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Abstract. We consider a one-dimensional model of localization based on the Witten
Hamiltonian of supersymmetric quantum mechanics. The low energy spectral proper-
ties are reviewed and compared with those of other models with off-diagonal disorder.
Using recent results on exponential functionals of a Brownian motion we discuss the
statistical properties of the ground state wave function and their multifractal behaviour.

IPNO/TH 97-21

1 Introduction

Many physical systems can be described using the concept of a random Hamil-
tonian. Such a formulation is useful when the Hamiltonian depends on a set of
quenched variables. In most cases it is convenient to describe them by a set of
random variables distributed according to some probability law. Consider, for
instance, the quantum dynamics of a particle interacting with randomly dis-
tributed scatterers. If the potential is a sum of two-body potentials the Hamil-
tonian may be taken in the form

H =
p2

2m
+

N
∑

k=1

V (r − rk).

Here the quenched variables are the positions of the impurities rk and the number
N of scatterers. They can, for instance, be modelled by independently random
variables distributed according to a Poisson distribution.

In this context one of the most elementary quantities of physical interest is
the average density of states ρ(E). If the potential is repulsive and short range
then ρ(E) vanishes exponentially at the bottom of the spectrum

ρ(E) ∼
E→0

e−C E
−d/2
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where d is the dimension of the space. This non-analytic behaviour was first
discussed by Lifshits (Lifshits 1965) and then studied by a number of authors
(see for example Luttinger and Waxler 1987). The physical mechanism which
leads to this behaviour is the occurence of large regions of space that are free
from impurities and where the particle can move freely. Although these are
exponentially rare events, they nevertheless contribute in the thermodynamic
limit. This singular behaviour may also be derived using instanton techniques
(Neuberger 1982).

However there do exist some systems for which the density of states has a
very different behaviour:

1. The vibrations of a chain consisting of harmonic strings and random masses
gives a spectral density with an accumulation of states at low frequency.
This model, first introduced by Dyson (Dyson 1953), is in fact equivalent to
the one-dimensional Anderson model with off-diagonal disorder.

2. In particle physics, the investigation of the random Dirac operator has stim-
ulated interesting conjectures related to chiral symmetry breaking (Floratos
et al. 1980). A particular model in dimension 2+1 is to take as a Hamiltonian
the square of the Euclidean Dirac operator coupled to a random magnetic
field H = −D/2 = −(∂µ+iAµ)

2+ 1
2σµνF

µν . In this case the low energy density
of states must fullfil the inequality (Casher et al. 1984) ρ(E) > ρo(E), where
ρo(E) is the free density of states. This means that there is an accumulation
of low energy states which contributes to the chiral condensate.

3. The one-dimensional Schrödinger Hamiltonian H = − d2

dx2 + φ2(x) + σ3φ
′(x)

which was first introduced by Witten (Witten 1981) as a toy model of su-
persymmetric quantum mechanics (for a review see for example Cooper et
al. 1995) provides a localization model with very unusual low energy spec-
tral properties. In certain cases it gives rise to an accumulation of levels
at low energy. The density of states displays either a power law behaviour
ρ(E) ∼

E→0
Eµ−1 or a logarithmic singularity ρ(E) ∼

E→0

1
E| lnE|3 of the same

form as in the Dyson model (Dyson 1953).

A common feature of these three models is the fact that the zero energy
wave function is exactly known for any realization of the disorder. Using this
property we have presented, for the supersymmetric model (Comtet et al. 1995),
a physical picture that accounts for the different behaviours of the density of
states at the bottom of the spectrum. We believe that this model is probably
generic, by which we mean representative of a whole class of systems in which
the disorder is encoded in the ground state. Since this model is easier to handle,
because one can use a wealth of techniques specific to one-dimensional systems,
we will concentrate on this case. The recent literature shows a revival of interest
for these problems, mainly in the context of condensed matter physics. We will
briefly comment on this work and also draw attention to earlier work which is
scattered in the literature and has so far remained unnoticed.
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In part 2 we will review the basic mechanism which leads to these singularities
and underline the differences with the usual Lifshits singularities. We will also
mention some recent applications of the supersymmetric model to quantum spin
chains. Applications to classical diffusion in a random medium (Bouchaud et al.
1990, Bouchaud and Georges 1990, Oshanin et al. 1993b) will not be discussed
here.

