
 Open access  Journal Article  DOI:10.1063/1.432097

One‐dimensional random walks of linear clusters — Source link 

David A. Reed, Gert Ehrlich

Published on: 01 Jun 1976 - Journal of Chemical Physics (American Institute of Physics)

Topics: Anomalous diffusion, Random walk, Mean squared displacement, Surface diffusion and Stochastic process

Related papers:

 Surface diffusion of individual atoms and dimers: Re on W(211)

 Migration of platinum adatom clusters on tungsten (110) surfaces

 Direct Observation of Interactions between Individual Atoms on Tungsten Surfaces

 Statistics of one‐dimensional cluster motion

 Atomic View of Surface Self‐Diffusion: Tungsten on Tungsten

Share this paper:    

View more about this paper here: https://typeset.io/papers/one-dimensional-random-walks-of-linear-clusters-
49v2wahbqm

https://typeset.io/
https://www.doi.org/10.1063/1.432097
https://typeset.io/papers/one-dimensional-random-walks-of-linear-clusters-49v2wahbqm
https://typeset.io/authors/david-a-reed-2ukotylhm0
https://typeset.io/authors/gert-ehrlich-4eejbsqkz0
https://typeset.io/journals/journal-of-chemical-physics-10x5po75
https://typeset.io/topics/anomalous-diffusion-5nyya0b8
https://typeset.io/topics/random-walk-f6ejeksa
https://typeset.io/topics/mean-squared-displacement-13nswfwp
https://typeset.io/topics/surface-diffusion-1xtyiu72
https://typeset.io/topics/stochastic-process-ahq4y31a
https://typeset.io/papers/surface-diffusion-of-individual-atoms-and-dimers-re-on-w-211-3es4w1kcrf
https://typeset.io/papers/migration-of-platinum-adatom-clusters-on-tungsten-110-1smu8z9xll
https://typeset.io/papers/direct-observation-of-interactions-between-individual-atoms-2mronmdwdp
https://typeset.io/papers/statistics-of-one-dimensional-cluster-motion-4r24a30vn9
https://typeset.io/papers/atomic-view-of-surface-self-diffusion-tungsten-on-tungsten-20hthji6xs
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/one-dimensional-random-walks-of-linear-clusters-49v2wahbqm
https://twitter.com/intent/tweet?text=One%E2%80%90dimensional%20random%20walks%20of%20linear%20clusters&url=https://typeset.io/papers/one-dimensional-random-walks-of-linear-clusters-49v2wahbqm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/one-dimensional-random-walks-of-linear-clusters-49v2wahbqm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/one-dimensional-random-walks-of-linear-clusters-49v2wahbqm
https://typeset.io/papers/one-dimensional-random-walks-of-linear-clusters-49v2wahbqm


REPORT R -718 FEBRUARY. 197« UILÜ-EM fi Tfi-PPOft

g s » COORDINATED SCIENCE LABORATORY

ONE-DIMENSIONAL 
RANDOM WALKS 
OF LINEAR CLUSTERS

DAVID A. REED 
GERT EHRLICH

APPROVED FOR PUBLIC RELEASE.  DIST RIBUT ION  UNLIM IT ED.

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS



1 UNCLASSIFIED
^  . S E C U R I T Y  C L A S S I F I C A T I O N  O F  T H I S  P A G E  (Whan Da t a  Ent ered)

• K REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM

V 1.  R E P O R T  N U M B E R 2 .  G O V T  A C C E S S I O N  N O . 3.  R E C I P I E N T ' S  C A T A L O G  N U M B E R

1 4 .  T I T L E  (and Subt it le) 5 .  T Y P E  O F  R E P O R T  & P E R I O D  C O V E R E D

9 ONE-DIMENSIONAL RANDOM WALKS OF LINEAR CLUSTERS Technical Report

1
6 .  P E R F O R M I N G  O R G .  R E P O R T  N U M B E R

R-718; UILU-ENG 76-2206
7.  a u t h o r *-«; 8 .  C O N T R A C T  O R  G R A N T  N U M BE R * - « ;

a

David A. Reed and Gert Ehrlich DMR-72-02937;DAAB-07-72-C- 
0259

■

9 .  P E R F O R M I N G  O R G A N I Z A T I O N  N A M E  A N D  A D D R E S S

Coordinated Science Laboratory 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 61801

10 .  P R O G R A M  E L E M E N T ,  P R O J E C T ,  T A S K  

A R E A  & W O R K  U N I T  N U M B E R S

a 11 .  C O N T R O L L I N G  O F F I C E  N A M E  A N D  A D D R E S S 12 .  R E P O R T  D A T E

1 Joint: Serviras Flprtrnnirs Procrra-m February 1Q7^
13 .  N U M B E R  O f  f  A G E S

32

■ 14 .  M O N I T O R I N G  A G E N C Y  N A M E  & A D D R E SS* " * /  dif ferent  from Cont r ol l ing Of f ice) 15 .  S E C U R I T Y  C L A S S ,  (of  t his report )

1 UNCLASSIFIED

f t

1 5 a .  D E C L A S S I  F I  C A T I O N / D O W N  G R A D I N  G  
S C H E D U L E

w 16 .  D I S T R I B U T I O N  S T A T E M E N T  (of  t his Repor t )

•

■

Approved for public release; distribution unlimited

1

«

17 .  D I S T R I B U T I O N  S T A T E M E N T  (of  t he abst ract  ent ered in Block  20,  i f  dif ferent  from Repor t )

•

§

18 .  S U P P L E M E N T A R Y  N O T E S

1 19 .  K E Y  W O R D S  (Cont inue on reverse side i f  necessa r y  and ident if y by block number)

