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[1] Freezing of unsaturated soils is associated with the formation of a moving freezing
zone and liquid water flow toward the zone. An equilibrium thermodynamic formulation of
coupled flow and heat transport in variably saturated partially frozen porous media is
developed and a self-similar solution is derived for the case of a semi-infinite horizontal
porous media column with a constant freezing temperature on one boundary. Solutions to
the self-similar equations are derived using a Runge-Kutta solution procedure. The solution
is found to yield two possible modes distinguished by zones composed of different
combinations of ice, liquid water, and air. One of the modes contains three zones: a frozen
zone (WI) with just ice and liquid water ; a transition zone (AWI) with ice, liquid water, and
air; and an unsaturated zone (AW) with liquid water and air. The second mode contains
only the WI zone and the AW zone. It is found that the WI zone is a quintessential part of
the solution. The AWI zone is found to exist when the advancement of the freezing zone is
relatively fast, while it is absent when the zone advances slowly. Predictions of ice
saturation and liquid water saturation with the self-similar solution are compared to
published experimental data. Pore pressure is calculated as a linear combination of ice
pressure and liquid water pressure, and the calculated figures are used to provide a condition
for model limitation in the case of incipient ice lens formation. The developed similarity
solution provides insight into the mechanics of liquid water movement and pore filling with
ice and the conditions for incipient heaving.
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1. Introduction

[2] The majority of unsaturated soils in northern regions
are subject to freeze-thaw cycles. Freezing of soils due to
applied subzero temperature at the soil surface results in
the formation of a freezing front that progresses downward
with time. The reduced liquid water content and liquid
water pressure at and behind the freezing front induce
water flow toward the zone behind the front and accumula-
tion of ice therein. While freezing persists and progresses
downward, more water is drawn from deeper horizons,
increasing pore pressure behind the freezing front [Harlan,
1973]. When the pore pressure behind the freezing front
exceeds the overburden pressure, the matrix structure at
that point in the soil will break, thus allowing initiation of a
pure ice layer or an ice lens. This lens then continues to
accumulate ice as liquid water transfers toward it, thereby
uplifting the soil above that depth and causing frost heave
[O’Neill and Miller, 1985]. While frost heave had been
an important subject of interest for scientists and civil
engineers for years because of the practical relevance,

especially in permafrost regions, research on the overall
process of freezing in soils even without a noticeable frost
heave is of interest for hydrologists with regard to the water
balance of soils and the redistribution of water and dis-
solved constituents in the soil during cold seasons [Matzner
and Borken, 2008]. For example, melting snow and ice
releases water, which infiltrates and percolates downward
and supplies groundwater reservoirs, lakes, and rivers. Also,
the permeability of frozen soils, being significantly lowered
due to ice-occupied parts of the available pore void, reduces
the infiltration rate and increases surface runoff [Cherkauer
and Lettenmaier, 1999].

[3] The first studies on freezing of soil were published in
the 1930s and include papers by Taber [1930] and Beskow
[1935]. Starting in the 1970s, the research involved numer-
ous experimental and theoretical studies with simultaneous
heat transfer and water mass redistribution and associated
phase change. Various models with different degrees of
complexity have been developed [Cary and Mayland, 1972;
Harlan, 1973; Guymon and Luthin, 1974; Taylor and
Luthin, 1978; Flerchinger and Saxton, 1989]. The models
contain temperature, water pressure, and water and ice satu-
rations as the main variables. An equilibrium thermodynam-
ics approach was used to provide the required closure
relationships between the variables in the majority of these
models [Koopmans and Miller, 1966; Miller, 1980; Spaans
and Baker, 1996], while a nonequilibrium formulation was
utilized by Bronfenbrener and Korin [1999]. Harlan [1973]
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presented a system of mass and heat transport equations to
model water and temperature redistribution during freezing
of a soil column. The models based on Harlan’s [1973]
approach supplement the transport equations with a closure
condition that provides relationships between temperature,
unfrozen water content, and water pressure. The closure con-
dition can be derived using the equilibrium thermodynamic
approach [Kung and Steenhuis, 1986; Newman and Wilson,
1997; Zhao et al., 1997; Shoop and Bigl, 1997] or approxi-
mated on the basis of the experimental measurements of
temperature and unfrozen water content [Engelmark and
Svensson, 1993; Daanen et al., 2007]. These models have
facilitated numerical modeling studies of soil freezing [Jame
and Norum, 1980; Newman and Wilson, 1997; Hansson
et al., 2004; Daanen et al., 2007; Li et al., 2009]. The con-
tribution of the vapor phase on heat and mass balance was
included by Kung and Steenhuis [1986] and Flerchinger and
Saxton [1989]. The models cited above provided analyses of
freezing behavior without frost heave in soils and therefore
did not include conditions at which the transition to frozen
saturated soils becomes possible. Without such a condition,
there is nothing to prevent the ice content from exceeding
soil porosity and invalidating the physical applicability of
the model. In this paper we seek a formulation that is valid
for freezing in both unsaturated and saturated, frozen and
unfrozen soils.

[4] Among laboratory experiments, the studies by Dirk-
sen and Miller [1966] and Jame and Norum [1980] were
conducted on freezing of initially unsaturated horizontal
soil columns. Boundary conditions were kept constant, and
total moisture and temperature distributions were recorded
at several time intervals. In each experiment the freezing
front was observed to form soon after the beginning of the
experiment, and water content was decreased with time in
the warmer side of the column. These results are the only
data available for validation and have been utilized in a
number of numerical studies [Kung and Steenhuis, 1986;
Engelmark and Svensson, 1993; Newman and Wilson, 1997;
Daanen et al., 2007].

[5] Since analytical solutions are hard to obtain because
of the highly nonlinear nature of the governing equations,
solutions of simplified formulations become of value. Simi-
larity solutions present a substantial way of reducing the
number of variables and solving the boundary-value problem
for ordinary, not partial, differential equations. Moreover, in
a self-similar coordinate xt�1=2, the problem becomes time
independent, which allows an easier way to investigate qual-
itative features of the model, as shown by Lombardi and
Tarzia [2001] for thawing of saturated porous medium. The
system of equations originally presented by Harlan [1973] is
self-similar if the freezing is applied to a horizontal semi-
infinite soil column with constant temperature and a no-flow
boundary condition at the freezing end.

[6] Our focus in this paper is to present a concise descrip-
tion of the morphological structures for the ice, liquid water,
and air content distributions and associated liquid water
movement and coupled heat transport in a nonheaving po-
rous media column during freezing. We limit the analysis to
nonheaving conditions to keep the analysis simpler, to focus
on the freezing processes alone without the complexities of
frost heave deformation processes, and to seek a problem
formulation that is amenable to the self-similar solution.

Thus, the main objectives of this paper are to present a math-
ematical formulation that is capable of describing heat and
mass transport for freezing of partially saturated, partially
frozen nonheaving soils, to develop a similarity solution for
freezing of horizontal initially unfrozen unsaturated soil, and
to use the solution to provide quantitative analysis of the
prevailing freezing processes, the resulting morphological
structures, and the model limitations associated with incipi-
ent heaving.

[7] The paper is organized as follows. In section 2, we
introduce the formulation and derive closure relationships
with the assumption of thermodynamic equilibrium. The
physical settings of the system that allow a similarity solu-
tion are presented and a dimensionless mathematical model
is developed in section 3. In section 4, we provide a quali-
tative analysis of the model and construct possible modes
of the solution. Numerical results and a discussion of vari-
ous modes are presented in section 5, and a comparison
with experimental observations is illustrated in section 6.
The morphology of the freezing zone and the calculation of
pore pressures are discussed in section 7, along with a dis-
cussion of the limitation of the ice pressure model. Section
8 summarizes our main conclusions.

2. Theory

[8] The conceptual idea of the progression of freezing in
an unsaturated soil can be described by considering an ini-
tially uniformly moist column of unsaturated porous media
in horizontal orientation. In addition to being initially uni-
formly moist, the column is initially at uniform temperature
above the freezing point of pure water at the prevailing un-
saturated state. The column is then subjected to a freezing
temperature on the left end, while on the right end the tem-
perature and moisture content are held steady at their initial
values. The left boundary is impermeable to liquid water
flow. Upon initiation of freezing, the freezing will progress
to the right, while liquid water will move from the right to-
ward the zone where freezing occurs. With the formation of
ice in the pores, up to three distinct zones form in the col-
umn, as will be shown in the theoretical and mathematical
analysis to follow. One zone, the one closest to the freezing
boundary, will have pores completely filled with ice and liq-
uid water; that is, the air will no longer be present. We refer
to this as the WI zone. A second zone, one with liquid water
and air and no ice, will exist to the right. We will refer to
this one as the AW zone. One other possible zone can exist
depending on the freezing rate and porous media properties,
and that zone will have ice, liquid water, and air present.
This zone, referred to as the AWI zone, if it exists, will
occur between the WI zone and the AW zone. The configu-
ration of air, water, and ice in the porous medium can be
viewed at the pore scale using the theoretical concepts pre-
sented by Miller [1973].

