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Abstract. In this paper a family of one-dimensional nonlinear systems which model the blood pulse propagation
in compliant arteries is presented and investigated. They are obtained by averaging the Navier-Stokes equation on
each section of an arterial vessel and using simplified models for the vessel compliance. Different differential oper-
ators arise depending on the simplifications made on the structural model. Starting from the most basic assumption
of pure elastic instantaneous equilibrium, which provides a well-known algebraic relation between intramural
pressure and vessel section area, we analyse in turn the effects of terms accounting for inertia, longitudinal pre-
stress and viscoelasticity. The problem of how to account for branching and possible discontinuous wall properties
is addressed, the latter aspect being relevant in the presence of prosthesis and stents. To this purpose a domain
decomposition approach is adopted and the conditions which ensure the stability of the coupling are provided.
The numerical method here used in order to carry out several test cases for the assessment of the proposed models
is based on a finite element Taylor-Galerkin scheme combined with operator splitting techniques.
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1. Introduction

In this work we will introduce one-dimensional models [1–3] to compute the blood flow and
pressure-wave propagation in the human arterial system. These models can be used as an
alternative to the more complex three-dimensional fluid-structure models or in conjunction
with them in a geometrical multiscale fashion, as explained in [4]. Their computational com-
plexity is several orders of magnitude lower than that of multidimensional models based on
the coupling of the Navier-Stokes equations for the flow field in the arterial lumen and a
mechanical model for the vessel-wall displacement, at the price of providing just averaged
information.

However, they give a good description of the propagation of pressure waves in arteries
[5, 6], hence they can be successfully used to investigate the effects on pulse waves of the
geometrical and mechanical arterial modification, due e.g. to the presence of stenoses, or to
the placement of stents or prostheses [7, 8]. Their low computational cost makes it possible
not only to study pressure wave propagation on isolated arterial segment, like in [9–11], but
also the global circulation [11–13] system, here represented by a network of one-dimensional
models. They lack, however, to provide flow-field details sufficient to permit a reliable cal-
culation of local quantities such wall shear stresses. To that aim one has to resort to more
complex three-dimensional models, yet the one-dimensional description may still play a role
also in this case, in the frame of multiscale techniques.

In a multiscale approach, one-dimensional models may be coupled on the one hand with
lumped-parameter models [4, 14] based on a system of ordinary differential equations [15,
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16] or, on the other, to three-dimensional fluid-structure models, as discussed in [17] and
[18]. In the latter case they may also provide a way of implementing more realistic boundary
conditions for 3D calculations; or, they can be used for the numerical acceleration of a three-
dimensional Navier-Stokes solver in a multilevel-multiscale scheme.

In this paper we first recall the basic 1D model for a single artery approximated as a
straight cylinder. This model is represented by a system of two partial differential equations
describing the evolution of the section area A and the mass flux Q along the vessel axis, and,
as a consequence, that of the mean pressure p.

The mean pressure is indeed connected to A by a relation derived by the mechanics of
the vessel-wall structure. In this paper we will consider two possibilities (among the various
presented in the literature, see e.g. [3, 9]). The first choice corresponds to assuming an instant-
aneous static equilibrium for the vessel wall and leads to a hyperbolic system of equations of
the type already discussed and analysed in [4, 17, 7] and [3]. In this work we will recall the
main results and further develop the method adopted for the numerical approximation.

When we account for inertia or other mechanical properties, such as viscoelasticity or
longitudinal pre-stress, the relation between pressure and vessel area is given by a differential
equation. However, it is still possible, at the cost of some simplifications in the model, to
recover a system of two partial differential equations for the vessel section area A and the flux
Q, as already illustrated in [4]. By doing so, it may be easily recognised that the wall inertia
introduces an additional dispersive term, while viscoelasticity contributes with a diffusive
operator. Here, we treat these additional terms by an operator-splitting technique and carry out
numerical tests to demonstrate their effect on the pressure and flow pattern and to understand
their relevance for practical application. It has been found that for physiological situations
inertia and viscoelastic effects are practically negligible, while accounting for longitudinal
pre-stress may have a marked regularising effect when there are abrupt variations in the
mechanical characteristics of the vessel walls.

As a consequence of some vascular pathologies, a tract of an artery has either to be replaced
by a prosthesis or reinforced by the application of a stent (a metallic wire-mesh). In both
cases the elastic properties of the vessel changes abruptly. The problem may be treated by
regularising the transition region between the healthy artery and the prosthesis, as described
in [7]. Here we investigate an alternative approach based on domain-decomposition (DD)
methods. However, for the problem at hand the interface conditions that might be imposed
at the interface are not unique. We will present several alternatives, justified by physical
arguments, and we will show how for a particular choice it is possible to obtain an energy
inequality for the coupled system.

The human arterial system is formed by a network of vessels: even if we approximate each
arterial segment by using a one-dimensional description, we need to find a proper way to
account for branching. A DD technique has been developed to treat this situation also.

The paper layout is as follows. In Section 2 we recall the basic 1D nonlinear hyperbolic
model for a single cylindrical straight arterial element. Then we illustrate the Taylor-Galerkin
scheme that we use for the numerical approximation, and analyse how to impose the condi-
tions (physical and numerical) that need to be provided at the proximal and distal boundaries.
In Section 3 we present a domain-decomposition strategy applied to the simulation of a stent
implant and branching. Interface conditions, which satisfy an energy inequality, are proposed
and the problem of bifurcation with specific angles is treated. In Section 4 we consider a more
complex vessel law by adding inertia, viscoelastic, longitudinal pre-stress terms to the basic
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Figure 1. The cylindrical domain !t . The cylinder axis is aligned with the coordinate z. The axial sections
z =const. remain circular at all times.

algebraic law. We present a numerical framework where these additional terms are treated by
an operator-splitting approach. Finally we present several numerical results.

2. The derivation of the basic one-dimensional model

One-dimensional models provide a simplified description of the flow in arteries and its interac-
tion with the vessel-wall displacement. Although being inappropriate to provide details on the
flow field (such as recirculation or oscillating shear stresses), they can, however, effectively
describe the propagative phenomena due to the wall compliance. They are derived from the
Navier Stokes equations

∂u
∂t

+ (u · ∇) u + 1
ρ

∇P − div
[
ν(∇u + (∇u)T )

]
= 0, div u = 0 (1)

posed on a cylindrical domain !t which changes in time because of the flow-induced wall
movement. Here u = (ux, uy, uz) is the fluid velocity, P the pressure, ν the kinematic
viscosity and ρ the blood density; (x, y, z) is a system of Cartesian coordinates.

