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ABSTRACT

The Kalman filter assimilation technique is applied to a simplified soil moisture model for retrieval of the
soil moisture profile from near-surface soil moisture measurements. First, the simplified soil moisture model is
developed, based on an approximation to the Buckingham–Darcy equation. This model is then used in a 12-
month one-dimensional field application, with updating at 1-, 5-, 10-, and 20-day intervals. The data used are
for the Nerrigundah field site, New South Wales, Australia. This study has identified (i) the importance of
knowing the depth over which the near-surface soil moisture measurements are representative (i.e., observation
depth), (ii) soil porosity and residual soil moisture content as the most important soil parameters for correct
retrieval of the soil moisture profile, (iii) the importance of a soil moisture model that represents the dominant
soil physical processes correctly, and (iv) an appropriate forecasting model as far more important than the
temporal resolution of near-surface soil moisture measurements. Although the soil moisture model developed
here is a good approximation to the Richards equation, it requires a root water uptake term or calibration to an
extreme drying event to model extremely dry periods at the field site correctly.

1. Introduction

An ability to retrieve the soil moisture profile by assim-
ilation of near-surface soil moisture measurements (such
as would be obtained from remote sensing) in a soil mois-
ture model has received an increasing amount of attention
over the past decade. Recent studies (Houser et al. 1998;
Walker et al. 2001) have suggested that statistical assim-
ilation techniques such as the Kalman filter, through their
ability to modify directly the soil moisture estimates of
deeper soil layers, show the most promise in this appli-
cation. However, the majority of assimilation studies that
have applied such techniques have been limited to syn-
thetic desktop studies and/or short time periods, such as
the 8-day study of Galantowicz et al. (1999).

To make a progression from the more common one-
dimensional desktop studies using synthetic data to re-
alistic catchment-scale field applications, we must first
illustrate this potential through long-term one-dimen-
sional studies using field data. These studies need to be
developed in such a way that they have relevance to
studies at the catchment scale. Moreover, the soil mois-

* Current affiliation: Goddard Earth Sciences and Technology Cen-
ter, NASA Goddard Space Flight Center, Greenbelt, Maryland.

Corresponding author address: Jeffrey P. Walker, Code 974, Hy-
drological Sciences Branch, NASA Goddard Space Flight Center,
Greenbelt, MD 20771.
E-mail: jeffrey.walker@gsfc.nasa.gov

ture model used must be characteristic of the model that
will be used by the catchment-scale studies. One of the
limitations in undertaking such studies is the lack of
good-quality soil moisture and atmospheric forcing data
over longer time periods that have application to one-
dimensional models. This paper presents a computa-
tionally efficient conceptual soil moisture model that has
relevance in both one- and three-dimensional assimi-
lation studies. Moreover, an appropriate dataset for a
one-dimensional application is presented, and the results
from such an application are discussed. This dataset is
for the Nerrigundah experimental catchment, located in
a temperate region of eastern Australia.

2. Simplified soil moisture model

To apply the soil moisture profile retrieval algorithm
established by Walker et al. (2001) to a one-dimensional
field application, with the vision of extending the meth-
odology to the catchment scale, a computationally ef-
ficient soil moisture model suitable for near-surface soil
moisture data assimilation in a shallow soil catchment
of temperate eastern Australia was required. This section
of the paper describes the development of such a model.

a. Model requirements

The requirements for a soil moisture profile model
that can be applied to both one-dimensional and spa-
tially distributed applications while being suitable for
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FIG. 1. Comparison of the vertical distribution factor (dashed line)
with ]c/]Z from the van Genuchten (1980) relationship (solid line)
for three different Du with a given separation Dz of 10 cm: 1% v/v
(circle), 5% v/v (square), and 10% v/v (triangle). Here v/v is volume
of water to volume of soil.

TABLE 1. Soil parameters used for evaluation of the vertical
distribution factor and ]c/]Z in Fig. 1.

Residual soil moisture content ur

Soil porosity f
van Genuchten parameter h
van Genuchten parameter n
Soil discretization Dz
Max gradient parameter MGRAD

20% v/v
54% v/v
0.0008 mm21

1.8
100 mm
270 mm

use within the framework of the Kalman filter assimi-
lation scheme are as follows.

1) Describe the spatial distribution and temporal vari-
ation of soil moisture profiles, not just profile stor-
age, while maintaining simplicity and computational
feasibility. The need for soil moisture variation with
depth is to have a thin near-surface layer that is com-
patible with the soil moisture observation depth and
to have correlation between this near-surface layer
and deeper soil layers.

2) Allow for both upward redistribution during drying
events and gravity drainage during wetting events
without having an implicit assumption about a water
table at some depth, while maintaining lateral redis-
tribution in a catchment application.

3) Have a spatial discretization that is compatible (i.e.,
grid-based rather than stream tubes) with the grid-
based remote sensing observations of near-surface
soil moisture.

4) Forecast soil moisture as a linear function of the soil
moisture at the previous time step and be as close
to a linear representation of the model physics as
possible, that is, model volumetric soil moisture con-
tent as the dependent state rather than matric head
(Walker et al. 2001). This is required to satisfy the
underlying linearity assumption of the Kalman filter
in forecasting of the soil moisture covariance matrix
and hence to ensure more stable updating of the soil
moisture forecasts.