[9] A diagram relating the equilibrium state of the ice–
liquid water–air at the pore scale [Miller, 1973, 1980] is
illustrated in Figure 1, which also shows the core-scale sat-
urations of liquid water, ice, and air within the porous me-
dium as related to temperature. The core-scale plot is the
porous medium volume average representation of the same
equilibrium states shown for the pore scale. Six principal
states of the freezing process are distinguished by two
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critical temperatures T� and T�� and are presented in the
saturation-temperature plane as well as in the correspond-
ing pore-scale diagrams. The initial unfrozen porous me-
dium is at a temperature above the freezing point and is
shown by the solid point labeled I. At the pore scale, only
air and the liquid water will be present in the pore space, as
seen in pore-scale diagram I. As temperature decreases to a
critical temperature T�, a stable ice grain will form in the
liquid-filled crevices of the pore, as shown in pore-scale
diagram II. That critical point II and the decrease in liquid
water content while moving from I to II are also shown on
the graph for the core-scale. As temperature continues to
decrease, the initially formed ice grain will continue to
grow, as shown in pore-scale diagram III, further increasing
the ice content and decreasing the liquid water content. This
continued ice growth assumes that a liquid water supply is
connected to the pore through the liquid-filled crevices. In a
soil that water supply would be from water flowing to the
pore from other pores containing liquid that are at a higher
temperature. At a second critical temperature given by T��

the growing ice grain will suddenly grow to fill the entire
pore space, forcing out the resident air by drawing in liquid
water and freezing it, as seen in pore-scale diagrams IV and

V. This last condition is seen as a sudden jump in the ice
content of the core presented in the core-scale graph by the
transition from state IV to state V. The sudden change in
total water saturation between states IV and V is due to a
drop in air content and a sudden increase in ice content and
is not due to an increase in liquid water content. Each of
these states of ice content is an equilibrium state based on
the first law of thermodynamics and can be described by the
generalized Clapeyron equation, which will be presented in
section 2.3. The decrease in temperature from T�� causes
further freezing of water in the system that does not contain
air, as illustrated by pore diagram VI. Expansion of ice due
to freezing forces water out of the pore space, and this
means that water will flow in the direction of the warmer
region. While total water saturation remains at the maxi-
mum value of unity during the transition from V to VI, the
liquid water saturation decreases, as shown by the dashed
line V0–VI0.

[10] We will define two key morphological characteris-
tics of the freezing zone (between points II and IV, the
AWI zone) for the sake of reference. Some freezing also
occurs in the zone behind IV, but the amount of ice forma-
tion is small compared to the ice formation in the zone

Figure 1. (top) A pore-scale diagram of six key equilibrium states during the freezing process and
(bottom) the core-scale saturations of unfrozen water, ice, and air within the porous medium at the same
equilibrium states in the corresponding pore-scale representation. The core-scale plot represents the vol-
ume-averaged quantities for a porous media. Changes in the saturations are shown by the solid and
dashed lines, with the key states indicated by the solid circles and numbered from I to VI. Labels for the
states are as follows: I, no ice; II, stable ice crystal forms; III, growth of ice crystal in crevice and pore
throat; IV, threshold to filling pore with ice; V, pore filled with ice with liquid water as films and crevice
edges; VI, continued ice formation into smallest spaces. Values of T� and T�� represent two critical tem-
peratures at which the inception of ice grain formation or collapse of the air space, respectively occur
during the freezing process. The zone diagram in the SwðTÞ plane is divided into two domains by the line
A-B, which is the line given by the equilibrium relation (11). The AWI zone occurs along this equilib-
rium curve, while zones AW and WI occur when values of Sw and T belong to the domain to the right or
to the left of the AWI curve, respectively.
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between II and IV. The leading edge of the freezing zone
will be referred to as the front of the freezing zone, and this
corresponds to the leading edge of pore water freezing at
point II. The trailing edge of the freezing zone exists at
point IV and will be referred to as the tail of the freezing
zone. For some initial and boundary conditions the AWI
zone will not exist ; that is, points II and IV coincide, but
even then the ice formation occurs but at a point instead of
over a finite distance.

[11] Each of the aforementioned zones, WI, AWI, and
AW, are outlined in the core-scale diagram in Figure 1.
Whether or not the AWI zone will exist in a porous me-
dium will depend on the characteristics of the porous me-
dium and on the rate of advancement of the leading
freezing front. If the advancement rate is slow enough, the
AWI zone can be completely suppressed, and state II coin-
cides with state IV. For this case the front and the tail of
the freezing zone coincide with each other.

[12] In the analysis to follow the freezing soil column is
assumed to be rigid, isotropic, and homogeneous and in
horizontal orientation. Following an approach developed
by Harlan [1973] and adopted in other studies, the mathe-
matical model developed is based on the principles of mass
and thermal energy conservation, supplemented by equilib-
rium relations appropriate for each zone. The assumption
of a rigid porous medium means that the medium will
remain intact even with a large rise in ice pressure, and
therefore, ice lens formation and frost heave are not consid-
ered in the analysis. The main focus of the analysis is to
evaluate the processes of liquid water movement to the
freezing zone and the accumulation of ice within and
behind that zone, along with the increase of ice pressure
within the WI zone. The effects of this ice pressure buildup
on the liquid water flux are also of interest. The phenom-
enon of ice lens formation in freezing porous media is of
interest to us, but the associated analysis will be relegated
to future analyses.

2.1. Balance Equations

[13] During freezing, a pore void may be occupied by
water (subscript w), air (a), and ice (i), simultaneously, and
hereby the corresponding core-scale saturations S are sub-
ject to the constraint

Sw þ Si þ Sa ¼ 1: ð1Þ

[14] The balance equation for total mass of water present
in both liquid and solid phases may be expressed as

�
@

@t
�wSw þ �iSið Þ þ �w

@q

@x
¼ 0; ð2Þ

where t is the time, x is the spatial coordinate positive
downward, � is the porosity, �w and �i are the density of
liquid water and ice, respectively, and q is the water flux.
We note that ice is considered immobile and a possible ice
propagation could occur only through the regelation pro-
cess of water freezing and ice melting.

[15] Adopting the similarities between ice-free and air-
free conditions in soil leads to the flow of water in freezing
soils being described by the same principles as the flow
in unfrozen unsaturated soils, with the flow driven by

gradients in water pressure heads  w and the gravitational
potential head. For this Darcy’s law for flow is assumed to
apply:

q ¼ �K
@ w

@x
þ K; ð3Þ

with the hydraulic conductivity function K being dependent
on both water and ice saturations as

K ¼ KsS
2bþ3
w 10�E�Si : ð4Þ

Here Ks is the saturated hydraulic conductivity, and b is the
pore size distribution index. The first term in (4) is the
Brooks and Corey model [Brooks and Corey, 1966] devel-
oped for ice-free unsaturated soils media. Jame and Norum
[1980] noticed and later Nakano et al. [1983] experimen-
tally demonstrated that ice accumulation within pore voids
can contribute to significant decreases in the ability of liquid
water to flow through partially frozen porous media. To
accommodate the effect of restriction of flow paths due to
ice blockage of pores, the second term in the hydraulic con-
ductivity function in (4) was introduced by Taylor and
Luthin [1978]. The empirical constant E, called the imped-
ance factor, should be calibrated with available data from
experiments.

[16] The energy balance equation can be written for
freezing soils as

@

@t
CmTð Þ � ��iL

@Si

@t
þ Cw

@

@x
qTð Þ ¼

@

@x
�m

@T

@x

� �

; ð5Þ

where Cm and Cw are the bulk and liquid water volumetric
heat capacity, respectively, � is the thermal conductivity,
and L is the latent heat of freezing. The second term on the
left-hand side of (5) represents change in energy due to
the latent heat released during freezing. The heat capacity
and thermal conductivity of the medium denoted by the
subscript m may be functions of pore content and soil
properties.

[17] With proper constitutive relationships describing
physical and hydraulic properties of the medium, the sys-
tem of equations (1)–(5) is valid within the AW, AWI, or
WI zones. In sections 2.2–2.4, supplemental equilibrium
relationships for each of the three possible zones are dis-
cussed and presented.

2.2. Unsaturated Unfrozen Zone (AW Zone)

[18] The AW zone represents an ice-free unsaturated
soil that leads to zero ice saturation and hence zero ice
pressure  i :

Si ¼ 0;  i ¼ 0: ð6Þ

Equation (6) eliminates input of ice in the energy and mass
balance equations and transforms the model to a standard
system of equations for water and energy transport in un-
saturated porous media [Luikov and Mikhailov, 1965]. The
system is completed by a water retention function that pro-
vides a relationship between water saturation and water
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pressure head. In this study we adopt the Brooks and Corey
model [Brooks and Corey, 1966]:

 w �  a ¼ PcðSwÞ; PcðSwÞ ¼  sS
�b
w ;  w �  s;

Sw ¼ 1;  w >  s;
ð7Þ

where  sð< 0Þ is the air entry potential and b is the Brooks
and Corey model exponent. The capillary pressure function
PcðSwÞ is negative and increases from negative infinity to
 s as Sw grows to unity. In the formulation presented in this
paper the air pressure  a will be assumed to be zero gauge
pressure. The case when soil becomes saturated (Sw ¼ 1) is
not of interest and will be considered only as a limiting
case for the solution that is developed for unsaturated
conditions.

