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Integral equations which describe the thermodynamic properties of a one-dimensional elec
tron gas with repulsive and attractive delta-function interactions are obtained. From these 
equations one can calculate the energy, entropy, magnetization, particle density and pressure 
at given temperature, magnetic field and chemical potential. 

§ I. Introduction 

In recent papers Gaudin1
) and Yang2

) gave the ground state energy of a one
dimensional electron gas with a delta-function interaction3

)-S) as a solution of a 
set of coupled integral equations. We try to treat the thermodynamic properties 
of this system as a one-dimensional Bose gas and a one-dimensional Heisenberg 
model.8

> For this purpose it is necessary to obtain all of the energy eigenvalues of 
the Hamiltonian. In § 2 we review the work of Gaudin and Yang on the wave func
tion. There appear two kinds of parameters k and A. In § 3 we make conjectures 
on the distributions of k's and A's in the complex plane. In § 4 the energy spec
trum of the Hamiltonian for repulsive interaction is obtained and the integral 
equations which describe the thermodynamic properties are derived. In § 5 these 
integral equations are solved for some special cases. In §§ 6 and 7 we treat the 
electron gas with an attractive delta-function interaction. 

§ 2. Wave function 

We consider the eigenvalue problem of the Hamiltonian 

N ()2 -, 
Si'=- :E -+4c :E o(xi-xJ) + JJ.0H(2M-N), 

i=l ox/ i<j 
(2·1) 

where N is the number of electrons and M is the number of down-spin electrons. 
The wave function has the following form: 

(2·2) 

Here Xi and si are the coordinate and spin-coordinate of the i-th electron, re
spectively. For a spin-t electron, si is + or G/'r is a spin function of which 
a typical one is 
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One-Dimensional Electron Gas with Delta-Function Interaction 1389 

Mf/) 1 is an eigenfunction of (2 ·1) which is antisymmetric to the permutation of 

Xt, x2, · · ·, XN-M and to the permutation of XN-M+h · · ·, xN, satisfying the con
dition 

(2·3) 

Here Pi.J is an operator which changes xi and x 1. We can construct a full wave 
function P' using the fact that P' is totally antisymmetric. Gaudin and Yang gave 
the solution for this problem as follows: 

(2·4) 

m the region XQ1<xQ2<···<xQN· Here Q and Pare permutations of 1, 2, ···, N 
and [Q, PJ are N! X N! coefficients which are given by 

(2·5) 

F (A ) = Ily-l kp1 - A+ ic 
p ,y . ' 

J=l kP(j+l)- A- zc 
(2·6) 

(2·7) 

e(x) = (x+ i) /(x-i), 

where Y1<Y2, · · · <YM are coordinates of XN-M+h XN-M+2, · · ·xN along the chain, 
Q1 and Q2 signify the orders of 1, 2, · · ·, N- M and N- M + 1, · · ·, N in the 
permutation Q. The parameters Ah A2, ···, AM are newly introduced. The periodic 
boundary condition 

gives an equation for k's and A's as follows: 

eikJL =IT e (k1 - A~), 
a=l C 

i=1,2, ···,N, 

(2·8) 

(2·9) 

§ 3. Conjectures on the distributi~n of k's and A's in the complex plane 

In this section we make three conjectures which are essential in the later 
sections of this paper. 
Conjecture 1. If a set of solutions (kh k2, · · ·, kN; Ah A2, · · ·, AM) of (2 · 8) and (2 · 9) 
contain a complex k (or A), k (or A) is also contained in the set of k's (or A's). 
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1390 M. Takahashi 

Corollary 1. At c>O, k's are real. 
Proof: The conjecture 1 demands that the distributions of k's and A's are sym
metric with respect to real axis. So we see that if Im k1>0, the absolute valu~. 
of the right-hand side of (2 · 8) is larger than. unity. On the other hand the left~ 

hand side is smaller than unity because Im k1>0. So Im k1>0 is impossible. 
In the same way we can prove that Im k1<0 is also impossible. [Q.E.D.] 
Conjecture 2. Complex A always .forms a bound state with several other A's. 

In this set of A's the real parts of these A's. are the same and the imaginary 
parts are (n-l)ci, (n-3)ci;· .. , ~ (n~l)ci for the bound state of n-A's within 
the- accuracy of 0 (exp (-oN)), where o is a positive number. 
Conjecture 3. In the case c<O, complex ka makes a pair with its complex con
jugate ka and a real A, which we write as Aa'. The real parts of ka, ka and 
Aa' are the same and the imaginary parts of ka and ka are c and - c within the 
accuracy of 0 (exp (- oL)). 