In part 3, following (Broderix and Kree 1995) and (Shelton and Tsvelik 1997)
we compute the correlation function of the zero energy states.

In part 4 we discuss the fluctuation properties of the ground state wave func-
tion using two different approaches. When φ(x) is white noise the wave func-
tion is an exponential functional of the Brownian motion. Such functionals were
studied extensively both in the mathematical (Yor 1992) and physical literature
(Monthus and Comtet 1994, Comtet et al. 1996). We will use our previous work
to compute their statistical properties.

2 Spectral properties

The one-dimensional Schrödinger Hamiltonians

H± = − d2

dx2
+ φ2(x) ± φ′(x) (1)

may be rewritten in the factorized forms H+ = Q†Q and H− = QQ†, where
Q ≡ − d

dx + φ(x). This implies that H+ and H− have the same spectrum for
E > 0. When φ(x) is random, they are characterized by the same localization
length and density of states. These quantities have been computed exactly in
two cases for which we now recall the main results.

2.1 White noise potential

{ 〈φ(x)〉 = F0

〈φ(x)φ(x′)〉 − 〈φ(x)〉2 = σ δ(x − x′)

The integrated density of states N(E) and the localization length λ(E) are
respectively

N(E) =
2σ

π2

1

J2
µ(z) +N2

µ(z)
(2)

λ−1(E) = −σz
2

d

dz
ln
(

J2
µ(z) +N2

µ(z)
)

where z ≡
√
E
σ and µ ≡ F0

σ . Jµ(z) and Nµ(z) are Bessel functions.
Equation (2) was first obtained by Ovchinnikov and Erikmann (Ovchinnikov

and Erikmann 1977) and then rediscovered independently in (Bouchaud et al.
1987). These results can be derived either by the node counting method (Luck
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1992) or by the replica trick (Bouchaud et al. 1990). By this latter approach one
can also compute the Green’s function at non-coinciding points.

The low energy behaviour of the density of states and the localization length
are given for µ = 0 by

N(E) ∼
E→0

1

ln2E
λ(E) ∼

E→0
− lnE

and by

N(E) ∼
E→0

Eµ

λ(E) ∼
E→0

Eµ−1

when µ 6= 0.

2.2 Random telegraph process

The function φ(x) is described by an ensemble of rectangular barriers (Bender-
skĭi and Pastur 1974) with alternating heights φ0 and φ1 of random length l
distributed according to an exponential law p0,1(l) = n0,1e−n0,1l.

In the case φ0 = −φ1 this model yields the same low energy behaviour as
above (Comtet et al. 1995). The parameter µ is now given by µ = n1−n0

2φ0
. The

main interest of this model is to provide a physical picture of the low energy
behaviour.

For µ 6= 0 the potential V (x) = φ2 + φ′ is constant everywhere except at
the positions where φ(x) has a discontinuity. One thus obtains a sequence of δ
functions with alternating signs. The attractive δ potentials can support bound
states which would have exactly zero energy if one would ignore the couplings
to the other peaks. By taking carefully into account these couplings, one can
recover the low energy power law behaviour (Comtet et al. 1995). The physical
picture that emerges from this analysis is that the low energy states are localized

at the positions of the impurities. Therefore this is just the opposite mechanism
from that in the Lifshits case. It would be interesting to generalize this approach
to higher dimensions where similar behaviour can also occur.

For µ = 0, since the positive and negative δ functions play a symmetric role
this argument doesn’t apply anymore. A study of the low energy states on a
finite interval shows that the existence of quasi zero-modes can account for the
logarithmic behaviour of the density of states.