[19] The AW zone is depicted in Figure 1 as the region to
the right of the curve A–B, which is based on the thermody-
namic equilibrium conditions defined by (11) in section 2.3.
We note that in this region, capillary forces keep the media
unfrozen even if the temperature is below 0�C but higher
than the first critical temperature, T� < T < 0�C. The freez-
ing process related to the AW zone is illustrated in Figure 1
as the I–II curve.

[20] Relations (6) and (7) complete the model in the AW
zone.

2.3. Unsaturated Frozen Zone (AWI Zone)

[21] In the AWI zone, ice crystals are formed but do not
occupy all of the empty space within a pore void. This
allows ice to grow without resistance for expansion, and
therefore, we can pose a statement that the ice pressure
holds zero within this zone:

 i ¼ 0: ð8Þ

[22] Miller [1980] suggested that drying and wetting
phenomena in ice-free unsaturated soils are very similar to
freezing and thawing phenomena in air-free frozen soils. In
simple terms, as soil pores drain or dry by evaporation,
spaces initially occupied by water are replaced by air. In
the analogy the same occurs in soils during freezing. Water
now is replaced by ice instead of air. The capillary forces
on the water-air interfaces resist the draining of liquid
water from the pores, and in the same way the capillary
forces on the water-ice interfaces resist the change of phase
of the liquid water to ice. This similarity, studied by Koop-
mans and Miller [1966] and Spaans and Baker [1996],
accounts for the use of the same water retention function
for both drying-wetting and freezing-thawing phenomena.
Although this consideration was primarily developed for
air-free saturated frozen soils by the similitude theory, it
has been widely used for unsaturated freezing soils.
Assuming that ice behaves similar to air, it yields a relation
similar to (7):

 w �  i ¼ �PcðSwÞ: ð9Þ

The coefficient � represents a ratio of specific surface ener-
gies at the air-water and ice-water interfaces. The value of �
depends on the type of soil. Under saturated conditions,
Koopmans and Miller [1966] concluded that for colloid-free

soils, � ¼ 2:2, while � ¼ 1 for colloidal soils. Given the
uncertainty in defining � and keeping the model simple
enough, in this paper we set � ¼ 1.

[23] The presence of ice and water within the pore struc-
ture leads to the occurrence of ice-water interfaces. Following
the assumption of equilibrium at any instance in the soil, we
present the generalized Clapeyron equation [Miller, 1980]:

 w

�w

�
 i

�i

¼
L

�wgTf

T ; ð10Þ

where g is the acceleration due to gravity and Tf ¼ 273:15
K. Substituting zero ice pressure (8) into (9) and (10) and
then combining the resulting equations into one form yields
PcðSwÞ ¼ LT= gTf

� �

, or

Sw ¼
LT

g sTf

� ��1=b

: ð11Þ

We note that having  s < 0 and T < g sTf =L < 0 main-
tains positive values of the expression on the right-hand
side of (11). The power function type relationship (11)
between temperature and water saturation is similar to what
other studies have used as the regression fit equation for
available experimental data [Spaans and Baker, 1996].

[24] In Figure 1, the liquid saturation in the AWI zone
occurs along the line II–V0, which is expressed by the equi-
librium relation (11). The freezing process shown as the
variation of total water saturation follows the line II–III–IV
for T�� < T < T�. Equations (8), (9), and (11) complete the
model in the AWI zone.

2.4. Saturated Frozen Zone (WI Zone)

[25] In the WI zone, there is no air present in the pore
voids. This results in Sa ¼ 0 and modifies (1) into

Sw þ Si ¼ 1: ð12Þ

[26] The presence of an ice-water interface within the
pore voids and with the assumption of local thermody-
namic equilibrium validates the use of the generalized Cla-
peyron equation (10) for the WI zone. As discussed,
equation (9) was originally introduced for saturated soils
and is therefore valid for the WI zone. The difference with
the AWI zone is that the presence of air in the voids allows
space for ice to expand in a pore during the freezing pro-
cess, while in the WI zone, ice needs to push out water in
order to expand. Ice has a specific volume higher than
water ; thus, for a fixed mass of water that transforms into
ice, more space is needed to accommodate the expansion,
hence creating internal pore stresses. This forces ice pres-
sure to be nonzero (positive) in the WI zone. Expressing  i

from (9) and substituting it into (10) yields

 w ¼
�w

�w � �i

PcðSwÞ �
�i

�w � �i

L

gTf

T : ð13Þ

[27] In Figure 1, the WI zone is depicted as the region to
the left of the AWI zone. Rather than following the equilib-
rium curve segment shown by V0–B as given by (11),
which assumes a zero ice pressure, a departure line, shown
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by V0–VI0, is followed because of the nonzero ice pressure.
Equations (9), (12), and (13) complete the model in the
WI zone.

[28] With supplementary thermodynamic equilibrium rela-
tions developed separately for each zone, the system of equa-
tions for freezing in partially saturated porous media is now
complete and needs to be supplemented with initial and
boundary conditions for each specific problem.

3. Mathematical Model

[29] A schematic of the physical system studied in this
paper is presented in Figure 2. We consider a one-direc-
tional freezing of a semi-infinite horizontal unsaturated soil
column in x 2 ½0;1Þ. Initially, all characteristics of the
medium are uniform; the soil is unfrozen, has water satura-
tion Sw1, and has ice saturation Si ¼ 0, and at temperature
T1 greater than the freezing point of pure water in the un-
saturated porous media, Tmin

1 ¼ gTf PcðSw1Þ=L, as given by
(11). These initial conditions also characterize the system
at the boundary x ! 1 for t > 0. At x ¼ 0 the freezing
temperature is held constant at T0. To ensure freezing
occurs at the freezing boundary, the freezing temperature
must be below the negative temperature controlled by the
initial capillary pressure drop in (11): T0 < Tmin

1 . This
results in partial freezing of water near the freezing bound-
ary x ¼ 0, which expands to the right with time while freez-
ing proceeds. The boundary x ¼ 0 is considered to be
impermeable for water flow.

[30] One possible distribution of total water saturation
and temperature is presented in Figure 2. The sequence of
WI, AWI, and AW zones represents a logical occurrence of
different zones during freezing of soil columns. Zone order
is characterized by the two critical temperatures T� and T��

mentioned in section 2 and the corresponding transition
points x� and x��. Here it is assumed T0 < T��.

[31] The set of equations (1)–(3) and (5) with either equa-
tions (6) and (7) for the AW zone, equations (8), (9), and
(11) for the AWI zone, or equations (9), (12), and (13) for
the WI zone represents a complete system of equations to
describe heat and mass transport with phase change in non-
heaving freezing unsaturated soils. This system is solved for
seven variables, Sw, Si, Sa,  w,  i, T, and q, and is supple-
mented by the following initial and boundary conditions:

t ¼ 0; x > 0; Sw ¼ Sw1; Si ¼ 0; T ¼ T1; ð14Þ

t > 0; x ¼ 0; q ¼ 0; T ¼ T0: ð15Þ

Condition (14) also characterizes the system at infinity for
t > 0.

3.1. Nondimensionalization

[32] The mathematical model developed for the studied
problem consists of two partial differential equations, a set of
algebraic equations, and fixed initial and boundary condi-
tions. This situation allows a solution to be self-similar with
new coordinate in a form of xt�1=2 and flux proportional to
t�1=2, which transforms the original system into a system of
ordinary differential equations. Scaling variables with their
reference values, we introduce the following nondimensional
functions:

� ¼ x

ffiffiffiffiffiffiffi

Cm

t�m

r

; Q ¼ q
�t

�

ffiffiffiffiffiffiffiffi

tCm

�p

s

;

� ¼
T

T1
; pw ¼

 w

j sj
; pi ¼

 i

j sj
:

[33] The scaling ensures that �, pw, and pi have the same
sign as their respective dimensional functions. For the sake

Figure 2. Schematic of total water saturation and temperature distributions during a directional freezing
of a one-dimensional horizontal column. A sequence of three zones (WI, AWI, and AW) divided by the
two transition points x� and x�� represents a logical split of the physical domain during the freezing process.
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of clarity of presentation and construction of the solution,
the heat capacity Cm and the thermal conductivity �m are
assumed to be constant, while the hydraulic conductivity K
is assumed to be independent of ice with E ¼ 0 for now.
The influence of the parameter E will be discussed in sec-
tion 5. The gravity term in (3) is also neglected as the anal-
ysis at hand is for a horizontal column. Then, the system of
equations may be rewritten in nondimensional form suita-
ble to all zones as (a prime indicates a derivative with
respect to �)
Water balance