(

Atom Clusters
One-Dimensional Surface Diffusion

I 2 0 .  A B S T R A C T  (Cont inue on reverse side if  necessa r y  and ident if y by block number)

R

■

»

A stochastic formalism is developed for the one-dimensional surface dif
fusion of atom clusters, with component atoms located in adjacent channels, 
by representing the diffusion as a random walk of the center of mass (COM). 
Relations between the mean square displacement of the center of mass and 
the rate constants characterizing COM motion are derived for dimers and 
trimers, starting from the Kolmogorov equation. For dimers in the limit 
of long diffusion intervals, COM rate constants and individual atomic jump

■
DD 1 J A N M7 3  1 473 E D I T I O N  O F  1 N O V  6 5  I S O B S O L E T E

§ S E C U R I T Y  C L A S S I F I C A T I O N  O F  T H I S  P A G E  (When Da t a  Ent ered)



S E C U R I T Y  C L A S S I F I C A T I O N  O F  T H I S  R A O E f H f r u  Dat a Bn t ired)

20. ABSTRACT (continued)

frequency of occurrence of different dimer configurations. This 
analysis is feasible for trimers only under special conditions; even 
then, separation into the individual atomic rate processes is not in 
general possible.

S E C U R I T Y  C L A S S I F I C A T I O N  O F  T H I S  P A G E f J W i e n  Da t a  Ent ered)



UILU-ENG 76-2206

ONE-DIMENSIONAL RANDOM WALKS 
OF LINEAR CLUSTERS

by

David A. Reed and Gert Ehrlich

Supported by the National Science Foundation under Grant 

DMR-72-02937; Operated under the Joint Services Electronics Program 

(U.S Army, U.S. Navy, and U.S. Air Force) under Contract DAAB-07-72- 

C-0259.

Reproduction in whole or in part is permitted for any purpose 

of the United States Government

Approved for public release. Distribution unlimited.



ONE-DIMENSIONAL RANDOM WALKS OF LINEAR CLUSTERS*

David A. Reed and Gert Ehrlich^

Coordinated Science Laboratory and 

Department of Metallurgy 

University of Illinois at Urbana-Champaign

A stochastic formalism is developed for 

the one-dimensional surface diffusion of atom 

clusters, with component atoms located in 

adjacent channels, by representing the diffusion 

as a random walk of the center of mass (COM). 

Relations between the mean square displacement of 

the center of mass and the rate constants charac

terizing COM motion are derived for dimers and 

trimers, starting from the Kolmogorov equation.

For dimers in the limit of long diffusion intervals, 

COM rate constants and individual atomic jump rates 

can be deduced knowing the mean square displacement 

and the frequency of occurrence of different dimer 

configurations. This analysis is feasible for 

trimers only under special conditions; even then, 

separation into the individual atomic rate processes 

is not in general possible.
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The routine utilization of the field ion microscope in surface 

studies has already generated much new information about atomic migration 

on solids.'*' In such measurements, displacements of individual adatoms 

are noted for time intervals of length t. The mean square distance covered 

in one dimension is then related to the diffusion coefficient through 

Einstein's equation

<(AR)2> = 2Dt (1)

2
for diffusion without drift. There are limits to the accuracy of the

3
determinations set by the statistical nature of the measurements, but

these and the underlying formalism are well understood.

Such observations have recently been extended to cover the

surface migration of small linear clusters of adatoms, and preliminary

measurements of one-dimensiona1 motion at different temperatures are

4-7
available for several systems. Lacking so far, however, is a basis

for deriving, from the experimental observations, information about the 

atomic events in the migration of clusters.

In the diffusion of clusters, Einstein's equation relates the 

observed displacements to the diffusion coefficient, precisely as with 

single atoms. However, to maintain correspondence with macroscopic 

observations of mass transfer in a concentration gradient, the displacements 

of the center of the mass rather than of the individual adatoms forming the 

clusters must be measured. There remains a significant problem.

The diffusion coefficient is usually viewed as involving jumps 

over a barrier of magnitude Vp, and is represented by

1
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D = Dq exp - VD/kT . (2)

For single adatoms executing a random walk on a lattice of spacing

<(AR)2> = <(R-R)2) = rtl2 ; (3)

here t is the length of the diffusion interval and T the rate at which 

the atom jumps from one site to another. This is given by

T = v exp - V^/kT , (4)

where v represents the frequency factor for the diffusive jumps. The

prefactor Dq for one-dimensional motion of single atoms is therefore 

2
D0 = v & / 2, and the barrier derived from an Arrhenius analysis is 

just that for the individual atomic jumps. For clusters, however, the 

significance of neither the prefactor Dq nor the barrier is clear on the 

atomic level.

In this paper we explore a stochastic formalism relating the diffusion 

coefficient of linear clusters to the individual atomic events in the 

overall motion. The presentation will be confined to an analysis of dimers 

and trimers; these examples already reveal the interesting features of 

one-dimensional cluster motion, as well as the difficulties of treating 

higher clusters.

I . OVERALL APPROACH

We consider one-dimensional diffusion on a lattice with spacing l 

in the direction of motion. The surface cell is presumed symmetrical about 

two planes normal to the surface, one in the direction of motion and 

the other at right angles to it. There is only one adatom allowed per
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channel; this can jump to an adjacent site, either to the right or to the 

left of its current position, but never from one channel to another.

The adatoms are strongly coupled to their neighbors and clusters never 

dissociate. As illustrated in Fig. 1 specifically for dimers, adatoms 

in adjacent rows assume two different configurations. They may be 

lined up, with the two atoms occupying corresponding sites in their 

respective rows; alternatively, one atom may be displaced from the other 

by one site. These configurations have in fact been observed for dimers

g
on the (211) plane of tungsten, and it has been suggested that diffusion 

occurs in a sequence of single atom jumps,^ causing the cluster to wiggle 

along a diffusion channel.