§ 4. Derivation of integral equations for 
tbe case of a repulsive interaction 

In this case all k's are real by the corollary 1 in § 3. But A's are not neces
sarily real. We write A's as Aan,J. Here n means that this belongs to a bound 
state of n- A's, j specifies the imaginary part and a is the number of this bound 
state in the bound states of n- A's. We write the real part of Aa n,J by Aan· 

By the conjecture 2 we have 

Aa n,J =Aan+ (n+ 1-2j)ci+ O(exp( -oN)), j= 1, 2, .. ·, n. (4·1) 

In the case of .L11n bound states of n spins and N electrons we derive equa
tions for Aa n's and k/s from Eqs. (2 · 8) and (2 · 9). Equations (2 · 8) can be 
rewritten as 

ooMn (k An) 
eikjL =II II e j- a ' 

n=1 a=l nc 
j=l, 2, ... , N. (4 · 2a) 

Let us consider a product 

N (A n-k·) IIe a J. 

J=l . nc 

By ( 4 ·1) this 1s transformed as 

N n (A n,t _ k.) IIIIe a J' 
J=l l=l \ c 

and by (2·9) 

n { m (A n,L_A m,h)} n { m (A n,L_A m,h)} =IT -II ITe a fJ =IT II IIe a fJ 
l=l (rn, {3) h=l 2c l=l (rn, f3)"i=(n, a) h=l 2c . 

Substituting ( 4 ·1) we have finally 
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One-Dimensional Electron Gas with Delta-Function Interaction 1391 

where 

n= 1, 2, ···, 

a=1,2,···,Mn, 
(4·2b) 

f 
( X ) 2( X ) 2( X ) 2( X ) ( X ) 

e In - m I , e In - m I + 2 e In- m I + 4 ... e 'n + 111-- 2 e n + m 

Enm(x) =='l for n=f=m, 

e2(x) e2
( ~) ... e2

(-- -~---) e(--£_ J for n = m. 
2 \ 4 / 2n- 2 2n 1 

The logarithms of these equations give 

where (} (x) ==2 tan- 1x, -rc<(}<rc and 

j=l,2, .. ·,N, 

n=l, ... , 

a=1, 2, ... , Mn 

ln-'-ml ln-ml +2, ln-ml +4 

(4 · 3a) 

(4·3b) 

I 
(} ( X ) + 2(} (' X ) + 2(} ( X ) 

enmCx) = + ... + 28(n+: _ 2) + e(n: m) 

[ 2(} (~ J + 2(} (~) + .. · + 2(} ( x ). + (} (__:£___) for 

for n=f=m, 

n=1n. 
21 4 2n-2 2n 

1/s are different integers (half-odd integer) for even (odd) M 1 + M 2 + · ... This 
can be written as 

(mod 1). 

Jan's are different integers and satisfy the conditions 

(mod 1), 

where 

tmn=2 Min(n, m) -onm. 

(4 ·4a) 

(4·4b) 

(4·4c) 

Giving a set of integers {If,Jan} which satisfies Eqs. (4·4), we can determine 
a set of ki and Aan through Eqs. ( 4 · 3). For a set of integers {If, Jan} there is 
a set of omitted integers which satisfy Eqs. ( 4 · 4) and are not contained in {11, 

Jan}. We define holes of k and holes of An as solutions of 

Lh (k) = 2rc X (omitted J), 

Ljn (A) = 2rc X (omitted Jan), 
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1392 M. Takahashi 

where 

h(k) ==k+ l_ f: ~ e(k -Aan), 
L n""l a=l nc 

(4· Sa) 

(4 · Sb) 

Let us consider the case of a very large system. We put the distribution 
functions of k's and An's as p(k) and (fn(k), and those of holes as pn(k) and 
(f n n (k). By the definition of holes it is clear that 

__i__h (k) = 2rc (p (k) + pn (k)), 
dk 

__i__jn(k) =2rc((fn(k) +(fnlt(k)). 
dk 

Equations (4·5a) and (4·5b) are rewritten as 

h(k) =k+ f: Je(k-k')(fn(k')dk', 
n=l nc 

(4· 6a) 

(4 ·6b) 

Hereafter we put that f dk means r::.""dk. Substituting these into Eqs. ( 4 · 6) we 
have 

(4·7a) 

00 

[n] p (k) = (fnlt(k) + :E Anm(fm(k), (4·7b) 
m=l 

where [n] is an operator defined by 

[n]f(k) = l_ Joo n!cl f(k')dk', 
rc -oo (nc) 2 + (k-k') 2 

[O]f(k) f(k), 
and 

Anm==[ln-m!] +2[!n-ml +2] +2[!n-ml +4] + ... +2[n+m-2] + [n+m]. 