� �t

�

2
S0

w þ �S0
i

� �

þ Q0 ¼ 0; ð16Þ

Heat balance

�
�

2
�0 þ

�

2
StS0

i þ ðQ�Þ0 ¼ �0 0; ð17Þ

Liquid water flux

Q ¼ �KðSwÞp
0
w; ð18Þ

AW zone G < 0ð Þ

pi ¼ 0; pw ¼ PcðSwÞ; Si ¼ 0; ð19Þ

AWI zone G ¼ 0ð Þ

pi ¼ 0; pw ¼ PcðSwÞ; � ¼ "pw; ð20Þ

WI zone G > 0ð Þ

Sw þ Si ¼ 1;

pi ¼ pw � PcðSwÞ;

pw ¼ PcðSwÞ þ
�

1 � �
GðSw; �Þ;

ð21Þ

where

PcðSwÞ ¼ �S�b
w ; KðSwÞ ¼ kS2bþ3

w ;

GðSw; �Þ ¼ PcðSwÞ �
�

"
:

The boundary conditions are expressed as

� ¼ 0; � ¼ �0; Q ¼ 0 ð22Þ

� ! 1; � ¼ 1; Sw ¼ Sw1; Si ¼ 0: ð23Þ

The dimensionless parameters in (16)–(21) are defined as

� ¼
�i

�w

; �t ¼ �
Cw

Cm

; St ¼
��iL

CmT1
;

" ¼
gTf j sj

LT1
; k ¼

Ksj sjCw

�m

:

[34] The system (16)–(21) contains six unknown func-
tions: Sw, Si, pw, pi, T, and Q. The air saturation may be
found from (1). The type of zone can be determined by the
function GðSw; �Þ, which represents any deviation from the
equilibrium condition representing the AWI zone. In that
regard, G < 0 in the AW zone, the WI zone exists where
G > 0, and the AWI zone exists where G ¼ 0.

3.2. Weak Solution

[35] Equations (16) and (17) represent two balance equa-
tions for � and either Sw or pw. There is no defined transport
equation for Si since ice is assumed to be immobile. In the
WI zone, Si ¼ 1 � Sw, while Si ¼ 0 in the AW zone. Sub-
stituting these expressions of Si into balance equations (16)
and (17) yields two ordinary differential equations that are
of a standard parabolic type within the two-phase AW and
WI zones. With known conditions at both ends of each
zone, functions �, Sw, and pw represent continuous func-
tions within these zones. Ice saturation is continuous in the
WI zone as well. For the AWI zone �, Sw, and pw are
related by (20), and Si must be found as a solution of the
system of equations. Substituting pw ¼ �=" from (20) into
(16) and (18), eliminating �00 by equating the resulting
equation with (17), and expressing S0

i yields the following
equation for the AWI zone:

�

2
QS0

i ¼
�

2

K

"
1 �

Sw

b

� �

�
�t Sw

b �

� �

�0 þ
K

"

2b þ 3

b �
þ
K

"

� �

�0ð Þ
2
;

ð24Þ

where

Q ¼ St þ ��t�ð Þ
k

"
S2bþ3

w þ ��t:

Although ice is assumed to be immobile, equation (24) may
be treated as the ‘‘transport’’ equation for ice in the AWI
zone. This differential equation is hyperbolic and may yield
a weak solution, resulting in Si being discontinuous. Since �
(also pw and Sw through (20)) obeys the parabolic nature of
equation (17), these functions are continuous in the AWI
zone. To compensate for discontinuity in Si, first derivatives
of temperature, water pressure, and water saturation must
also be discontinuous.

[36] According to the theory of weak solutions [Whitham,
1974], if the discontinuity occurs within the AWI zone at
the point � ¼ �d , then two conditions can be derived at that
point from the balance equations (16) and (17) as (hereafter
subscript plus and minus indicate the function at the corre-
sponding side of the discontinuity)

� ��t

�d

2
Sijþ � Sij�
� �

¼ kS2bþ3
wd p0wjþ � p0wj�

� �

St þ ��t�dð Þ
�d

2
Sijþ � Sij�
� �

¼ �0jþ � �0j�;

ð25Þ

where �d ¼ �ð�dÞ and Swd ¼ ��d="ð Þ�1=b:
[37] In weak solutions the discontinuity is stable with

respect to the independent variable if the stability condition
written at both sides of the jump is satisfied. Applying this
methodology to (24), the stability condition relates to the
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function Q. In detail, the discontinuity at any point within
the AWI zone is persistent if the following conditions are
met at both sides of �d :

Qjþ > 0; Qj� < 0: ð26Þ

If the discontinuity occurs at the end of the AWI zone
where the adjacent zone is either the AW zone or the WI
zone, then (26) should be satisfied at the corresponding
AWI side of the jump. If (26) is not satisfied at any side of
the discontinuity, then the jump in Si is considered to be not
persistent with �, and if it occurs, it will dissipate with �.
For the self-similar formulation this means that a jump can-
not exist at this point. The conditions (26) will be employed
in construction of the solution in section 4.

4. Construction of Solution

[38] In the self-similar formulation, the soil column
being unsaturated and unfrozen at the initial time dictates
the existence of the AW zone for large �. A constant freez-
ing temperature �0 forces ice to form in the soil, and either
an AWI or a WI zone must exist adjacent to � ¼ 0. The
length of these two zones and the transition from one zone
to another with increasing � cannot be assessed without
having a numerical or analytical solution to the governing
equations. Nonlinearity of the equation system (16)–(21)
and multizone structure of solution make analytical study
of the problem difficult and unattainable. Instead, having a
mathematical problem formulated in a form of a system of
ordinary differential equations (16) and (17) complemented
with individual algebraic conditions (19)–(21) in each zone
allows solving the problem as a Cauchy problem if the
zone structure and the corresponding initial condition at the
beginning of each zone is known. Here a trial-and-error
method is used in solving the system of equations to deter-
mine the existence of the individual zones and quantify the
transition between zones that do exist. The trial-and-error
method consists of adjusting the initial conditions at � ¼ 0
until the corresponding specified values of dependent varia-
bles are reached at � ! 1. Numerical solution within each
zone is based on the fifth-order Runge-Kutta method with
adaptive step size control implemented in MATLAB [The
MathWorks, 2008].

4.1. Zone Near n 5 0

[39] The analysis begins with the zone adjoining the
freezing boundary at � ¼ 0. By definition that zone is either
the WI zone or the AWI zone. If it is assumed that the AWI
zone adjoins � ¼ 0, then having both water pressure and
water saturation being functions of temperature according
to (20), a no-flow boundary condition (22) forces �0 ¼ 0 at
� ¼ 0 and makes the total number of boundary conditions
to be satisfied by the heat transport equation equal to three,
which is one too many. This defies the existence of a solu-
tion and, as a result, leads to the conclusion that only the
WI zone can adjoin � ¼ 0. With the existence of the WI
zone next to � ¼ 0 the conditions require only two bound-
ary conditions to be satisfied by the heat transport equation.
Another way to explain the impossibility of having the
AWI zone on the boundary is that as mentioned above the
no-flow boundary condition for water forces the heat flux at

the boundary to be zero, and this is not physically correct
as heat needs to be drawn out through the boundary to pro-
duce the freezing process.

[40] In the WI zone all variables are continuous, and
G > 0. Let ��� be the rightmost boundary of the WI zone.
The coordinate ��� is found by satisfying the condition
G ¼ 0. Within the WI zone � 2 ½0; ���Þ functions � and Sw

are found by solving the Cauchy problem (16)–(18) and
(21) with four initial conditions:

� ¼ 0; � ¼ �0; �0 ¼ �00; Sw ¼ Sw0; S0
w ¼

�

b"
Sbþ1

w0 �00: ð27Þ

The last condition in (27) is derived from the no-flow
boundary condition and (21). Values �00 and Sw0 are varied
to match conditions (23) at the right boundary in the trial-
and-error method.

[41] At the right end of the WI zone the temperature
reaches its critical value ���. The values of �, Sw, pw, and pi

are found at the left side of ��� according to the equilibrium
conditions (20), while ice saturation can be discontinuous:

� ¼ ���j�; � ¼ ���; pi ¼ 0; pw ¼
���
"
;

Sw ¼ �
���
"

� ��1=b

; Si ¼ 1 � �
���
"

� ��1=b

:

ð28Þ

[42] The transition to either the AWI or the AW zone
must occur at ���, and two modes of solution can be distin-
guished. We call it mode A if the AWI zone occurs and
mode B if the AW zone occurs (see Figure 3). For either
mode a discontinuity in Si exists at ���. As evident from
(26), the discontinuity is stable if the stability condition
(26) is satisfied at the right-hand side of the jump or
Qð���Þjþ > 0. For a wide range of soil parameters, T��

varies from �0.5 to �3�C, which yields ��tj���j=St ¼
CwjT��j=ð�wLÞ � 1 and proves the stability condition
Qð���Þjþ > 0.