When a dimer changes from one configuration to the other, the 

location of the center of mass changes by half the surface spacing 4 ,

Its motion can therefore be represented as a one-dimensional walk of the 

center of mass (COM) on a lattice of spacing 4/2, shown in Fig. 2. The 

individual sites on this lattice will be labeled by the integer x.

We assume that the lattice is infinite, so that ~°° < x < °°, and that the 

random walk always starts in the unit cell based at x = 0. At even sites, 

the properties of the dimer will in general differ from those at odd sites. 

The unit cell of the COM lattice is therefore of length 4, and has two 

different points in it. Two rate constants suffice to describe COM movement; 

jumps from even sites occur at a rate £, from odd sites at a rate b.

9
For higher clusters, a more general random walk of the center of 

mass is necessary. In this, the transition probabilities for COM jumps up 

the lattice, from position x to x + 1, will be denoted by X^; for transitions



Fig. 1. Dimer configurations in one-dimensional diffusion. Shading 

denotes atoms forming diffusion channels, crosses denote the 

location of the center of mass for dimers. Direction of 

diffusion is indicated by arrows, surface spacing in this 

direction by l.
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from x to x - 1 by u^. These vary within a unit cell, but are characteristic 

of the type of the site, as indicated by the appropriate value of x in the 

unit cell at the origin.

To calculate the mean square displacement in such a random walk, 

we recall that diffusion on a surface involves transitions continuous 

in time but between discrete sites.^ The probability px of finding a 

point x occupied by the center of mass is therefore prescribed by the 

Kolmogorov equation^

the usual differential equation describing the time evolution of the nth

-  ( X  + Ü  ) p  +U,
x x x (5)

x = 0, +1, + 2  ...

Multiplying both sides by x11 and then summing over all values of x yields

moment

(6)

2 2 2
Of specific interest is the variance, ((Ax) ) = (x ) - (x) , for which 

we have

2

= 2[<x\ ) - <xu, > - <x>«\ > - <U >)] 
dt x x v x x

+  [ ( \ )  +  < U > ]
X

(7)

Implicit in this approach is the assumption that for any COM

position x there exists a unique set of two transition probabilities. This 

condition is satisfied by dimers. For trimers the situation is more
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complicated, and as will be seen in Section III, the random walk represen

tation adopted here does not provide a completely general description of 

the diffusion process.

II, DIMERS

A. Mean Square Displacements

The unit cell as well as the rate constants for the two COM

transitions involved in the motion of dimers are shown in Fig. 2. Changes

from a straight to a staggered configuration of the cluster occur at a 

rate a_. That is, the center of mass moves from point 0 to 1 at a rate a;

it then moves from 1 to 2, or else back to 0, at a different rate b. With

the COM at 1, a pair can have two different but equivalent configurations, 

illustrated in Fig. 2. It is therefore important to recognize that a 

designates the rate at which changes from 0 to 1 occur, irrespective of 

the configuration of the dimer in the latter position.

To determine the mean square displacement, we evaluate the 

quantities entering the right-hand side of Eq. (7). For dimers, the space 

averaged rate constants for COM motion are

( X  )  =  £  p X =  a P ^ z  ̂ +  b P .  
x x x 0 1

x

<“x> “ S Px Wx = aP02) + b P iZ) 
X

(z)

(8)

.(b)
Here P) denotes the sum of the probabilities p^ taken over all sites of 

type i; the superscript z explicitly indicates the origin of the walk at 

time t = 0. Thus

,(z) =
1q"' = £ pk k=0, + 2, + 4, .. 

x
( 10)



T y p e  0  1 0  1 0  1

I / ! \ Î / I \ I \

AP-662

Fig. 2. Random walk representation of dimer diffusion, showing a 

sequence of dimer configurations for COM positions x.

Unit cell for the representative random walk is indicated by- 

heavy lines. \x indicates rate constants for COM transitions 

to the right, and ^  to the left.
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is the probability of finding the COM at a site of type 0; on the other 

hand,

pi(z) = S pk k=:±l.±3, ... (11)
1 k K

represents the probability of having the COM at a site of type 1, 

irrespective of the particular unit cell. The two must obey the requirement

Also,

1 . (12)

<x\x> = 2 X^XPX = a<x)Q + b<x>1 (13)

<xu > = 2 xU p = a(x)n + b<x>- . (14)
X X X v JL

flere we have again used the symbol (x)^ to denote the average of x over 

all sites of type i.

Only the last term in Eq. (7) makes a non-vanishing contribution, and 

the differential equation for the mean square displacement thus reduces to

d<(fa)2> = 2 (ap(z) + bP<z)) . 
dt 0 1

(15)

,(z)
The probability P) required for solution of Eq. (15) can itself be 

derived starting from the Kolmogorov equation. Summing Equation (5) over 

all sites of type 0 gives

dP

dt

(z)

= 2(bp<z) - aP<z)) (16)

(z)
and taking advantage of Eq. (12) we find Pq as a function of COM position

z at t = 0:
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P<0) ■ [ b+ a exp - 2 (a + b) t] / ( a +b) (17)

P(̂ 1) = b [ l- e x p - 2 ( a + b ) t ] / ( a + b )  (18)

' p̂ 0) = a [ l - e x p  - 2 (a + b) t ] / ( a+ b)  4 (19)

pjj“̂  = [ a+ b exp - 2 ( a+ b) t ] / ( a+ b)  . (20)

Recalling that at t = 0, ((Ax)2)^2̂  = 0, we find the solutions of Eq. (15) 

are

< ( ix) 2 >(0) = ~  { 2bt + 2 ( lT b y U - e x p - 2 ( a + b ) t ] }  (21)

< ( ix) 2>(1)  = ^ { 2 a t  - 2 ( fT b7  [ l - e x p - 2 ( a + b ) t ] }  . (22)

B. Diffusion Behavior

The mean square displacement of dimers differs from the familiar 

behavior of single adatoms in at least three ways: it involves two

distinct rate constants, does not increase linearly in time, and further

more depends upon the starting place of the walk.