5) Be in a form that will allow correlations to build up
between soil layers (and grid elements). This is re-
quired to facilitate the updating of soil moisture con-
tent at deeper depths in the soil profile. Using the
Kalman filter assimilation scheme, updating only oc-
curs if the forecast covariance matrix of system-
states indicates there is a correlation with the near-
surface soil moisture observations. These correla-

tions are generated if the change in soil moisture
content of a soil layer is a function of the soil mois-
ture content in the adjacent soil layers.

b. Applicability of existing models

When choosing a hydrologic model it is necessary to
identify the key processes that are active in the catch-
ment under consideration and to ensure that they are
satisfactorily represented by the model (Hughes 1994).
For example, catchments located in semiarid regions
typically have shallow soils overlying an impermeable
layer of bedrock, resulting in no permanent water table
(but a transient water table may form during wet periods,
particularly in the convergent zones) and essentially
zero moisture flux between the soil and bedrock. More-
over, vertical rise of soil moisture from deeper layers
to the surface during extended periods of exfiltration is
an important process that must be captured by the hy-
drologic model. For example, the Nerrigundah experi-
mental catchment (where the data were collected for the
field application discussed later in this paper) has thin
soil overlying very low permeability sandstone and ex-
hibits vertical rise of soil moisture from deeper layers
to the soil surface. Although many soils have significant
crack or other macropore systems (Kirkby 1985), such
systems were not identified in the Nerrigundah catch-
ment and consequently will not be modeled.

A limitation of many existing hydrologic models is
their emphasis on runoff estimation (e.g., Beven and
Kirkby 1979; Boughton 1983; Moore and Grayson
1991; Wood et al. 1992; Ottlé and Vidal-Madjar 1994)
at the expense of a realistic representation of the soil
moisture profile. Furthermore, those models that ac-
count for soil moisture more explicitly often have re-
strictive assumptions (which can be problematic under
certain situations), such as

R a water table exists for the lower boundary condition
(e.g., Famiglietti et al. 1992; Famiglietti and Wood
1994a,b) or the water table is very deep (e.g., Rao et
al. 1990; Lakshmi et al. 1997),

R there is no lateral redistribution between grid elements
(e.g., Groves 1989; Ottlé et al. 1989; Capehart and
Carlson 1994),

R all rainfall enters the soil until saturation (e.g., Wig-
mosta et al. 1994),

R soil moisture can be modeled with only two soil layers
(e.g., Beven and Kirkby 1979; Ottlé et al. 1989; Liang
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TABLE 2. Soil parameters used in evaluation of the conceptual
model.

Total soil depth
No. of layers
Soil type
Saturated hydraulic conductivity Ks

Soil porosity f
Residual soil moisture content ur

van Genuchten parameter h
van Genuchten parameter n
Max gradient parameter MGRAD
Initial condition

1000 mm
30
Clay loam
20.8 mm day21

54% vv
20% v/v
0.0008 mm21

1.8
280 mm
2500 mm matric head

TABLE 3. Calibrated soil parameters for the simplified one-dimensional soil moisture model from connector TDR soil moisture data.

Layer
Thickness

(mm) Horizon
Ks

(mm h21)
f

(% v/v)
ur

(% v/v) n
MGRAD

(mm)

1
2
3
4
5

10
45
68

112
225

A1
A1
A2
B1
B2

15
15
15
3
0.4

60
60
46
42
48

6
6
8

12
18

2.18
2.18
1.34
2.19
1.46

23
23
22
50

275

et al. 1994; Hughes and Sami 1994; Wigmosta et al.
1994; Lakshmi et al. 1997),

R there is a constant soil moisture with depth at the start
of infiltration and exfiltration periods (e.g., Eagleson
1978; Groves 1989), or

R there is gravity drainage but no upward redistribution
to recharge the near-surface layer(s) (e.g., Beven and
Kirkby 1979; Cabral et al. 1992; Liang et al. 1994;
Wigmosta et al. 1994).

Of those models that do account for upward redis-
tribution, which has been shown by Liang et al. (1996)
to be important in achieving realistic results for low soil
moisture contents, the Richards equation has generally
been applied with the assumption that it is applicable
for a coarse vertical discretization (e.g., Liang et al.
1996; Lakshmi et al. 1997). However, for accurate so-
lution to the Richards equation, it is necessary to use a
fine vertical discretization. In addition, discretization of
the horizontal model domain is often not compatible
with the observation domain (e.g., Moore and Grayson
1991) because the soil moisture is not modeled on a
regular grid or is not comparable with the observations
(e.g., Beven and Kirkby 1979; Wood et al. 1992; Hughes
and Sami 1994) because the soil moisture distribution
is modeled statistically.

To satisfy the soil moisture profile retrieval algorithm
forecasting model requirements outlined above and to
overcome the limiting assumptions and restrictions of
existing models, a computationally efficient conceptual
model of soil moisture has been developed. Although
the computational requirements of this model would not
be much different to those of the Richards-equation
model with a coarse discretization, this is a conceptual
model, rather than a theoretical model that was devel-
oped for a fine model discretization, and as such may

be used for a coarse discretization without violating the
key assumptions of the model. This is not intended to
be the next state-of-the-art model for soil moisture data
assimilation but rather a model that satisfies the re-
quirements set out in the foregoing discussion, with the
view that it will be used in a follow-on catchment-scale
assimilation study.

c. Model development

Unsaturated flow through porous media can be de-
scribed by the Buckingham–Darcy equation as

Q 5 K=(c 1 z), (1)

where Q is the volumetric flux of liquid water per unit
area, K is the unsaturated hydraulic conductivity, = is
the gradient operator, c is the matric suction, and z is
the elevation (positive downward).

