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Abstract: In this article, we review gas sensor application of one-dimensional (1D) metal-

oxide nanostructures with major emphases on the types of device structure and issues for 

realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices 

is manipulation and making electrical contacts of the nanostructures. Gas sensors based on 

individual 1D nanostructure, which were usually fabricated using electron-beam 

lithography, have been a platform technology for fundamental research. Recently, gas 

sensors with practical applicability were proposed, which were fabricated with an array of 1D 

nanostructures using scalable micro-fabrication tools. In the second part of the paper, some 

critical issues are pointed out including long-term stability, gas selectivity, and room-

temperature operation of 1D-nanostructure-based metal-oxide gas sensors. 

Keywords: 1-dimensional nanostructures; gas sensors; long-term stability; gas selectivity; 

electronic-nose; room-temperature operation 

 

1. Introduction 

In 1962, Seiyama et al. discovered that the electrical conductivity of ZnO could be dramatically 

changed by the presence of reactive gases in the air [1]. Since then, there have been tremendous reports 

on the applications of semiconducting metal oxides as gas sensors due to their small dimensions, low 

cost, and high compatibility with microelectronic processing. Recently, one-dimensional (1D) 
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2. Types of Gas-Sensor Structure Based Upon 1D Oxide Nanostructures 

2.1. Single 1D Nanostructure Gas Sensors  

Law et al. [2] have found that individual single-crystalline SnO2 nanoribbons have strong 

photoconducting response and thus detect ppm-level NO2 at room temperature by illuminating the 

nanoribbons with UV light of energy near the SnO2 bandgap (Eg = 3.6 eV at 300 K). Photogenerated 

holes recombine with trapped electrons at the surface, desorbing NO2 and other electron-trapping 

species: h
+ 

+ NO2
-
(ads) → NO2(gas). The space charge layer thins, and the nanoribbon conductivity rises. 

Ambient NO2 levels are tracked by monitoring changes in conductance in the illuminated state. The 

larger and faster response of individual nanoribbon sensors with 365 nm illumination than that with 254 nm 

illumination suggested that the presence of surface states plays a role in the photochemical adsorption-

desorption behavior at room temperature. 

Wang and co-workers demonstrated the gas sensing ability of field-effect transistors (FETs) based 

on a single SnO2 nanobelt [3]. SnO2 nanobelts were doped with surface oxygen vacancies by annealing 

in an oxygen-deficient atmosphere. Then the source-drain current of SnO2 nanobelt FETs could 

respond and recover with exposure and removal of oxygen in ambient nitrogen at 200 °C. Later, they 

improved the device performance of the SnO2 nanobelt FETs [4]. Low-resistance RuO2/Au Ohmic 

contacts on the SnO2 nanobelts led to high-quality n-channel depletion mode FETs with well-defined 

linear and saturation regimes, large on current, and on/off ratio as high as 10
7
. The FET characteristics 

show a significant modification upon exposure to 0.2% H2. The channel conductance in the linear 

regime increases by around 17% at all gate voltages. The hydrogen reacts with and removes the 

oxygen adsorbed on the metal oxide surface and thus increases the electron concentration and the 

conductance of the nanobelt channel [5]. Qian et al. [6] reported a CO sensor based on an individual 

Au-decorated SnO2 nanobelt.  

Wang and co-workers presented a high sensitivity humidity sensor based on a single SnO2 nanowire [7]. 

The SnO2 nanowire based sensor had a fast and sensitive response to relative humidity in air from a 

wide range of environments at room temperature. In addition, it had relatively good reproducibility, 

and its linear response to 30–90% RH makes it easy to calibrate. The sensitivity of the single SnO2 

nanowire based sensors to CO, CH4 and H2S gases at 250 °C was improved by 50-100% through 

surface functionalization with ZnO or NiO nanoparticles [8]. The heterojunction between the surface 

coating layers and SnO2 (i.e., n-n junction for ZnO-SnO2 and p-n junction for NiO-SnO2) and the 

corresponding coupling effect of the two sensing materials played a critical role in controlling device 

sensitivity. Besides heterojunctions, many other factors such as the size and crystalline state of surface 

additives and the concentration change of structure defects in the nanowires might bring a pronounced 

influence on the gas sensing performance of the SnO2 nanowire based device. Thus, it was difficult to 

use a uniform model to completely elucidate the nature of the surface additives. Despite this, it was 

clear that surface functionalization is a good strategy to improve the sensitivity and selectivity of the 