Imposing Dirichlet boundary conditions on a finite interval [−R,R] one finds
that the ground state energy is (Comtet et al. 1995, Monthus et al. 1996)

E0(R, {φ}) ≃
1

∫ R

−R dx′ ψ2
0(x

′)





1
∫ 0

−R
dx

ψ2
0(x)

+
1

∫ R

0
dx

ψ2
0(x)



 .
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This result is obtained by approximating the true ground state wave function
near the boundaries by a suitable linear combination of the two linearly inde-
pendent solutions of H+ψ = 0:

ψ0(x) = e
∫

x
dx′ φ(x′) (3)

and

ψ1(x) = ψ0(x)

∫ x dx′

ψ2
0(x

′)
. (4)

If φ(x) is a white noise or a random telegraph process with Poissonian lengths,
the typical behaviour of ψ0(x), given by the central limit theorem, is ψ0(x) ∼
e±

√
x. Replacing ψ0(x) by its typical behaviour one finds that the energy E0 is

exponentially small in the length of the system E0 ∼ e−
√
R. Therefore a quasi

zero mode of energy E has a typical spatial extension 2R such that R ∼ ln2E.
Coming back to the whole line one finds that the number of such states per unit
length is

N(E) =
1

2R
∼ 1

ln2E
.

Obviously this argument may be generalized to any one-dimensional disordered
system for which the zero energy wave functions can be expressed in terms of the
potential. This is in particular the case of the Anderson model with off-diagonal
disorder. The discrete Schrödinger equation may be written in the form

βn+1ϕn+1 + βnϕn−1 = Eϕn (5)

where βn are random variables. The model of Dyson of an harmonic chain with
random masses belongs to this class. For any configuration of the disorder one
can write down two independent zero energy solutions. One of them is obtained
by solving the recurrence relation (5) with E = 0. A zero energy state satisfying
the boundary conditions ϕ0 = 1 and ϕ1 = 0 is

ϕ2n =

n
∏

k=1

β2k−1

β2k
.

If the βn are independent identically distributed random variables, the typical
behaviour of ϕn, given by the central limit theorem, is again of the form |ϕn| ∼
e±

√
n. One will therefore get the same low energy behaviour as before. For earlier

references see (Theodorou and Cohen 1976, Markos 1988, Bovier 1989); another
derivation of the logarithmic singularity is given in (Eggarter and Riedinger
1978).
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2.3 Remarks

1. All these arguments are based on typical realizations of disorder. There exist
however certain quantities whose behaviour cannot be obtained by this type
of reasoning. This is in particular the case of the average ground state energy.
Its dependence on the size of the sample has been obtained in (Monthus et
al. 1996). It is given by the stretched-exponential function 〈E0〉 = exp (−Rξ)
where the exponent ξ depends only on the nature of the correlations in the
potential (the Gaussian white noise corresponds to ξ = 1/3). In (Monthus
et al. 1996) it is shown that this behaviour is indeed supported by atypical
realizations of the random potential.

2. The existence of a singular behaviour in the density of states implies, by the
Thouless formula, that there will be a corresponding singularity in the local-
ization length λ(E). This quantity indeed diverges as lnE which reflects the
appearance of a critical state at E = 0. It was recently pointed out (Steiner
et al. 1997, Balents and Fisher 1997) that there exists another length scale in
the system - the correlation length which controls the decay of the two-point
Green’s function. It behaves like ln2E and thus diverges faster than the
localization length. These results are in agreement with those presented in
(Bouchaud et al. 1990); although the full correlations were not computed ex-
actly, it is shown in this paper that the two-point Green’s function is indeed
given by

〈x | 1

H − E
|y 〉 ≃

E→0

∑

n

cne
−σπ2(2m+1)2

2 ln2 E
|x−y|

It would be interesting to compare this method with Berezinskĭi’s diagram-
matic technique (Berezinskĭi 1974) recently used in (Steiner et al. 1997).