There are three distinct time regimes in the motion of dimers. For 

intervals so small that t « [ 2 (a+b)] 1, Eqs. (21) and (22) reduce to

<(Ax )2>(0) = 2  at (23)

<(Ax)2>(1) = 2 bt . (24)
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This linear regime is followed by a transition region with a complicated 

dependence on the length of the interval. In the other extreme of 

long time intervals, as t -* °°, the mean square displacement assumes a 

particularly simple form. It is independent of starting position 

and linear in time:

<(Ax )2> = ^  • (25)

The processes underlying this behavior are evident on examining 

the probability of finding the COM on a site of type i. If the 

time interval is short enough, at most a single jump occurs during a 

diffusion period. The COM is then on a given site only if it started 

and remained there, or if it started on an adjacent site and made a 

single jump. The total rate at which the COM leaves a 0 site, going 

either up or down the lattice, is 2a; it is 2b starting from a 1 site.

The probabilities are therefore

p!j0) = 1 - 2at = 2bt (26)

p<0) = 2at P<X) = l-2bt , (27)

precisely the values given by Eqs. (17)-(20) in the limit t << [2(a+b)]

The mean square displacement under these conditions is just the probability 

of having made a single jump away from the starting place, and Eqs. (23) 

and (24) follow immediately. It is interesting to note that for short 

time intervals, the mean square displacement will be quite .different 

depending upon the origin of the walk, a behavior quite unlike that of
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single atoms.

For long diffusion intervals, the different dimer configurations 

are in local equilibrium. The distributions will remain constant in 

time provided

PQa = Pxb . (28)

This, together with the requirement that

P0 + Px - 1 (29)

is of course equivalent to the relations obtained from Eqs. (17)-(20)

-1 13
in the limit t >> [2(a+b] , namely

P
0

,<0) _ p(l) . _ b _
0 0 a +b

lim t »  [2 (a +b)]

P
1

(0) = p(D _ _JL_ 
1 1 a +b

lim t »  [2 (a +b)]

(30)

(31)

The rate constant describing the approach of (P> - P^) to

the local equilibrium state appears from Eqs. (17)-(20) as 2(a+b).

After a time interval t »  [2(a+b)] 1, the probabilities lose all dependence 

on the starting point, and the initial distribution over the unit cell 

becomes unimportant. It is this regime which corresponds to large-scale 

diffusion of dimers, as distinct from the rearrangements within a unit 

cell that occur during very short time intervals. Only when local 

equilibrium over the configurations in a unit cell has been established 

is it therefore proper to relate the mean square displacements to a 

macroscopic diffusion coefficient.
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Averaged over the different positions in an equilibrium distribution, 

the mean square displacement becomes

<<(Ax )2>> = P0<(Ax )2)(0) + P1<(Ax)2>(1) = . (32)

It must be emphasized that this simple form comes about only through 

averaging over all starting points. Even when an equilibrium 

distribution holds, the mean square displacements in Eqs. (21) and (22) 

may still depend upon starting position whereas the averaged value 

does not. In the utilization of experimental data, averaging over all 

starting positions is therefore clearly an advantage.

The significance of the mean square displacement as given by 

Eq. (32) becomes obvious if we recall Eqs. (30) and (31) to write

((Ax)2) = 4P^at = 4Pjbt . (33)

From Eq. (8) we know that the total average jump rate is

(\ > + <u > = 2 (aPn + bP.) = 4a P = 4bP. . (34)
x x 0 1 0 1 v

Just as for an ordinary random walk, the mean square displacement of dimers

is therefore given by the product of the total jump rate and the length of

the time interval, provided it is averaged over all starting positions in

an equilibrium distribution.

C. Atomic Jumps in Diffusion

In actual observations of the mean square distance, only long 

time intervals are of interest. These are the conditions that correspond 

to the usual definition of diffusion; they also allow quantitative measurements
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over an appreciable range of well defined temperatures. We recall that 

for dimers the individual COM displacements are of length 1/2. The actual 

mean square distance covered by the COM during a time t becomes, in the 

limit t »  [2 (a +b)]'1,

<<(AR)2>> = -f^  tl2 = P0aA2t = P ^ t  . (35)

The mean square distance, and consequently the diffusion

coefficient, is seen to involve contributions from both the rates a and b

which characterize the displacement of the center of mass. Therefore

such a measurement cannot by itself define the individual rate processes

important in the diffusion of the dimer. However, combined observations

of the mean square distance covered during an interval t and of the

occupation probability suffice to define the rate constants entering

the diffusion process. The mean square distance itself also serves as a

convenient indicator to determine if the long time limit has actually

been reached. Local equilibrium will certainly have been established

provided the COM on average samples the entire unit cell. Diffusion measure-

2 2
ments should therefore be made for ((Ar ) )/Z > 1 ,

It must be emphasized that the rate constants a and b 

refer to COM motion throughout. Specifying the site specifies 

the configuration of the dimer only if it is at a 0 site; on a 1 

position two configurations contribute equally. As in Eq. (4), we write 

the rate of an atomic jump as the product of a frequency factor u and a 

Boltzmann term involving the activation energy E^; we therefore have
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+
a = 2v exp - E /kT 
— a r a

b = vb exp - E^/kT . (36)

One final question remains: can the mean square distance and

the occupation probabilities be determined accurately enough to derive 

significant values of the rate constants for COM motion? Consider 

systems for which Pq > P^; the opposite case is equivalent. Inasmuch 

as P^ = 1 - Pq , the standard deviation or (a) of the rate constant a follows, 

from the usual rules for the propagation of errors'^ due to independent 

variables, as

= fa2 [<<(AR)2))]/(((AR)2>)2 + <t2 (P0)/Pq 3 2 . (37)

The relative error in the mean square distance has been estimated from

3
Monte Carlo simulations. Provided one hundred separate diffusion

2
intervals are observed, the standard error amounts to « 15% of (((Ar ) )). 

