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One�dimensional Front Tracking Based on High Resolution
Wave Propagation Methods

R� J� LeVeque� and K� M� Shyue�

Abstract� We present a simple approach to shock tracking in conjunction with conservative high
resolution shock�capturing methods in one space dimension� An underlying uniform grid is used with
additional grid interfaces introduced at appropriate points for tracked shocks� Conservative high resolution
methods based on the large time step wave propagation approach are used on the resulting nonuniform
grid� This method is stable even if some of the small cells created by the tracked interface are orders of
magnitude smaller than the regular cells used to determine the time step� A fractional step method is used
to handle source terms� Several calculations are presented to demonstrate the e�ectiveness of the method�
including an unstable detonation wave calculation where mesh re�nement in the reaction zone is required
in addition to shock tracking� Stability and accuracy results of the method are also shown for some sample
problems� The basic ideas described here can be extended to two space dimensions� as will be discussed
in a sequel paper�

Key words� front tracking� shock tracking� �nite volume methods� high resolution meth�
ods� conservation laws�

AMS �MOS� subject classi�cations� ��M��� ��M��� ��L��� ��M	��

Running title� Front tracking based on wave propagation�

�� Introduction� Our goal is to present a simple one�dimensional shock�tracking
algorithm for nonlinear systems of conservation laws possibly including source terms�

ut 
 f�u�x  ��u�������

We consider a system ofm equations� so u � lRm� The homogeneous system ut
f�u�x  �
is assumed to be hyperbolic� in the sense that the �ux Jacobian matrix f ��u� is assumed
to have real eigenvalues for each physically relevant value of the state variables u� This
is true� for example� for the Euler equations of gas dynamics which we use as our model
system� �See Section ��� Source terms can arise in various ways� Geometric source terms
arise when multi�dimensional gas dynamics is reduced to a one�dimensional problem using
symmetry �e�g�� radially symmetric �ow� or by assuming that the cross�sectional �ow is
homogeneous� as in the quasi one�dimensional nozzle problem� Source terms that are more
di�cult to handle arise in the study of nonequilibrium or chemically reacting �ows� for
example in combustion problems� A model system of this form is solved in Section ��

Clearly one�dimensional problems are of limited interest� However� there are some
problems of su�cient interest and di�culty that shock tracking is worthwhile� particularly
since it is relatively easy to implement in one space dimension and can provide a very clear
picture of the wave pattern� A number of such algorithms have been proposed in the past
�see Section 	�� We believe that our approach is particularly simple and avoids some of the
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di�culties encountered with other algorithms� The approach we pursue was �rst proposed
in �	�� for use in conjunction with the �rst order accurate Godunov method�

Many of the ideas presented here can also be extended to de�ne a relatively simple
multi�dimensional front tracking algorithm� A two�dimensional code based on the same
approach has also been developed and used to solve a variety of problems� including shock
propagation� the tracking of unstable interfaces in Rayleigh�Taylor and Kelvin�Helmholtz
instabilities� and the solution of miscible and immiscible �ow problems in porous media
�ow����� The two�dimensional algorithm will be presented in a sequel paper� The present
paper presents many of the basic ideas necessary to understand the two�dimensional algo�
rithm�

The basic idea of our shock tracking algorithm is quite simple� We use a high reso�
lution �nite volume method on a grid that varies from one time step to the next� The
vast majority of grid cells do not vary� We have a �xed� uniform� underlying grid that
is su�cient to represent the solution in smooth regions �although adaptive mesh re�ne�
ment is also used for some problems� for example in the thin combustion region of the
detonation problem considered in Section ��� Additional cell boundaries are introduced
at the locations of discontinuities in the �ow �eld� subdividing some regular cells into two
or more subcells�

In a �nite volume representation� the value in each grid cell represents the average
value of the solution over that grid cell� By having a cell boundary at the discontinuity�
we avoid the smearing and loss of accuracy that is inevitable when the discontinuity falls
within a grid cell and the discrete solution must be averaged over the cell� By using a fully
conservative high resolution shock capturing method� we ensure that features not being
tracked are still accurately computed�

The high resolution methods we employ are based on solving Riemann problems at
each interface� coupled with propagation of the resulting elementary waves� This Riemann
solution gives� in particular� information about the propagation speed of tracked discon�
tinuities� This information is used to choose the grid at the next time step in such a way
that discontinuities remain sharp� Once the new grid has been chosen� the high resolution
method we use takes essentially the same form on both regular and irregular cells�

An apparent di�culty with this approach is the fact that the discontinuity may fall
arbitrarily close to a cell boundary of the underlying grid� Subdividing the cell can thus
result in the creation of arbitrarily small grid cells� Since the �nite volume method we
employ is explicit� this can lead to either instability or a severe time step restriction�
Most shock tracking methods face this di�culty� and it is often dealt with by adjusting or
eliminating other cell boundaries to maintain a lower bound on the cell size� This leads
to unnecessary complication of the algorithm�

We avoid this di�culty by using the �large time step� ideas developed by LeVeque
������	��� A high resolution method based on wave propagation is developed that remains
stable in the presence of arbitrarily small cells� as described in Section �� The main idea
is that waves arising from the solution of Riemann problems at the cell boundaries are
propagated the appropriate distance determined by the wave speed and time step� and
used to update cell averages in any grid cell they pass through or enter� The wave may
a�ect more than one cell if the neighboring cell is very small� In this manner the stencil of
the method adjusts automatically so that the CFL condition is always satis�ed regardless
of the con�guration of the grid�
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Fig� �� A typical grid in the x�t plane when shock�tracking is used to model the collision of two shocks
with the Euler equations� The uniform grid is augmented by cell interfaces at the discontinuities� The time
step is adjusted so that the shock collision is correctly resolved�

Figure � shows a typical grid over several time steps� In this case there are two tracked
discontinuities which interact at some point� One important feature of our method is that
we adjust the time step when required so that collision of tracked discontinuities occurs
exactly at the end of a time step� As a result� the solution of the Riemann problem in
the next time step gives the exact resolution of the collision into outgoing waves� For
example� Figure � shows the collision of two gas dynamic shocks modeled with the Euler
equations� resulting in two outgoing shocks and a contact discontinuity� All three waves
are then tracked after the collision�

More details of this algorithm and additional numerical results can be found in the
technical report �	��� A sequel paper on two�dimensional front tracking is in preparation�
More details on both the one�dimensional and the two�dimensional algorithm can be found
in the second author�s thesis�����

�� Approaches to shock tracking� A wide variety of approaches have been used
over the years to develop shock tracking or interface tracking methods� We will only
mention a few of the main ideas used in one space dimension and how they relate to our
method� A concise survey of several approaches for the multi�dimensional problem is given
by Hyman����� See also Finlayson��	� and Oran and Boris��	� for discussions of speci�c
applications�

One approach is to solve the di�erential equations separately on each side of the
discontinuity using a method designed for smooth �ow� while the shock or interface is
handled in a di�erent manner using the Rankine�Hugoniot jump conditions� For example�
Mao�	�� has recently introduced a method of this type in which two sets of data near
the interface are constructed by extrapolating the data from each side to the other side�
High resolution ENO �essentially non�oscillatory� methods are applied to the extrapolated
values which now de�ne smooth functions� The method is not exactly conservative at the
interface� although errors in conservation appear to be small� This has also been extended
to two space dimensions in an interesting way using dimensional splitting�����

Another approach in one dimension is to represent the �ow entirely by a collection
of discontinuities� all of which are explicitly tracked� Following Dafermos���� a piecewise
linear equation of state is used to ensure that only discontinuities arise in solutions to
Riemann problems� This approach has been used by Hedstrom���� and by Swartz and





Wendro����� and has more recently been adopted by Risebro and Tveito���������� Since
every collision must be explicitly handled by solving a Riemann problem� and the collision
of two waves typically gives rise to m new waves �for a system of m equations�� this can
clearly lead to an explosion of information if m � 	� as in the Euler equations� �Although
Wendro����� has studied this method for a problem arising in chromatography and shows
that for this special system the number of waves remains bounded�� In general� at some
point weak waves must be suppressed in order to limit the amount of information retained�
leading to a loss of conservation� Another problem is that smooth �ow is not represented
with high order accuracy� Finally� there is the obvious di�culty of extending such methods
to more than one dimension�

Our method is perhaps closest to that of Chern and Colella���� They also use a con�
servative method on a uniform grid� with some grid cells subdivided by the tracked front�
They avoid stability problems in small partial cells by a ��ux redistribution� algorithm
that modi�es �uxes at the boundaries of these and neighboring cells in such a way that
stability is restored while conservation is maintained� Our use of the wave propagation
algorithm described in the next section has the same e�ect� In addition� we believe it to
be more solidly based on the correct physical behavior of the waves� and more amenable
to higher order extensions and theoretical analysis�

Another way to deal problematical small cells is to eliminate them by merging them
with adjacent cells� temporarily eliminating a ��xed� cell boundary in the process� This
approach is used� for example� in ���� and ����� However� this may be impossible to do if
several tracked fronts fall within one �xed grid cell� Moreover� this seems to be unnecessary
with our approach�

Finally� we want to mention that there are also a number of shock capturing approaches
that are capable of improving the resolution of discontinuities� Methods of this type
include the self�adjusting grid methods of Harten and Hyman����� and the ENO method
with subcell resolution of Harten�����

�� High resolution wave propagation methods� We begin by discussing the
high resolution numerical method that is used to compute the smooth �ow� Although this
method is related to various �ux�limiter or MUSCL methods that have been widely used
for conservation laws� the formulation is somewhat di�erent� We use a wave�propagation
viewpoint that extends easily to the case of shock tracking and maintains stability even
when very small cells are created�

We describe the method on a general irregular grid with grid spacing hj  xj�� � xj �
We use a �nite�volume formulation in which the value Un

j approximates the cell average
of the solution over the grid cell �xj � xj��� at time tn�

Un
j �

�

hj

Z xj��

xj

u�x� tn� dx�

The time step is denoted by k� Note that the grid may vary from step to step but the
method involves only two time levels� so this presents no di�culty�

The methods we use are based on solving Riemann problems at each interface xj with
data Un

j�� and Un
j � �See �	�� for an overview of such methods�� Rather than computing

the exact solution to the Riemann problem� which can be done for practical problems such
as the Euler equations but is rather expensive� we use an approximate solver developed by
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Roe���� at most interfaces� This is much more e�cient to compute than the exact Riemann
solution and in smooth regions of the �ow provides a very accurate approximation� Only at
shock collision points do we use the exact Riemann solver so that the nonlinear interaction
is accurately computed �see Section � for further discussion��

Roe�s approximate Riemann solver replaces the nonlinear equation ut 
 f�u�x  �
with data ul and ur by a linear system

ut 
 �A�ul� ur�ux  �����	�

The matrix �A�ul� ur� is chosen to have the following properties�

i� �A�ul� ur��ur � ul�  f�ur�� f�ul�

ii� �A�ul� ur� is diagonalizable with real eigenvalues�����

iii� �A�ul� ur�� f ���u� smoothly as ul� ur � �u�

Such matrices have been derived for several systems of practical interest� For the Euler
equations with a ��law gas� the form of the matrix is given by Roe�����

The solution of the linear system ���	� is a similarity solution that consists of m
discontinuities propagating at constant speeds� The jump across each discontinuity is an
eigenvector of the matrix �A� and the propagation speed is the corresponding eigenvalue�
We thus have

ur � ul 
mX
p��

rp������

where rp � lRm is an eigenvector of �A�

�Arp  �prp� p  �� 	� � � � � m�

Wave propagation methods are based on using these propagating discontinuities to update
the cell averages in the cells neighboring each interface� Condition ���� i� guarantees that
the method remains conservative�

To begin� we assume that these waves a�ect only the cells adjacent to the discontinuity
during the time step� This requires that the Courant number be less than �� The Courant
number � is de�ned by

� 
k

hmin
max
p�j

j�pjj where hmin  min
j

hj�����

and �pj represents the pth eigenvalue obtained from the Riemann problem at xj � Note
that k�pj is the distance a wave propagates during the time step� If �pj � � then we need
kj�pjj � hj�� while if �pj � � we need k�pj � hj in order that the wave stays within the
adjacent cell� Condition ����� is su�cient to guarantee this�

Godunov	s method� A �rst order accurate version of the wave propagation method
is then equivalent to Godunov�s method� with the Roe Riemann solver� on an irregular
grid� That is to say� we solve the Riemann problems at each interface over a time step of
length k and then average the resulting solution over the grid cells to obtain Un��� By
computing the e�ect of each wave on the cell average� we obtain the wave�propagation

	



j � � j j 
 �

k�pj

Fig� �� Wave propagation in the case k�pj � hj � The wave propagates entirely through one cell and
part way through the neighbor�

form of the method� We �rst initialize Un��
j � Un

j in all cells and then at each interface
xj we apply the following updates�

For p  �� 	� � � � � m do

If �pj � � then i � j � � else i � j

Un��
i � Un��

i �
�
k�pj

hi

�
rpj

We can rewrite this method as a standard �nite di�erence method in conservation
form if we look at the total contribution to each grid cell� This is described in detail
in ����� �	��� The advantage of using the wave propagation form rather than the more
traditional �ux di�erencing form is that the method can then be easily extended to the
case where the Courant number is larger than ��

For example� if kj�pj j � hj at some point in the algorithm� then the corresponding
wave should update more than one cell average� as shown in Figure 	� In this �gure� Un��

j

is updated by the entire jump rpj �

Un��
j � Un��

j � rpj�

while Un��
j�� is updated by

Un��
j�� � Un��

j�� �
�
k�pj � hj
hj��

�
rpj �

The method remains conservative with this modi�cation����� This �large time step� ver�
sion of Godunov�s method is discussed in some detail in �����

Note that each wave is propagated independently of all other waves� When the
Courant number is larger than �� waves should perhaps interact with one another and
only for linear systems of equations is it really correct to propagate them independently�
For nonlinear problems there should be a change in the strength and speed of each wave
after any collision� In spite of this� the �linearization� that we use works quite well in the
context of shock tracking� As explained in the next section� the interaction of two strong
discontinuties is handled exactly by modifying the time step� and so at least one of the
waves involved is a weak wave coming from the smooth �ow� For the interaction of weak
waves� this linearization has been analyzed in �		��

Regarding stability� we note that for a scalar nonlinear conservation law the method
is total variation diminishing �TVD� and hence is stable and convergent����� Also� for a
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linear system of conservation laws the method reduces to a scalar large time step method
on each �eld and again is stable� For nonlinear systems of equations� some oscillation
problems have been observed when large Courant numbers on uniform grids are used in
the context of shock capturing����� In this case the Courant number is large everywhere
and the linearization of the nonlinear interactions between strong waves apparently gives
di�culties� However� in the context of shock tracking� where the Courant number is
large only due to occasional small cells and we are capturing smooth �ow� we have not
observed stability problems for most calculations� In one example presented in Section ��
the Woodward�Colella blast wave interaction problem� we have experienced di�culties due
to negative pressures using the linear wave interactions� This is an extreme case in which
a strong rarefaction wave overtakes a shock that has a very low pressure in front of it�
The pressure becomes negative when the rarefaction wave passes through the blast wave
and enters the low pressure region� In Section �� we outline one possible way to handle
this di�culty� at the expense of some complication of the algorithm�

High resolution modi�cations� We now extend the method to a high resolution
method� i�e�� a method that achieves second order accuracy on smooth �ows �except
perhaps near extrema� and also avoids oscillations near discontinuities� The approach
we use is similar to the MUSCL approach of van Leer��	� in that we introduce piecewise
linear approximations to the solution in place of the piecewise constant functions used in
Godunov�s method� but the form of the method is quite di�erent and allows easy extension
to the case where the Courant number is larger than ��

We begin by solving the Riemann problems as before� using the piecewise constant
data� The resulting jumps rpj are then used to obtain slope information in each charac�
teristic family� Let

hj���� 
�

	
�hj�� 
 hj�

be the distances between cell centers� Note that
mX
p��

rpj	hj����  �Un
j � Un

j���	hj����

 ux�xj � tn� 
O�h��

So each component rpj	hj���� is the contribution to the slope arising from the pth family�
It is important to decompose the slope into components� since the waves in the di�erent
families propagate at di�erent speeds and perhaps in di�erent directions� Moreover� when
we introduce slope limiting we will do the limiting separately in each family� We wish
to limit slopes near a discontinuity in order to avoid oscillations� but wish to do this in
the family with the discontinuity without a�ecting accuracy in other families where the
solution may be smooth�

We will use 
pj to denote the slope used in the pth family over the cell �xj � xj���� The
unlimited slope is taken to be


pj 

�
rpj	hj���� if �pj � �
rp�j��	hj���� if �p�j�� � ��

�����

To avoid oscillations� the slope 
pj should be chosen based on a slope limiter� If we let 

�i�
pj

be the ith component of 
pj �i  �� 	� � � � � m� and similarly let r
�i�
pj be the ith component






of rpj� then we apply a slope limiter separately in each component� i�e�� we take



�i�
pj  ���

�i�
pj �

�
� r

�i�
pj

hj����

�
A�����

where � is some limiter function applied to the slope ratio

�
�i�
pj 

r
�i�
p�j�s	hj�s����

r
�i�
pj 	hj����

������

with s  �sgn��pj�� Any standard limiter can be used� e�g�� the well�known �minmod� or
�superbee� functions� See Sweby���� for a general discussion of limiters�

This slope is used to modify the cell averages computed via the �rst order algorithm�
The modi�cation is accomplished by shifting a certain mass between cells in a conservative
manner� The idea is best explained by considering the linear advection equation

ut 
 aux  ������

on a grid with Courant number �  ak	hmin � �� a � �� Godunov�s method is then
simply the �rst order upwind method

Un��
j  Un

j �
ak

hj
�Un

j � Un
j����������

This can be interpreted as follows� view Un
j as de�ning a piecewise constant function

�u�x� tn�� Shift this function at the propagation speed a to obtain �u�x � ak� tn�� Now
average this function over the grid cells to obtain

Un��
j 

�

hj

Z xj��

xj

�u�x� ak� tn� dx�

It is easy to verify that this gives ������� The cell average is updated by the shaded area
in Figure �a divided by the cell length�

A natural way to extend this to second order accuracy is to replace the piecewise
constant function by a piecewise linear function with slopes 
j on each cell as obtained�
for example� from ������ For the scalar equation this reduces to


j��  �Un
j � Un

j���	hj�����������

We then shift this function at speed a and average onto the grid� We thus obtain Un��
j by

updating Un
j according to the shaded area of Figure �b� An easy way to accomplish this

is to split the procedure into two pieces� In the �rst step we update cell averages using
the piecewise constant wave as in Figure �a �i�e�� we apply �������� and in the second step
we propagate the piecewise linear wave form shown in Figure �c� with zero mean value
and slope 
j�� over the �j � �� cell� We then further update Un��

j by the shaded area in
Figure �c� i�e�� we set

Un��
j � Un��

j 

ak

	hj
�hj�� � ak�
j���

�



j � � j

a�

j 
 � j � � j j 
 �

b�

j � � j

c�

j 
 �

Fig� �� a� Propagation of the piecewise constant wave� b� Propagation of a piecewise linear wave form�
c� Second order correction wave� The propagation shown in Figure b� can be decomposed into propagation
of the piecewise constant wave of Figure a� together with propagation of this correction wave�

We also update Un��
j�� by the area of the portion of the correction wave that overlaps this

cell�

Un��
j�� � Un��

j�� � ak

	hj��
�hj�� � ak�
j���

Conservation is maintained in this correction step with any choice of slopes since the above
two corrections �weighted by cell size� sum to zero�

Of course Un��
j will also be updated by the wave originating from xj��� When all of

these updates are combined� we �nd that

Un��
j  Un

j � ak

hj
�Un

j � Un
j��� 


ak

	hj
�hj�� � ak�
j�� � ak

	hj
�hj � ak�
j �

On a regular grid with slopes ������� this reduces to the Lax�Wendro� method for the
advection equation and is second order accurate�

The extension to nonlinear systems is straightforward� We apply this same technique
in each wave family� indexed by p� In the case where jk�pj	hij � � for i  j� � and j this
slope a�ects only these two cells and the updates are given by

If �pj � � then i � j else i � j � �

Un��
j � Un��

j 

kj�pj j
	hj

�hi � j�pjjk�
pi

Un��
j�� � Un��

j�� � kj�pj j
	hj��

�hi � j�pjjk�
pi

The advantage of the wave propagation form of this second order correction is that
generalization to nonuniform grids and Courant numbers larger than � is again straight�
forward� We simply average the correction wave shown in Figure �c onto whatever grid
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cells it overlaps� In general there may be more than two such cells� Further description of
this approach can be found in �	�� and �	���

For a scalar nonlinear problem on a regular grid with slopes ������ this again reduces to
a form of the Lax�Wendro� method and can easily be veri�ed to be second order accurate�
For a nonlinear system of equations on a uniform grid� this method is quite comparable
to other slope limiter or �ux limiter methods and yields similar high quality results�	���


� The shock tracking algorithm� Our grid consists of two parts� We choose a
uniform� underlying grid with mesh size h that remains �xed for all time� and we also
introduce tracked points which vary from step to step� These tracked points subdivide
some regular cells into two or more subcells� creating some irregular cells� We then view
the union of the regular cells and irregular cells as our global grid �recall Figure ��� In
each grid cell the cell average is denoted by Un

j �
In each time step our shock tracking algorithm consists of the following steps�

�� Determine the size of the next time step and the location of the tracked points at the
next time step�

�� Modify the current grid by inserting these new tracked points� Some cells will be
subdivided and the values in each subcell must be initialized�

�� Take a time step on this irregular grid using the algorithm described in Section � to
update the cell averages�


� Delete the old tracked points from the previous time step� Some subcells will be
combined and a value in the combined cell must be determined from the subcell
values�

Before describing each of these steps in more detail� we �rst discuss some possible
approaches to setting up the data structure� One possibility is to use a doubly linked list
for the entire grid �see ��� or ���� for more information on the use of linked lists�� Each
grid cell is an element of this list� with pointers to the previous and next grid cells� With
this data structure it is easy to insert and delete grid points and the distinction between
regular and irregular cells disappears� This is reasonable in Step � of our procedure� where
little distinction is made between regular and irregular cells� although we will see that we
must be careful in our choice of slopes near tracked points� We also need to keep track
of which points must be deleted in Step �� For these reasons we would also maintain a
�ag for each point that tells whether it is a regular point� an old tracked point� or a new
tracked point�

The use of doubly linked list does not extend very well to two space dimensions�
Another more general approach is to use a standard representation for the �xed grid
together with a �ag for each grid cell that indicates whether the grid cell is subdivided by
one or more tracked points� For subdivided cells� this �ag can be a pointer to another data
structure containing information on each subcell� This latter data structure also interfaces
more easily with the adaptive mesh re�nement algorithm we use� and so we have taken
this approach in our code�

We now discuss each step of this algorithm in more detail�
Step �� We begin our algorithm by solving the Riemann problem at each interface

and obtain the resulting jumps rpj and speeds �pj � Then at each interface we check each
jump rpj to see if it should be tracked� This can be done by checking� for example� if
the max�norm of rpj is greater than some prescribed tolerance � or if the jump in some
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physically meaningful variable �e�g�� density or entropy� is greater than the tolerance �
The choice of the checking criterion and tolerance  for determining the tracked waves may
depend on the speci�c problem and should be adjusted accordingly� In order to capture
shock formation� the jumps have to be checked at regular interfaces as well as at the
tracked interfaces so that new tracked points can be introduced� By examining the jumps
at the tracked interfaces� decaying shocks can also be detected and hence ignored�

Only waves corresponding to the physically relevant discontinuities should be tracked�
i�e�� shocks or contact discontinuities� Although rarefaction waves are also approximated
by discontinuities in the Roe Riemann solver� we want them to be smeared rather than
remaining sharp and so they should not be tracked even if their strength is greater than �
Moreover� due to this rarefaction wave approximation� we may obtain an entropy�violating
solution if the rarefaction wave is a transonic one� This entropy violation can be �xed in
various ways� for example by replacing the single entropy�violating discontinuity by two
discontinuities traveling in opposite directions�����

Before entering the shock tracking algorithm� we have some basic time step k� In
order to avoid the interaction of tracked waves during this time step� we adjust our time
step if needed� It will be adjusted in such a way that the collision of two tracked waves
occurs exactly at the end of a time step �recall Figure ��� This can be accomplished quite
easily� by checking the collision times of all adjacent tracked waves�

If collision occurs� in the next time step the approximate Riemann solver is replaced
by the exact Riemann solver at the collision point to insure that the resulting waves in
the next time step are well resolved� By choosing the time step in this way and using
the exact Riemann solver� we guarantee that the collision of two tracked waves is always
handled correctly�

Step �� After choosing the time step k we can compute the locations of each tracked
wave at the end of the time step� Some of these locations may coincide if two waves collide�
or if the new locations are exactly at the old grid interfaces� Also� some waves may pass
outside of our computational domain at an out�ow boundary� For each distinct wave
location in the domain� we insert a new cell interface into our old grid� Each new point
subdivides some cell into two subcells� We must assign a cell value to each of these subcells�
�see Figure � for an example�� The simplest approach is to assign the previous cell value
to each subcell� It would be preferable to use some form of interpolation to determine
more accurate values on these cells� However� doing so would change the solutions to
neighboring Riemann problems and perhaps the speed of the tracked waves� The location
of the point we are inserting might therefore be incorrect� For this reason we use the
simpler approach�

Step �� Once the new grid is constructed� the cell average values Un
j are then updated

by applying the numerical method described in Section � �see Figure � for illustration��
Since the new grid has been chosen carefully so that all the strong waves are propagated
exactly to cell boundaries� there is no smearing of the tracked waves during the averaging
process� Smooth �ow is captured as usual� Note that during this propagation process� all
waves are propagated independently� and in principle no distinction need be made between
tracked points and ordinary grid boundaries� Near tracked points� waves may propagate
through several cells due to the fact that we have created small subcells� A consequence
of this is that waves pass through one another as they would in a linear equation� without
undergoing the nonlinear interaction that should occur� For weak waves� this is a good
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cell i cell j
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Fig� �� A shock propagating from cell i to cell j � i�� leads to a subdivision of cells i and j� In time
step n we split cell j in two� setting Un

ja � Un
jb
� Un

j � In time step n�� we eliminate the old tracked point
in cell i� using �������

tn��

tn

�p

x� �x�

Fig� �� Wave propagation in Step � Each wave is propagated independently� and for waves passing
through each other the interaction is linearized� Note that the tracked wave is propagated exactly to the new
cell boundary �x� introduced in Step �� �The solid line represents the tracked wave� and the dashed lines are
the weak waves��

��



approximation� as described in ����� For the interaction between a strong tracked wave and
the weak waves arising from nearby Riemann problems� this linearization is less valid� In
general this does not seem to give any di�culties� although for the blast wave interaction
problem considered in Section � we must compute some of these interactions correctly in
order to avoid nonphysical negative pressures arising� This is discussed further in Section ��

Step 
� We now delete the old tracked points from the current grid� This corresponds
to merging two subcells into one� and the cell value in the combined cell is calculated by
the appropriate weighted combination of these two deleted subcells to maintain the correct
cell average� For example� in Figure � the old tracked point x� is deleted from the ith
regular cell and the ith cell average after deletion becomes