4.2. Mode A

[43] Mode A occurs if Sið���Þjþ > 0. The AWI zone
begins at ��� and extends to �� (�� > ���). Distributions �
and Si in this zone can be found as a solution of the Cauchy
problem (16)–(18) and (20) with initial conditions for
�0ð���Þjþ and Sið���Þjþ derived from (25):

� ¼ ���jþ; � ¼ ���; Sijþ ¼ Sij� þ
2K��

ð1 � �Þ���Q��
G0j�;

�0jþ ¼ �0j� þ
"

1 � �

Q�� � ��t

Q��
G0j�;

ð29Þ

where G0j� ¼ bS�b�1
w�� S0

wj� � �0j�=" and values at � ¼ ���j�
are specified in (28). In this zone, water saturation is defined

as Sw ¼ ��="ð Þ�1=b
, and water pressure is defined as

pw ¼ �=".
[44] As mentioned above, at the beginning of the zone,

Qð���Þjþ > 0. As � increases, temperature also increases,
followed by growth of Q and decrease of Si. Any disconti-
nuity in the AWI zone is not permitted according to (26) as
Q stays positive if applied at the left side of the jump.
Therefore, Si is continuous in the AWI zone, which ends
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only at a point �� where Si reaches zero. At that point the
second critical temperature �� is reached, and the zone
merges continuously into the AW zone that extends to in-
finity. A continuous transition of �, Sw, and their first deriv-
atives at �� leads to a Cauchy problem for Sw and � in the
AW zone � 2 ð��;1Þ with four initial conditions:

� ¼ ��jþ; � ¼ ��; �0jþ ¼ �0j�; Sw ¼ �
��
"

� ��1=b

;

S0
wjþ ¼ �

Sw�

b��
�0j�:

ð30Þ

In the AW zone, pw ¼ PcðSwÞ and Si ¼ 0. The profiles of
ice, water, and total saturations are shown schematically in
Figure 3a.

4.3. Mode B

[45] In mode B, ice saturation at ���jþ is equal to zero,
and the WI zone transitions straight to the AW zone. The
solution can be viewed with the AWI zone degenerated
into a single point � ¼ �� ¼ ���, where the critical tempera-
tures ��� and �� coincide. The solution for the WI zone in
mode B is similar to the derivation of the WI zone in mode
A. Also similar to mode A, the AW zone extends to infin-
ity, and functions � and Sw are found as solutions to the
Cauchy problem (16)–(19) with initial conditions for
�0ð���Þjþ and S0

wð���Þjþ derived from (25):

� ¼ ���jþ; � ¼ ���; Sw ¼ �
���
"

� ��1=b

;

�0jþ ¼ �0j� �
�

2
St þ ��t���ð ÞSij�;

S0
wjþ ¼ S0

wj� þ
�

b
Sbþ1

w��

G0j�
1 � �

þ
���
2
�t

Sij�
kS2bþ3

w��

� �

;

ð31Þ

where values at � ¼ ���j� are specified in (21) and (28). The
behavior of the functions in the AW zone is similar to that for

mode A. The profiles of ice, water, and total saturation func-
tions are shown schematically in Figure 3b.

5. Analysis of Results

[46] The trial-and-error method of solving the Cauchy
problem is based on iterative adjustment of values of Sw

and �0 at � ¼ 0 until the acceptable truncation error match-
ing the specified values of �1 and Sw1 at � ! 1 is
reached. The minimum value of Sw at � ¼ 0 is specified as

Smin
w0 ¼ ��0="ð Þ�1=b

by satisfying the equilibrium condition
GðSw0; �0Þ ¼ 0, while the maximum value of Sw0 is reached
when the initial water saturation tends to unity.

[47] While solving the Cauchy problem (16)–(21), the
corresponding initial conditions are employed within each
zone (see Figure 3): the conditions (27) are used for the WI
zone in both mode A and mode B, conditions (29) are used
for the AWI zone in mode A, and for the AW zone, condi-
tions (30) are used in mode A and conditions (31) are used
in mode B. Progressing toward higher values of � with the
Runge-Kutta method, the condition G ¼ 0 is used within
the WI zone to identify the location of ��� and compute the
first critical temperature ���. Condition Si ¼ 0 is used
within the AWI zone to identify the location of �� and find
the second critical temperature ��. Two modes of solution
are distinguished by the value of Si at the right side of ���
calculated with (29). If Sið���Þjþ is positive, then mode A
occurs, and initial conditions (29) are used for the Cauchy
problem in the following AWI zone. Once Si approaches
zero while � increases in this zone, a transition to the AW
zone occurs. Conditions (30) are used as initial conditions
for the Cauchy problem in the AW zone. Mode B occurs if
Sið���Þjþ is found by (29) to be equal or less than zero. In
this case (29) is replaced with condition (31) at ��jþ, and
the AW zone extends to infinity with Si ¼ 0.

[48] Results of numerical simulations are presented for a
silt loam soil [Rawls et al., 1982] with the values of physi-
cal and model parameters listed in Table 1. In these simula-
tions the initial temperature T1 is held equal to 1�C, while

Figure 3. Profiles of ice (Si), water (Sw), and total (Si þ Sw) saturations for (a) mode A and (b) mode B
of the solution. Critical points in the profiles are marked with the solid circles and are labeled from 1 to 5,
with the corresponding equation given in the legend. A three-zone structure occurs in mode A with two
transition points, �� and ���, that envelop the AWI zone, while a two-zone structure occurs in mode B
with a discontinuous transition of Si from the WI zone to the AW zone at ��.
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values of initial water saturation Sw1 and freezing tempera-
ture T0 varied. We note that results for different values of
T1 (> Tmin

1 ) are similar to the ones presented here for
T1 ¼ 1�C.

[49] Figure 4 shows profiles of ice saturation for seven
different initial water saturations and with E ¼ 0. Solid
curves labeled from 1 to 7 correspond to Sw1 equal to 0.4,
0.5, 0.6, 0.62, 0.67, 0.8, and 0.997, respectively. Mode A
occurs for curves from 1 to 4, which are for smaller values
of Sw1. With an increase of Sw1, mode A transitions into
mode B at Scrit

w1 ’ 0:67, represented by curve 5. Mode B
also occurs for curves 6 and 7. Curve 7 represents a solu-
tion for Sw1 being at Smax

w1 ’ 0:997, a maximum value that
is slightly less than the upper limit value of unity.

[50] With freezing temperature kept constant the initial
saturation Sw1 needs to be large enough to satisfy the

condition GðSw1; �0Þ > 0 to have the freezing process occur.
Otherwise, capillary forces existing initially in the system
will keep water at the boundary from freezing. Solving this
condition for Sw1 provides the minimum value of initial sat-

uration as Smin
w1 ¼ "1=b ’ 0:355 for T1 ¼ �1�C. For the val-

ues less than the minimum allowed (0 � Sw1 < Smin
w1), the

freezing does not occur, and so the whole domain consists of

an AW zone. Mode A occurs for Smin
w1 < Sw1 < Scrit

w1, while

mode B occurs for Scrit
w1 < Sw1 < Smax

w1 .
[51] Two limiting cases of Sw1 that bound the possible

range of initial water saturation, Sw1 ¼ Smin
w1 and

Sw1 ¼ Smax
w1 , and the case of initially saturated condition

Sw1 ¼ 1 are of interest. For the case of Sw1 slightly depart-

ing from its minimum value Smin
w1, a limiting case of modes

A and B occurs. For that limiting case the WI zone exists

Table 1. Dimensional and Nondimensional Model Parameters and Their Corresponding Values for Two Soils: The Silt Loam Soil

Used in Construction of the Self-Similar Solution and the Silica Flour Used in the Experimenta

Parameter Rawls et al. [1982] Jame and Norum [1980] Units

Porosity � 0.49 0.49
Air entry potential  s �0.7 �2 m
Model exponent b 5 2 m
Saturated hydraulic conductivity Ks 4 � 10�7 6 � 10�7 m s�1

Heat capacity of soil Cm 3.2 � 10�6 3.0 � 10�6 J m�3 K�1

Thermal conductivity �m 0.7 2 W m�1 K�1

� 0.918 0.918
�t 0.64 0.683
k 1.68 2.51
St 46.95 8.7
" 5.62 � 10�3 2.8 � 10�3

aSee Rawls et al. [1982] for the silt loam soil, Jame [1977] and Jame and Norum [1980] for the silica flour. Values of other parameters are
�w ¼ 1000 kg m�3, �i ¼ 917 kg m�3, g ¼ 9:81 m s�2, L ¼ 3:34 � 105 J kg�1, Cw ¼ 4:2 � 106 J m�3 K�1, Tf ¼ 273:15 K.

Figure 4. Distribution of ice saturation for T0 ¼ �1�C, T1 ¼ 1�C, and different values of Sw1. The soil
parameters used for the calculations are from Rawls et al. [1982], as summarized in Table 1. Curves la-
beled from 1 to 7 correspond to Sw1 ¼ 0:4, 0.5, 0.6, 0.62, 0.67, 0.8, and 0.997, respectively. The corre-
sponding mode of the solution is also indicated. Curve 5 is for Sw1 ¼ Scrit

w1 ¼ 0:67 and represents a
transitional solution from mode A to mode B. Curve 7, Sw1 ¼ Smax

w1 ¼ 0:997, represents an upper end of
the range of Sw1 for the validity of the governing equations. Dashed lines envelop the region of discontinu-
ity of Si at the transition point � ¼ ���.
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only in one point, � ¼ 0, such that ��� ¼ �� ¼ 0. Ice, water
saturation, and temperature can be expressed as

�¼ 0; �¼ �0; Sw ¼ �
�0

"

� ��1=b

; Si ¼ 1� �
�0

"

� ��1=b

� > 0; �¼ �1; Sw ¼ "1=b; Si ¼ 0:

ð32Þ

The value of Sið0Þ in (32) also represents a maximum possi-
ble value for ice saturation at the freezing boundary. An
increase of Sw1 results in lower values of Sið0Þ.