SnO2-based nanosensor. Kumar et al. [9] reported highly sensitive H2S sensors based on 

homogeneously Cu-doped SnO2 single nanowires. By Cu doping, the sensitivity of SnO2 single 

nanowire sensors could be increased by up to 10
5
. 
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Recently, Wang and co-workers reported gigantic enhancement of sensitivity in a single  

ZnO (Eg = 3.37 eV at 300 K) nanowire based gas sensor with asymmetric Schottky contact [10]. The 

device was composed of a single ZnO nanowire mounted on Pt electrodes with one end in Pt:Ga/ZnO 

Ohmic contact and the other end in Pt/ZnO Schottky contact (Figure 2a). An ultrahigh sensitivity of 

32000% was achieved using the Schottky contacted device (SCD) operated in reverse bias mode at 

275 °C for detection of 400 ppm CO mixed with dry air, which was four orders of magnitude higher 

than that obtained using an Ohmic contact device (OCD) under the same conditions (Figure 2b). The 

local Schottky barrier height of the small contact area between the nanowire was tuned through the 

responsive variation of the surface chemisorbed gases at the junction area (Figures 2c-2e), which 

serves as a “gate” for controlling the transport of charge carriers [11,12]. In addition, the response time 

and reset time were shortened by a factor of seven. Liao et al. [13] showed that the sensitivity of gas 

sensor based on a single ZnO nanowire to H2S in air at room temperature could be modulated and 

enhanced by He
+
 irradiation at an appropriate dose. Choi et al. [14] have developed a new smart ZnO 

nanowire gas sensor based on the commercially available 0.35 μm complementary  

metal–oxide–semiconductor (CMOS) process to improve the sensing performance with better resolution 

and to evaluate the reliability of the single ZnO nanowire gas sensor. 

Figure 2. (a) A schematic of the SCD based on a single ZnO nanowire at O2 adsorption.  

(b) Sensitivity versus system temperature for CO sensing at a response time of 1 h as a 

function of the CO concentration at 275 °C. Results collected from the OCD and SCD at 

reverse bias (SCRD) are compared. (c-e) Schematics showing the response of Schottky 

barrier height in response to variations in (c) N2, (d) O2, and (e) CO atmospheres 

(Reprinted from reference [10] with permission from American Chemical Society). 

 

Zhou and co-workers reported ultrasensitive single In2O3 nanowire sensors for NO2 and NH3 at 

room temperature [15]. The devices exhibited far superior performance compared to previously 

reported results. For instance, the devices exhibited sensitivities (defined as the resistance after 

(b)

(c)

(d)

(e)

(a)
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exposure divided by the resistance before exposure) of 10
6
 for NO2 and 10

5
 for NH3, which are four or 

five orders of magnitude better than results obtained with thin-film based sensors. Response times 

(defined as time duration for resistance change by one order of magnitude) as short as 5 s for 100 ppm 

NO2 and 10 s for 1% NH3 have also been achieved. The lowest detectable gas concentrations were 0.5 ppm 

for NO2 and 0.02% for NH3. In addition, UV illumination of our devices can dramatically enhance the 

surface molecular desorption kinetics and thus lead to substantially reduced recovery time. They have 

further developed the device performance of the single In2O3 nanowire sensors [16], demonstrating a 

detection limit of NO2 at ~20 ppb, which is the lowest detectable concentration ever achieved with all 

types of metal oxide nanowire sensors and all conventional solid-state NO2 sensors working at room 

temperature (Figure 3). Recently, Zeng et al. [17] demonstrated a highly sensitive and selective H2S 

nanosensor by using a single In2O3 nanowire transistor. The nanosensor worked at room temperature 

without UV-assisted desorption and exhibited a detection limit of 1 ppm for H2S. The response and 

recovery are both very fast at ~50 s. Moreover, the nanosensor demonstrates an extremely weak 

response to NH3 and total insensitivity to CO, which is highly promising for practical application for 

detecting low concentration of H2S. 