The energy per unit length is 

(4· 8a) 

The entropy per unit length is 

S/L= s{(p+pn)ln(p+pn) -pIn p-pn In pn}dk 
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One-Dimensional Electron Gas with Delta-Function Interaction 1393 

(4·8b) 

The particle density is 

NJL= spdk. (4· 8c) 

The magnetization to the z-direction is 

(4·8d) 

At the equilibrium state the thermodynamic potential !J==E- AN- TS should be 
minimized. So the variation of !J is zero: 

0=(]!2/L= s (k 2 -A-!10H)(]p(k)dk+ ~1 2n!1oH s (]G(k)dk 

- T J {ap ln( P: p') +(]ph In ( P; P')} dk 

- T J {a G., ln (G., + G., h ) + (]G., h. In (G., + ~.,h. ) } dk . ( 4 · 9) 
G., G., 

From Eq. ( 4 · 7) we have 

00 

(]ph= -(]p+ l:[n](]G.,, 
n=l 

00 

(]G n h = [n] (]p- 2: A.,m(]Gm. 
m=l 

Substituting these into Eq. ( 4 · 9) we have 

(]!J = J {k
2
-A- !ioH -ln (Ph)-~ [n]ln (1 + G:)·.} (]pdk 

TL T p n=l G., 

+ ~ J{ 2n!1oH -ln (1+ G.,h)- [n]ln (1+2__)\ 
n=l T Gn ph 

Then we have a set of coupled nonlinear integral equations for C:.(k)-===ph(k)jp(k) 
and r;.,(k)==G.,h(k)/G.,(k) as follows: 

ln C:. (k) = k
2

-A-tJ.oH ~ [n]ln(l + 'f)n -l(k)), 
T n=l 

(4·10a) 

00 

In (1 + 'f)n (k)) = 2n!1oH 
T 

[n] ln (1 + r;.-l (k)) + 2: Anm ln (1 + r;m.-1(k)). (4 ·lOb) 
m=l 

Equations ( 4 · 7) are rewritten as 
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1394 M. Takahashi 

(l+((k))p(k) =__!___+ t[n]O"n(k), 
2n n=l 

(4·lla) 

00 

[nJp(k) =r;n(k)O"n(k) + ~ AnmO"m(k). (4·llb) 
?1t=l 

From thermodynamics the pressure is given by 

P= -fJ/L. 

Using (4·10) and (4·11) one obtains 

P= T Jln (1 + (- 1 (k)) dk . 
. 27! 

(4 ·12) 

This expression for the pressure is the same as that for bosons obtained by Yang 
and Yang.7

> 

If we can solve Eqs. (4·10a), (4·10b), (4·lla) and (4·llb), we can de
termine the energy, entropy, particle density, magnetization and pressure for given 
temperature, chemical potential and magnetic field using (4·8a), (4·8b), (4·8c), 
(4 · Sd) and (4·12). 

Equations ( 4 ·lOa) and ( 4 ·lOb) are equivalent to 

[lJ {ln(l+r;2) -ln(l+(-1)} =([OJ+ [2J)ln r}1, 

[1 J {ln (1 + rJn-1) + ln (1 + r}n+l)} = ([OJ + [2J) ln r}n , n = 2, 3, · .. , 

2 H 00 

ln (1 + r;1) = ___/!!J_- [1 J ln (1 + c-1) + ~ A1n~ ln (1 + r;m - 1), T m=l 

P-A- H 00 

ln(= f-Lo - ~[mJln(l+r;m- 1). 
T ?1~=1 

(4·13a) 

(4·13b) 

(4·13c) 

(4 ·13d) 

(4·13a) is obtained by [lJ X (first formula of (4·10b))- ([OJ+ [2J) X (4·10a). 
(4·13b) is obtained by [lJ X {(n-1-th formula of (4·10b)) + (n+l-th formula 
of (4·10b))}-([0J+[2J)x(n-th formula of (4·10b)). In the same way we 
can prove easily that Eqs. (4·lla) and (4·llb) are equivalent to 

[1] (p+ r;20"2) =([OJ+ [2]) (r;1 + l)0"1, 

[1] (r;n-10"n-l+r}n+IO"n+l) =([OJ+ [2]) (r;n+l)O"n, n=2, 3, ···, 
00 

[1] P = 'fjlO" 1 + ~ AlmO" m , 
m=l 

1 00 

(l+()p =-+ ~[m]O"m. 
27! m=l 

§ 5. Special cases for c>O 

1) The limit c~o 

In this limit we can put 

(4·14a) 

