the motors are still
moving rapidly, the fraction of the time in which the cargos
are being actively transported is small and consequently
their observed advection speeds may be much smaller than

Figure 5. (a)–(c) Dispersion-relation curves (circles) for
straightened neurites (d)–(f) of figure 4. Note the broad q-coverage
due to the high NA objective. The solid lines indicate the linear fit.
The fit parameter, 1v, represents the bandwidth of directed motion
speed distribution.

those of the motors. Finally, it is possible that the mass
transport to which we are sensitive reflects slow collective
motions of many cargos, e.g. shock fronts in the density
field, that may not move with the same velocity as the
underlying motor-driven cargos. This appears to be the most
reasonable explanation since it is known that the shock fronts
can be significantly slower than the transport speeds of the
individual cargos [57]. Clearly, simultaneous tracking of the
cargos, motors, and mass density is necessary resolve this
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issue. Similarly, theoretical advances are necessary to better
understand the collective behavior of the mass density field in
multi-track driven systems with steric interactions. We note
that our result, i.e. the linear in wavenumber decay rate of
the autocorrelation function, is not consistent with a velocity
distribution that decays sufficiently rapidly at large velocities
to have a finite second moment. The proposed Lorentzian,
albeit with a narrow width compared to the maximum motor
velocity, reflects a broad probability distribution.
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