Figure 3. (a) A schematic of a single In2O3 nanowire sensor, where Ti/Au electrodes are 

deposited on nanowire-decorated Si/SiO2 substrate. (b) Sensing response of a single 

nanowire device to NO2 diluted in air. The normalized conductance change (∆G/G0) is 

plotted as a function of time with the nanowire sensor exposed to NO2 of various 

concentrations. Recovery was made by UV light (254 nm) desorption of NO2. At point A, 

the first cycle was taken with UV illumination. The nanowire conductance kept rising until 

the UV light was turned off at point B. 20 ppb NO2 was introduced to the airflow at point C 

(Reprinted from reference [16] with permission from American Chemical Society). 

 

Moskovits and co-workers have intensively studied the electron-transport properties of single SnO2 

nanowires configured as FETs over a wide temperature range in various atmospheres comprised of 

mixtures of N2/O2/CO [18-20]. Owing to their large surface-to-volume ratios, the bulk electronic 

properties of the nanowires were found to be controlled almost entirely by the chemical processes 

taking place at their surface, which could in turn be modified by controlling the gate potential. Thus, 

the rate and extent of oxygen ionosorption and the resulting rate and extent of catalytic CO oxidation 

reaction on the nanowire’s surface could be controlled and even entirely halted by applying a negative 

(a) (b)
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enough gate potential, presenting the prospect of tuning catalysis or other surface reactions entirely 

through electronic means [20]. 

Moskovits and co-workers have shown enhanced gas sensing of single SnO2 nanowires configured 

as resistive elements by surface decoration with metal nanoparticles such as Pd [21] and Ag [22]. For 

Pd-decorated SnO2 nanowires, the 500–1000% improvement in sensitivity toward oxygen and 

hydrogen was attributed to the enhanced catalytic dissociation of the molecular adsorbate on the Pd 

nanoparticle surfaces and the subsequent diffusion of the resultant atomic species to the oxide surface 

(spillover effect). For Ag-decorated SnO2 nanowires, the significant improvement in sensitivity toward 

ethylene was due to the modification of the Schottky junction formed between the Ag particles and the 

tin oxide resulting from the surface chemical processes involving ethylene and oxygen occurring 

exclusively on the silver nanoparticles’ surface (electronic effect).  

Figure 4. (a) Scanning electron microscopy (SEM) image of an individual VO2 nanowire 

device configured with appropriate Ohmic contacts for electrical measurements in a 

gaseous atmosphere. (b) SEM image of a Pd-decorated VO2 nanowire. The Pd particles, 5–22 nm 

in diameter, are noncontinuous and cover the surface of the nanowire uniformly (scale bar, 200 nm). 

(c) I-V curves obtained at 50 °C for Pd-decorated VO2 nanowire after various exposure 

times to hydrogen gas (5 sccm), added to the background argon stream (10 sccm). (d) The 

change in current for a Pd-decorated VO2 nanowire biased at 10 V as a function of time of 

exposure to hydrogen gas. Initially the current increases gradually with hydrogen exposure 

time and then at ~7 min increases dramatically by ~3 orders of magnitude (5 × 10
-6
 A → 6 × 10

-3
 A) 

in the absence of the series resistor (Reprinted from reference [24] with permission from 

American Chemical Society). 
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Recently, Stelecov et al. [23] have demonstrated gas sensors based on single VO2 nanowires, where 

the pressure dependent onset of metal-insulator transition in single crystal suspended VO2 nanowires 

was used as a sensor signal. Moskovits and co-workers have reported that exceptionally sensitive 

hydrogen sensors were produced using Pd-nanoparticle-decorated, single VO2 nanowires [24]. The 

high sensitivity arose from the large downward shift in the insulator to metal transition temperature 

following the adsorption on and incorporation of atomic hydrogen, produced by dissociative 

chemisorption on Pd, in the VO2, producing ∼1000-fold current increases (Figure 4).  