[52] The case of Sw1 ¼ Smax
w1 represents an upper limit of

values of Sw1 when water saturation reaches the saturated
condition at ���. The discontinuity at ��� vanishes in mode
B, as seen in curve 7 in Figure 4, and the WI zone passes
continuously into the AW zone (� > ���), where water satu-
ration decreases from unity at ��� to Smax

w1 at � ! 1. With
an increase of Sw1 from Scrit

w1 to Smax
w1 , the water saturation

profile in the AW zone transforms from a continuous
increase to a decreasing function of � reaching a maximum
at ���. For the parameters used here, this transition occurs
at Sw1 ’ 0:96. This transition also represents a shift in
water movement in the AW zone in which flow occurs
from the warm zone to the freezing front for lower values
of Sw1 to a flow toward the warm zone from the freezing
front for higher values of Sw1.

[53] For saturations Sw1 higher than Smax
w1 the approach

used in this paper to construct a solution cannot be utilized
since for an initial saturation exceeding Smax

w1 a fully satu-
rated unfrozen zone forms between the WI and the AW
zones. In this zone, water pressure exceeds the air entry
value  s, invalidating the basis for equation (19). An exten-
sion of the approach presented here needs to be developed
to accommodate the existence of such a zone. We hypothe-
size that with the increase of Sw1 above Smax

w1 the single
point ��� where Sw ¼ 1 formed at Smax

w1 will start widening
into a finite fully saturated zone, sandwiched between the
WI and AW zones. The right end of this zone will expand
to infinity as Sw1 ! 1.

[54] The dynamics of the transition points �� and ��� as
Sw1 increases from Smin

w1 to Smax
w1 can be seen in Figure 4.

Values of ice saturation at both sides of the discontinuity at
��� are shown as dashed lines. For Sw1 at its minimum
value Smin

w1, no freezing zone is present. An increase of Sw1

above Smin
w1 results in the formation of the WI and AWI

zones. These zones uniformly expand further to higher �
while Sw1 increases until initial water saturation approaches
a threshold value (Sw1 ’ 0:5). A further increase of Sw1

beyond this threshold leads to a shrinkage of the AWI zone
while the WI zone keeps expanding. This tendency pro-
ceeds up to Sw1 ¼ Scrit

w1 at which point the AWI zone disap-
pears and mode A of the solution transitions into mode B.
Further increases of Sw1 lead to the growth of the WI zone
until its maximum length is reached at Smax

w1 .
[55] A change in the ice accumulation at ��� with

changes in Sw1 can be seen in Figure 4. The jump in Si is
largest for Sw1 ¼ Smin

w1, gradually decreasing until
Sw1 ’ 0:6, and then increasing again until the critical
value Sw1 ¼ Scrit

w1 is reached. The region of Si discontinuity
is presented as an area between two dashed curves in Fig-
ure 4. The lower curve bounds the right side of the jump,
while the upper curve bounds the left side of the jump.

[56] Profiles of water and total saturations, temperature,
water flux, and pore stress (discussed in section 7.2) are
illustrated in Figure 5 for the seven values of Sw1 previ-
ously introduced in Figure 4. The distribution of Sw for the
case of Sw ¼ Smin

w1 is presented as the horizontal dotted line
in Figure 5a. Profiles of Sw illustrated by solid lines in Fig-
ure 5a rise in value over the entire domain with an increase
of Sw1 from Smin

w1 to about 0.96. For Sw1 ’ 0:96 (results
not plotted), Sw is constant and equal to Sw1 for any
� > ���, and for this value of Sw1 the flux to the right of ���
is zero. For initial saturations above 0.96, Sw decreases to
the right in the AW zone from a maximum value at ���. A
sharp change in slope occurs at ��� because of discontinuity
in S0

w and is highly pronounced in mode B in curves 5, 6,
and 7. Total water saturation profiles (dashed curves)
clearly show a pronounced fully saturated frozen WI zone
behind the freezing zone that expands as Sw1 increases.
Temperature profiles presented in Figure 5b exhibit steeper
slopes in the freezing zones with an increase of Sw1. Simi-
lar to water saturation profiles, a change in temperature gra-
dient can be seen at the transition point ��� in each curve,
reflecting the release of latent heat due to the rapid change
in ice content. The results for Sw1 ¼ 0:80 (curve 6) essen-
tially coincide with Sw1 ¼ 0:997 (curve 7), so it is not plot-
ted separately in Figure 5b.

[57] An interesting behavior of water flux is shown in
Figure 5c. In cases 1 to 6, water is drawn from warmer
regions (AWI and AW zones) toward ���. With an increase
of Sw1, the maximum flux at the left of the AW zone grows
for solutions with mode A, while it decreases for solutions
with mode B. Water is also drawn toward the freezing zone
and to ��� from the warmer region on the right, at first
increasing as Sw1 increases but then decreasing to zero for
Sw1 ’ 0:96 (results not shown). For Sw1 > 0:96, water
flows toward the warm region in the AW zone from the
freezing zone. For all modes, water moves toward ���
within the WI zone, and the flux increases sharply in mode
B. At Sw1 ¼ Smax

w1 , shown as curve 7, water flux from the
WI zone reaches its maximum value at ��� and gradually
decreases to zero in the AW zone.

[58] The freezing rate in the column, the rate at which
the freezing front moves, is a function of both the initial
water saturation and the freezing temperature on the left
boundary. Generally, the rate will increase as T0 decreases
and Sw1 decreases. This freezing rate is manifested in the
behavior of the transition points �� and ��� as a function of
the initial saturation Sw1 and the temperature T0. The
behavior of these transition points is presented in Figure 6.
The solid lines indicate the position of the tail of the freez-
ing zone ���, while curves for the front of the freezing zone
�� are shown by the dashed lines. For smaller values of
Sw1 the majority of the domain is occupied by the AWI
zone, with the WI zone being relatively small. Decreasing
the freezing temperature T0 while keeping the same initial
water saturation decreases the WI zone. For values of
T0 close to 0�C the AWI zone is very small, and ��� almost
coincides with ��, as demonstrated by the case of T0 ¼
�0:1�C. The stronger the freezing conditions applied at the
boundary are as indicated by the lower T0, the farther the
AWI zone can expand in mode A, while the WI zone
advances farther in mode B for higher values of Sw1. With
an increase of Sw1 for T0 < �2�C, a rapid growth of the
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frozen saturated (WI) zone is observed near the merging
point of �� and ���, where the transition from mode A to
mode B occurs. A small variation in Sw1 leads to rapid
expansion of the WI zone with a collapse of the AWI zone.
The rapid growth of the WI zone can also be seen in Figure
4 while moving from curve 3 to curve 5 by changing Sw1

from 0.6 to 0.67.
[59] Results presented up to this point were developed

for the case E ¼ 0. As discussed in section 2, the imped-
ance factor E is included in (4) to lower the hydraulic con-
ductivity due to ice blockage of continuous flow paths.
This effect limits the liquid water flow and thereby signifi-
cantly affects the freezing process. As an example of the
impact that the impedance factor may have on the solution,
Figure 7 shows ice saturation distributions for various val-
ues of E. All model parameters are taken from Table 1, and
simulations are conducted for Sw1 ¼ 0:62 (see Figure 4 for
comparison). The flux toward the tail of the freezing zone
is reduced as E increases, and this results in faster ice accu-
mulation in the AWI and reduction of the WI zone. This
situation is analogous to the previously presented case with
E ¼ 0 while decreasing initial water content. For values of
E larger than 5, the WI zone diminishes to zero, and
S0

ið���Þjþ ! �1, as seen from (24) with � ! 0. In this
case, to preserve convergence of the Runge-Kutta method
the step size in � was reduced to values smaller than the
minimum computer precision, thus making completion of

numerical calculations impossible. On the basis of these
results it is clear that for the extreme case of E ! 1, there
will be no water redistribution within the freezing zones.

6. Comparison With Experiment

[60] Jame and Norum [1980] conducted an experiment
on freezing of an initially unsaturated horizontal soil col-
umn (#40 silica flour with 72% passed through a #325
sieve) that was 30 cm in length. The retention properties of
the soil used in the self-similar model are summarized in
Table 1 and were adjusted to fit the relationship between
the unfrozen water content and temperature presented by
Jame and Norum [1980]. While some parameters were
documented to be significantly variable with water content,
such as thermal conductivity and heat capacity of soil, in
our analysis they were assumed to be constant for the sake
of consistency with the model formulation. The boundary
conditions for the column are slightly different from those
used in the self-similar solution. In the case of the experi-
ment the boundary at the right is not at infinity, and the
water flux was set to zero. Test 2 presented by Jame and
Norum was held for 72 h, with temperature and total mois-
ture profiles observed at 6, 12, 24, and 72 h after the start
of the experiment. The uniform initial water content was at

Figure 6. Transition points �� (dashed lines) and ���
(solid lines) versus initial water saturation for T1 ¼ 1�C
and various freezing temperatures T0.