A straightforward derivation of one-dimensional models can be found in [3] and is not
repeated here. We just recall the main assumptions behind this derivation.

The domain, !t , is a straight cylinder (with axis oriented along the coordinate z), as depic-
ted in Figure 1. It is comprised between z = 0 and z = L, L being the vessel length, which is
assumed time-invariant. We will also employ cylindrical coordinates, denoted by (r, θ, z).

We make the assumption of axial symmetry for all the quantities involved. Furthermore, a
wall displacement along the radial direction is considered. This implies that each axial section
S remains circular at all times, i.e., for z ∈ [0, L] and t > 0 we have

S = S(z, t) = {(r, θ, z) : 0 ≤ r ≤ R(z, t), 0 ≤ θ < 2π},

where R = R(z, t) is the vessel radius. The pressure is taken to be constant on each axial
section and we assume that viscous effects are relevant only near the wall boundary. The
component uz is dominant with respect to ux and uy and furthermore we assume that it may
be described in cylindrical coordinates as

uz(r, z, t) = u(z, t)s

(
r

R(z, t)

)
,
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where u is the mean velocity on each axial section and s : R → R is a velocity profile (also
called profile law).

The vessel wall is assumed to be impermeable (although seepage of fluid through the wall
may be accounted for at the expense of a slight modification of the equations). By integrating
(1) over a generic axial section S(z, t) and taking advantage of the above assumptions, one
obtains the following system of two partial differential equations,

∂A

∂t
+ ∂Q

∂z
= 0, (2)

∂Q

∂t
+ ∂

∂z

(
α

Q2

A

)
+ A

ρ

∂P

∂z
+ KR

Q

A
= 0 (3)

for all z ∈ (0, L) and t > 0, where the unknowns A, Q and P (in the following we will also
use the notation p = P

ρ
) denote the section area, averaged volume flux and mean pressure,

respectively, and they are defined as

A(z, t) =
∫

S(z,t)

dz, Q(z, t) =
∫

S(z,t)

uz(x, y, z, t)dx dyAu,

P (z, t) = (A(z, t))−1
∫

S(z,t)

P (x, y, z, t)dx dy,
(4)

while KR is a resistance parameter related to the viscosity of blood. Finally, the coefficient α
is the momentum correction coefficient (sometimes called Coriolis coefficient), defined as

α =
∫
S
u2

zdγ

Au2 =
∫
S
s2 dγ
A

.

For a profile law of the form

s(x) = ζ−1(ζ + 2)(1 − xζ ),

with ζ > 0, we have α = (ζ + 2)(ζ + 1)−1. In particular, for a parabolic profile (Poiseuille
flow) one has ζ = 2 and hence α = 4

3 . In blood-flow problems a flatter profile (ζ = 9) is
more in accordance with experimental findings. For instance, in [19] the value α = 1·1 is
suggested. Also the choice α = 1 is often used, since it leads to considerable mathematical
simplifications. As for the resistance parameter, a parabolic profile would provide KR = 8πν,
which is the value normally used. The first equation, (2), is a mass-continuity equation, while
the latter, (3), is the equation expressing conservation of linear momentum.

To close our problem it is necessary to provide an additional relation. This is usually
derived from a mechanical model for the vessel-wall displacement. Here we have considered
the generalised string model [14], which is written in the following form

ρwh0
∂2η

∂t2
− γ̃

∂η

∂t
− ã

∂2η

∂z2
− c̃

∂3η

∂t∂z 2
+ b̃η = (P − Pext), z ∈ (0, L), t > 0. (5)

Here η = R − R0 is the displacement of the vessel-wall with respect to a reference configur-
ation, at the initial time t=0:

!0 = {(r, θ, z) : 0 ≤ r ≤ R0(z), 0 ≤ θ < 2π, 0 ≤ z ≤ L},
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which corresponds to that taken by the vessel when filled by a still fluid a pressure equal to
the external pressure Pext (here taken constant).

We may identify the physical significance of the various terms. The first one is the inertia
term, which is proportional to the acceleration of the vessel-wall. The second term is a Voigt-
type, viscoelastic term, which is proportional to the radial displacement velocity. The third
term is related to the longitudinal pre-stress state of the vessel. It is indeed well known that in
physiological conditions an artery is subjected to a longitudinal tension. The fourth term is an
another viscoelastic term, while the last is the elastic-response function.

We have

η =
√

A − √
A0√

π
, with A0 = πR2

0. (6)

ρw is the vessel density, h0 the wall thickness at the reference configuration, ã, b̃ and c̃ three
positive coefficients. In particular,

b̃ = Eh0

κR2
0

= πEh0

κA0
, (7)

where E is the Young modulus of elasticity and κ may take the value 1 or 3/4, depending on
whether or not the assumption of uni-axial of plane stresses is made in the derivation of the
generalised string model. More details are found in the cited reference. In this work, we have
taken κ = 1.

The partial differential equation (5) may be used to link the pressure with the vessel
area and its time and spatial derivatives. However, its direct use in the context of our one-
dimensional model is rather problematic. The system formed by (2), (3) and (5) (after having
expressed the latter in terms of A by using (6)) would contain two evolution equations for the
same unknowns, the area A.

∂A

∂t
+ ∂Q

∂z
= 0,

∂Q

∂t
+ ∂

∂z

(
α

Q2

A

)
+ A

ρ

∂P

∂z
+ KR

Q

A
= 0,

ρwh0
∂2η

∂t2
− γ̃

∂η

∂t
− ã

∂2η

∂z2
− c̃

∂3η

∂t∂z 2
+ b̃η = (P − Pext) (8)

Moreover, it is known that for the problem at hand the elastic response is the dominating
effect, while the other terms are less important. This is confirmed by the fact that the pulse-
propagation speed calculated on the basis of just the elastic term closely matches the observed
one. Furthermore, the values of ã, γ̃ and c̃ depend on mechanical characteristics, namely the
longitudinal tension for ã and viscoelastic properties for γ̃ and c̃ which are difficult to estimate
in practice.