The approach taken by our Approximate Bucking-
ham-Darcy Equation for Moisture Estimation (AB-
DOMEN) model has been to solve an approximate form
of the Buckingham-Darcy equation using an implicit
solver. The Buckingham-Darcy equation for vertical flux
QV (positive downward) can be written as

]c ]z
Q 5 K 1 K . (2)V ]Z ]Z

The first right-hand-side term in this equation is a
matric suction term, which tends to move soil moisture
toward areas of greater matric suction (lower soil mois-
ture), and the second right-hand-side term accounts for
gravity drainage. Thus, soil moisture can move upward
against gravity during an exfiltration event if the matric
suction term is greater than the gravity drainage term.
Likewise, during an infiltration event, the soil moisture
wetting front can move downward faster than for gravity
drainage.

1) A CONCEPTUAL SOIL MOISTURE FLUX EQUATION

Accurate solution of the Buckingham–Darcy (Rich-
ards) equation requires a fine spatial discretization of
the model domain and a large computational effort. In
addition, the Buckingham–Darcy equation requires
knowledge of the c–u relationship (where u is the vol-
umetric soil moisture content), adding complexity to the
model. Therefore, a simplified version of (2) is pro-
posed:
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Q 5 K 3 VDF 1 K,V (3)

where VDF is a vertical distribution factor that can be
used to describe the redistribution of soil moisture by
matric suction (equivalent to =c) without modeling ma-
tric suction directly.

An appropriate form for the distribution factor may
be obtained by conceptually analyzing a series of lim-
iting cases: uniform moisture profile, infiltration, and
exfiltration. These limiting cases would indicate that the
distribution factor should be (i) zero if adjacent elements
have the same soil moisture content, (ii) positive if the
upward element has a greater soil moisture content, (iii)
negative if the downward element has a greater soil
moisture content, and (iv) approach 6` if the difference
in moisture content of adjacent elements is great (as-
suming uniform soil properties). Based on these obser-
vations, the following distribution factor, which is in-
dependent of model discretization and incorporates the
matric-head nonlinearity with soil moisture content, is
proposed [for a complete development see Walker
(1999)]:

u 2 uMGRAD 1 j j11
VDF 5 , (4)

2 1 2[ ]DZ (u 2 u ) f 2 uj11/2 r r

where MGRAD is a maximum gradient parameter, DZ
is the perpendicular distance between the midpoints of
layers j and j 1 1, uj is the volumetric soil moisture of
layer j, uj11/2 is the average soil moisture for layer j and
j 1 1, f is the soil porosity, and ur is the residual soil
moisture content. Using this conceptualization, the final
term is 21 when uj 5 ur and uj11 5 f, 11 when uj 5
f and uj11 5 ur, and 0 when uj 5 uj11. MGRAD is
then used to scale the distribution factor from 2` to
1`, to be consistent with the conceptualization. Divid-
ing the scaling factor MGRAD by the layer separation
reduces VDF when the separation is increased. Multi-
plying by the nonlinearity (middle) term increases VDF
for low soil moisture content and decreases VDF at high
soil moisture content. This is in keeping with typical
moisture retention relationships, which have a nonlinear
dependence of matric suction with soil moisture content,
particularly at low soil moisture contents.

A comparison of the VDF with ]c/]Z from the van
Genuchten (1980) relationship is given in Fig. 1 using
the typical soil parameters in Table 1, by calculating c
for two soil moisture contents with a difference of Du.
This figure shows a very good comparison, with the
exception of soil moisture values close to the residual
soil moisture content and soil porosity values. Without
the nonlinearity term in (4), the relationship would plot
as a horizontal line on Fig. 1.

2) INHOMOGENEOUS VERTICAL DISTRIBUTION

FACTOR

To account for spatial heterogeneity in soil properties
(i.e., residual soil moisture content and soil porosity),
the distribution factor in (4) can be written as

u 2 u u 2 uj r j11 rj j11
VDF 5 GRAD 2 , (5a)j11/21 2f 2 u f 2 uj r j11 rj j11

where

MGRAD 1 MGRAD0.5 j j11
GRAD 5 . (5b)j11/2 2 2[ ]DZ (u 2 u ) 1 (u 2 u )j r j11 rj j11

The difference between the distribution factors in (4)
and (5) is the allowance for different residual soil mois-
ture content, soil porosity, and/or maximum gradient
parameter for each soil layer. Equation (5) reduces to
(4) when adjacent layers have the same soil properties.

3) THE GLOBAL SOIL MOISTURE EQUATION

By substitution of the distribution factor from (5) into
the conceptual soil moisture flux equation in (3), the
conceptual soil moisture flux equation can be discretized
for the vertical moisture flux:

GRAD 3 K GRAD 3 K uj11/2 j11/2 j11/2 j11/2 jQ 5 , 2Vj 5 6[ ](f 2 u ) (f 2 u ) uj r j11 r j11j j11

1 K 2 GRADj11/2 j11/2[
u ur rj j11

3 K 1 ,j11/21 2]f 2 u f 2 uj r j11 rj j11

(6a)

where

K 5 (K 1 K )/2.j11/2 j j11 (6b)

The model parameters K and GRAD are estimated from
the soil moisture contents of the current time step. By
applying the same methodology, a similar equation may
be derived for the lateral flux.