As shown in Appendix A, the relative error in Pq , based on a total of M 

observations, is

f f < V (38)

Again for one hundred observations the relative error in Pq at most 

amounts to 10%. It is therefore clear that in the linear diffusion of 

dimers, statistically significant values of the atomic jump rates can be 

achieved without special effort, provided observations of the mean 

square distance and the occupation probabilities are available.
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III. DIFFUSION OF TRIMERS

For a trimer the displacement of any one adatom changes the 

COM position by i/3, and this will serve as the new unit of length for 

the representative random walk. A typical sequence of atomic arrange

ments for a moving trimer is shown in Fig. 3. The unit cell of 

the one-dimensional lattice appropriate to this sequence has three sites 

in it, labeled 0, 1, and 2. Three rate constants a, b, and c define 

COM motion. However, this is only part of the story.

For trimers, there is another, energetically different, configura

tion possible at each of the sites. In the actual diffusion process, 

sequences involving these alternate configurations may participate to a 

significant, and perhaps even dominant extent. The diffusion of trimers 

therefore cannot be discussed in its full generality using the random 

walk representation so useful for dimers. In outlining a formalism for 

diffusion we restrict ourselves to a particularly simple model of trimer 

motion. We assume that diffusion occurs by a symmetrical sequence of atomic 

arrangements, such as shown in Fig. 3. Even this simple model, the 

consequences of which are worked out in the following pages, serves to 

demonstrate the complicated diffusion behavior for trimers, a behavior 

that defies general analysis.

A. Mean Square Displacements

In order to describe the mean square displacement of trimers 

diffusing in conformity with our model, we proceed as we did for dimers to 

solve the differential equation (7). The position averaged rate



Type 0 1 2 0 1 2  0  1 2

I r V i r V l  O i
H --------- 1 -------►
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Xx a-*- &-► c a - * »  b-*- c-*- a-*» b-*- c-*-
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AP-661

. 3. Representation of trimer diffusion. One particular, symmetrical

sequence of configurations involved in the diffusion is shown

at the top, together with the type of site. The unit cell, and

the COM rate constants X and u to represent diffusion occurring
X x

via this sequence, are given below.
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constants for trimers are

<\ ) = aP^z) + bP^z  ̂ + cP0(z) (39)
x U 1 2

<Ux > = aP<z) + cP<z) + bP^z) ■ (40)

(z)
The probabilities P£ 7 of the COM being at a site of type i, having 

started at z, are now related through

P^z) + p£z) + p^z) = 1 (41)

Also we have

( x O  = a<x)Q + b<x) + c(x>2 (42)

(xM<x) * a(x)Q + c(x>1 + b(x)2 . (43)

All the terms in Eq. (7) now contribute and we find 

2

d<(^  } - 2(b-c)[<x>1 - <x>2 +(x)(P2(z) - P<z))] + PqZ> (2a-b-c) + b + c .

(44)

By summing the Kolmogorov equation alternately over sites of 

type 2 and 1 we get

d(P2(z) -p![z))

dt
= - (2b+c)(P2(z) -P<z)) . (45)

Using the appropriate boundary conditions, this immediately leads to

p(0) _ p (0)
2 *1

- 0

p(D - p ^1) = 

2 *1

p(2) _ p (2) =

- exp - (2b +c)t 

exp - (2b +c)t

(46)

(47)

(48)
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i z )
With these results and the differential equation for P^ derived from

Eq. (5),

dP
(z)

dt
-  = c(P^z) + P^z)) - 2ap^z) ,

we find

Pq^  ~ [c+2a exp-(2a+c)t] / (2a+c) 

Pq 1  ̂= c [1 - exp - (2a +c)t] / (2a +c)

- c [1 - exp -(2a+c)t]/(2a+c)

(49)

(50)

(51)

(52)

We still require information about (x) as well as about (x)^ - (x^ 

it follows from Eq. (6) that

(Xx> - <Ux> = <b-c)(P<Z>-P<Z>)

and therefore

<x>
(0) _= 0

<*>(1) = [3b - (b-c) exp - (2b + c)t] /(2b+c) 

<x)(2) = [3(b +c) + (b-c)exp - (2b +c)t]/(2b +c)

(53)

(54)

(55)

(56)

Multiplying Kolmogorov's equation by x , and then summing over all sites 

of a given type i, we obtain the differential equation for (x11)^:

d<xn>.

dt
= [( (x + - <xnXx>1] - 1 < * \ > 1 - < ( x - l ) \ > i+1] .