Wang and co-workers have studied oxygen sensing properties of room-temperature single nanowire 

gas sensors based on various oxides such as ZnO [25], β-Ga2O3 [26], and ZnSnO3 [27]. Single β-Ga2O3 

(Eg = 4.9 eV at 300 K) nanowires exhibited a very fast oxygen response time of ~1 s in 254 nm UV 

illumination [26], providing a route for realizing room-temperature fast-response oxygen sensors.  

β-Ga2O3 has very low carrier density and the oxygen sensing only appeared under the UV illumination. 

This is different from semiconducting nanowires including SnO2, In2O3, and ZnO, which initially have 

oxygen sensing properties due to the high carrier density without UV illumination, have long response 

time of several minutes under the UV illumination. Extremely high oxygen sensitivity about six orders 

of magnitude was realized from single ZnSnO3 nanowires with abundant grain boundaries [27]. Such a 

drastic sensing was ascribed to grain boundary barrier modulation, demonstrate a promising approach 

to realize miniaturized and highly sensitive oxygen sensors.  

Morante and co-workers have provided a systematic study on effects of contact resistances and the 

nanowire diameter size on the CO and humidity measurements using a single SnO2 nanowire [28]. 

Controlled AC impedance measurements revealed that the single SnO2 nanowire sensor had CO 

detection threshold smaller than 5 ppm and measurement instability lower than 4% at 295 °C. They we 

have demonstrated ultralow power consumption of self-heated single SnO2 nanowire gas sensors [29]. 

For instance, the response of the sensors to 0.5 ppm NO2 without heater (Im = 10 nA) was the absolute 

equivalent to that with a heater (T = 175 °C) (Figure 5). These devices required extremely low optimal 

conditions for NO2 sensing with less than 20 μW to both bias and heat them, which was significantly 

lower than the 140 mW required for the external microheater. Furthermore, they have demonstrated 

the equivalence between thermal and room-temperature UV light-assisted responses of single SnO2 

nanowire gas sensors [30,31] (Figure 6). For instance, the response of the sensors to 0.5 ppm NO2 at 

room temperature under UV light illumination was the absolute equivalent to that operating at 175 °C 

in dark conditions. The experimental results revealed that nearly identical responses, similar to 

thermally activated sensor surfaces, could be achieved by choosing the optimal illumination conditions. 

Besides SnO2, In2O3, and ZnO nanowires or nanobelts, gas sensors based on single ZnO nanorods [32-35], 

single SnO2 nanotubes [36], single TiO2 and WO2.72 nanowires [37], and single NiO nanowires [38] 

have been reported. Liao et al. [39] have presented that the gas sensitivity of a single CeO2 (Eg = 3.2 eV at 300 K) 

nanowire sensor to CO, H2, ethanol, gasoline, and H2S at room temperature could be significantly 

increased by incorporation of Pt nanoparticles on a CeO2 nanowire. In comparison to conventional 

metal oxide sensors, the Pt-sensitized single CeO2 nanowire sensor had an obvious advantage in 

selective detection of CO gas. However, the exact origin of the selectivity is still in question. 
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by at least three or four orders of magnitude) than the top of the line instrumental set-ups 

(e.g., gas chromatographic methods for H2S [44-46] or spectrometric method for NH3 [47,48]). 

Although the single 1D nanostructure sensors can be much cheaper than the high instrumental systems, 

the practical application of the nanosensor technique might be possible after several key issues such as 

long-term stability, gas selectivity and low-temperature operation are resolved. These issues will be 

addressed in detail in Section 3 of this paper.  

Table 1. Properties of gas sensors based on single 1D oxide nanostructure. 

Target 
gas 

Material 
Sensor

type 
Detection

limit (Temp.)
Sensitivity

(Conc.) 
Response 

time 
Ref. 