Un��
i �

x� � xi

h
Un��

ia



xi�� � x�

h
Un��

ib
����	�

where Un��
ia

� Un��
ib

are the cell averages in the �rst and second subcell of the ith cell
respectively� and h is the underlying �xed mesh size�

Improved slopes� The high resolution method described in Section � can be used
directly on the nonuniform grid generated by the uniform grid together with the appro�
priate tracked points� It turns out that we can do better� however� by taking advantage
of the fact that we know that large jumps in the solution should appear at the tracked
points whereas the nearby �ow should be smooth� High resolution methods using limiters
were originally developed for shock capturing methods where a shock will typically be
smeared over several grid points� Since reasonable slope information may be unavailable
in this region� limiting the slope to a value near zero may be appropriate� In the present
context� however� we might expect to have meaningful slope information in the cells near
the discontinuity�

Consider a cell j� for example� where the interface to the right is a tracked point and
interfaces to the left are regular grid interfaces� The solution to the Riemann problem on
the right� at the tracked point� should clearly not be used to estimate a slope over this grid
cell for the family of the tracked wave� Waves arising from the Riemann problem to the
left may give a very useful slope estimate� however� Since it is still valuable to compare
adjacent slopes via a limiter in case other discontinuities are present that are not being
tracked� we choose 
j based on a one�sided formula similar to ����� but using the waves
rpj at the boundary to the left and the waves rp�j�� at the left boundary of the adjacent
cell�

This choice of slopes is particularly important if we wish to solve problems where the
solution has an extremum at the discontinuity� This occurs in many applications� e�g�� in
the combustion problem presented later� If we are not careful about the choice of slopes
near the discontinuity� these extreme points will be severely clipped� This e�ect and the
bene�t obtained by introducing one�sided slopes near tracked points is investigated in
Section ��

�� The Euler equations and boundary conditions� Before presenting numerical
results obtained with this shock tracking algorithm� we pause to introduce the Euler
equations of gas dynamics and discuss the implementation of boundary conditions for this
system�
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The inviscid Euler equations of gas dynamics in one space dimension take the form

�
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 p
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 p�v
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where �� v� p� E are the density� velocity� pressure� and total energy of the gas per unit
mass� respectively� We assume that the equation of state satis�es the ��law� where � is
the ratio of speci�c heats �� � ��� for air�� Then the internal energy is e  �

���p	� and

E  e
 �
�v

�� The three components of Equations ������ express the conservation of mass�
momentum� and energy� respectively����

Out�ow boundary conditions are easily achieved with the wave propagation approach
by simply ignoring waves once they leave the computational domain� and by not introduc�
ing any new waves at the boundary�

At a solid wall boundary� say at x  �� we have the no��ow boundary condition

v��� t�  ��

This boundary can be treated as a line of symmetry� If we re�ect our grid near the
boundary to the region x � �� we can assign grid values in the re�ected cells using

Un
�j  R�Un

j �� j  �� 	� � � �

where R represents the operator that negates the second component of U �the momentum�
while leaving the �rst and third �density and energy� unchanged� Applying the algorithm
over a slightly extended domain simulates the solid wall boundary condition�

Alternatively� we can avoid extending the grid if we note that each incoming wave �a
wave entering our true computational domain from x � �� can be viewed as the re�ection
of an outgoing wave �a wave crossing x  � with negative speed�� This is illustrated in
�	��� �	��� The relation between the re�ected jump �rpj and the outgoing jump rpj is simply

�rpj � �R�rpj�

and the speed of the re�ected wave is ��pj  ��pj � Hence we need only solve Riemann
problems on our original grid and then re�ect any waves that hit the boundary� In the
high resolution version� we must also re�ect the outgoing slope in the same way�

�
pj � �R�
pj��

In addition� we must solve a boundary Riemann problem with data ur  Un
� given by the

cell adjacent to the boundary and ul  R�ur�� There is one incoming wave that a�ects the
grid values �the contact discontinuity will have speed zero by symmetry and the outgoing
wave is ignored��

This wave re�ection procedure is quite easy to implement� and is applicable for any
mesh size and any time step�

Finally� we discuss how this re�ection procedure can be applied to a moving boundary�
e�g�� a moving piston� We approximate the piston motion by assuming that the velocity
is constant within each time step� Assume that the piston is located at x  zn at time

��



tn and is moving with speed sn for tn � t � tn��� Then the physically correct boundary
condition is

v�zn 
 sn�t � tn�� t�  sn

for tn � t � tn��� Using the Galilean transformation� we can derive that

��zn��  ��zn
�
v�zn��  	sn � v�zn
�
p�zn��  p�zn
�

������

is the correct data for the boundary Riemann problem� This de�nes a generalization of
the re�ection operator R� Determining the corresponding re�ection of the energy� we �nd
that a jump which hits the boundary should now be re�ected using the following relations�

�r
���
pj  �r���pj

�r
���
pj  r

���
pj � 	snr

���
pj

�r
���
pj  �r���pj 
 	snr

���
pj � 	�sn��r

���
pj �

������

For shorthand� we write �rpj  �Rn�rpj�� The re�ected slopes can be determined by the
same re�ection� �
pj  �Rn�
pj�� The re�ected speed ��pj is simply equal to 	sn � �pj�

�� A double piston problem� Consider a shock tube with unit length and two
pistons moving from the left and right boundaries into the stationary gas ��  ���� with
�  ��� and p  �� We choose smooth piston velocities sp�t� of the form

sp�t� 

	


�



�

��t t � t�
���t��t�p
r���t��t��

t� � t � t�

� t � t��

The parameters for each piston are given by�
left piston� ��  �� ��  �� t�  ����� t�  �����
right piston� ��  ��� ��  ��� t�  ���	� t�  �����

and r  ���� in each case�
Two compression waves arise from the left and right pistons and eventually form shock

waves� which subsequently interact� Two outgoing shocks result from the interaction� and
begin to interact with the rarefaction waves and the pistons� The rarefaction waves result
from stopping the pistons �see Figure �b��

In the numerical method� we replace the piston path by a piecewise constant path�
using the constant velocity sp�tn 
 �

�k� over the time interval tn � t � tn��� where k is
the time step� Then the piston boundary conditions described in Section � are applied
to each piston� In Figure �a� we show the tracked points� which include the location of
the tracked shocks and the pistons� paths� by using the high resolution shock tracking
algorithm with h  �	���� Courant number �  ��� �relative to the uniform cells�� and
the �minmod� slope limiter� We track waves for which the density jump is greater than the
tolerance   �� It is clearly seen that the shock formation and tracked wave interactions
are handled quite well by our shock tracking algorithm�
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Fig� �� a� Tracked points for the double piston problem� b� The density contour plot in the x�t plane�

The density contour plot in the x�t plane is shown in Figure �b for the same run�
From it� we can see that numerous wave interactions occur� The linear wave interaction
is used for the interaction of tracked shocks with the background smooth �ow and gives
satisfactory results� In Figure � we compare our numerical result �h  �	���� with a �ne
grid solution �h  �	��� and shock tracking� at time t  ���� observing good agreement�

From this test problem� we see that our shock tracking algorithm is capable of handling
shock formation� moving boundaries� and wave interactions�

� The Woodward�Colella problem� As our next example we consider the blast
wave interaction problem studied by Woodward and Colella���������� In this problem the
initial condition consists of three constant states with data�
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where l is the state used for x � ��� ����� m is the state used for x � ����� ����� and r is the
state used for x � ����� ��� The gas we consider satis�es the ��law gas with �  ���� There
are two solid walls at x  � and x  ��

With this initial condition a shock wave� contact discontinuity� and rarefaction wave
develop at each discontinuity individually� The shock waves are moving toward each other
and then collide� A new contact discontinuity arises from the collision� Further collisions
then occur� A density contour plot in the x�t plane is shown in Figure � which indicates
the complex wave pattern of this problem�

The most di�cult part of this problem is the very low pressure in the middle state�
Any small perturbation caused by numerical error can lead to negative pressures� There�
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Fig� �� Comparison plots for the double piston problem at time t � ���� In each 	gure the solid line
is the 	ne grid solution with h � ����� and the points show the solution with h � ������

fore this problem provides a severe test of our shock tracking algorithm� and especially
tests our ability to handle small cells and wave interactions� Furthermore� since complex
wave interactions occur after shock waves� collision� poor resolution will result near the
interaction if the grid is not �ne enough� For this reason we have used mesh re�nement
in addition to shock tracking in order to better resolve the solution�

For simplicity we assume that the tracked shocks do not cross the boundary between
the coarse grid and the re�ned grid� The re�nement boundary is thus in a region where
the grid is regular and it is fairly straightforward to handle this interface using standard
mesh re�nement techniques �e�g�� Berger�	��� We will not discuss this further here� More
details can be found in �	�� and �����

For this problem there is no mesh re�nement initially� The mesh re�nement is in�
troduced after the shock waves� collision and used thereafter� The re�nement region is
chosen to contain all the tracked shocks within one �ne grid with a bu�er zone to prevent
them from moving onto the coarse grid� For the results we present below� we take the
coarse grid mesh size hc  �	��� as our underlying mesh size and use a mesh re�nement
ratio mr  � for the �ne grid� so that hf  �	���� The bu�er zone has width ��hc� and a
regridding step is done for every �� time steps� Since the density jump is not prominent in
this problem� we choose the max�norm of the jump in conserved quantities as our tracking
criterion �with a tolerance   ���� Variable size time steps based on the fastest wave
speed present and the uniform grid size hc or hf are used so that the Courant number is
���� �mr time steps are taken on the �ne grid for each time step on the coarse grid��

In Figure �a� we show the density contour plot over both coarse and �ne grids �density
is plotted on a logarithmic scale�� A blowup of the �ne grid solution is shown in Figure �b�
Notice the �ne wave structure following the interaction between the rightward going shock
wave and the leftward going contact discontinuity� Without re�nement� this wave pattern
would not be clearly seen� Tracked points are shown in Figure ��

To investigate the accuracy� we show plots of the density and velocity versus a �ner grid
��true�� solution� computed using hc  �	��� in the time before re�nement is introduced�
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Fig� 	� Density contour plots in the x�t plane �the contour lines are in the logarithmic scale� for the
Woodward�Colella problem up to time t � ���� using the high resolution front tracking with adaptive mesh
re	nement algorithm with hc � ����� and mr � �� a� Combined plot for both the coarse and 	ne grids�
b� Blowup of the 	ne grid region�
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Fig� 
� Tracked points for the Woodward�Colella problem�

and then hc  �		���mr  � for re�nement� Results at three di�erent times are shown in
Figure ��� Note that they are plotted using the most accurate cell values at each point�
If a grid cell is in the �ne grid region� we use the �ne grid solution� Otherwise we use
the coarse grid solution� We see good agreement between the two solutions� Notice the
smooth transition between the coarse and �ne grids� This indicates that our treatment of
the coarse��ne grid interfaces is satisfactory�

As mentioned above� this is a di�cult problem due to the very low pressure in the
middle state� A rarefaction wave arising from the smooth �ow behind the shock may move
faster than the tracked shock� carrying a negative jump in pressure into the low pressure
region that is of su�cient magnitude to result in a negative pressure� This is due to the
linearization of the interaction between waves�

We currently deal with this problem by computing the interaction of the rarefaction
wave with the strong shock wave exactly rather than using the wave linearization that is
used elsewhere� We do this within the time step when the interaction occurs� modifying
the strength and speed of these waves over the latter portion of the time step� This leads
to some complication of the algorithm� but avoids the need to further restrict the time
step and eliminates the di�culties �see ���� for more detail��

Naturally it would be preferable to �nd a more robust solution to this problem and
work is continuing in this direction� We note� however� that this is a particularly di�cult
problem and that many production codes contain ad hoc procedures such as resetting
negative pressures to positive values in order to deal with such problems� This is not a
di�culty that arises solely from our shock tracking methodology� On the contrary� our
approach has the advantage that it allows one to recognize these di�culties and deal with
the interaction correctly and conservatively� �See ���� for an interesting discussion of this
problem��

�� Unstable detonation waves� As a more complex example that also includes sti�
source terms modeling chemical reactions� we consider a model problem for combustion
in which there are only two chemical species� �burnt gas� and �unburnt gas�� and the
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Fig� ��� Comparison plots for the Woodward�Colella problem at three di
erent times� In each 	gure�
the solid line is the 	ne grid solution computed by hf � ����� in the time when no re	nement is used�
and hc � ������ mr � � when the re	nement is used� The points show the solution with hc � ����� and
mr � �� Density and velocity are shown�
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unburnt gas is converted to burnt gas via a simple decay process where the reaction rate
K�T � depends on the temperature� This model has been extensively studied in the past�
e�g�� ���� ���� ���� ���� �����

Typically the reaction rate is very large when T is su�ciently high but negligible for
small T � For this combustion model� the Euler equations in one dimension take the form
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where Z is the mass fraction of the unburnt gas �Z  � for the unburnt gas and Z  �
for the burnt gas�� For simplicity we assume that both the unburnt gas and burnt gas
are ideal gases with the same ratio of speci�c heats �� Then by the ideal gas law� the
temperature is given by T  p	�R where R is the universal gas constant� The equation of
state is modi�ed by the fact that the unburnt gas contains chemical energy that is released
as heat in the process of burning� The total energy per unit mass takes the form
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where q� is the heat release�
The reaction rate is given by the Arrhenius relation

K�T �  K�T
�e�E

��T������

where K� is the rate multiplier� E� is the activation energy� and � is the order of the
reaction� We consider detonation wave solutions with the standard ZND structure �see�
e�g�� ���� which consists of an ordinary �uid dynamic shock followed by a �nite length
chemical reaction zone�

A well�known di�culty in the detonation wave computation is that incorrect detona�
tion wave speed can arise from numerical e�ects� This behavior is observed by Colella�
Majda and Roytburd ������� where a time�split method is used� They assert that if the
chemistry is not fully resolved due to the insu�ciently �ne grids� incorrect detonation wave
speeds will be obtained� Similar experiments have been reported in �	�� and �	��� Another
di�culty of modeling detonation waves is noticed by Bourlioux� Majda and Roytburd ���
in which classical one�dimensional stable and unstable detonation waves are tested� They
conclude that false predictions of stability in the regime of physical instability as well as
drastic predictions of instability for a physically stable detonation wave can be obtained
with standard shock capturing methods if the grid is not su�ciently �ne� In their paper�
a shock tracking method with adaptive mesh re�nement is proposed for the detonation
wave computation� which combines the piecewise�parabolic method ���� with conservative
front tracking ��� and adaptive mesh re�nement ���� They obtained very nice results which
provides a basis for comparison for our shock tracking approach�

Let s be a speed of the given ZND structure and sCJ the Chapman�Jouget speed�
Then the parameter f  �s	sCJ�

� measures the degree of overdrive of the detonation wave
and satis�es f � �� Now the problem of interest is to study the large time behavior of
the overdriven detonation wave for a given ZND structure under small perturbation� It is

��



known that the detonation wave is stable only if f � fcr where fcr is the critical value� For
smaller f the pressure just behind the shock wave is oscillatory and a train of oscillations
is generated that propagates back from the reaction zone� as seen in the following �gures�
For comparison we choose a test case from ���� f  ���� in which the detonation is unstable�
�The stable case f  ��� is also considered in �	���� Consequently other parameters are
chosen the same as in ���� �  ��	� R  � �the universal gas constant�� �  �� q�  ���
E�  ��� Throughout the tests� a steady ZND structure is used as the initial data with
the unburnt state �  �� v  �� p  �� Z  �� and degree of overdrive f � Note that by
specifying the unburnt state� sCJ can be calculated �see ������ Then the speed of the ZND
structure s  sCJ

p
f can be computed for a given f � so this ZND structure is uniquely

de�ned� The destabilizing perturbation for each test is provided by the truncation error
of the numerical method�

There are two characteristic length scales� the half reaction length L��� and the half
reaction time t���� where L��� is the distance required for half the mass fraction to be
released in the ZND structure and t��� is the time required for half the mass fraction
to be released� These two values can be computed by evaluating the following integrals
numerically�

L���  �
Z �

�
�

v dZ

K�T �Z
�������

t���  �
Z �

�
�

dZ

K�T �Z
����	��

For the purpose of studying the grid e�ect on the numerical solutions� we normalize the
length scale x by choosing K� so that L���  �� We �nd thatK�  	����� and t���  �����
for f  ����

We have used our shock tracking algorithm with only minor modi�cation to solve this
problem� A Strang splitting���� is used to include the source terms� splitting between the
homogeneous conservation laws and ordinary di�erential equations solved in each grid cell�
Each time step consists of the following substeps�

�� Take a half time step by solving the ODEs in the old grid cells�
	� Take a full time step with the homogeneous equations using the shock tracking

algorithm� This generates new grid cells�
�� Take a half time step again with the ODEs in the new grid cells after removing

the old tracked points�
Here we solve the ODEs exactly with the frozen temperature to update the mass fraction
Z�

Following ��� and ����� we monitor the shock front pressure� the pressure right behind
the shock wave� as time evolves� This shock front pressure history will give a clear indica�
tion of the stability of a given ZND structure under small perturbation� Figure �� shows
the pressure behind the initiating shock as a function of time for three di�erent choices of
f near the critical value fcr � ����� We see that our algorithm correctly predicts stability
or instability�

In order to investigate the grid e�ect on the numerical solution for this detonation
wave problem� a convergence study for the shock front pressure history with three di�erent
coarse��ne grid spacings was performed with the following values of h�

��



0 20 40 60 80 100

7
0

7
1

7
2

7
3

7
4

7
5

0 20 40 60 80 100

7
0

7
1

7
2

7
3

7
4

7
5

0 20 40 60 80 100

7
0

7
1

7
2

7
3

7
4

7
5

time

F
ro
n
t
p
re
ss
u
re

f  ���	

time

F
ro
n
t
p
re
ss
u
re

f  ����

time

F
ro
n
t
p
re
ss
u
re

f  ����

Fig� ��� Shock front pressure history for values of the overdrive parameter f near the critical value
fcr � ��
� Theory and computations agree in predicting stability for larger values of f � The dashed line
in each 	gure is the post�shock pressure in the steady ZND solution�
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�� coarse mesh hc  � point �L���� �ne mesh hf  � points�L����
	� coarse mesh hc  	 points�L���� �ne mesh hf  � points�L����
�� coarse mesh hc  � points�L���� �ne mesh hf  �� points�L����

Since there is only one tracked shock in this problem� the re�nement region is chosen by
going out a distance 	�L��� on each side of the tracked shock� Courant number �  ��� is
used for all the test cases� The tolerance   � for the jump in density is used for shock
tracking�

Figure �	 shows results for the convergence study up to t  ��� in the computational
domain � � x � ����� Our solution converges to a detonation wave with period ���������
�about ��	�t���� and peak pressure ����� � ��	� Note that the unperturbed shock front
pressure for the unstable detonation is ������ The shock front pressure is magni�ed to a
value nearly �� higher than the initial value� Our solutions agree very well with values
taken from the �gures in ����

To show the spatial resolution for the unstable detonation wave problem� we plot the
pressure at three di�erent times within one complete pressure front oscillation cycle as
illustrated in Figure �	b� where the large dots indicate the plotting times� The results are
shown in Figure ��� Note that an oscillatory wave structure appears behind the shock�

�� Accuracy tests� The results presented above give a strong indication that the
shock tracking method developed here can accurately compute the solution to di�cult
problems� To give further evidence of the accuracy and convergence of our procedure� we
now present some examples where the exact solution is known so that the error can be
computed precisely and the order of accuracy estimated�

We �rst consider the linear advection equation

ut 
 ux  � for � � x � ����	��

with initial data

u�x� �� 

�
	 
 ���e���x������ x � ���	
� 
 ��� tanh��������� x�� otherwise�

���		�

Our intention here is to study the accuracy achieved in cells near the discontinuity when the
smooth solution is also rapidly varying� and in particular when there is an extreme point
just behind the discontinuity� This is a challenging case that arises in some applications
such as the detonation front in Section ��

We have chosen the linear advection equation not only because the exact solution is
easy to compute� but also because this is in some ways more di�cult than a nonlinear
problem� Errors made at one time step near a shock tend to have relatively little e�ect
in future steps because the characteristics sweep information into the shock� In the linear
problem where all characteristics are parallel� errors will accumulate and we would expect
the peak in this problem to become badly smeared with most methods� see Figure ���

Figure �� shows results obtained with three di�erent methods� shock capturing using
the high resolution method of Section �� shock tracking with this same method� and shock
tracking with an improved estimate of the slopes using one�sided information near the
tracked front as described at the end of Section �� For each method the error is plotted
as a function of time for � di�erent grids with mesh sizes hl  	