Consequently, a first model is obtained by neglecting all derivatives in (5). Pressure and
area will then be related by an algebraic law of the type

P − Pext = b̃η = β

√
A − √

A0

A0
, (9)

where

β = Eh0
√
π (10)
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is in general a function of z trough the Young modulus E.
In a more general setting, the algebraic relationship may be expressed as

P = Pext + ψ(A;A0,β) (11)

where we have outlined that the pressure also depends parametrically on A0 and on a set of
coefficients β = {β1,β2, . . . βn} which account for physical and mechanical characteristics of
the vessel. Both A0 and β are given functions of z, while it is assumed that they do not vary
in time. It is required that ψ be (at least) a C1 function of its arguments and be defined for
all positive values of A and A0, whereas the range of variation of β depends on the particular
mechanical model chosen. In addition we must have, for all allowable values of A, A0 and β,
that

∂ψ

∂A
> 0, and that ψ(A0;A0,β) = 0.

Various algebraic relations of the form (11) may be found in the literature for one-
dimensional models of blood flow. The interested reader may refer, for instance, to [3] and
the references therein. In this work we will adopt the relation (9), i.e., ψ = β

√
A−√

A0
A0

, and
β reduces to a single parameter β = β1. Furthermore, for the sake of simplicity, and without
loss of generality, we will assume Pext = 0. We also introduce the quantity

c1 =
√

A

ρ

∂ψ

∂A
, (12)

which in our case may be readily computed as

c1 =
√

β

2ρA0
A

1
4 .

We will now focus on the differential problem obtained by substituting (9) in (3), and on
its numerical solution, leaving to a later section a discussion on how to implement the other
terms in (5) into the model.

2.1. ONE-DIMENSIONAL MODEL WITH ALGEBRAIC PRESSURE LAW

By inserting (9) into (3), after some simple manipulations we obtain a system of differential
equations for the evolution of A and Q which may be written in conservation form as

∂U
∂t

+ ∂F
∂z

(U) = B(U), z ∈ (0, L), t > 0, (13)

where U = [A,Q]T are the conservative variables, F = [FA, FQ]T the corresponding fluxes
and B = [BA,BQ]T a source term. Details may be found in [3]. More precisely, by choosing
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(9) we obtain

F(U) =




Q

α
Q2

A
+

∫ A

0
c2

1dA



 =




Q

α
Q2

A
+ β

3ρA0
A

3
2



 , (14)

B(U) =





0

KR
Q
A

+ A
A0ρ

(
2
3A

1
2 − A

1
2
0

)
∂β
∂z

− β
ρ

A

A2
0

(
2
3A

1
2 − 1

2A
1
2
0

)
∂A0
∂z




. (15)

Both the spatial variation of the reference area A0 and that of Young’s modulus β contribute to
the source term. We also point out that the derivation of the conservative form may be carried
out if β and A0 are smooth functions of z. The flux Jacobian H may be readily computed as

H(U) = ∂F
∂U

=




0 1

−α
Q2

A2
+ β

2ρA0
A

1
2 2α

Q

A



 . (16)

The characteristic analysis, whose details may be found in [3], shows that for all allowable
U (that is for A > 0) the system is strictly hyperbolic and the eigenvalues of H are

λ1,2 = α
Q

A
±

√
c2

1 + α(α − 1)
Q2

A2
. (17)

For α = 1 the computation of the global characteristic variables W(U) = [W1(U),W2(U)]T
is straightforward and yields

W1,2 = Q

A
± 4

√
β

2ρA0
A

1
4 ; (18)

see [3]. These relations can be inverted to express the primitive variables in terms of the
characteristic ones,

A =
(

2ρA0

β

)2 (
W1 − W2

8

)4

, Q = A
W1 + W2

2
, (19)

allowing, in particular, the implementation of boundary and compatibility conditions, as will
be briefly discussed later.

2.2. NUMERICAL DISCRETISATION

We discretize system (13) by a second-order Taylor-Galerkin scheme [20]. The derivation here
is made sightly more involved than for the classical systems of conservation laws due to the
presence of the source term.

From (13) we may write

∂U
∂t

= B − ∂F
∂z

, (20)

∂2U
∂t2

= BU
∂U
∂t

− ∂

∂z

(
H
∂U
∂t

)
= BU

(
B − ∂F

∂z

)
− ∂(HB)

∂z
+ ∂

∂z

(
H
∂F
∂z

)
, (21)
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where we have denoted BU = ∂B
∂U

. We now consider the time intervals (tn, tn+1), for n =
0, 1, . . ., with tn = n/t , /t being the time step, and discretize in time using a Taylor
series truncated at the second order, to obtain the following semi-discrete system for the
approximation Un of U(tn)

Un+1 = Un −/t
∂

∂z

[
Fn + /t

2
HnBn

]
− /t2

2

[
Bn

U
∂F
∂z

n

− ∂

∂z

(
Hn ∂Fn

∂z

)]

+/t

(
Bn + /t

2
Bn

UBn

)
, n = 0, 1, . . . , (22)

where U0 is provided by the initial conditions and Fn stands for F(Un); a similar notation
holds for Hn, Bn and Bn

U.
The space discretisation is carried out using the Galerkin finite-element method. The in-

terval [0, L] is subdivided into N elements [zi, zi+1], with i = 0, . . . , N and zi+1 = zi + hi ,
with

∑N−1
i=0 hi = L, where hi is the local element size. Let Vh be the space of piecewise linear

finite-element functions and Vh = [Vh]2, while V0
h = {vh ∈ Vh |vh = 0 at z = 0 and z = L}.

Further, we indicate by

(u, v) =
∫ L

0
u · vdz

the L2(0, L) scalar product.
Using the abridged notations

FLW(U) = F(U) + /t

2
H(U)B(U)

and

BLW(U) = B(U) + /t

2
BU(U)B(U),

we have the following finite-element formulation of (22):

for n ≥ 0, find Un+1
h ∈ Vh which satisfies the following “interior” equations

(Un+1
h ,ψh) = (Un

h,ψh) +/t

(
FLW(Un

h),
dψh

dz

)
− /t2

2

(
BU(Un

h)
∂F(Un

h)

∂z
,ψh

)

−/t2

2

(
H(Un

h)
∂F
∂z

(Un
h),

dψh

dz

)
+/t

(
BLW(Un

h),ψh

)
, ∀ψh ∈ V0

h, (23)

together with the boundary and compatibility conditions to be discussed in the next section.
A third-order scheme (in time) may be derived following the indications in [21]. How-

ever, in our case this would imply the coupling of the equations for Ah and Qh, which are
completely decoupled in (23) . For this reason, we have considered only the second-order
scheme. However, many of the considerations that we develop in this paper will apply also to
the third-order version.