From the continuity and vertical moisture flux equa-
tion, the time variation of soil moisture content for layer
j is discretized as

n11 nu 5 u 1 (Q 2 Q )(Dt/Dz), (7)j j V Vj21 j

where j is the space discretization, n is the time step,
Dt is the time step size, and Dz is the layer thickness.

To apply (7) to boundary elements, information about
the soil moisture flux across the boundary is required.
For the lower boundary, (i) Q 5 0 for a zero-fluxVN

boundary condition condition, (ii) Q 5 KN for a grav-VN

ity-drainage boundary condition, or (iii) Q is estimatedVN

from (6a) using an imaginary soil layer below the bot-
tom soil layer with zero thickness and fixed soil moisture
content equal to the porosity of the bottom soil layer
for a fixed water table at the base of the soil column.
For the upper boundary, (i) Q may be specified as theV1

actual evapotranspiration rate or estimated from the soil
moisture content and potential evapotranspiration rate
using a soil moisture stress index if there is an exfiltra-
tion event, or (ii) Q is estimated from (6a) using anV1

imaginary soil layer above the soil surface of zero thick-
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FIG. 2. Comparison of simulated soil moisture profiles using AB-
DOMEN for 5 soil layers (open symbols) and the Richards equation
with 30 soil layers (closed symbols) for evaporation of 5 mm day21.
Soil moisture with depth for times after the beginning of simulation:
(a) 1, (b) 10, and (c) 25 days.

ness and soil moisture equal to the porosity of the near-
surface soil layer if there is an infiltration event with
ponding.

d. Application to the Kalman filter

The Kalman filter assimilation scheme requires the
soil moisture profile forecasting equation be in an ex-
plicit time-stepping form for forecasting of the covari-
ances. However, explicit models can only take small
time steps and hence run much more slowly than im-
plicit models. On the other hand, nonlinear implicit
models typically involve iteration until convergence at
each time step. Because computation time was a major
limitation with the one-dimensional synthetic study of
Walker et al. (2001), a variation of the implicit scheme
was used. If we write (7) in terms of the Crank–Nich-
olson implicit scheme (Gerald and Wheatley 1989), then

n11
1 Dt

n11u 2 (Q 2 Q )j V Vj21 j[ ]2 Dz
n

1 Dt
n5 u 1 (Q 2 Q ) . (8)j V Vj21 j[ ]2 Dz

Substituting for QV from (6) and assembling the global
soil moisture state equation we can obtain an equation
of the form

n11 n11/n n11 n n/n nˆ ˆF X 1 V 5 F X 1 V ,1 1 2 2 (9)

where F is the matrix of coefficients for the vector of
moisture values X, and V is the vector of nonmoisture-
dependent terms. The notation n 1 1/n is used to identify
a forecast at time step n 1 1 given the forecast at time
step n.

After some algebraic manipulation of (9) we can ob-
tain an explicit linear state space equation form, as re-
quired by the Kalman filter:

n11/n n/n nnˆ ˆX 5 A X 1 U , (10)

where

n11 21 nnA 5 (F ) (F ), and (11a)1 2

n n11 21 n n11U 5 (F ) (V 2 V ). (11b)1 2 1

Once convergence of (8) has been achieved, the sys-
tem state covariances may be forecast using the con-
verged value for A from (11a). Using this approach,
iteration is performed only for forecasting of the system
states, with evaluation of A and forecasting of the sys-
tem state covariances performed only once (after con-
vergence of the system states), using a single large time
step. Because forecasting of the system state covariance
matrix is computationally the most demanding step of
the Kalman filter, this implicit approach minimizes the
computational effort required to forecast the system
state covariances by the Kalman filter [for the Kalman
filter equations see Walker et al. (2001)].

e. Model evaluation

To give credibility to the model and to verify the
proposed form of the conceptual distribution factor, a
comparison was made with the one-dimensional Rich-
ards equation. The simulation was for a 1-m soil column
with the typical soil properties in Table 2. Two scenarios
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FIG. 3. Comparison of simulated soil moisture profiles using AB-
DOMEN for 5 soil layers (open symbols) and the Richards equation
with 30 soil layers (closed symbols) for precipitation of 10 mm hr21.
Soil moisture with depth for times after the beginning of simulation:
(a) 1, (b) 12, and (c) 24 h.

were evaluated: (i) an exfiltration event of 5 mm day21,
starting from an initially uniform soil moisture profile
of 51.5% v/v (2500-mm matric head) and (ii) an infil-
tration event of 10 mm h21 precipitation, starting from
a uniform initial condition of 25% v/v (213 620-mm

matric head). Zero moisture flux was imposed at the
base of the soil column for both scenarios.

The MGRAD parameter was evaluated from cali-
brating the ABDOMEN model with 30 soil layers to
the exfiltration simulation using the Richards equation,
with the ‘‘NLFIT’’ Bayesian nonlinear regression pro-
gram (MGRAD 5 280 mm). The NLFIT program suite
(Kuczera 1994) is an interactive optimization package,
employing the Shuffled Complex Evolution Method de-
veloped at The University of Arizona of Duan et al.
(1994).