(57)

This immediately leads to the last relation required,
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d(Xx)1- (x>2 )
- (2b+c)«x>1-<x>2)+ (2a+b)P^z)-b

dt
(58)

Keeping in mind the distinct boundary conditions for the different 

starting positions, we find

<<*>r <x>2)(0)= r̂+zt2ir+c [i-e*p-(2b + c)t]-

- exp-(2b+c)t] j- (59)

( (x) - (x) )(•*■) = — l—  {.2alP-'-bJ. r i-exp-(2b +c) tl + c (2a + t>) X 
VXV  2a + c  l 2b + c  l exp fc; cj -t- 2 (a-b)

[exp-(2a +c)t - exp-(2b +c)t] j- + exp - (2b +c)t (6 0 )

(<x) - ( x) ) ^  = — -—  |2a(c-b) q . (2b +c)t] + c(2a + b) x 
A x ;2; 2a +c 1 2b +c LiexP + C'CJ 2(a-b)

[exp-(2a+c)t - exp-(2b+c)t] j“ - 2 exp-(2b+c)t . (61)

The mean square displacement can now be obtained directly from differential 

equation (44):

/,k x2\(0) 2a / 9bct . 3b(b-c) (2a+c) r, ^
« « > » - P - « - « » ]

* 1(*-t>(i* * t)i n - « p - (2. « > t j }  m ,

<(ix)2>(1) = ((ix)2>(2) = 5- ^ -  - 3bc(b'c)(2a + g) [l-exp-(2b+c)t]
za+c Zb+c (a-b)(2b+c)

- c Ua-b) (2a+b)- (a-b) (2b+c) - (b-c) (2a+b) ] 

(a-b) (2a+c)
[1-exp-(2a+c)t]

+ Xb~c) (2a+c) [i-exp-2(2b4c)t]} .

(2b+c) J
(63)
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B. Diffusion of Model Trimers

Despite its greater complexity, the mean square displacement for the 

trimer configurations considered here is similar to that of dimers in its 

overall dependence upon the length of the diffusion interval. At very 

short times, the mean square displacement is linear in t; this regime 

is not of particular interest. In the opposite extreme of long times, 

an equilibrium distribution is set up over the unit cells and the mean 

square displacement again assumes a simpler form.

For these trimers two different decay times characterize the 

approach to local equilibrium. This is apparent from the probabilities 

of finding the COM on a site of type i after starting at z. The 

probabilities derived from Eqs, (41) and (46) - (52) are

= [c +2a exp-(2a+c)t]/(2a+c) (50)

P*1* = c[1-exp-(2a+c)t]/(2a+c) = P^2) (51-52)

pj^ = a [1-exp-(2a+c)t]/(2a+c) = P^^ (64)

P^^ = [2a+c exp-(2a+c)t + (2a+c)exp-(2b+c)t] / [2 (2a+c) ] =?= P^2  ̂ (65)

P^2  ̂ = [2a+c exp-(2a+c)t-(2a+c)exp-(2b+c)t] / [2 (2a+c)] = P^^ .

(66)

Cz) • #
The rate constant at which Pq reaches its asymptotic limit is

(z) (z)
(2a+c); (2b+c) describes the rate of change of P^ - P| for z = 1 or 2. 

During time intervals long enough for local equilibrium to be established,



these probabilities become independent of starting point z. This asymptotic 

limit is achieved only for t large compared to both (2a+c) * and (2b+c)

In this limit, which is the one of primary experimental interest, we have 

the three relations

P0 * 2a+c P1 2a-fc
= P, (67)

It is interesting to note that sites of type 1 and 2, which in our 

model are energetically equivalent, have identical probabilities in the 

limit of long times. Also, ((x)^- (x)^)^2  ̂ assumes a value

, . . . 2a(c-b)
<x>1 - <x>2 = (2a+c)(2b+c) (68)

independent of the origin of the walk.

In order to relate the mean square displacement directly to 

experiment, we average the quantities given by Eqs. (62) and (63) over 

the different starting places. For diffusion intervals during which the 

distribution achieves local equilibrium, this averaged mean square displace

ment is

{<(Ax)2>> = (2a+c) (2b+c) l9bct + 2S5T" U-exp-2(2b+c)t]} .

(69)

In the limit of very long times, the mean square distance then becomes

<<<AR)2»  =
2 abet $?■ 

(2a+c) (2b-fc)
(70)

This form is not necessarily achieved once an equilibrium distribution

2
is reached. It requires that t »  (b-c) /[9bc(2b+c)], quite unlike the 

situation for dimers. Also, for dimers the mean square distance is 

directly proportional to the mean jump rate (\ ) + (|i ). For trimers
X  X

in an equilibrium distribution
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v / v  2a(2c+b)
U  > + <U > - ---r- ,
x x (2a+c)

(71)

and there appears no simple relation between the jump rate and the mean 

square distance. A unified interpretation for dimers as well as trimers is 

possible, however, in terms of the transit time t , the average time spent 

by the COM in spanning the length of a unit cell. This quantity is 

evaluated separately in Appendix C, and in the limit of long diffusion 

intervals

<<(AR)2>> = tl2/r ■ (72)

The ratio t h  gives the rate at which the distance i is traversed, 

and to that extent the usual form for the mean square distance in a random 

walk is preserved for trimers.

C. Analysis of Diffusion Experiments 

All three rate constants a_, b, and c enter into the diffusion 

coefficient of trimers migrating in conformity with our model. Clearly a 

measurement of the mean square distance does not by itself suffice to 

define these constants. Analysis of the individual steps is aided by data 

derived from the distribution of the COM over different kinds of sites.

Using Eq. (67) for the occupation probabilities in the asymptotic limit, 

it proves advantageous to write the mean square distance as

9 2aPnti2 2b P U 2

<<(Ar ) >> = 2+c/b = l+2b/c ‘ (73)

The problem now is to assign an order of magnitude to the ratio b/c* 

In principle this can be done by measuring the quantity (A^) - (x)^ -(x^; 

once local equilibrium is achieved, we know from Eqs. (67) and (68) that

<Ai2> - 2P (l-b/c)/(l-tfb/c) . (74)
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The question arises whether or not b/c can be determined accurately enough

from measurements of P^ and (A^)* The standard error of b/c is

a(b/c) =

2(Pl+<i12>)
2 [<A12>2°'2(P1) + p2(j2 <<A12>)]' (75)

<

As shown in Appendix A, the standard error of P^ estimated from M 

observations is given by

The error in (A^)

l.
2

derived in Appendix B, is 

a « i i2>) ~ [ |  <<(Ax)2>>

JL
2

(76)

(77)

Since the mean square distance varies linearly with time t, -It appears 

advantageous to operate over diffusion intervals as short as consistent 

with achieving local equilibrium, with as many observations as feasible, 

in order to reduce the error in (A^)« The relative error in b/c expected 

for different values of the rate constants a, b, and c is shown in 

Figure 4. It is clear that only for P^ large, when the probability of 

finding the center of mass on a site of type 1 or 2 is high, can a useful 

analysis of COM jump rates be attempted for trimer diffusion. Even then 

it is desirable that b/c < 1; the error in determining this ratio from 

observed values of (A^) and P^ may otherwise be excessive. That these 

conditions are satisfied can be established from the experimental results.