The second-order Taylor-Galerkin scheme (23) entails a time-step limitation. A linear
stability analysis [22] indicates that the following condition should be satisfied

/t ≤
√

3
3

min
0≤i≤N

[
hi

max(λ1,i ,λ1,i+1)

]
, (24)
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where λ1,i here indicates the value of λ1 at mesh node zi . This condition corresponds to a CFL
number of

√
3

3 , typical of a second-order Taylor-Galerkin scheme in one dimension [22].

2.3. BOUNDARY AND COMPATIBILITY CONDITIONS

For the flow regimes we are interested in, the two eigenvalues λ1 and λ2 have opposite signs,
hence the differential problem requires exactly one boundary condition at z = 0 and one at
z = L. Whenever an explicit formulation of the characteristic variables is available, boundary
conditions may be expressed directly in terms of the pertinent characteristic variable. For
instance, at the boundary z = 0, an admissible boundary condition is

W1(t) = g1(t), at z = 0, t > 0, (25)

g1 being a given function. If we do not have an explicit expression for the characteristic
variables, we might use instead the pseudo-characteristic approach; see e.g. [23, Chapter 14].

However, Equation (25) is seldom applied directly, as the available data is usually given
in terms of the physical variables. For instance, at the inlet (or proximal section) we may
wish to impose the pressure or the mass flux (maybe obtained from measurements). The issue
of admissibility of a boundary condition for a general nonlinear hyperbolic system has been
addressed in [24]; other references may be found in [25]. In our specific case, the imposition
of average pressure at the inlet z = 0 is admissible.

At the outlet or, more precisely formulated, distal section, in the absence of specific in-
formation on pressure or flux variation, an important class of boundary conditions, called
non-reflecting, are those that allow the simple wave solution associated with the outgoing
characteristic to leave the domain. Following [26] they may be written as

lT2

(
∂U
∂t

− B(U)

)
= 0, z = L, t > 0 (26)

for all t > 0. Here, l1 and l2 are the left eigenvectors associated with λ1 and λ2, respectively.
When B(U) = 0 they are equivalent to imposing a constant value (typically set to zero)
on the incoming characteristic variable. When B )= 0 they account for the variation of the
characteristic variables due to the presence of the source term.

Although the differential problem requires only one (physical) boundary condition at each
end of the tube, the solution of the numerical problem involves the computation of a full set
of values for A and Q at the first and last node. We thus need two extra relations, which are
indeed provided by the differential equations themselves, yet ‘projected’ along the direction
of the outgoing characteristics, i.e.,

lT2

(
∂U
∂t

+ ∂F
∂z

(U) − B(U)

)
= 0, z = 0, t > 0;

lT1

(
∂U
∂t

+ ∂F
∂z

(U) − B(U)

)
= 0, z = L, t > 0.

These equations are called compatibility relations and could be discretized by adopting the
same basic scheme as the differential problem. However, this would result in relations that
couple the values of An+1

h and Qn+1
h at the vessel ends. Since it is preferable for computational

reasons to maintain two decoupled discrete systems for the evolution of area and mass flow,
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we have adopted here a different technique to impose the compatibility relations, called “char-
acteristic extrapolation”. It is based on the well-known fact that the characteristic variables
satisfy a system of ordinary differential equations along the characteristic path. Indeed, when
B(U) = 0, the characteristic variables are constant along the characteristics, so a first-order
approximation of the outgoing characteristic variables at time tn+1 and z = 0 and z = L,
respectively, is provided by

Wn+1
2 (0) = Wn

2 (−λn
2(0)/t), Wn+1

1 (L) = Wn
1 (L − λn

1(L)/t).

A second-order approximation could be obtained by following the technique described in [27].
When B(U) )= 0, the values of Wn+1

2 (0) and Wn+1
1 (L) will have to be computed by numeric-

ally solving the associated ODE system. The values of Wn+1
2 (0) and Wn+1

1 (L), together with
the boundary conditions, effectively complement the discrete system provided by (23). Again,
if the characteristic variables are not available, the pseudo-characteristics may be used instead.
Since, from now on, we assume α = 1, the characteristic variables are given by (18).

3. Domain-decomposition approach for prosthesis and bifurcations

When a stent or a prosthesis such as the one depicted in Figure 2 is implanted to alleviate
severe vascular pathologies, it causes an abrupt variation of the elastic properties along the
artery. In principle this could be taken into account by allowing β to have a discontinuity at
the interfaces between the “healthy” and the prosthetic artery, while being a smooth function
otherwise. Here we will first consider the case of a single discontinuity at z = 0 ∈ (0, L).

By following the arguments in [8], we may derive that in this situation A (and consequently
p) is (in general) discontinuous at z = 0 and, consequently, the product A ∂p

∂z
in Equation (3)

is not well defined at this location.
A possibility to overcome this problem is to perform a regularisation of β, as done in [7].

However, this requires the use of a fine mesh around 0 to properly represent the transition,
with a consequent loss of efficiency of the numerical scheme because of condition (24).
Furthermore, if the solution is very steep, the Taylor-Galerkin scheme should be stabilised
to avoid spurious oscillations, with the inevitable addition of extra numerical dissipation.

Here we will investigate instead an alternative solution provided by the domain-decomposi-
tion approach; see [28]. In Figure 3 we show the vessel ! partitioned into two subdomains
!1 = (0,0) and !2 = (0, L). For a standard system in conservation form, the interface con-
dition would entail the continuity of the fluxes, which corresponds to the Rankine-Hugoniot
condition for a discontinuity that does not propagate.

Unfortunately, in view of the previous considerations, it is arguable whether the interface
conditions can be derived from the equations in the form (13), since they have been obtained
under the requirement that the solution be smooth. Clearly, the problem concerns only the
momentum equation, as the continuity equation is originally in conservation form and, by
standard arguments, this yields mass-flux continuity across the interface; this fact agrees with
physical intuition:

[Q] = Q|0+ − Q|0− = 0. (27)

The jump condition for the momentum equation has to be driven instead by other considera-
tions. A possibility, investigated in [8], is to consider the limit of a regularised problem. Yet,
this procedure is not completely satisfactory, since the limit will in general depend on the
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Figure 2. Endograft. Figure 3. Domain decomposition of an artery featur-
ing a discontinuous Young’s modulus.

way the regularisation procedure is carried out. Another possibility often encountered in the
literature for similar situations [11] is to impose the continuity of pressure. Yet, this condition
would imply a possible increase of the energy of the system through the discontinuity, a
condition hardly justifiable by physical means. Here we have followed the route of searching
for a condition which will guarantee an energy inequality for the coupled problem.