(4·14b) 

(4·14c) 

(4 ·14d) 
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One-Dimensional Electron Gas with Delta-Function Interaction 1395 

[n]f(k) =f(k) 

for an arbitrary function f(k). Then Eqs. ( 4 ·12) are written as 

c1 + n2); c1 + c-1) = '1712, 

(1 + l;'n-1) (1 + 'f7n+1) = 'f7n
2
, 

00 

1 + n1 = z- 2 (1 + c-1
)-

1 IT (1 + nn - 1
)

2
, 

n=2 

00 

{;:' = e<kLA)fT z IT (1 + '17n -1)-I, 
n=l 

where 

z = exp (- !J.0HjT). 

The general solution of (5·1a) and (5·1b) is 

j2(0) 
'f7n = f\n) - 1 , {;:' = 

1
_ f 2 (O) , 

where 

f(n) = (ban-b- 1a-n)/(a-a- 1
). 

(5 ·1a) 

(5·1b) 

(5 ·1c) 

(5 ·1d) 

The parameters a and b are functions of k and determined by (5 ·1c) and (5 ·1d). 
The results are 

a=z and b = j ( 1 -1~ z exp p-:; A ) / ( 1 + z- 1 exp k
2

-:; 4_) . 
Equations ( 4 ·13) are transformed as 

'f7n-1r5 n-1 + IJn+1(j n+ 1 = 2 ( IJn + 1) rJ n , 

00 

P = /j1rJ 1 + ::E A1mrJ m , 
rn=l 

The solution is 

p=-1 (b+b- 1){-f(-1)}, 
2n 

Substituting (5 · 2) into (5 · 4a) we have 

(5·2) 

(5 · 3a) 

(5· 3b) 

(5·3c) 

(5· 3d) 

(5 ·4a) 

(5·4b) 

p(k) = 21n ((l+exp k2-A;/l.oH)-1+ (1+exp k2-~/l.oH)-1). (5·5) 
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1396 M. Takahashi 

In the limit c~o the quasi-momenta are real momenta. So (5 · 5) coincides with 

the well-known result. 

2) The limit c~ oo 

In this limit Eqs. (4·10a), (4·10b), (4·11a) and (4·11b) become 

In ((k) = k
2

-A- JioH- :E [n]ln(1 + 7Jn - 1 (k)), (5· 6a) 
T n=l 

ln (1 + 7Jn(k)) = 
2

nfJ.oH + :E Anm In (1 + r;m-1 (k)) + o(.l), (5 · 6b) 
T m=l C 

(1+((k))p(k) =_!__+0 (.l), (5·6c) 
2n: c 

00 

[n]p(k) =r;n(k)r5n(k) + L; Anmr5m(k). (5·6d) 
m=l 

Equation (5 · 6b) are easily solved because 7Jn (k) are all constants. The solution 

IS 

where 

f(n) = (zn+l_z-n-1)/(z-z-1), 

From (5 · 6a) we have 

and from (5 · 6c) we have 

z = exp (- JioH/T). 

p(k) =_!__ z+z-1 
2n: z + z-1 + e<k2-A)/T • 

Using (5·7a) one obtains . 

<1n(k) = 
1 

{ 
1 

[n]-
1 

[n+2J}p(k). 
z+ z-1 f(n-1)f(n) f(n)f(n+ 1) 

So we have 

Sz/L=Nj2L-f;.
1 

n s r5ndk 

(5·7a) 

(5·7b) 

(5·7c) 

(5·7d) 

=N [_!_ _ i: n { 1 _ 1 }] = _!_(N)tanh JioH 
L 2 n=tz+z-1 f(n-1)f(n) f(n)f(n+1) 2 L . T. 

(5·7e) 

This shows that the· magnetization of the one-dimensional electron gas behaves 

as that of i-spins which are free each other when c is infinity. 

3) The limit T~o 

We put cn(k)==Tlnr;n(k) and JC(k)==Tln((k). One can derive that 
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One-Dimensional Electron Gas with Delta-Function Interaction 1397 

en(k) =2fJ.oH+ [2]Tln(l+exp- e~k)) + [l]Tln (l+exp Cn-~k)) 

+([OJ+ [2])~[j]Tln (l+exp- 8f+;,(k)), n=2, 3, ... , 

from Eqs. ( 4 ·lOb). Therefore e2, e8, · · · are always positive. So in the limit 

T ~o we have a set of equations 

tc(k) =P-A-fJ.oH+ [l]e1-(k), 

e1(k) =2fJ.oH+ [l]tc-(k)- [2]el-(k), 

where the suffices ( +) and (-) mean 

at f(k) >O, 

at f(k) <o' 
at f(k) >o' 
at f(k)<O. 