3. The existence of a critical state at E = 0 is best understood when this model
is reinterpreted in the context of classical diffusion in a random medium. A
diffusive behaviour at large time requires the existence of an extended state
at E = 0 (Tossatti 1990).

4. The thermodynamic properties of some one-dimensional spin systems with
random exchange couplings can be reinterpreted by using a mapping of the
spin system onto a model of free fermions. This approach, which can be
traced back to the pioneering work of Lieb, Schultz and Mattis (Lieb et al.
1961), was used by Smith (Smith 1970) in the context of the X-Y model.
Exact result for quantum phase transition in random X-Y spin chains with
a comparison with the renormalization group approach (Fisher 1994) were
obtained by McKenzie (McKenzie 1996). Quite recently, a similar approach
with a different type of disorder was developed by Fabrizio and Mélin (Fab-
rizio and Mélin 1997). It is also worth mentioning the nice paper of Steiner,
Fabrizio and Gogolin (Steiner et al. 1997) extending this analysis to the case
of correlations and boundary effects.
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3 Correlation functions of the ground state wave function

The localization properties of the wave function can be characterized by the
density-density correlation function. Various techniques have been developed,
mainly by the Russian school (Lifshits et al. 1988), to compute such quantities
in the weak disorder limit. In the supersymmetric model, one may take advantage
of the fact that the ground state wave function is known exactly as a functional
of the disorder. If the disordered potential φ(x) is white noise, this allows one to
compute the corresponding n-point function by using a mapping with Liouville
quantum mechanics. Such a calculation was recently carried out by Shelton and
Tsvelik (Shelton and Tsvelik 1997) for the case n = 2 and n = 3 in the context
of spin Peierls systems. An extension of this result to arbitrary n is given below.
We first consider periodic boundary conditions. For completness we also give the
corresponding formula due to Broderix and Kree in the case of free boundary
conditions (Broderix and Kree 1995).

3.1 Periodic boundary conditions

We consider the supersymmetric Hamiltonian (1) in which we set βU(x)
2 ≡

∫ x

0 dx′ φ(x′) for consistency with the notation of previous work (Monthus and
Comtet 1994, Comtet et al. 1996). We are interested in the following two sections
in the statistical properties of the zero mode wave function

ψ0(x) =
e

βU(x)
2

[

∫ L

0
dx′ eβU(x′)

]1/2
(6)

when the disordered potential φ(x) is white noise. We consider a system of length
L and impose periodic boundary conditions. This is achieved if the disordered
potential is a Brownian bridge (U(0) = U(L)). The average over the disorder is
performed through the Wiener measure

〈· · ·〉 = N
∫ U(L)=0

U(0)=0

DU(x) · · · e−
1
2σ

∫ L

0
dx
(

dU(x)
dx

)2

(7)

where N is a normalization to be determined. Our aim is to compute the corre-
lation functions of the square wave function ψ2

0(x):

Cn(x1, · · · , xn) ≡
〈

|ψ0(x1)|2 · · · |ψ0(xn)|2
〉

. (8)

In order to perform the average over U(x) it is convenient to exponentiate the
denominator coming from the normalization of the wave function. By using the
integral representation of the Γ function, one gets

Cn(x1, · · · , xn)

=
N
Γ (n)

∫ ∞

0

dp pn−1

∫ U(L)=0

U(0)=0

DU(x) e
−
∫ L

0
dx

[

1
2σ

(

dU(x)
dx

)2
+peβU(x)

]

+βU(x1)+···+βU(xn)
.
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This expression establishes a link with one-dimensional Liouville quantum me-
chanics. For a detailed discussion of this model we refer to (Monthus and Comtet
1994) and (Kolokolov 1993, Kolokolov 1994). Considerable simplification occurs
if one makes use of the fact that, in this theory, a change in the coupling con-
stant can be interpreted as a translation in U space. This suggests the change

of variable p = αeβU , where α ≡ σβ2

2 , which leads to

Cn(x1, · · · , xn) =
2
√
πLαn+ 1

2

Γ (n)