In Lemma 2.1 of [17] it has been shown that our problem, in the case of α = 1, satisfies
the following energy inequality

ε(t) + KR

∫ t

0

∫ L

0
ū2dzdt +

∫ t

0

[
Qpt

]L

0 dt ≤ ε(0), (28)
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where

ε(t) =
∫ L

0
(
1
2
A(z, t)ū2(z, t) + 1

ρ

∫ A(z,t)

A0

ψ(ζ )dζ )dz,

while pt = p + 1
2 ū2 is the total pressure and [f ]L0 = f (L) − f (0).

In the domain decomposition case of Figure (3), indicating quantities in !i with the
subscript i = 1, 2 , we obtain, by summing inequality (28) applied to the problem in each
subdomain,

ε1(t) + KR

∫ t

0

∫ 0

0
ū2

1dzdt + ε2(t) + KR

∫ t

0

∫ L

0

ū2
2dzdt +

∫ t

0
(Q2pt,2|L − Q1pt,1|0)dt+

∫ t

0
(Q1pt,1 − Q2pt,2)|0dt ≤ ε1(0) + ε2(0), t > 0.

(29)

Should we require that

Q1pt,1 ≥ Q2pt,2 (30)

at the interface point 0, we would obtain an energy inequality equivalent to that of the single-
domain case. Then, by imposing suitable restrictions on the boundary data following the same
arguments given in [17], we obtain a global energy estimate in the form

ε1(t) + ε2(t) + KR

[∫ t

0

(∫ 0

0
ū2

1dz +
∫ L

0

ū2
2dz

)
dt

]
≤ ε1(0) + ε2(0) + ξ(t), (31)

where ξ is a quantity that depends only on the boundary data and on t . Thanks to (27),
condition (30) is in particular satisfied by the choice pt,1 = pt,2; in view of this result we
have chosen the following interface conditions

Q1 = Q2 and pt,1 = pt,2 on z = 0, t > 0. (32)

Therefore, in each domain !i , i = 1, 2 and for t > 0, the coupled problem reads

∂Ai

∂t
+ ∂Qi

∂z
= 0,

∂Qi

∂t
+ ∂

∂z

(
Q2

i

Ai

)
+ Ai

∂pi

∂z
+ KR

Qi

Ai

= 0, (33)

together with the interface condition (32) and appropriate boundary conditions at z = 0 and
z = L.

To solve the problems in !1 and !2 separately, we have devised a decoupling technique
which, at each time step from tn to tn+1, provides the Taylor-Galerkin algorithm with the
values Qn+1

i and An+1
i of the unknowns at the interface 0, for i = 1, 2. We need to use (32)

together with the compatibility conditions, for instance in the form of the extrapolation of the
characteristic variables exiting !1 and !2 at 0. We indicate with Wn+1

1,1 and Wn+1
2,2 the values

at z = 0 and t = tn+1 of the (outgoing) characteristic variables W1 and W2, relative to domain
!1 and !2, respectively, obtained by extrapolation from the data at t = tn. Using relation
(18), we finally obtain a nonlinear system for the interface variable, namely

Qn+1
1 − Qn+1

2 = 0, ψ(An+1
1 ;A0,1,β1) + 1

2

(
Qn+1

1

An+1
1

)2

− ψ(An+1
2 ,
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A0,2,β2) + 1
2

(
Qn+1

2

An+1
2

)2

= 0,
Qn+1

1

An+1
1

+ 4

√
β1

2ρA0,1

(
An+1

1

) 1
4 − Wn+1

1,1 = 0,

Qn+1
2

An+1
2

− 4

√
β2

2ρA0,2

(
An+1

2

) 1
4 − Wn+1

2,2 = 0, at z = 0 (34)

which is solved by a Newton iteration. Here, βi and A0,i indicate the values of β and A0 in
!i and, for the sake of generality, we have assumed that the reference section area A0 might
be discontinuous at z = 0. It has been verified that the determinant of the Jacobian of system
(34) is different from zero for all allowable values of the parameters, thus guaranteeing that
the Newton iteration is well-posed. It has also been found that, by using as starting values the
unknowns at time tn, the method converges in a few iterations with a tolerance of 10−8 on the
relative increment.

For values of pressure and velocities typical of blood flow, the value of the pressure is
much greater than the kinetic energy 1

2 ū
2. This explains why many practitioners in the field

use continuity of pressure (instead of total pressure) at the interface without encountering
stability problems. This is also true for the interface condition proposed in [8], which does not
satisfy the energy inequality (31) a priori. Indeed, we have performed some numerical studies
and found that, for conditions akin to the physiological ones, the results obtained by imposing
continuity of pressure, continuity of total pressure or the condition reported in [8] differ less
than one percent and do not affect stability.

A physical argument suggests that the total pressure decreases, along the flow direction at
0, as a function of the flow rate. To account for this, one could impose a relation of the type

pt,2 = pt,1 − sign(Q)f (Q), at z = 0, t > 0,

f being a positive monotone function satisfying f (0) = 0. Clearly this condition, coupled
with the continuity of Q, satisfies (27). However, the difficulties of finding an appropriate
“dissipation function” f for the problem at hand has led us to consider only the continuity of
total pressure, which corresponds to f ≡ 0.

3.1. BRANCHING

The arterial and venous systems are characterised by the presence of branching. Branching
flow is an interesting subject in its own right and is recently being studied both theoretically
and numerically; here we mention the work reported in [29].

The flow in a bifurcation is intrinsically three-dimensional; yet it may still be represented
by means of a 1D model, following a domain-decomposition approach, if one is not interested
in the flow details at the bifurcation. Figure 4 shows a model for a bifurcation. In a first
stage we simplify the actual geometric structure by imposing that the bifurcation is located
exactly at one point and neglecting the effect of the bifurcation angles. This approach has been
followed also by other authors, like [13]. An alternative technique is reported in [30], where a
separate tract containing the branch is introduced.

In order to solve the three problems in !1 (main branch), !2 and !3 we need to find
appropriate interface conditions. The hyperbolic nature of the problem tells us that we need
three conditions. The first states the conservation of mass across the bifurcation, i.e.,

Q1 = Q2 + Q3, at z = 0, t > 0. (35)
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Figure 4. One-dimensional model of bifurcation by domain decomposition technique.