(5·8a) 

(5 · Sb) 

In Appendix A we prove that e1 and tc are increasing functions of k2
• So e1 and 

tc are negative in the regions [B, - B] and [Q, - Q], respectively. Then Eqs. 

(4·11) give 

(5· 9a) 

l_ SQ cp (k') dk' 
7C -Q c2 + (k-k') 2 

(5. 9b) 

The energy, particle number and magnetization per unit length are given by 

E/L= s:Q k
2
p(k)dk, 

NIL= J_QQp(k)dk, 

Sz/L=t J_QQp(k)dk- s:BO'l(k)dk. 

(5·9c) 

(5·9d) 

(5· 9e) 

These integral equations coincide with those which were obtained by Gaudin1> 

and Yang.2
) 

§ 6. Derivation of integral equations for 
the case of an attractive interaction 

If there are pairs of two complex k's each of which has a parameter A on 

real axis. We designate these A's as Aa' and corresponding k's as ka1 and ka2
• 

By the conjecture 3 we have 

ka1 =Aa' + iJcl + 0 (exp ( -O'L)), 

ka 2 = Aa' -iJcl + 0 (exp( -O'L)). 
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1398 M. Takahashi 

From Eq. (2 · 8) we have 

exp i (ka 1 + ka2)L= IT e( Aa'- A/) { IT e( Aa'- AfJn,J)} e(ka 
1

- Aa') e(ka
2 
-Aa'). 

fN=a -2JeJ m,P,J -2JeJ ' -JeJ -JeJ 
(6·1) 

From Eq. (2 · 9) we have 

(k 1-A ') (k 2 -A ') N-
2
M' (A 1 -k·) { (A 1 -A n,j)' e a a e a a =IT e a J ITe a /3 J· 

-lei -lei j=l -lei n,(1,j 2lel 

Substituting this into Eq. (6 ·1) we have 

e2iAa'L= _ NrrM' e(Aa'-ki )fi: e(Aa' -A/). 
1=1 -lei , P=l -2JeJ 

(6·2) 

Here we have represented unpaired k as ki. From Eq. (2 · 8) one· obtains 

eikJL=fi e(ki-Aa')fr IT ef kf-Aan). (6 · 3) 
a=l -JeJ n=la=1 \ -nJeJ 

And from Eq. (2 · 9) we have 

N -2M' ( A n _ k ) oo Mm (A n _ A m) II e a i = - II II Enm a /3 • 
J=1 nl el m=1 ?1=1 1 el 

(6·4) 

The logarithms of Eqs. (6 · 2), (6 · 3) and (6 · 4) are 

N-2M' (A I k ) M' (A I A I) 2Aa' L = 2rcJa' + ~ f) a - i + ~ f) __3~_j_3_ , 

J=1 JeJ ?1=1 2JeJ 
a=1, 2, ···, M', (6 ·Sa) 

(6·5b) 

~f) a- i =2rcJan+~ ~enm a- /3 ' a-',···, n, N -2M' ( A n k ) oo Mm (A n A m) _ 1 2 M 
J=l nlel m=1 (1=1 lei n = 1, 2, .... 

(6·5c) 

Here Ja' is integer (half-odd integer) for N- M' odd (even), If is integer (half

odd integer) for M' + M 1 + M 2 + .. · even (odd) and Jan is integer (half-odd in

teger) for N-lvfn odd (even). Jan should satisfy the condition 

00 

JJanJ<t(N-2M'-~ lnmMm). 
m=l 

Following § 4 we define j' (A'), h (k) and Jn (An): 

j' (A') =2A'- _!_ {NYJ' e(A'- ki) + ~ e( A'-A/)}' 
L 1=1 JeJ ?1=1 2JeJ 

(6· 6a) 

h(k) =k- _!_ {~ e(k-Aa') + t ~ e(k-Aan)}, 
L a=1 JeJ n=l a=1 nJeJ 

(6. 6b) 

(6·6c) 
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One-Dimensional Electron Gas with Delta-Function Interaction 1399 

Holes of A', k and An are defined as solutions of 

j' (A') = 2n X (omitted J') , 

h (k) = 2n X (omitted I), 

jn (An) = 2n X (omitted Jn). 