∫ +∞

−∞
dU

∫ U(L)=U

U(0)=U

DU(x) e−SLeβU(x1)+···+βU(xn)

(9)
where the action

SL =

∫ L

0

dx

[

1

2σ

(

dU(x)

dx

)2

+ αeβU(x)

]

(10)

is associated with the Liouville Hamiltonian

HL = −σ
2

d2

dU2
+ αeβU . (11)

The role of the normalization constant N is to insure the relation
∫

dx1 · · · dxn Cn(x1, · · · , xn) = 1.

Since N is independent of n this relation may be used in the case n = 1 to find
N .

One may express the correlation function in terms of the Liouville propagator
Gx(U,U

′) ≡ 〈U |e−xHL |U ′ 〉. Choosing L ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 where
xij ≡ xi − xj one gets

Cn(x1, · · · , xn) =
2
√
πLαn+ 1

2

Γ (n)

∫ +∞

−∞
dU1dU2 · · · dUnGL−x1n(Un, U1)e

βU1

Gx12(U1, U2)e
βU2 · · ·Gxn−1n(Un−1, Un)e

βUn .

Using the eigenstates |k 〉 of the Liouville Hamiltonian1 gives

Cn(x1, · · · , xn) =
2
√
πLαn+ 1

2

Γ (n)

∫ +∞

0

dk1 · · · dkn 〈kn |eβU |k1 〉 · · · 〈kn−1 |eβU |kn 〉

e−
α(L−x1n)

4 k2
1−···−αxn−1n

4 k2
n . (12)

Knowledge of the wave functions gives the matrix elements

〈k |eβU |k′ 〉 =
1

8

√
kk′ sinhπk sinhπk′

k2 − k′2

coshπk − coshπk′
. (13)

1 The Liouville Hamiltonian has a continuous spectrum HLψk(U) = αk2

4
ψk(U) where

the wave function is ψk(U) =

√
βk sinh πk

π
Kik

(

2e
βU
2

)

.
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Expression (12) allows one to get the long range behaviour (when all the dis-
tances involved are large compared to 1

α ). Using the Laplace method one even-
tually finds

Cn(x1, · · · , xn) ≃
1

(4πα)
n−1

2 Γ (n)

√
L

[(L − x1 + xn)(x1 − x2) · · · (xn−1 − xn)]
3/2

.

(14)
Despite the coefficients being different to those found by Shelton and Tsvelik
(Shelton and Tsvelik 1997) when n = 2 and n = 3, we get the same behaviour
as a function of the distances. This expression shows the existence of long range
correlations. A nice interpretation of the algebraic tail was recently given in
(Laloux and Le Doussal 1997). It is suggested that the exponent 3/2 is associated
with configurations of the disorder where U(x) returns to its starting point.
It is interesting to point out that the same exponent appears in conventional
localization theory. In this case wave functions with the same (Berezinskĭi 1974,
Gogolin 1975) or nearly equal (Gor’kov et al. 1983) energy are weakly correlated
at large distances. The correlation function decays exponentially with the power

law preexponential factor
(

l
x

)3/2
.

3.2 Free boundary conditions

Computation of correlation functions of the type in (8) was first performed by
Broderix and Kree (Broderix and Kree 1995) in a different context: |ψ0(x)|2 is
interpreted as the equilibrium Gibbs measure for the potential U(x). Setting
U(0) = 0 and letting U(L) be free they get

CBK
n (x1, · · · , xn) ≃ 1

π(4πα)
n−1

2 Γ (n)

1
√

xn(L− x1)

1

[(x1 − x2) · · · (xn−1 − xn)]
3/2

(15)
which is very similar to (14). The different boundary prescription therefore in-
duces a slight change in the x dependance near the boundary.