We note that the orientation of the axis in the three branches is such that a positive value of
Qi indicates that blood is flowing from the main branch !1 into the other two. By performing
an energy analysis similar to that of the previous section on the three branches separately, we
reach the conclusion that we can obtain a global energy inequality for the coupled problem
whenever pt,1Q1 − pt,2Q2 − pt,3Q3 ≥ 0. If we impose the continuity of total pressure across
the bifurcation, together with (35), we have pt,1Q1 − pt,2Q2 −pt,3Q3 = 0. In this situation it
is also expected that the complex flow in the bifurcation will cause a decrease in total pressure
in the direction of the flow field across the bifurcation, and this loss should be related to the
fluid velocity (or flow rate) and to the bifurcation angles.

One way of accounting for this that can be derived from the analysis of [31], is to impose,
at z = 0, the conditions

pt,1 − sign(ū1)f1(ū1) = pt,2 + sign(ū2)f2(ū2,α2), (36)
pt,1 − sign(ū1)f1(ū1) = pt,3 + sign(ū3)f3(ū3,α3),

where α2 and α3 are the angles of the branches !2 and !3 with respect to the main one (see
Figure 5); f1, f2 and f3 are positive functions and equal to zero when the first argument is
zero. These can be chosen to be:

f1(u) = γ1u
2, fi(u,α) = γiu

2
√

2(1 − cosα), i = 2, 3, (37)

where the γi are positive coefficients.
In the numerical scheme, (35) and (36) will be complemented by three compatibility

relations, which can be expressed again by the extrapolation of the outgoing characteristic
variables. We have thus a nonlinear system for the six unknowns An+1

i , Qn+1
i , i = 1, 2, 3, at

the interface location 0, which is solved by a Newton iteration.
Some numerical tests have been done to investigate the effect of the bifurcation angles

using relations (36) and (37) (γ1 = 0, γ2 and γ3 = 2). The length of the three domains has been
taken equal to 10 cm. The following parameters have been chosen: E = 3 × 106 dyne/cm2,
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Figure 5. A sketch of a branching. Figure 6. Solution dependence on bifurcation angles:
area and characteristic variables at the middle point
of domain !1 are reported.

h0 = 0·05 cm, R0 = 0·5 cm, ρ = 1 gr/cm3, α = 1, ν = 0·035 cm2/s, equal in all three
vessels. At the inlet of !1 we have imposed a half-sine input pressure wave of period 0·1 s
and amplitude 20000 dyne/cm2, while a non-reflecting condition has been imposed at the
outlet sections of !2 and !3. In Figures 6–8 we show the time variation of the area A and the
two characteristic variables W1 and W2 at a location placed at the midpoint of !1, !2 and !3,
respectively, for different values of α1 and α2. In particular, α1 = α2 = 0 corresponds to the
case where we impose just the continuity of the total pressure, ignoring the dissipative effects
caused by the kinks. We may note that using the formula that accounts for the angles increases
the wave reflection upstream of the bifurcation (there is an increase in the amplitude of W2 in
Figure 6), resulting in an increase in the pressure level in !1. On the other hand, the strength
of the wave transmitted into !2 and !3 is reduced (as expected). The result of this simple
experiment shows that indeed the dissipation caused by the flow deviation at bifurcations
could be relevant.

Also in this case, due to the difficulty of finding suitable values of the “dissipation func-
tions” fi for the problem at hand, we have preferred to put them to zero and impose the
continuity of the total pressure across the bifurcation, i.e.,

pt,1 = pt,2 = pt,3, at z = 0. (38)

Thence, in the remaining part of this work we will neglect this effect.

3.2. BIFURCATED CHANNEL WITH ENDOGRAFT

Here we show an application of the one-dimensional model to a real-life problem. Abdominal
aortic aneurysms (AAA) represent a significant and relatively common vascular problem.
They are characterised by an abnormal dilatation of a portion of the aorta. This swollen region
would enlarge with time and, without a surgical treatment, it will eventually break with fatal
consequences. Even if open surgical repair is still the standard treatment for AAA, endografts
and endovascular stent grafts begin to play a major role, as they allow a less invasive treatment
(Figure 9).
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Figure 7. Solution dependence on bifurcation angles:
area and characteristic variables at the middle point
of domain !2 are reported.

Figure 8. Solution dependence on bifurcation angles:
area and characteristic variables at the middle point
of domain !3 are reported.

The presence of an endograft may be treated by our one-dimensional model as a bifurcated
channel with varying mechanical properties, as shown in Figure 10. The domain is decom-
posed into 6 regions, !i , i = 1, . . . , 6 and the interface conditions of type (32) or (35)–(38)
are used where appropriate.

A preliminary numerical test has been carried out by selecting all !i to be of equal length
L = 5 cm. We considered everywhere ρ = 1 gr/cm3, ν = 0·035 cm2/s, α = 1, h0 = 0·05 cm;
while the Young’s moduli have been taken to be equal to Eendograft = 60 × 106 dyne/cm2 for
the endografted part (!i , i = 2, 3, 5) and Evessel = 10 × 106 dyne/cm2 for the remaining
subdomains. The vessel reference radii have been taken to be R0,1 = R0,2 = 0·6 cm, R0,3 =
R0,4 = 0·4 cm and R0,5 = R0,6 = 0·5 cm.

At inlet we have imposed a half sine pressure wave of period 0·1 s and amplitude 20000
dyne/cm2.

The spatial grid was uniform with a total of 546 nodes. The computations were carried out
with a time step /t 0·00001 s.

Figures 11–13 report the time evolution for the area A and the two characteristic variables
W1 and W2 at three given points, respectively at the middle of !1, and of !2 and of !6. By
inspecting Figure 11 we remark that in W1 we find the input wave imposed at the inlet, while
in W2 we find the composition of two effects, the wave reflected from the beginning of the
endograft and the wave reflected from the branching point. These modify the sinusoidal shape
of the area A. In Figure 12 we find in W2 only the wave reflected from the branching point.
Finally, in Figure 13 we do not find reflected waves (the outlet boundary condition being an
absorbing one); moreover, in W1 we can observe the part of the wave passing through the
branches.

4. More-complex wall models

The mechanical model used to describe the vessel-wall dynamics was based on the assumption
of an instantaneously elastic equilibrium, according to which the vessel-wall responds to a
change in the fluid pressure by adapting its section area, following a perfectly elastic law.
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Figure 9. Endograft placement in the surgical treatment of abdominal aortic aneurysms.