With the fitted MGRAD, the ABDOMEN model was
run with five soil layers for the same exfiltration event
used for calibration and for the independent infiltration
event. The results from these simulations are given in
Figs. 2 and 3, in which there is an extremely good
agreement for all simulation times, particularly when
taking into account layer thickness and that soil moisture
content estimates are averages over the soil layer.

The above simulations showed that the ABDOMEN
model is an excellent approximation to the Richards
equation, even with only a few soil layers. To verify
that ABDOMEN is appropriate for the Kalman filter
assimilation scheme, the synthetic assimilation study of
Walker et al. (2001) was repeated for an observation
depth of 1 cm and observation frequency of once every
5 days, with the soil properties given in Table 2. In the
study of Walker et al. (2001), a time series of ‘‘true’’
soil moisture profiles was generated with the Richards
equation for a drying event. The simulation was then
repeated with the same soil parameters and forcing data
but poor initial conditions. Near-surface soil moisture
data from the ‘‘truth’’ simulation were then assimilated
with the Kalman filter for various observation depths
and frequencies. This verification study uses the same
forcing data, soil parameters, and initial conditions as
the previous study.

Starting from a poor initial guess of 35.5% v/v
(23000-mm matric head), ABDOMEN was subjected
to a constant evaporation rate of 5 mm day21 and zero
moisture flux at the column base. The model prediction
was then updated with ‘‘observations’’ of the true soil
moisture content in the top 1-cm layer. These obser-
vations were obtained from the true soil moisture pro-
files generated from the Richards equation model (i.e.,
initial condition of 2500-mm matric head, Fig. 2). Fig-
ure 4 shows the results from assimilating near-surface
soil moisture in the simplified model, in which the re-
trieved soil moisture profiles are compared with the
open-loop simulation and the true soil moisture profiles
from the Richards equation. The open-loop simulation
is one in which no observations were used and the sys-
tem was simply propagated from the initial conditions
subject to the surface flux boundary conditions. The soil
moisture profile for the poor initial condition is retrieved
after 10 days (two updates).

The previous study by Walker et al. (2001) used a
matric-head form of the Richards equation and found it
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FIG. 4. Comparison of soil moisture profile retrieval using AB-
DOMEN (open symbol), the open-loop profile (open symbol with
dot), and the Richards equation (closed symbol). The 5-layer model
was updated once every 5 days using an observation depth of a 1-
cm layer; initial variances were 0.25, system noise was 5% of the
state per hour, and observation noise was 2% of the state. Soil mois-
ture with depth for times after the beginning of simulation: (a) 5, (b)
10, and (c) 25 days.

TABLE 4. Model and measurement depths used in comparisons.

Model

Layers
Depth
(mm)

Connector TDR

Probe
length(s)

(mm)
Depth
(mm)

Virrib

Sensors
Depth
(mm)

1–3
1–4
1–5

0–123
0–235
0–460

100/150
200/300

400

0–125
0–250
0–400

1
1/2/3

1/2/3/4/5

0–160
0–260
0–460

necessary to apply a volumetric soil moisture transfor-
mation to the matric-head forecasts before assimilating
near-surface soil moisture observations under these con-
ditions, so as to avoid spurious updates. The results
shown here confirm their recommendation—that a soil
moisture–based model would alleviate the problems en-
countered with the more nonlinear matric-head model—
and indicate that the ABDOMEN model is appropriate
for assimilation of near-surface soil moisture data using
the Kalman filter.

3. Field data

The field data used in this study are from the Ner-
rigundah experimental catchment (Walker 1999), locat-
ed in a temperate region of eastern Australia. The main
objective of this experimental catchment was to enable
a soil moisture assimilation study at the catchment scale,
which is to be the topic of a future paper. However, it
also provided an excellent dataset for a field evaluation
of soil moisture assimilation in a one-dimensional soil
column, which is the topic of this paper. Only the data
pertinent to this study are discussed here.

a. Monitoring and instrumentation

The Nerrigundah experimental catchment was instru-
mented from 12 October 1996 to 20 October 1998 for
profiles of soil moisture content, soil temperature, and
surface heat and soil moisture fluxes. The permanent
instrumentation was located in a level area in the upper
reaches of the catchment. Hence, the lateral redistri-
bution of soil moisture should be negligible, making the
data suitable for this study.

Permanent instrumentation in the Nerrigundah catch-
ment consisted of a Campbell Scientific, Inc., automatic
weather station (the mention of trade and company names
is for the benefit of the reader and does not imply an
endorsement of the product), which monitored (but was
not limited to) relative humidity, air temperature, at-
mospheric pressure, precipitation, net radiation, soil heat
flux, and wind speed. Apart from rainfall, all measure-
ments were made at 1-min intervals, and the average was
logged every 10 min. In addition to a collecting rain
gauge, rainfall was recorded for each tip of the 0.2-mm
tipping bucket. The weather station was located on a
duplex soil with total depth of 46 cm. The soil moisture
profile was continuously monitored using five ‘‘Virrib’’
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FIG. 5. Calibration of ABDOMEN (solid line) to connector TDR soil moisture measurements
(open circles) from 16 Jun to 24 Sep 1997. The figure shows average soil moisture content over
layers (a) 1–3, (b) 1–4, and (c) 1–5.

soil moisture sensors installed horizontally at depths of
10, 15, 20, 30, and 40 cm, providing soil moisture mea-
surements over a layer thickness of 12 cm (according to
Komin Technical Data, Inc.), and logged every 15 min.
The minimum depth at which the Virrib sensor could be
installed without having interference from the air layer
above was 10 cm (according to Komin Technical Data).