4 Multifractality

In a recent series of publications, de Chamon et al. (de Chamon et al. 1996) have
considered a two-dimensional localization model which exhibits a localization
transition at zero energy. They consider a two-dimensional Dirac Hamiltonian
in a random magnetic field B(r) = ∆φ(r). In this case the zero energy solution
(Aharonov and Casher 1979) can be constructed explicitly for any realization of
φ(r). They consider the particular “ground state” solution ψ(r) ∝ (e−φ(r), 0). For
a Gaussian disorder P [φ] = exp− 1

2g

∫

dr (∇φ)2 the successive moments of ψ(r)

are encoded in the partition function Z(q) ≡
∫

dr e−2qφ(r) since
∫

drψ2q(r) =
Z(q)
Z(1)q . The multifractal exponents of the wave function can be obtained by using
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a formal equivalence with the problem of a directed polymer on the Cayley tree
(Derrida and Spohn 1988).

In the following we consider a one-dimensional version of this model with,
however, a different type of disorder and take into account the wave function
normalization as in (Kogan et al. 1996). The starting point is the two-dimensional
Euclidean Dirac operator

iD/ = iσ1 (∂y + iAy) + iσ2 (∂x + iAx)

σi are the Pauli matrices and the gauge field is given by

{

Ay = f(x)
Ax = 0.

We may take eigenstates of the form ψ(x, y) =
(

χ(x)eiωy , 0
)

. The eigenvalue
equation −D/2χ = E2χ then becomes

[

−∂2
x + (ω + f(x))2 − σ3f

′(x)
]

χ(x) = E2χ(x).

We are thus led to a one-dimensional Schrödinger equation with a supersym-
metric potential V (x) = ϕ2(x) − σ3ϕ

′(x) where ϕ(x) = ω + f(x).

In an earlier work by one of us (Comtet et al. 1988) this approach was used
to study the density of states of the two-dimensional Dirac operator. If f(x) is
white noise we may use the density of states of the one-dimensional problem and
integrate over the free motion on the y axis. The resulting expression displays
an enhancement at low energy as compared to the free case.

Here our purpose is to characterize the fluctuation properties of the ground

state wave function χ(x) = e−
∫

dyϕ(y). By using two different approaches for
two boundary prescription we compute exactly the successive moments of the
normalized ground state

ψ0(x) =
χ(x)

[

∫ L

0 dx′ χ2(x′)
]1/2

In order to keep unified conventions we will parametrize ψ0(x) as in equation
(6).

4.1 Moments of ψ0(x) for periodic boundary conditions

If the random potential obeys periodic boundary conditions, the situation is the
one described in section 3. The moment of order 2n is then related to the n-point
correlation function at coinciding points

〈

|ψ0(x)|2n
〉

= Cn(x, · · · , x).
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In terms of the Liouville propagator this is expressed as

〈

|ψ0(x)|2n
〉

=
2
√
πLαn+ 1

2

Γ (n)

∫ +∞

−∞
dU1GL(U1, U1)e

nβU1

=
2
√
πLαn+ 1

2

Γ (n)

∫ ∞

0

dk 〈k |enβU |k 〉e−αL
4 k2

where the matrix element is

〈k |enβU |k 〉 =
Γ (n)2

4πΓ (2n)

n−1
∏

m=0

(

m2 + k2
)

.

The moments are eventually given by

〈

|ψ0(x)|2n
〉

=
αn

2n(2n− 1)!!

n
∑

m=1

anm2m(2m− 1)!!
1

(αL)m
(16)

where the coefficients anm are defined by the equation

n−1
∏

m=0

(

m2 +X
)

=

n
∑

m=1

anmX
m.

For example ann = 1 and an1 = Γ (n)2.
One may extract from this expression the asymptotic dependance of the

moments (when L is large compared to 1
α )

〈

|ψ0(x)|2n
〉

≃
(α

2

)n−1 Γ (n)2

(2n− 1)!!