Figure 10. Modelling (left) and domain decomposi-
tion (right) of a bifurcation with an endograft.

Figure 11. Bifurcation with endograft: time evolu-
tion for the area and the characteristic variables in
the middle of domain !1.

In reality, the mechanical behaviour of arterial wall is much more complex; see e.g. [32].
Although it is arguable whether there is a need for sophisticated mechanical modelling when
so many simplifications have already been made, both at the geometrical and at fluid-dynamics
level, improving the structural description may serve several purposes:
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Figure 12. Bifurcation with endograft: time evolu-
tion for the area and the characteristic variables in
the middle of domain !2.

Figure 13. Bifurcation with endograft: time evolu-
tion for the area and the characteristic variables in
the middle of domain !6.

• to study the overall effects on the flow field of the different physical terms that might be
included, such as wall inertia, viscoelasticity, pre-stress state;

• to verify the relevance of these terms for the problem at hand on the basis of realistic
physiological or pathological values of the various coefficients.

The structural model will be obtained from the general equilibrium laws by imposing geo-
metrical simplifications consistent with those used to derive the flow equations. In particular,
we still consider displacements η in the radial direction only. This is a reasonable assumption,
since some recent results [9], using membrane models for the wall structure which account
for the effects of transversal displacements, show that these are negligible.

The differential equation we will consider is in fact the generalised string model (5), where
we neglect the second viscoelastic term, i.e., c̃ = 0. To obtain an equation of the form A =
A0 + πη2, we linearise the time derivatives, following [4], as follows

∂η

∂t
, 1

2
√

A0
√
π

∂A

∂t
, (39)

∂2η

∂t2
= 1√

π

∂2

∂t2

(√
A −

√
A0

)
, 1

2
√
πA0

∂2A

∂t2
. (40)

Therefore, the adopted model may be written as

m
∂2A

∂t2
− γ

∂A

∂t
− a

∂2

∂z2
(
√

A −
√

A0) + β

√
A − √

A0

A0
= P, (41)

where we have taken, as before, Pext = 0 and

m = ρwh0

2
√
π

√
A0

, γ = γ̃

2
√
π

√
A0

, a = ã√
π

,

while β is still given by (10).
This model should be integrated with the fluid equations (2) and (3). The objective is to

retain the basic two-equations structure of the model. Furthermore, we will assume that the
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additional terms are of less importance than the basic elastic response function β
√

A−√
A0

A0
considered in the derivation of the previous model. This assumption permits the use of an
operator-splitting procedure for the numerical approximation.

The coupling between (2, 3) and (41) is through the pressure term
A

ρ

∂

∂z
(P − Pext) in

the momentum equation. Therefore, the continuity equation (2) will remain unaltered and,
following [4], we will use it to replace the time derivatives of A with the space derivative of
Q.

We are mainly interested in identifying the effects of the extra terms on the vessel mech-
anics. The next sections will systematically analyse the effect of each of the added terms in
turn.

4.1. WALL-INERTIA TERM

The inertia term accounts for the wall mass and its acceleration: using physical arguments we
can argue that it will be important only in the case of large vessel mass and/or high-frequency
wave (large acceleration). In these cases we expect oscillations to occur at a frequency de-
pendent on the wave length.

The contribution of this term in the momentum equation can be written, using the continu-
ity equation, as

A

ρ

∂

∂z

(
m
∂2A

∂t2

)
= −Am

ρ

∂3Q

∂t∂z 2
. (42)

System (13), augmented by the inertia term, then reads

∂A

∂t
+ ∂Q

∂z
= 0,

∂Q

∂t
+ ∂

∂z
F2(A,Q) − Am

ρ

∂3Q

∂t∂z 2
= B2(A,Q), (43)

where F2(A,Q) and B2(A,Q) denote the second component of the flux F and of the source
term B, respectively.

The differential system (43) may be written in an equivalent way by splitting the flow rate
Q = Q̂ + Q̃, where Q̂ and Q̃ are implicitly defined through the set of equations

∂A

∂t
+ ∂Q

∂z
= 0,

∂Q̂

∂t
+ ∂

∂z
F2(A,Q) = S(A,Q),

∂Q̃

∂t
− Am

ρ

∂3Q

∂t∂z 2
= 0. (44)

This allows us to devise the following operator-splitting strategy. On each time interval
[tn, tn+1], n ≥ 0, system (44)1,2 by the Taylor-Galerkin scheme described in Section 2.2
and we correct the mass flux by employing Equation (44)3. More precisely, the adopted finite-
element formulation for the latter equation reads: given An+1

h and Q̂n+1
h , find Q̃h ∈ V 0

h such
that

(
1

An+1
h

Q̃n+1
h ,ψh

)

+ m

ρ

(
∂Q̃n+1

h

∂z
,
∂ψh

∂z

)

= m

ρ

(
∂Q̂n+1

h

∂z
,
∂ψh

∂z

)

, ∀ψh ∈ V 0
h .

This corresponds to imposing a homogeneous boundary condition for the correction term Q̃.
An alternative approach can be found in [21].
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Figure 14. Inertia effects on the solution; at the top-left the initial configuration is reported: a half sine wave of
length 35 cm. The solutions without inertia term (top-right), with inertia term (bottom-left) and the difference
between the two (bottom-right) for a fixed time (0·05 s) are reported too.

In the following numerical experiments we have set ρ = 1 gr/cm3, ν = 0·035 cm2/s, R0

has been taken constant and equal to 0·5 cm, h0 = 0·05 cm and E = 3 × 106 dyne/cm2. The
simulations have been carried out using a time step /t = 1 × 10−5 s.

Figure 14 shows the results for a realistic test problem where the vessel-wall density is set
to ρw = 1 gr/cm3 and we take a wave of length 32 cm (picture on the top-left of Figure 14). It
may be noted that the inertia term yields a relative variation in the vessel area of the order of
10−3. We may also note the high-frequency oscillations induced by the inertia term. Clearly, in
real conditions these oscillations are damped out by the viscoelastic term. If we input higher-
frequency (yet less realistic) waves, the variation in the flow rate is more important. We also
report some numerical experiments carried out in the same geometrical configuration using
a pressure wave pulse of length 4 cm (pictures at the top-left of Figures 15 and 16) and a
wall density of 1 and 100 gr/cm3, respectively. These tests have been carried out to enhance
the inertia effects and are reported in Figures 15 and 16. Note, in particular, that the value
100 gr/cm3 is unrealistic in physiological conditions. These tests show that the inertia term
plays a major role when the mass or the vessel acceleration are important.