In addition to the Virrib sensors, soil moisture mea-
surements were made in the same location on a fort-
nightly basis, using vertically inserted connector time
domain reflectometry (TDR) probes. The connector
TDR probes gave an average soil moisture measurement
over depths of 0–5, 0–10, 0–15, 0–20, 0–30, and 0–
40 cm, the latter being the length of the probe. The TDR

system used was the Soil Moisture Equipment Corpo-
ration (1989) TRASE TDR, using the standard TRASE
calibration to determine the volumetric soil moisture
content from the measured dielectric constant. The ver-
tically inserted connector TDR probes were installed on
24 April 1997.

b. Soil moisture considerations

Comparison of connector TDR data with thermogra-
vimetric measurements showed that the standard cali-
bration was adequate for the 10-cm (standard deviation
2.8% v/v) and 15-cm (standard deviation 2.2% v/v)
probe lengths, but the 5-cm (standard deviation 6.9%
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v/v) probe lengths yielded a noisy response (Walker
1999). The calibration of longer TDR probes was not
evaluated, because of the destructive nature and labor
intensiveness of the testing, the number of calibration
data values required to make conclusive statements re-
garding accuracy, and the good agreement for the short-
er probes. In addition, literature suggests that longer
probes should not result in loss of accuracy. An in situ
calibration of the soil moisture sensors installed at the
weather station could not be performed without destroy-
ing the soil moisture monitoring site. Hence, evaluation
of soil moisture measurements was performed by mak-
ing comparisons between the different soil moisture sen-
sor types and using the calibration of connector TDR
probes to give confidence in the connector TDR soil
moisture measurements.

c. Soil characterization

The Nerrigundah soil was characterized by a com-
bination of field and laboratory tests. Field tests included
Guelph permeameter and double-ring infiltrometer tests
for saturated hydraulic conductivity; laboratory tests on
minimally disturbed soil cores included the determi-
nation of soil depth, soil horizons, soil bulk density and
porosity, and particle size analysis. The results from
these tests were available for locations within 2 m of
the soil moisture monitoring site.

d. Evapotranspiration

Actual evapotranspiration was estimated from Pen-
man–Monteith potential evapotranspiration and a soil
moisture stress index. The soil moisture stress index is
used to limit the potential evapotranspiration rate as a
function of the available water in the soil. The soil mois-
ture stress index used in this study was the average
column soil moisture content divided by the average
column porosity. Measurements of actual evapotrans-
piration using the eddy correlation technique on 6 days
were used to verify the linear soil stress index used,
with a correlation coefficient of 0.9.

4. Field application

In this section, the ABDOMEN model is calibrated
and evaluated against the soil moisture profile mea-
surements made in the Nerrigundah catchment. The cal-
ibrated model is then used for retrieval of the soil mois-
ture profile by assimilation of near-surface soil moisture
measurements.

a. Calibration

Soil moisture profile data from the connector TDR
soil moisture sensors were used for calibration of AB-
DOMEN. Virrib data were not used for the final cali-
bration, because much soil disturbance was required for

their installation. Moreover, there were periods when
Virrib data were inconsistent with rainfall measure-
ments. Such inconsistencies were not found with the
connector TDR data.

Because there were missing meteorological data be-
tween 24 and 27 September 1997, the model calibration
was undertaken for soil moisture data collected prior to
24 September 1997, and model evaluation was done
against soil moisture data collected subsequent to 27
September 1997. The calibration was performed on the
100-day drydown period from 16 June to 24 September
1997.

1) OBSERVED MODEL PARAMETERS

Several of the model parameters could be defined
directly from field observations and measurements.
Apart from layer 1 in the soil moisture model, soil layer
thicknesses were set to the observed soil horizon thick-
nesses. Layer 1 was set at a thickness of 1 cm to be
commensurate with the typical near-surface soil mois-
ture observation depth from remote sensing at C band.
The depression storage parameter was set at 5 mm,
based on measurements of rms surface roughness made
near the weather station. Likewise, the saturated hy-
draulic conductivity was estimated from the Guelph per-
meameter and double-ring infiltrometer measurements
made near the weather station (Table 3). The porosity
and residual soil moisture content for each of the model
layers was estimated from an analysis of both Virrib
and connector TDR soil moisture measurements made
from 10 May 1997 to 1 October 1998. The soil porosity
values were estimated as the maximum soil moisture
content for the soil layer during periods of saturation
and the residual soil moisture values were estimated as
the minimum soil moisture content for the soil layer
from periods when the soil was at its driest (during the
summer of 1997/98).

2) CALIBRATED MODEL PARAMETERS

After defining the above model parameters from field
measurements and observations, the only parameters re-
quiring calibration in the soil moisture model were the
van Genuchten parameter n, relating hydraulic conduc-
tivity to saturated hydraulic conductivity, and MGRAD.
Calibration of these parameters was performed with the
connector TDR soil moisture measurements of depth-
integrated soil moisture over model layers 1–3, 1–4,
and 1–5 (see Table 4 for depth comparisons) with
NLFIT.