1

L
. (17)

4.2 Moments of ψ0(x) for free boundary conditions

If one leaves U(L) free instead of imposing periodic boundary, then the Brownian
that enters in the wave function (6) is no longer a Brownian bridge but a free
Brownian motion starting from U(0) = 0.

In the average over the disordered potential one must now take into account
all the Brownian paths starting from 0 without any restriction on the final point.
Except for this slight modification the formalism is the same as in previous
sections. One is led to

〈

ψ2n
0 (x1)

〉

=
βαn

Γ (n)

∫ +∞

−∞
dU

∫

U(0)=U

DU(x) e−SLenβU(x1)

=
βαn

Γ (n)

∫ +∞

−∞
dUdU1dU2GL−x(U2, U1)e

nβU1Gx(U1, U).

It is interesting to present another derivation of the moments using the lan-
guage of previous works (Oshanin et al. 1993a, Monthus and Comtet 1994,
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Comtet et al. 1996) devoted to the study of the statistical properties of the

exponential functional Z
(µ)
L ≡

∫ L

0
dx e−(µαx+

√
2αW (x)). Here µ is the drift for

the Brownian motion βU(x) = −(αµx +
√

2αW (x)) and W (x) is a Brownian
motion of average 0 and variance 1 defined on [0, L].

We will prove that the moments of ψ0(x) can be expressed in terms of the

characteristic function φ(µ)(p, L) ≡ 〈e−pZ(µ)

L 〉 (Laplace transform of the distri-

bution law of Z
(µ)
L ). For this purpose we may note that ψ0(x) involves two

exponential functionals. We may write

ψ2
0(x) =

1
∫ L

0 dy eβ(U(y)−U(x))

and separate the denominator into two parts

∫ L

0

dy eβ(U(y)−U(x)) =

∫ x

0

dy e−[−µαy+
√

2αB(y)] +

∫ L−x

0

dy e−[µαy+
√

2αB̃(y)]

where B(y) ≡ W (x − y) −W (x) and B̃(y) ≡ W (x + y) −W (x), respectively
defined on y ∈ [0, x] and y ∈ [0, L− x], are two independent Brownian motions
starting from zero B(0) = B̃(0) = 0. The denominator is then a sum of two

statistically independent exponential functionals Z
(−µ)
x and Z̃

(µ)
L−x.

The moments may then be rewritten as

〈

ψ2n
0 (x)

〉

=

〈

1
(

Z
(−µ)
x + Z̃

(µ)
L−x

)n

〉

=
1

Γ (n)

∫ ∞

0

dp pn−1
〈

e−pZ
(−µ)
x

〉〈

e−pZ̃
(µ)

L−x

〉

=
1

Γ (n)

∫ ∞

0

dp pn−1φ(−µ)(p, x) φ(µ)(p, L− x).

Where the characteristic functions are given in (Monthus and Comtet 1994,
Comtet et al. 1996). In the case µ = 0 which is of interest for us

φ(0)(p, L) =
2

π

∫ ∞

0

ds cosh
πs

2
Kis

(

2

√

p

α

)

e−
αL
4 s2 . (18)

One may extract from this expression the dominant behaviour when αx ≫ 1
and α(L − x) ≫ 1

〈

ψ2n
0 (x)

〉

≃
(α

2

)n−1 Γ (n)2

π(2n− 1)!!

1
√

x(L − x)
. (19)

One may check that this result agrees with the one of Broderix and Kree (15)
in the case n = 1. Whenever x belongs to the interval [0, L], but is not on the
edges, the moments still behave as

〈

ψ2n
0 (x)

〉

∼ 1
L .
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We may also explore the behaviour of the moments of the wave function on
the edges

〈

ψ2n
0 (0)

〉

=
〈

ψ2n
0 (L)

〉

. This quantity is equal to the moments of the

partition function Z
(0)
L for negative orders

〈

ψ2n
0 (0)

〉

=

〈

1

(Z
(0)
L )n

〉

=
1

Γ (n)

∫ ∞

0

dp pn−1φ(0)(p, L).