A qualitative comparison with the result obtained by a two-dimensional fluid-structure-
interaction code has been carried out only for the test case of Figure 15; good agreement
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Figure 15. Inertia effects on the solution; on the top-left the initial configuration is reported: a half sine wave of
length 4 cm. The solutions without inertia term (dotted line) and with inertia term, wall density set to 1 gr/cm3,
(continuous line) for different time steps are also reported.

has been found. The difference between the average pressures computed by the two methods
remained always below 10%.

4.2. VISCOELASTIC TERM

In the generalised string model there are two possible viscous effects. Here, we have con-
sidered only the term in the form γ̃ ∂η

∂t
, since the term (c̃ ∂3η

∂t∂z2 ) will produce a fourth-order
spatial derivative in the momentum equation that makes its numerical treatment more difficult.

After introducing the term in the momentum equation and using the continuity equation,
the modified system reads

∂A

∂t
+ ∂Q

∂z
= 0,

∂Q

∂t
+ ∂F2(A,Q)

∂z
− Aγ

ρ

∂2Q

∂z2
= B2(A,Q). (45)

This system has been solved by an operator-splitting procedure similar to that introduced
earlier and an implicit Euler discretisation for the correction term Q̃.

Tests have been carried out to investigate the effects of the viscoelastic term. We set ρ =
1 gr/cm3, ν = 0·035 cm2/s, R0 = 0·5 cm, h0 = 0·05 cm and E = 3 × 106 dyne/cm2. The
simulations have been carried out with a time step /t = 1 × 10−4 s and a space discretization
/x = 0·1 cm.



272 L. Formaggia et al.

Figure 16. Inertia effects on the solution; on the top-left the initial configuration is reported: a half sine wave of
length 4 cm. The solutions without inertia term (dotted line) and with inertia term, wall density set to 100 gr/cm3,
(continuous line) for different time steps are also reported.

In Figure 17 we report the results of a short half-sine pressure wave (period 0·015 s, amp-
litude 20000 dyne/cm2) and a longer one (period 0·3 s, amplitude 20000 dyne/cm2) imposed
at inlet. We should note that the solutions with (γ = 3 gr/cm3 s) and without the viscoelastic
term have a relative difference in the area of less than 1%.

4.3. LONGITUDINAL ELASTICITY TERM

Experimental findings show that vessel-walls are longitudinally pre-stressed [33, Chapter 8].
This originates the second z-derivative term in the generalised string model [3]. Accounting
for this term by using the techniques previously illustrated would produce a modified system
of the type

∂A

∂t
+ ∂Q

∂z
= 0,

∂Q

∂t
+ ∂F2(A,Q)

∂z
− Aa

ρ

∂3

∂z3

(√
A −

√
A0

)
= B2(A,Q). (46)

Solving this system by an operator-splitting technique like that presented in Section 4.1 would
require the solution of a differential equation for the correction term Q̃ given by

∂Q̃

∂t
− Aa

ρ

∂3

∂z3

(√
A −

√
A0

)
= 0. (47)
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Figure 17. Viscoelasticity effects on the solution at two given time steps: solution of the problem without
viscoelasticity term (top) and difference between the solutions with and without viscoelastic term (bottom).

The correction Q̃n+1
h ∈ V 0

h has been computed by a collocation procedure and using a finite-
difference approximation for the third-derivative term of An+1

h (which is computed in the first
step of the operator-splitting procedure).

The effect of the longitudinal pre-stress is more important when strong area gradients are
present. To analyse these, we considered a stented artery of total length L = 15 cm with a stent
of length 5 cm placed in the middle. The vessel has a radius R0 = 0·5 cm and h0 = 0·05 cm.
The Young’s modulus is E = 3 × 106 dyne/cm2 for the healthy portion of the artery and
Es = 30 × 106 dyne/cm2 for the stented part. At z = 5 cm and z = 10 cm the Young’s
modulus has been regularised by a fifth-order function (as done in [7]); the length of the
variation zone was 0·1 cm. The coefficient ã was set to 104 gr/s2. Finally, we have taken
ρ = 1 gr/cm3, ν = 0·035 cm2/s and α = 1.

At inlet we imposed a half sine pressure wave of period T = 0·4 s and amplitude of
20000 dyne/cm2.

Figure 18 shows that, without the longitudinal elasticity term (solution represented by a
continuous line), there is an abrupt variation in the area. Clearly this solution is not physiolo-
gical as we cannot have, in the limit, a discontinuous area. Taking in account the effect of the
longitudinal elasticity term, that “discontinuity” is smoothed with a jump between the values
of the area on the left and the right of the same magnitude.

5. Conclusions

In the numerical simulation of blood flow one-dimensional models may play an important
role, in particular when one is not interested in the details of the flow field but just to the
evolution of averaged quantities along the arterial tree. To that respect, they allow a good
description of pressure-wave propagation in arteries at a reasonable computational cost. The
wave-propagation phenomenon is due to the fluid-structure interaction. The description of the
mechanical behaviour of the vessel-wall thus plays a fundamental role.

We have considered here how the model may be modified to account for different terms in
the mechanical relation, yet with the aim of maintaining a simple two-equation structure.
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Figure 18. Longitudinal elasticity effects on the solution at two different time steps (the dotted line represents the
solution with the longitudinal pre-stress term).

We have analysed these terms in turn and we reached the conclusion that for physiological
values of pressure and flow velocity they are not particularly relevant; thus, the use of the
simpler model based on an algebraic relation between pressure and section area is justified
(this fact also simplifies the measurements that have to be performed to characterise the arterial
wall mechanically). They may, however, have a more marked effect when, in pathological
situations or because of the implant of a prosthesis, there are strong gradients in the solution.
In particular, longitudinal pre-stress has an important regularising effect.

However, the case of a prosthesis implant may also be tackled by using a domain-decom-
position approach. We have shown how the continuity of total pressure is a sound interface
condition in this case, together with the continuity of the mass flux.

A domain-decomposition approach is also necessary for the treatment of branching. Here
again the continuity of total pressure guarantees a mathematically sound coupling. A bifurca-
tion angle may also be accounted for with empirical relations.

A natural continuation of this work is the simulation of the global cardiovascular system.
This task will be accomplished by coupling a network of one-dimensional models for the
arterial tree with lumped-parameter models describing the action of the heart, the capillary
bed, the venous system and the pulmonary circulation.
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