NO2 
SnO2 

nanoribbon 
Resistor 

2 ppm 
(25 °C) 

7 
(100 ppm) 

~1 min [2] 

NO2 
SnO2 

nanowire 
Resistor 

<0.1 ppm 
(25 °C) 

1 
(10 ppm) 

~ 1 min [31] 

NO2 
In2O3 

nanowire 
FET 

0.5 ppm 
(25 °C) 

10
6

(100 ppm) 
5 s [15] 

NO2 
In2O3 

nanowire 
FET 

0.02 ppm 
(25 °C) 

0.8 
(1 ppm) 

15 min [16] 

H2 
SnO2 

nanobelt 
FET 

0.2% 
(25 °C) 

0.17 
(0.2%) 

N/A [4] 

H2 
SnO2 

nanowire 
FET 

<1 ppm 
(200 °C) 

4 
(1 ppm) 

~50 s [21] 

H2 
ZnO  

nanorod 
Resistor 

200 ppm 
(25 °C) 

0.04 
(200 ppm) 

30−40 s [35] 

H2 
VO2 

nanowire 
Resistor 

N/A 
(50 °C) 

1000 
(100%) 

~10 min [24] 

H2 
WO2.72 

nanowire 
Resistor 

< 100 ppm 
(25 °C) 

22 
(1,000 ppm)

40 s [37] 

CO 
SnO2 

nanobelt 
Resistor 

5 ppm 
(400 °C) 

7 
(250 ppm) 

30 s [6] 

CO 
SnO2 

nanowire 
FET 

100 ppm 
(25 °C) 

15 
(500 ppm) 

~10 min [8] 

CO 
ZnO 

nanowire 
Resistor 

<50 ppm 
(275 °C) 

3200 
(400 ppm) 

~50 min [10] 

CO 
NiO 

nanowire 
Resistor 

N/A 
(150 °C) 

0.25 
(800 ppm) 

~2 h [38] 

CO 
CeO2 

nanowire 
Resistor 

<10 ppm 
(25 °C) 

2 
(200 ppm) 

~10 s [39] 

H2S 
SnO2 

nanowire 
Resistor 

<1 ppm 
(150 °C) 

6 × 10
6

(50 ppm) 
N/A [9] 

H2S 
ZnO 

nanowire 
Resistor 

N/A 
(25 °C) 

8 
(300 ppm) 

~50 s [13] 

H2S 
In2O3 

nanowire 
FET 

1 ppm 
(25 °C) 

1 
(20 ppm) 

48 s [17] 

Ethanol 
SnO2 

nanotube 
Resistor 

N/A 
(400 °C) 

20 
(7.8%) 

~80 s [36] 

O2 
β-Ga2O3 
nanowire 

Resistor 
<50 ppm 
(25 °C) 

20 
(50 ppm) 

1 s [26] 
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Peng et al. [52] fabricated a gas sensor based on an assembly of porous silicon nanowires (SiNWs) 

by making electrical contacts on the top portion of as-prepared nanowires by thermal evaporation or 

other methods through a mask. The sensors made from the porous SiNWs assembly showed fast 

response and excellent reversibility to ppb-level NO concentration. The excellent sensing performance 

coupled with scalable synthesis of porous SiNWs could be a viable mass-production of sensor chips. 

3. Critical Issues  

The use of 1D metal oxide nanostuctures as gas sensors has potential advantages compared to 

conventional thin film devices due to the intrinsic properties of 1D nanostructures such as high 

surface-to-volume ratio and high crystallinity. However, the use of nanowires in real devices is still in 

a preliminary stage. Thus, how to integrate them with low-cost and high-yield mass production 

processes has become a major challenge for the future. Here, we discuss technological issues of long-

term stability, selectivity, and room-temperature operation which act as bottleneck to the massive use 

of 1D metal oxide nanostructures in commercial gas sensors [53]. 

3.1. Long-Term Stability  

Sysoev et al. [54] reported a comparative study of the long-term gas-sensing performance of gas 

sensors based on randomly oriented single crystal SnO2 nanowire mats and thin layers of pristine SnO2 

nanoparticles. The sensing elements composed of percolating nanowires demonstrate excellent 

sensitivity and long-term stability toward traces of 2-propanol in air. The superior initial sensitivity of 

the nanoparticle layer deteriorated during the first month of the operation and approached to one 

observed steadily in the nanowire mats. The better stability of the nanowire mats sensors was 

explained in framework of reduced propensity of the single crystal nanowires to sinter under realworld 

operation conditions with respect to nanoparticle thin film. The stability of the percolating paths, 

analyte delivery and transduction mechanism in nanowire network sensing elements was defined at the 

microscopic level. Hernadez-Ramirez et al. [53] showed the advantages of individual nanowire-based 

sensors comparison to porous-film sensors that the absence of nooks and crannies in nanowire-based 

devices facilitates direct adsorption/desorption of gas molecules, improving the dynamic behavior of 

these prototypes to various gases. Especially, single-nanowire sensors have no contribution of necks 

and grain boundaries to the device operation, leading to good stability. However, the well-controlled 

manipulation and characterization of nanowires should be developed to produce stable and device-quality 1D 

nanostructure-based sensors. 