We may easily extract the dominant behaviour of this quantity with the help of
(18) and eventually find

〈

ψ2n
0 (0)

〉

≃ αnΓ (n)√
παL

. (20)

This shows that the wave function fluctuates more on the edges of the interval
(when x≪ 1

α or L− x≪ 1
α ) than in the bulk (when x≫ 1

α and L− x≫ 1
α ).

The square of the wave function on the edge is interpreted in the problem of
classical diffusion in the random potential U(x), as the steady current density
when a constant density of particle is imposed at x = 0 in the presence of a trap
at x = L. The distribution of the steady current was found in (Oshanin et al.
1993b, Monthus and Comtet 1994). Setting J ≡ 1

αψ
2
0(0) the distribution of J is

a log-normal law for small values of J

P (J) ≃
J→0

1

2
√
παL

e−
1

4αL ln2 J

and possesses an exponential tail for large values of J

P (J) ≃
J→∞

1√
παL

1

J
e

π2

4αL−J

which is responsible of the behaviour of the moments given in (20).

4.3 Discussion of the results

We have just seen that the one-dimensional model is closely related to the model
studied in (de Chamon et al. 1996). Since the one-dimensional model is exactly
solvable, it is interesting to study its multifractal properties, although one cannot
expect it to give the same behaviour. In fact, in both models the potential is
long-range correlated; though in d = 2 the correlations are logarithmic whereas
in d = 1 they are linear.

We define the scaling exponent τ̃ (q) which characterizes the behaviour of the
critical wave function at E = 0 as

〈

|ψ(r)|2q
〉

∼
L→∞

L−d−τ̃(q).

Using equation (17) we get τ̃(q) = 0. This exponent is the scaling exponent of
the average moments of the wave function. We may introduce a slightly different
scaling exponent

τ(q) = lim
L→∞

〈

ln
∫

dr |ψ0(r)|2q
〉

ln(1/L)
,
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which is the mean exponent of the critical wave function. In terms of the partition

function Z
(0)
L (β) =

∫ L

0 dx eβU(x) introduced before, it may be rewritten

τ(q) = lim
L→∞

〈

lnZ
(0)
L (qβ)

〉

− q
〈

lnZ
(0)
L (β)

〉

ln(1/L)
.

The mean free energy that appears has been calculated in (Comtet et al. 1996)
to be

〈

lnZ
(0)
L (β)

〉

= 2

√

αL

π
+ C − lnα− π

3
√
αL

+ O

(

1

(αL)3/2

)

,

where C = −Γ ′(1) is the Euler-Mascheroni constant. Again, one eventually
gets a scaling exponent τ(q) = 0 which agrees with the behaviour found in (de
Chamon et al. 1996) in the strong disorder regime. By using the mapping with
the random directed polymer model (Derrida and Spohn 1988), de Chamon et
al. have shown that this regime corresponds in fact to the low temperature phase
of this model. The existence of such a link also appears in the one-dimensional

case. A comparison of the moments of Z
(0)
L (β) with those of the random energy

model (REM) (Derrida 1981) reveals some striking similarities. For the one-
dimensional case the expression of the moments given in (Monthus and Comtet
1994) read

〈

(Z0
L)n
〉

=
1

αn

(

Γ (n)

Γ (2n)

n
∑

k=1

(−1)n−keαLk
2

Ck+n2n +
(−1)n

n!

)

.

In particular, for large L one obtains

〈

(Z0
L)n
〉

≃
αL≫1

1

αn
Γ (n)

Γ (2n)
eαLn

2

.

These moments grow in the same manner as in the REM. The main difference is
that, unlike in the REM, there is here no transition above which the behaviour
would change from eαLn

2

to eαLn. In some sense one can consider that the tran-
sition temperature is sent to infinity. This explains why, in this one-dimensional
case, one only probes the low temperature phase. It would be extremely interest-
ing to explore intermediate cases with weaker correlations, as recently suggested
in (Bouchaud and Mézard 1997).
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