Figure 7. Impact of impedance factor E on distribution of
ice saturation. The curves are plotted for T0 ¼ �1�C,
T1 ¼ 1�C, Sw1 ¼ 0:62, and four values of E (0, 1, 2, and
5). A solution for the values of E higher than 5 was unattain-
able with the framework presented in this study, as the WI
zone diminishes to zero and S0

ið���Þjþ tends to infinity.

Figure 5. Profiles of (a) liquid water saturation (solid lines) and total saturation (dashed lines), (b) temperature, (c) water
flux, and (d) pore stress, with labels from 1 to 7 corresponding to Sw1 ¼ 0:4, 0.5, 0.6, 0.62, 0.67, 0.8, and 0.997, respec-
tively. The profiles of ice saturation are presented in Figure 4 for the same values of Sw1. Dashed lines in Figure 5a repre-
sent the total water saturation (Si þ Sw) and diverge from the solid lines at ��� that represent the water saturation Sw. For
curve 7, the Sw ¼ 1 at ��� and decreases to 0.997 at � ! 1, and the water flux decreases to the right of ��� and becomes
zero as � approaches infinity. Distributions of temperature and pore stress for case 6 appear to be very close to curve 7 and
are not shown.
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15% of dry weight, or Sw1 ’ 0:41. To introduce a freezing
temperature of ��6�C gradually, the drop from the initial
condition of �4�C was applied gradually within the first
4 h. The freezing front was formed soon after the begin-
ning, and the induced water flow from the warm end started
to lower moisture content ahead of freezing after about 6 h.
The total moisture content behind the freezing front was
relatively constant, apparently because of a lack of water
movement in the freezing zone.

[61] To match results of the experiment with the self-
similar solution constructed in section 4, the (x; t) coordi-
nates for the observed times of 6, 12, 24, and 72 h were
transformed into the self-similar coordinate �. Since the ex-
perimental column was of finite length, the larger the
observed times, the shorter the column domain in the �
coordinate. Measured values of total saturation (Si þ Sw) at
6, 12, 24, and 72 h presented in Figure 8 show an approxi-
mate decrease of 5%, 10%, 17%, and 41% over the initial
value of 0.41 at the warm end of the column, respectively.
Within the level of the reported 20% accuracy for the exper-
imental measurements, these values indicate that the meas-
ured moisture distributions exhibit close to self-similar
behavior up to the 24 h observation time. Observations for
times later than 24 h showed a significant decrease in water
content at the warm end of the column, mainly because of
the redistribution of water resident at the warm end.

[62] Total water contents behind the freezing front fluc-
tuate over the value of 0.55 for all measurements, thus
demonstrating similar freezing and water redistribution
behavior in the frozen zone. The position of the freezing
front for the times of 6, 12, and 24 h remains steady at
�� � 0:56, while for the 72 h time the freezing front is at
� 0:42, having advanced farther in terms of the dimen-
sional coordinate x and therefore having advanced close to
the warm end of the column. Since the column has finite
length, the supply of water from the warm end is limited,
so after a sufficient period of freezing, the supply of liquid
water in the warm end will have decreased significantly.

Once that saturation drops below the critical saturation for
freezing, the freezing front will halt. This condition violates
the similarity assumptions of the self-similar solution, and
therefore, the observations at these times cannot be used in
the model comparison.

[63] The self-similar transformed experimental data
between 6 and 24 h are compared with the self-similar solu-
tion presented by a solid line in Figure 8. The solution is
found to be of mode A with the WI zone being very small,
that is, ��� ’ 10�5, as seen from the ice saturation profile in
Figure 8. The total saturation profile in the AWI zone varies
slightly over the value of 0.51 and rapidly decreases to 0.26,
approaching the transition point �� � 0:6. The simulated
temperature profile, while not presented here, exhibited a
good comparison with the experimental observations.

[64] The substantial increase in ice and water contents
near the cold end due to water freezing correlates to findings
in reports on numerical simulations of one-dimensional
freezing of soil columns [Jame and Norum, 1980; Kung
and Steenhuis, 1986; Hansson et al., 2004]. The effect seen
in Figure 8 is expected to be present in well-drained, col-
loid-free soils. Such soils have relatively sharp water reten-
tion curves. In colloidal soils (soils with significant silt and/
or clay), which have water retention curves with a more
gradual PcðSwÞ function, the same behavior observed in Fig-
ure 8 is likely for the case of rapid freezing, while for grad-
ual freezing the WI zone is likely to be significant in size.

7. Discussion

7.1. Morphology of the Freezing Zone

[65] The freezing front is normally associated with the
progression of a zone of freezing within which a substantial
increase in ice content occurs. The freezing zone behind
the ice front can be either of a finite length with a gradual
increase in ice content followed by a sudden increase in ice
content (��� < ��) or simply represented by a point with a
discontinuity in ice content (��� ¼ ��).

Figure 8. Total water saturation (Si þ Sw) for the times of 6 h (open circles), 12 h (solid circles), 24 h
(crosses), and 72 h (diamonds) observed in test 2 of Jame and Norum [1980] and simulated with the self-
similar solution (solid line). The dashed curves present ice (Si) and water (Sw) saturation profiles
obtained with mode A of the self-similar solution. The WI zone is very small and bounded by
��� ’ 10�5. Values of the parameters used in the simulation are presented in Table 1.
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[66] The solution constructed in section 4 showed that
the fully saturated frozen WI zone must exist adjacent to
the freezing boundary. The length of the zone depends on
values of model parameters, initial conditions, and bound-
ary conditions. For the case of silt loam soil presented in
section 5, the zone is relatively long for mode B, while it is
shorter for mode A. For mode A, a sudden increase in ice
content occurs at the transition point ���, while ice content
changes continuously in between points ��� and �� (the
AWI zone). For mode B, the front of the freezing zone
coincides with the tail (the two transition points coincide,
��� ¼ ��) with a substantial jump in ice content at that
point. As pointed out in section 5, when initial water satura-
tion reaches the maximum value of Smax

w1 the jump at ���
degenerates, and a single fully saturated unfrozen point
forms at ���. For Sw1 higher than Smax

w1 , a finite unfrozen
fully saturated zone is hypothesized to form at the warm
side of the frozen zone.

[67] The size of ��� relative to �� and whether the jump
in ice content at ��� is substantial or not depend on the con-
ditions set for soil parameters, boundary temperature, and
initial saturation. For the results presented for the silt loam
soil in Figure 4 the jump in ice content at ��� is consider-
able for the cases labeled as mode B, and the WI zone
occupies a substantial distance. For the lower initial satura-
tions, seen in curves 1 and 2, the jump at ��� is also pro-
nounced, but the size of the WI zone is small compared to
the AWI zone. The cases shown in Figure 4 with intermedi-
ate initial saturation lead to a much lower ice content jump
at ��� and a more substantial increase in ice content in the
AWI zone.

[68] Other factors are also important in controlling the
relative size of the WI zone compared to the AWI zone.
One important factor is the E parameter in the hydraulic
conductivity function. This factor controls the redistribu-
tion of water in the freezing zone by slowing the migration
of water with the increase of E. Therefore, the higher E is,
the smaller the amount of water is that can be transported
from the warm side of the column and through the freezing
zone toward the front at ���. This forces the freezing zone
to extend farther into the warm region while making the
WI zone smaller and the AWI zone larger. The effect of
that parameter on the jump in ice content at ���, the
increase in ice content in the AWI zone, and the relative
size of the WI and AWI zones is shown in Figure 7. It is
seen from Figure 7 that as E increases, the relative size of
the WI zone decreases and the relative jump in ice content
at ��� decreases, only to be compensated for by increases in
the length of the AWI zone and an increase in the relative
ice content produced in the AWI zone.

[69] Soil texture also has a significant effect on the
makeup of the frozen zones. The results in Figure 4 are for
a silt loam soil, one that has a relatively gradual PcðSwÞ
relation. Sandy soils will have much steeper PcðSwÞ rela-
tions and, as a result, a steeper SwðTÞ function in (11). The
same drop in water content for sandy soils occurs over a
much smaller difference in temperatures than for poorly
drained soils, hence reducing the ability of water to migrate
toward the WI zone. An example of the effect of the steeper
retention relation on the morphology of the freezing zone
was illustrated for the Jame and Norum [1980] experiment.
For that case the WI zone was extremely thin.