If they are met, the combined observation of the mean square distance (((Ar ) )), 

of the distribution over different sites, specifically P^, and of (A.^) = (x)^

- (x>2 suffices to define the COM rate constants a and c and to give an order 

of magnitude for the value of b.



Fig. 4. Relative error in b/c as a function of the mean square displacement. 

All values for 100 observations, a diffusion interval t of 100 sec,

b > c > a : 

a > b > c : 

a > c > b:

9 -1 1n10 -1
• sec , v, = v = 

b c
10 sec

= 15 kcal/mole, 
a

pi — 
Eb

14, El

15 13

13 14

13 15

14.

15. 

14.

P = [2+exp(E* - E^/kT]“1.
1 3. C
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D. Atomic Jump Rates and Trimer Diffusion 

The analysis so far has been confined to a particular model of 

trimer diffusion, in which three rate constants serve to describe COM 

movement. As has already been stressed, the actual diffusion process 

is likely to be much more complicated. For trimers, nine distinct 

atomic jump processes can be identified in one-dimensional diffusion.

These and the different atomic arrangements involved are defined in Fig. 5. 

Configurations in which the trimer is V-shaped or slanted are labeled by 

the superscript B, the others by the superscript A. Subscripts denote 

the three different types of jumps possible from any one COM position.

In view of the difficulties encountered in analysing diffusion 

even for our simple model, we eschew a complete examination of the *1 

actual atomic events. To consider the diffusion of real trimers, for 

which the limited sequence of configurations in Fig. 3 may not be 

strictly applicable, we restrict ourselves to systems for which local 

equilibrium prevails,^ and assume that the rate constants a, b, and c 

can be treated as averages. Provided the relative probabilities of 

finding different configurations at a given site conform to the equilibrium 

values, then these average rate constants are related to the atomic jump 

processes^ through

- = + ^ I I  + POaIII^

b = (PA1bI + pX x + rBibm )

- = P^ (P2CI + ^ I I  + P2CIII) '

(78)

(79)

(80)



Fig. 5, Atomic configurations and rate constants for one-dimensional 

motion of trimers. COM sites indicated by numerals. A and B 

distinguish the two energetically nonequivalent configurations 

possible at each site.
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Not all the atomic jump rates are independent. The requirements of 

detailed balance in an equilibrium ensemble yield connections between the 

jump rates and the probabilities of observing differently configured 

trimers:

iA C T pA
0 I 0

/ aT pA
I I 2

pA c „ pA
0 III 0

pB PB
P1 aU P2

B _B
po cn po

pt aiII
pA
2

and finally

(81)

(82)

(83)

11 -  11 
^ ‘ bi n  '

These can be combined to give the relative occurrence of different 

configurations on sites of the same type:"^

(84)

and

Î  = alIICI
_B
po ai cn

aicm

an ci

(85)

( 86 )

If the individual jump rates are all known, these relations

allow us to evaluate the average rate constants for the center of mass.



- 23

The inverse, deduction of the rate-limiting jump process from a knowledge 

of the COM rates a, b, and c and the observed equilibrium ratios (81) - (84), 

is not generally possible. Nevertheless, the probabilities of finding 

trimers in different configurations, observed as a function of temperature, 

can yield the differences in internal energy between these configurations. 

This may, indirectly, help in the analysis of the diffusion events.

IV. CONCLUSIONS

Only clusters of three atoms or less have been considered. For 

larger linear clusters, such as tetramers, the atomic jumps involved in 

linear diffusion are more numerous but not essentially different. The 

problems in examining the details of the diffusion process are much the 

same as those already noted for trimers.

It appears that from the formalism developed here for clusters it 

is not generally possible to unequivocally sort out the rates of 

individual atomic jumps from the observed values of the mean square 

displacement. Only for dimers can the rate-limiting jump process always 

be established. A knowledge of the mean square distance, combined with 

measurements of the relative probabilities of finding dimers in the two 

configurations available to them, suffices to define the atomic processes 

in linear diffusion. Under special circumstances a complete analysis of 

the motion of the center of mass is possible for higher clusters as well, 

even though individual atomic jumps cannot be isolated quantitatively. 

Additional information may, however, yield further insights into the

individual rate processes important in the diffusion of such clusters.
.