3.2. Gas Selectivity 

Ideal gas sensors are the ones that respond to only target gas molecules. Unfortunately, metal-oxide-

based gas sensors respond in a similar way toward different oxidizing (or reducing) gas molecules, 

even though sensitivities might be different depending on the type of gas molecules. A variety of 

methods were proposed in metal-oxide gas sensors to improve the selectivity, such as particular bulk 

or surface doping, the application of gas specific prefilters, etc. [55-57]. 
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excellent performance as a gas sensor and e-nose system capable of promptly detecting and reliable 

discriminating between ethanol, 2-propanol and CO in air at a ppb level of concentration which cannot 

be detected by common olfactometer.  

3.3. Room-Temperature Operation 

Adsorption and desorption of gas molecules on the surface of metal oxides are both thermally-

activated processes, which cause the response and recovery times to be usually very slow at room 

temperature. Thus, gas sensors based on 1D oxide nanostructures operate at high temperature (200-–500 C) to 

enhance the surface molecular adsorption/desorption kinetics and continuously clean the surface. 

Development of room-temperature gas sensors might have very important advantages such as low 

power consumption, simple system configuration, reduced explosion hazards, and longer  

device lifetime.  

Desorption of gas molecules typically requires much higher activation energy than adsorption.  

Law et al. first demonstrated SnO2-nanoribbon-based gas sensor operating at room-temperature by 

desorbing attached NO2 gas molecules using ultraviolet (UV) irradiation [2]. UV-assisted desorption of 

NO2 was explained as follows: before UV illumination, oxygen species are adsorbed on the SnO2 

nanoribbon surface, taking free electrons from the n-type SnO2 nanoribbon and forming a depletion 

region that extends into the thin nanoribbon. When the SnO2 nanoribbon is illuminated by UV light 

with wavelength shorter than the bandgap energy of SnO2, electron–hole pairs are generated. The 

positive holes discharge the negatively charged oxygen ions chemisorbed on the nanoribbon surface 

and eliminate the depletion region. Electrons produced at the same time increase the conductivity of 

the SnO2 nanoribbon. More recently, UV irradiation was reported to influence adsorption of gas 

molecules on the surface of SnO2 or ZnO nanostructures as well as desorption. Under illumination, 

photons partially desorb oxygen species from the surface, providing an increased number of adsorption 

sites available for gas molecules. Thus, the gas response of SnO2 or ZnO nanostructures with UV light 

irradiation was about 120 times higher than that without UV light irradiation [31,62]. 

Fan et al. reported highly sensitive room-temperature chemical sensors for detection of NO2 and 

NH3 based upon ZnO nanowire field-effect transistors [63]. The electric field applied over the back 

gate electrode modulates the carrier concentration, which in turn significantly affects adsorption and 

desorption behaviors of gas molecules or gas sensitivity. A strong negative field was utilized to refresh 

the sensors by an electrodesorption mechanism. 

4. Summary 

In this article, we review gas sensor application of 1D metal-oxide nanostructures with major 

emphases on the types of device structure and issues for realizing practical sensors. In the initial stage, 

gas sensors based on individual 1D nanostructure were successfully fabricated using electron-beam 

lithography and demonstrated excellent gas-sensing capability. As a result, the individual 1D-nanostructure 

gas sensors have been a platform technology for fundamental research. Recently, gas sensors with 

practical applicability were proposed, which were fabricated with an array of 1D nanostructures using 

scalable micro-fabrication tools such as conventional optical lithography. Some critical issues were 
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addressed including long-term stability, gas selectivity, and room-temperature operation of the  

1D-nanostructure-based metal-oxide gas sensors.  
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