��l		� and kl  hl		 for

��
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method with one�sided slopes� The solid line is the exact solution� and the points show the solution with
h � ��	�� k � h��� and the minmod� limiter�

l  �� 	� 	 	 	 � �� The error is shown in both the ��norm and the max�norm� and the order
of accuracy is estimated at each time �in each norm� using the mesh re�nement data�

We see that shock capturing gives no accuracy in the max�norm and roughly O�
p
h�

convergence in the ��norm as expected from the standard theory� The shock tracking
method �with original slopes� gives roughly O�h� accuracy in the ��norm and convergence
in the max�norm at rate O�h���� or so� With improved slopes we get nearly O�h� accuracy
in the max�norm and somewhat better in the ��norm� In these computations we have
used the �minmod� slope limiter� Similar results are obtained with other limiters� Some
comparisons are shown in �����

As a second example we consider shock formation in Burgers� equation�

ut 
 �u�		�x  � for �� � x � ����	��

with initial data

u�x� ��  �
 ��� sin��x�����	��

and periodic boundary conditions� With these initial and boundary conditions� it is easy
to show that the exact solution is smooth up to the shock formation time t  		� � �����
and is discontinuous afterward� see Whitham���� for the detail on the construction of the
exact solution�

Figure �� shows results comparing shock capturing with shock tracking �improved
slopes�� With shock capturing we can clearly see the accuracy degrade markedly at the
time of shock formation� With shock tracking there is some deterioration of accuracy
near the shock formation time� but the accuracy then improves again as the tracked shock
settles down to its correct location� Recall that we do not build into the algorithm any
knowledge of the shock formation time or location� A discontinuity arising from one of
the uniform cell interfaces starts to be tracked if its strength exceeds some value � which
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Fig� ��� An accuracy study of three di
erent methods for the linear advection equation ������ with
initial data ������ up to time t � ���� Note that all the errors shown in the 	gure are plotted in the
logarithmic scale with base ��� Error estimation is performed at �� di
erent times with a mesh re	nement
sequence fhl � ���l��	� l � �� �� � � � � 	g� Results with the minmod� slope limiter are shown�
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Fig� ��� An accuracy study of the shock capturing and shock tracking methods for Burgers� equa�
tion ������ with initial data ������ up to time t � ���� Results with the minmod� slope limiter are shown�

was taken to be   ���� in these computations� We would not expect this to happen at
exactly the correct time or location� In Figure ��� we have also shown the accuracy in the
location of the tracked front relative to the exact shock location� and also the estimated
order of accuracy of the front location� At least �rst order accuracy is seen at all times�
with the magnitude of the error typically decreasing with time�

Finally� we show that reasonable convergence is still obtained on systems of equations�
We consider the nonlinear isothermal equations

�

�t
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�v
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�x
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 c��

�
 ����	��

where c is the speed of sound� a constant here for which we take c  �� The initial
condition we use consists of a leftward going simple wave with velocity pro�le

v�x� ��  tanh����x� ������ for ��� � x � �����	��

traveling from the left to right� and a rightward going Mach 	��� shock wave at x  ���
traveling from the right to left� The density of the simple wave is computed from the
Riemann invariant R�  v 
 c log���� which is constant on the entire ��  v � c wave
family� with ��  ��� and v�  � as the reference state �this determines the Riemann
invariant constant�� Note another Riemann invariant for this system is R�  v� c log����
which is constant on the ��  v
 c family� Since these waves are approaching each other�
wave interactions occur subsequently� see Figure ��a�

For this nonlinear wave interaction problem� due to the fact that there is no new
wave family appearing after the head�on collision� we can compute the �exact� solution by

��
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employing the Rankine�Hugoniot jump conditions at the shock together with the simple
wave solutions on each side of the shock� Using this information would lead to a nonlinear
ordinary di�erential equation for the shock location with respect to time� This can be
solved numerically� using� for example� the ODE solver in the LSODE �Livermore Solver
for Ordinary Di�erential Equations� Package� Once the shock location is known� the
solution on both sides of the shock can be found using the method of characteristics�
Figure ��b shows several snap shots of the exact solution�

Results for this problem using the shock capturing and shock tracking methods are
shown in Figure �� where the front error obtained from using the shock tracking method�
the ��norm error� and the max�norm error of the Riemann invariant R� are presented� It
is very encouraging that our method produces results that converge at a fairly good rate
in the ��norm� despite the fact that the wave interaction of the strong and weak waves is
handled linearly by allowing them to pass through each other without changing speed or
magnitude�

��� Conclusions� We have presented a powerful shock tracking technique in one
space dimension that is relatively easy to implement and capable of solving a variety of
problems� There are four fundamental components to this algorithm�

�� The underlying grid is uniform�
	� Tracked points are moved according to the speeds that result from solving a

Riemann problem� These points are used to de�ne new grid cell boundaries� so
that some uniform cells are subdivided�

�� A high resolution conservative method is used to update the solution on the result�
ing nonuniform grid� This method is de�ned in a very robust wave propagation
form that allows arbitrarily small nonuniform cells relative to the time step�

�� When tracked waves collide� the time step is adjusted so that the collision is
perfectly resolved by solving the Riemann problem at the beginning of the next
time step�
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Fig� �	� An accuracy study of the shock capturing and shock tracking methods for the isothermal
equations ������ with initial data ������ up to time t � ����� Results for the Riemann invariant R� are
shown�

Shock formation� collisions� re�ections from boundaries� and moving boundaries can all
be handled in a uniform manner with minimal di�culty� Moreover� the tracking portion
of this algorithm adds very little expense beyond that of high resolution shock capturing
methods� since almost everywhere a method of this form is being used� on a uniform grid�
It is only in the few grid cells that are directly a�ected by the front that a special treatment
is needed�

The basic philosophy behind our approach is that the front location need not be exactly
correct� since a conservative method is used on the resulting grid� but that by introducing
interfaces in approximately the correct location it is possible to resolve discontinuities far
better than would be possible on a uniform grid� with modest additional cost� The results
in this paper show that this works extremely well in one space dimension�

This also turns out to be surprisingly e�ective in two dimensions� The �rst three
components can be extended quite naturally to more space dimensions� Again a uniform
underlying grid can be used with some grid cells subdivided by a piecewise linear front�
The front can be moved by solving Riemann problems normal to the front and the resulting
wave structure used to choose a new front location� Naturally this is more complicated
in two dimensions than in one� but at least for the case of a single front this can be
done fairly easily in an e�ective manner� A conservative high resolution wave propagation
method�	�� 	�� is then used on the resulting nonuniform grid to update the solution� A
two�dimensional front tracking algorithm has been developed by the second author����
using this approach and has been successfully used both for shock propagation and �uid
interface problems� Some preliminary results for a porous media multiphase �ow problem

�



and a Rayleigh�Taylor unstable interface are given in ����� A paper describing the two�
dimensional shock tracking in more detail is currently in preparation�	���
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