Initial soil moisture values were set to the soil po-
rosity values, given that calibration commenced when
the soil was saturated. With the soil column being un-
derlain by a layer of low-permeability sandstone, a zero-
moisture flux boundary condition was applied to the
base of the soil column. The surface soil moisture flux
boundary condition was set at a fixed value for 0.5-h
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FIG. 6. Evaluation of ABDOMEN (solid line) calibration from 10 May 1997 to 1 Oct 1998 against Virrib
(dashed line) and connector TDR (open circles) soil moisture measurements. The shaded region indicates
the period of calibration with connector TDR soil moisture measurements. The figure shows average soil
moisture content over layers (a) 1–3, (b) 1–4, and (c) 1–5.

simulation periods. This surface soil moisture flux was
taken as the average of 10-min measurements of Pen-
man–Monteith potential evapotranspiration rate, re-
duced by the soil stress index, except for periods during
which there was rainfall recorded. During these periods,
it was assumed that no evapotranspiration occurred and
that the rainfall recorded had a uniform rainfall rate over
the 0.5-h period. Ponding greater than the depression
storage depth instantly went as runoff.

Parameters from calibration to the connector TDR
data are given in Table 3, and the simulation results are
compared with the connector TDR observations in Fig.
5. This and the following figures show depth-integrated
soil moisture comparisons, because these were the data

available from connector TDR measurements. Connec-
tor TDR data could not be converted readily to a soil
layer measurement reliably, but Virrib and model output
data could be easily converted to a depth-integrated val-
ue. These calibrated parameter values gave very good
agreement with the connector TDR soil moisture data
for model layers 1–3 and 1–4 but slightly overestimated
the total column soil moisture. The consistent slight
overestimation of soil moisture storage for the entire
soil profile as compared with the connector TDR mea-
surements may be a result of (i) the no-drainage bound-
ary condition at the bottom of the soil profile, (ii) an
incorrect estimate of rainfall and/or evapotranspiration,
(iii) a systematic error in the model physics, or (iv) a
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FIG. 7. Comparison of the retrieved soil moisture profile (dash–dot line) from updating with Virrib No. 1
soil moisture measurements in the top 123-mm soil layer with Virrib (dotted line) and connector TDR (open
circle) soil moisture measurements and the open-loop simulation (solid line). The simulations were initiated
with a poor initial guess of the soil moisture profile, that being the soil porosity; the soil moisture profile
was updated once per day. The figure shows average soil moisture content over layers (a) 1–3, (b) 1–4, and
(c) 1–5.

systematic error in the 40-cm TDR measurement. These
factors are discussed further in the following section.

Calibration to Virrib data or Virrib and TDR data
together was unable to improve the calibration. More-
over, the MGRAD values obtained from calibration to

the connector TDR data increased with depth, which is
consistent with the duplex soil characteristics observed;
the clay content in the soil profile increased with depth
so that the matric suction should be greater at deeper
depths.
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FIG. 8. Same as Fig. 7, but the simulations were initiated with a uniform soil moisture profile of 26.6%
v/v from the near-surface soil moisture measurement.

3) EVALUATION

Using the calibrated parameters (Table 3), the soil
moisture model was evaluated for the period from 10
May 1997 to 1 October 1998 using both the connector
TDR and Virrib data. This dataset is independent of the
calibration data. The simulation results from this eval-
uation are given in Fig. 6, in which there is good agree-
ment with observed soil moisture data for the top 123
mm for the entire simulation period. The comparison
with observed soil moisture data for the top 235 mm is
also good, apart from a slight overestimation (5% v/v)

of soil moisture content during the summer period. This
overestimation of soil moisture during the summer pe-
riod is greatest for the comparison with total profile soil
moisture storage, with a maximum overestimation of
about 10% v/v. This is consistent with the calibration
results, for which the total soil moisture storage is over-
estimated by approximately 5% v/v.

Possible explanations for this overestimation are un-
accounted-for gravity drainage and lateral redistribu-
tion. However, the effects of gravity drainage and lateral
redistribution are greatest during periods of high soil
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moisture content, meaning that these factors may not
explain the poor comparison during the summer months.
Thus, we believe that the most likely reason for the poor
comparison during dry periods is the estimation and/or
application of evapotranspiration in the soil moisture
model. In ABDOMEN, all evapotranspiration was sub-
tracted directly from the near-surface soil layer. When
the surface layer(s) approached the residual soil mois-
ture content, the extraction of evapotranspiration was
limited by the amount of available soil moisture in the
surface layer and the rate of upward transport from deep-
er layers to provide water for evaporation from the sur-
face layer. Hence, during the summer when near-surface
soil moisture content approached the residual soil mois-
ture content, evapotranspiration from the model profile
would be less than it should be, resulting in an over-
estimation of the total soil moisture profile storage. One
possible solution would be to include a root water uptake
term in the soil moisture model, although that was not
done here.

b. Soil moisture profile retrieval

The ability to retrieve accurately the soil moisture
profile from near-surface soil moisture observations us-
ing the Kalman filter assimilation scheme under field
conditions was evaluated from 27 September 1997 to 1
October 1998. In applying the Kalman filter, initial soil
moisture states were given a standard deviation of 50%
v/v and zero correlation between model layers for gen-
erating the initial system state covariance matrix, chosen
to represent no prior knowledge of the soil moisture
profile. The observation covariance matrix consisted of
a single value, that being the variance of the near-surface
soil moisture observation. A value of 2% of the obser-
vation was used as the standard deviation of observa-
tions, because this value was found to be the accuracy
of the soil moisture measuring device. The system noise
matrix was given a value of 5% of the system states per
0.5 h of simulation time for diagonal elements and zero
for off-diagonal elements, because it ensured that model
error was greater than observation error and was con-
sistent with our belief in the accuracy of the model.