Especially interesting should be comparisons of the diffusion parameters
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for differently sized clusters, and information about the probability of 

occurrence of various cluster configurations. The latter is, in any event, 

important for a better understanding of atomic interactions at a surface.
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APPENDIX A: THE STANDARD ERROR IN P.1

In order to measure P., we make M observations in which the state
1

of occupation of sites of type i is noted. If such a site is occupied, we 

assign a value of 1 to the occupation variable p; otherwise p is set equal 

to zero. Therefore

1 M

?i = M k = A
(Al)

and

i M
var pi = T var .S A  •

M k=l
(A2)

We can arrive at an estimate,^ var p , for the variance of any single 

measurement of the occupation variable, from

var p, = j l . n
M-l L

&
M

? pk k K
M

(A3)
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Inasmuch as p can only assume values of either 0 or 1,

E p = MP = E p 2 (A4)
k R 1 k K

MP.

and v^r p k = M^t * . (A5)

Finally, since the variance of a sum of independent quantities is just 

the sum of the individual variances,

P.
var V± - jjt“ (1-PJ . (A6)

APPENDIX B: THE STANDARD ERROR OF <A12> FOR TRIMERS

To evaluate var (A ) in the limit t-*00, note that A = x - x0 ,
s 1Z IZ  1 Z

and that

var A ^  = ((x2>1 + <x2>2) - (<x>2 + <x>2) . (Bl)

The terms at the extreme right can be found by taking advantage of the 

fact that

(x )q + (x)^ + (x)2 = (x) . (B2)

From Eq. (57) we know that 

d(x)n
—  = c((x>2 + (x)^ -2a<x)Q + c(P2 - P^) . (B3)

Eq. (B3) together with the expression for (x)^ - (x)2 from (68) now yields 

the following values for (x)^:

(x>(0) = 0 (X>(°) = a(C~b)____  <x><°) = - a<c~b)____
Nx;0 S ;1 (2a+c) (2b+c) ' X2 (2a-to) (2b+c)

(B4)
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/xs(D = ____2 ^ _____
'  'O (2a-fc)(2b+ c)

/ v (2) __ 3c(b+c)
' x ;0 " (2a+ c)(2b+c)

/x\(1> = — — —  <,>(1)____,a(4b-c)
' 'l (2a-fc) xx/2 (2a*fc) (2b+c)

(B5)

<x>(2) = __ ,2a.(2c+b> / v<2> _ 2a
1 (2a-tc) (2b4c) W 2 (2a+c) '

(B6)

The quantities in the first parenthesis on the right-hand side 

of Eq. (Bl) are immediately accessible from differential equation (57). 

Substituting values for PQ, and <Â 2> from Eqs. (67) and (68), we find, 

on neglecting constant terms by comparison with those depending on t,

that

2a 18abct

var A12 ~  (2a+c> (2a+c)(2b+c) * B̂7)

The quantity of interest is actually var (A^), tlie variance 

of an average value of obtained from many observations. Assume 

that M individual observations have been made of the displacement of the 

COM. Of these only MxP^ will have terminated on either a 1 or 2 site» and 

therefore

var <A12 > -  var A12 = | (<(Ax)2)> . (B8)
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APPENDIX C: THE TRANSIT TIME T

Consider initially the average time t\ required for the COM to 

reach, for the first time, either of two points, arbitrarily chosen as x s 0 

and x = L; the COM starts at x = i, where 0 < i < L, and once either of

the limiting positions is reached, we consider the random walk over. The

. n
times are governed by the simple recursion relation

T  =

i X. +u
1 + Xl

Va

X. +(i. i+1 "h X. +u Ti-1
1 1  i i

-1

0 < i < L (Cl)

where the mean time spent at any point i is ^ +1^)“ . Eq. (Cl) can be 

rearranged to give

T. - T
_ 1

u. 
+ -i.

i+1 " X. + x7
i i

o = t l =
0, we

(C2)

Making use of the condition Tq = = 0, we find, by repeated substitution

for (Ti_1 ~ Ti) ^  Eq. (C2) until i =» 1, that

i 1  i IV i \

Ti  ’  Ti+ i = k _n+1 K  " T!  A  V  ’ (c3)J=1 J k=j+l k k=l k

i ^k
where we set —  = 1. This series of equations can be solved to give

k

T i "** ̂ 1^9
Ti  = Ai  -  B± |_ + \  ( 1 + B » ) J ’  (C4)

with

L*1 m - m u

A. = E Z ~  n x
1 m-i j=l j k=j+l k

(C5)
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MS
B. = S n ~  v . (C6)
1 m-i k=l k

We now define the transit time t  as the mean time for the COM to 

move from one position to its counterpart in either of the neighboring 

unit cells. For dimers, the transit time, obtained from Eqs. (C4)-(C6) by 

letting i = 2 and L = 4, is

T — (a +b)/ab . (C7)

For trimers diffusing as in Fig. 3, substitution of i = 3 and L = 6 gives

t  =  (2a+c) (2b+c)/2abc , (C8)

independent of starting point.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

FIGURE CAPTIONS

Dimer configurations in one-dimensional diffusion. Shading 

denotes atoms forming diffusion channels, crosses denote the 

location of the center of mass for dimers. Direction of 

diffusion is indicated by arrows, surface spacing in this 

direction by H .

Random walk representation of dimer diffusion, showing a

sequence of dimer configurations for COM positions x.

Unit cell for the representative random walk is indicated by

heavy lines. \ indicates rate constants for COM transitions 
x

to the right, and |i to the left.
x

Representation of trimer diffusion. One particular, symmetrical

sequence of configurations involved in the diffusion is shown

at the top, together with the type of site. The unit cell, and

the COM rate constants \ and u to represent diffusion
x x

occurring via this sequence, are given below.

Relative error in b/c as a function of the mean square displacement. 

All values for 100 observations, a diffusion interval t of 100 sec,

c v in9 -1 _ in10 -1
v = 5 X 10 sec , iv = v = 1 0  sec 
a b c

c > b > a: = 
a

15 kcal/mole,
Eb - 14>

±
E = 13 
c

b > c > a: 15 13 14

a > b > c : 13 14 15

a > c > b: 13 15 14

P1 = [2 + exp(E* - E*)/kTî"1.



32 -

Fig. 5. Atomic configurations and rate constants for one-dimensional 

motion of trimers. COM sites indicated by numerals. A.and B 

distinguish the two energetically nonequivalent configurations 

possible at each site.