7.2. Frost Heave

[70] Although the process of ice lens formation is not
addressed in this paper, it is of interest to quantify the pore
pressures that will exist within the porous medium under
freezing conditions. The development of these pore pres-
sures in the column will be discussed in section 7.2. As
shown in section 2, in the AW zone no ice is present, the
liquid water pressure is negative, and the air pressure is
assumed to be zero. In the AWI zone the water pressure is
again negative, the ice pressure is zero, and the air pressure
is also zero. In the WI zone the air is absent, the ice pres-
sure is positive, and the water pressure can be negative or
positive. It is the pore pressure in the WI zone that deter-
mines whether or not the porous medium will break and
frost heave will occur. Ideas about ice lens initiation and
growth were discussed by O’Neill and Miller [1985], and
the model was developed to describe frost heave and initia-
tion of consecutive ice lenses in one-dimensional freezing
of a vertical saturated soil column. Following the Terzaghi
equation, total stress at any point in the soil is expressed as
a sum of effective stress and pore stress, or ‘‘neutral’’
stress. Effective stresses represent stresses borne by the
intergranular interaction of the porous matrix to support a
part of the overburden pressure. The remainder of the over-
burden pressure is supported by pore stresses. For unsatu-
rated freezing soils, both water and ice stresses contribute
to the pore stress. Snyder and Miller [1985] proposed that
pore stress  p may be expressed by a weighting of the
water  w and ice  i stresses as

 p ¼ 	 w þ ð1 � 	Þ i: ð33Þ

The dimensionless pore pressure is expressed as pp ¼
 p=j sj. The stress partitioning coefficient 	 is a function
of water and ice contents and should be evaluated on
the basis of experimental data. In this study we set 	 as
a power function of Sw : 	 ¼ S1:5

w [O’Neill and Miller,
1985].

[71] Once the pore stresses exceed the overburden pres-
sure at any location within the soil, the effective stresses
will become zero, and the continuous pore structure of the
soil breaks up, allowing the initiation of a pure ice layer at
that location. This condition can be used as a limiting con-
dition for the validity of the model presented here since as
discussed in section 1, the formulation presented in this pa-
per is valid for a rigid porous medium and therefore cannot
be applied to the case of pure ice lens formation. Model
limitations can be evaluated by examining the pore stresses
 p. It is limited to the condition where the pore stress  p is
less than the overburden stress.

[72] Profiles of dimensionless pore stress ppð�Þ are pre-
sented in Figure 5d for various Sw1. Dimensionless pore
stresses are negative within the AW and AWI zones and
reach positive values within the WI zone only for suffi-
ciently moist initial conditions. From the simulation results,
it is concluded that the highest positive value of the func-
tion  pð�Þ is at the freezing boundary � ¼ 0. It is this value
that should be compared to the overburden pressure in
determining the validity of the developed model.

[73] Dimensionless pore stress at the freezing boundary
ppð0Þ is plotted in Figure 9 as a function of Sw1 for various
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freezing temperatures for the same parameters used to con-
struct Figure 5d. For lower values of initial water saturation
Sw1, where mode A is likely to occur, pore stresses are cal-
culated to be negative, as exhibited by curves 1 and 2 in
Figure 5d, and the model exhibits no potential for ice lens
formation. Rapid growth of the WI zone within the transi-
tion from mode A to mode B with an increase of Sw1 cor-
relates to rapid growth in ppð0Þ. The pore stresses can be
very high. As an example, for initially moist soils a dimen-
sionless pore stress value of 71 can be achieved even for
moderate freezing temperatures of �0.5�C. The dimen-
sional pore stress for this case is 50 m, using the value of
 s ¼ �0:7 m. Figure 9 indicates that lower freezing tem-
peratures and higher initial saturation lead to more likely
conditions for the occurrence of frost heave.

[74] Under actual ground-freezing conditions, ice lenses
are known to form under the surface, causing soils to heave
[O’Neill, 1983]. As shown mathematically by O’Neill and
Miller [1985] and further expanded by Fowler [1989] and
Fowler and Krantz [1994], in a vertical dimension, pore
stresses reach maximum values at a point below the surface
but not at the freezing surface as appeared for the case stud-
ied in this paper. At that maximum point the ice lens forms
and a primary frost heave begins. As freezing progresses,
the warmest side of the ice lens becomes the new upper
boundary for the one-dimensional freezing problem, and
the process of the pore stress buildup is repeated at a new
depth, causing formation of a new ice lens. The phenom-
enon of such recurrent formations of ice lenses is known as
the secondary frost heave [O’Neill, 1983].

[75] The formulation studied in this paper is different
from the problem of soil frost heave described by O’Neill
and Miller [1985]. In their formulation, O’Neill and Miller
held the ice pressure at the freezing boundary constant and
equal to the overburden pressure. This, in essence, then
allows ice to leave the domain through the freezing boundary,

thereby relieving the system from building ice pressure
right at the freezing boundary. In contrast to their formula-
tion, the formulation given in this paper satisfies the condi-
tions imposed in the laboratory experiment of Jame and
Norum [1980]. In that case, the system is considered closed,
and a no-flow boundary condition is enforced at the freezing
boundary. This boundary condition then facilitates the for-
mulation of a self-similar solution, leading to the result that
the maximum pore pressure occurs at the freezing boundary
rather than inside the domain as found by O’Neill and
Miller [1985].

[76] While the present formulation presented in this paper
does have the limitation that it assumes the soil to be rigid,
this is not an insurmountable obstacle to future progress.
Expanding the formulation by coupling in the equations for
porous media deformation will remove the assumption of
porous media incompressibility. Such a system of equations
is not amenable to the self-similarity formulation, but rather
needs to be solved numerically.

8. Summary and Conclusions

[77] In this paper, we have presented a formulation of a
mathematical model for freezing of unsaturated soils under
nonheaving conditions. The model consists of heat and
water mass balance equations with sets of constitutive rela-
tionships within three zones, AW, AWI, and WI, that corre-
spond to the proportions of ice, water, and air within pore
voids. The AW zone is unsaturated and unfrozen, the AWI
zone is unsaturated and frozen, and the WI zone is satu-
rated and frozen. We analyzed qualitative properties of the
solution in the self-similar formulation and developed a
method for solving the system of ordinary differential
equations using a Runge-Kutta method. Depending on the
properties of the soil and values of model input parameters,
the solution leads to two modes, mode A and mode B, both
of which are defined by the distribution of ice, water, and
air. The mode that occurs in a given situation depends
largely on the freezing rate. Whether this rate is considered
to be high, medium, or low depends on the moisture reten-
tion and flow transmission properties of the particular po-
rous medium, on the initial moisture saturation, and on the
temperature at the freezing boundary. The distribution
associated with mode A is composed of the WI zone near
the freezing boundary, followed by the AWI zone, with the
AW zone next to the AWI zone. The mode A distribution
occurs for conditions associated with a relatively high
freezing rate. The mode B distribution has the WI zone
near the freezing boundary, followed by the AW zone, and
it occurs for the conditions of a relatively low freezing rate.

[78] The leading edge of the freezing zone is formed by
either the abrupt change in ice content at the boundary
between the WI zone and the AW zone in mode B, or it
corresponds to the boundary between the AWI zone and
the AW zone for the mode A condition. The length of the
WI zone and the change in ice content at the warm side of
this zone are both relatively large for the mode B condition.
For the mode A condition the length of the WI zone is rela-
tively small, while the change in ice content at the warm
boundary of the zone can be large or small. When this
change in ice content is large, the change in ice content
within the adjoining AWI zone is small and vice versa.

Figure 9. Profiles of pore stresses pp at the freezing
boundary � ¼ 0 as functions of initial water saturation Sw1

for T1 ¼ 1 and various values of freezing temperature.
The negative side of the profiles is not shown.
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[79] Pore pressure within the porous medium is defined
by a linear combination of the water pressure and the ice
pressure. The pore pressure is negative in the AWI zone
because the ice pressure is set to zero in that zone. In the WI
zone the ice pressures can become positive. When the WI
zone is relatively thin, the ice pressures will be small, so the
pore pressures will remain negative. However, as the WI
zone increases in length, the ice pressures can become large,
possibly leading to positive pore pressures in excess of the
overburden pressure, a condition necessary to initiate the for-
mation of ice lenses. Ice lens formation was not considered
in this paper because the porous medium was assumed to be
rigid; however, the pore pressure calculation provides the
limit to the validity of the self-similar solution presented.

[80] The self-similar solution was derived for a freezing
experiment conducted by Jame and Norum [1980]. It was
determined that the distribution of ice and liquid water in
the experimental column was consistent with a mode A
type of distribution with a very thin WI zone. The results of
the self-similar solution compared favorably to the experi-
mental observations.

[81] The derived self-similar solution can be used as a
test for the validation of numerical schemes developed as
simulation modules for seasonal freezing and thawing in
soils in available hydrological models. An upper limit on
the initial saturation exists for the solution presented. This
limit is system parameter (boundary freezing temperature
and soil properties) dependent. For initial saturation
exceeding this upper limit the self-similar solution does not
apply. For such cases a numerical solution of the governing
equations will be necessary to provide valid results. Possi-
ble future extensions of this present work should be to
include porous media deformation to facilitate the simula-
tion of ice lens formation and frost heave processes.
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