In the limit of a very large system we define the distribution functions of 
A', ki, Aan as (J'(k), p(k), (Jn(k) and those of holes as (J'h(k), ph(k), (Jnh(k). 
Using the relations 

dj~~k) =2n((J'(k) +rJ'h(k)), 

dh(k) 
dk 

2n (p(k) + ph(k)), 

we have equations for (J', p, (J n' (J'h, ph and (J n': 

l=(J' +rJ'h+ [2](J' + [1]p' 
7r 

__!___ = P + Ph+ [1] (J' + L: [n] (J n , 
2n n 

[ n] P = (J n h + L: Anm(J m . 
m 

The definitions of [n] and Anm were given in § 4. 
The energy per unit length is 

E I L = s (P- ttoH) pdk + s 2 (k2
- c2

) (J' dk' + 2~t 2n,u0H s rJ ndk . 

The entropy per unit length is 

S/L= J{ (p+ ph)ln(p +ph) -p ln p- ph ln ph}dk 

+ S { ( (J' + (J'h) ln ( (J' + 6'4) - (J' ln (J' - (J'h ln (J'h} dk 

+ ~ J{ ((J n + (J nh) ln ((J n + (J nh) - (J n ln (J n- (J nh ln (J nh} dk. 

The magnetization per unit length is 

The particle density is 

(6· 7a) 

(6· 7b) 

(6· 7c) 

(6·8a) 

(6· 8b) 

(6 · 8c) 
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NIL= f pdk+ 2 so-' dk. (6·8d) 

The thermodynamic potential Q=E- T S-AN should be minimized. So we have 

O=ot2/L= f 2 CP-c2 -A)oo-' dk+ fck 2 -A)opdk 

+ ~' 2n.aolf J atr.dk- T J {ap In( 1+ ~) Hp" In ( 1+ ;. )}ak 

-T f{oo-'ln(l+~:)+oo-'nln(l+ ;:n)}dk 

-T~ J {oo-n ln(l+ ~n)+oo-nnln(l+ ::n)}dk. (6·9) 

From Eqs. (6·7a), (6·7b) and (6·7c) we ha~e 

oo-'h = - oo-'- [2J oo-'- [IJ op , 
ro 

opn= -op- [l]oo-'- :E[n]O'Gn, 
n=1 

. ro 

OO"nh= [n]op- :E Ann~OO"m. 
m=1 

Substituting these into Eq. (6 · 9) we have a' set of coupled-nonlinear integral 
equations for t;,=phjp, r/=G'h/6' and 7Jn=Gnh/Gn as follows: 

lnr;'= 2 (P-A-c
2

) + [2]ln(l+r;'-1) + [l]ln(l+t;,-1), 

T . 

lnt;, P-A-!loH + [l]ln(l+r;'-1
)- t[n]ln(l+r;n-1), 

T n=1 

Equations (6 · 7) are rewritten as 

l_ = (1 + r;') 6 1 + [2] (}' + [1 J p ' 
TC 

[n]p=7JnO"n+ :E AnmO"m · 
m 

The pressure P and thermodynamic potential Q are given by 

P= -QjL=T fln(l+r;'- 1
) dk +TJln(l+t;,-1

) dk. 
rc 2rc 

(6 ·lOa) : 

(6·10b) 

(6 ·lOc) 

(6 ·lla) 

(6·11b) 

(6 ·llc) 

(6·12) 
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Here we have used Eqs. (6 ·10) and (6 ·11). 
The integral equations (6 ·10) are transformed as 

[1J {In (1 + 7]1) -In (1 + n')} = ([OJ+ [2J) In (-1, 

[1J {ln(1+(-1) + ln(1+7J2)} =([OJ+ [2J)ln 7J1, 

(6·13a) 

(6 ·13b) 

[1J {In (1 + 7Jn-1) +In (1 + 7Jn+l)} = ([OJ + [2J) In 7Jn, n = 2, 3, · · · , (6 ·13c) 

In 7J' = 2 (k2- A- c2) + [2] In (1 + n'-1) + [1J In (1 + (-1)' 
T 

In ( p-A-!loH + [1] In (1 + n'-1) - ~ [n] ln (1 + 7Jn-1). 
T n=1 

Equations (6 ·11) are transfomed as follows: 

[1J (7J'6' +1J161) =([OJ+ [2]) (l+()p, 

[1J (p+r;262) =([OJ+ [2]) (1+r;1)61, 

[1J (7Jn-16 n-1 + 7Jn+1(j n+l) = ([OJ+ [2J) (1 + 7Jn) 6 n, n = 2, 3, · · • , 

_!_ = (1 + n' + [2J) 0"' + [1 J 0 , 
7! 

-
1
-= (1 +()p+ [1]6' + ij[nJ6n. 

27! n=l 

§ 7. Special cases for c<O 

1) The limit c--)0 

(6·13d) 

(6·13e) 

(6·14a) 

(6·14b) 

(6·14c) 

(6 ·14d) 

In this limit we can put [n] = [0]. Therefore Eqs. (6 ·13) become 

(1 + r;l) I (1 + n') = ,-2, 
(1 + (-1

) (1 + 7}2) = 7)1
2
, 

(1 + 7Jn-1) (1 + 7Jn+l) = 7Jn\ n = 2, 3, ... ' 

7}12 / ( 1 + 7}1) = e2CkLA)fT ( 1 + (-1), 

"' ~ = zeCkLA)fT (1 + 7)'-1) /II (1 + 'fJn-1). 
n=l 

And the solutions are 

where 

7Jn=f2(n)-1; 

(= (/2(0)-1)-I, 

r/ = / 2 
(- 1) -1 , 

(7 ·la) 

(7 ·lb) 

(7 ·1c) 
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Equations (6 ·13) become 

r/ rJ' + 7J10" 1 = 2 (1 + () p , 

p + 1/20" 2 = 2 (1 + 1}1) (J 1 ' 

1 
- = (2 + rj') (J' + p ' 
7C 

_!_ = (1 + () P + O"' + :E (J n • 
2n n=1 

n=2, 3, ···, 

Using (7·1a), (7·1b) and (7·1c) we have a solution for these linear equations: 

- 1 (b+b-1)!( -1) ( -f( -2)) 
P- 2n f(O) ' 

(7 · 2a) 

O"'= _1_ f2( -1) (bz-1+b-1z) 
2n f(O) ' 

(7. 2b) 

1 { 1 1 } 
0",= 2n f( - 1) (-f( - 2)) f(n -1)f(n) - f(n)f(n + 1) . (7 ·2c) 

One can calculate p + 20"' which is the distribuion of real momenta in the limit 
c~o: 

This result coincides with the well-known facts and suggests that our theory is 

correct. 

2) The limit T~o 

We prove that en(k)>O from Eq. (6·10c). Thereforeinthelimit T~Owe 

see 1/n = oo and (J, = 0 for n = 1, 2, · · ·. c:' and /C are determined by 

c:'(k) =2(P-A-c2
)- [2]c:'-(k)- [1]tC-(k), 

!C(k) =P-A-!J.0H- [1]c:'-(k), 

(7 ·4a) 

(7 ·4b) 

and are monotonically increasing functions of P as will be shown in Appendix B. 
We define the parameters B and Q by e' (B) = 0 and IC (Q) = 0. r/ and ( are 
zero in the region [B, -B] and [Q, -Q], respectively, and infinity outside these 

regions. So one obtains a set of coupled linear equations in the limt T ~o. 

1 _ 1 1 fB 2lclrJ'(k')dk' 1 fQ lclp(k')dk' 
--0" (k) +- +- ' 
7C 7C -B41cl 2 + (k-k') 2 7C -Q Jcl 2 + (k-k') 2 

1 1 fB . lclO"' (k') dk' 
-=p(k) +- ' 
2n n -B Jcl 2 + (k-k') 2 
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One-Dimensional Electron Gas with Delta-Function Interaction 1403 

E/ L = s:B 2 (k2
- c2

) 0"
1 (k) dk + s_QQ k2p (k) dk' 

N/L=2 s:B O"'(k)dk+ s_:p(k)dk, 

Sz/L= s:Qp(k)dk. 

These equations are equivalent to those which were obtained by Gaudin.1
) 

§ 8. Discussion 

Our equations are non-linear and have infinite unknown functions. But the 
author believes that the numerical calculation of physical quantities can be done 
if we use a high-speed computer. 

It is possible to calculate the excitation spectra from the thermodynamically 
equilibrium state as Yang and Yang7

> did for one-dimensional bosons. 
In Ref. 6) the author discussed the analytic properties of the energy at zero 

temperature. But if one uses our integral equations it is possible to investigate 
the analytic properties of thermodynamic quantities at finite temperature. 

Our theory is based on the three conjectures of § 3. So it is necessary to 
prove these conjectures strictly. 

We have obtained the integral equations for two-component bosons, namely, 
the case of a wave function which transforms as an irreducible representation of 
SN with two rows. The integral equations for the ground state energy was de
rived by Yang. 2

) We put a chemical potential for first-kind of bosons as A+ fJ.oH 
and one for second-kind of bosons as A- f-L 0H. In the case of repulsive interac
tions ( 4 ·lOa), ( 4 ·lOb) and ( 4 ·lla) are replaced by 

ln ( + [ 2] ln (1 + (-1
) = p - A - 1-LoH - t [ n] ln ( 1 + 1Jn -l) , 

T n=l 

1 00 

(l+()p=-+ [2]p-:E[n]O"n, 
2n n=l 

respectively. 

Appendix A 

Equation (5 · 8) is transformed as 

Cl(k) =f_LoH+ J-1- sech rc(k-k') tc-(k')dk' + f_!_R(k-k')sl+(k')dk'. 
4c 2c c c 

(Al) 

So we consider a senes of functions {s1<n)} and {tc<n)}: 
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1404 M. Takahashi 

c:t~+l) (k) = fJ,0H + J_!_ sech 1C (k -k') te<n>- (k') dk' + J.lR( k -k')e1<n)+ (k') dk', 
4c 2c c c 

te<"'+ 1>(k) =P-A-fl.oH+ [1]c:l<n>-(k), 

te<1> (k) = k2
- A-fJ.oH, 

eP> (k) =2fJ.oH. 

We prove the following lemma by mathematical induction. 
Lemma 1. 

a) e/n>> -A- fJ.oH, tet<"'>> -2A -2/-loH. 

b) C:t (n) > s/n+l), te<n> > te<n+l). 

(A2) 

(A3) 

(A4) 

(A5) 

c) e1<n> and te<n> are monotonically increasing functions (MIF) of k2
• 

[Proof] It is clear from (A4) and (A5) that a) and c) are valid for n = 1. From 

e1<2>=2 11oH+ J_!_ sech 1C(k-k') te<n>-(k')dk'<s Cl) 
~-'- 4c 2c - 1 

and 
/C(l) = /C(2). 

We see that b) is valid for n = 1. It is clear from (A2) and (A3) that if a), 
b) and c) is valid for n=k, a), b) and c) are valid for n=k+l. [Q.E.D.] 

From a) and b) we see that the limit s1 = limn__,cos/n> and IC = limn__,cote<n> exist. 
These two functions e1 and te are solutions of (5·8a) and (5·8b) and MIF's of 
k2. 

Appendix B 

The Equations (7 · 4a) and (7 · 4b) are transformed as 

te(k) = -fJ,
0
H+ J dk' sech 1C(k-k')s'+(k') + J dk' R(k-k')te-(k'), (Bl) 

4!ci 2icl JcJ lei 

So we consider the series of functions defined by 

s'<1> (k) = 2 (k2
- A- c2

), 

te<1> (k) = k2
- A- fl.oH, 

s'<n+l>(k) =k2 -A-2c2 +ttoH+ {k2+ [1] (!C<n>+(k) -k2
)}, 

/C(n+l) (k) = - fJ.oH + J_!_R( k- k') IC(n)- (k') dk' 
lei lei 

+ J-1- sech 1C (k- k') e'<n+l)+ (k') dk'. 
4Jcl 2!cJ 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 
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Lemma 2. 

c) /C(n) and s'<n) are MIF's of P. 

[Proof] For n = 1 b) and c) are easily proved by (B3) and (B4). From (B5) 
we have 

s'<2)(k)>P-A-2c2 +!1oH+ {P+ [1] (KY)(k) -P)} =s'<1)(k). (B7) 

Substituting (B5) into (B6) we have 

IC(2) (k) = p- A+ !loH + f__!___R ( k- k') (!C(l) (k') - k'2) dk' 
2 lei lei 

-J~1 -. sech rc(k-k')s'<2)-(k')dk'>P- A+!lol!_ 
4lcl 2icl - 2 

+ f__!___R ( !? - k') (!C<1) (k') - k' 2
) dk' = !C<l) (k). 

lei lei 

From Eqs. (B5) and (B6) it can be easily proved that a) and b) are valid 
for n = k + 1 if they are for n = k. One can prove that 

J-1 R(k-k')fCk')dk', 
icl icl 

J-1- sech rc (k- k') f(l?') dk' 
4icl 2icl 

and 

P+ [1] (f(k) -P) 

are MIF's of 42 if f(k) is an MIF of P. From this fact we have that c) 1s 
valid for n=k+1 if it is for n=k. [Q.E.D.] 

From a) and b) we see that there exist the limits 

s' (k) =lim s'<n) (k) and IC (k) =lim /C(n) (k). 
n-'>oo n-..oo 

It 1s clear that these two functions satisfy (7 · 4a) and (7 · 4b) are MIF's of P. 
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