Data from the Virrib sensor in closest proximity to
the soil surface were used as our observations of the
near-surface soil moisture. These data were used in pref-
erence to the connector TDR data because they were
monitored continuously, rather than only once every
fortnight. This allowed for greater flexibility in testing
different updating intervals used in simulations. The
near-surface Virrib data were found to have good agree-
ment with both the connector TDR data and model sim-
ulation (Fig. 6a). Because the Virrib measurements were
being made in the 40–160-mm depth range, the soil
moisture observations for data assimilation were applied
over an observation depth of 123 mm (layers 1–3), that
being the approximate depth of the near-surface soil
moisture observations. In the assimilation, the Kalman

filter observation equation compares the observed soil
moisture in the top 123 mm of soil to the model soil
moisture forecast in the top three layers and makes an
adjustment to all five model layers through the corre-
lation between the near-surface and deep soil layers in
the forecast model covariance matrix. Although this
depth of observation is not directly comparable with
that applicable to current remote sensing, it is the shal-
lowest depth of soil moisture measurement available
from these field data. Moreover, it allows us to gain
insight and to make important advances toward the use
of actual remotely sensed near-surface soil moisture data
in future studies.

1) UPDATING ONCE EVERY DAY

For the first run with the soil moisture profile retrieval
algorithm using the Kalman filter assimilation scheme,
the model was initialized with a poor initial soil moisture
profile, representative of the situation in which one has
no prior knowledge of the true soil moisture condition.
The initial soil moisture values used were the porosity
values of each model layer. The soil moisture forecasting
model was then run, subject to the surface forcing data,
and updated once every day with near-surface Virrib
soil moisture measurements for the 123-mm depth. The
results from this simulation are compared with the open-
loop simulation (no updating of the soil moisture
model), Virrib soil moisture data, and connector TDR
soil moisture data in Fig. 7.

The results from this simulation show that the soil
moisture profile retrieval algorithm using the Kalman
filter assimilation scheme quickly brings the soil mois-
ture model on track to a depth of 235 mm. The retrieval
of soil moisture content in the top 123 mm of the profile
follows the Virrib soil moisture measurements almost
exactly, as expected, and retrieval of soil moisture con-
tent in the top 235 mm follows both the Virrib and
connector TDR soil moisture measurements very close-
ly. However, during the dry summer period, the esti-
mated soil moisture content for the entire soil profile
was greater than the measured soil moisture content.
The reason for the forecasting model simulating the
near-surface soil moisture content correctly yet over-
predicting the total soil moisture storage is evident from
Fig. 6. During the dry summer period, the model sim-
ulates the near-surface soil moisture content accurately
but overestimates the total soil moisture profile storage.
If this systematic error did not exist in the forecasting
model, then the simulation of the soil moisture profile
would have continued to track the measured soil mois-
ture profile correctly once the measured soil moisture
profile was retrieved. Hence, the Kalman filter retrieval
of the soil moisture profile is only as good as the model
prediction of the soil moisture profile for a given near-
surface soil moisture content.

Although the retrieved column soil moisture was ov-
erpredicted in comparison with the observations, the
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FIG. 9. Same as Fig. 7, but the soil moisture profile was updated once every 5 days.

retrieved soil moisture was generally an improvement
on the open-loop simulation, particularly during the first
four months. After this lead period, retrieved soil mois-
ture to a depth of 235 mm continued to be an improve-
ment on the open loop, and the open loop was a slight
improvement on the retrieval for the total soil column.

Note also that the open-loop simulation started to
follow the observed soil moisture closely toward the
end of the dry summer period and continued to simulate
the soil moisture profile storage correctly through the
wet winter months. This result suggests that profile soil
moisture may be simulated correctly during sustained
dry periods and sustained wet periods, without assim-

ilation of near-surface observations, providing the cor-
rect porosity and residual soil moisture values are given
to the model. Thus, the forecasting model resets itself
whenever it hits a state boundary (i.e., dry or saturated).
However, during dynamic wetting/drying periods, as-
similation of near-surface soil moisture observations is
important for correct simulation of the soil moisture
profile.

The sensitivity of profile retrieval to the initial soil
moisture condition was assessed by initializing AB-
DOMEN with a soil moisture profile that was close to
the correct value. In this simulation, the initial soil mois-
ture profile was estimated by applying uniform soil
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FIG. 10. Same as Fig. 7, but the soil moisture profile was updated once every 10 days.

moisture content throughout the profile, using the near-
surface Virrib sensor measurement. The retrieval results
from this simulation (Fig. 8) are identical to the retrieval
results in Fig. 7. However, the open-loop simulation was
able to track the observed soil moisture profile very
closely in this simulation. This is because the initial soil
moisture values were close to the correct values for near-
surface layers and slightly less than the correct values
for deeper layers. The effect of this was to offset the
influence of no root water uptake seen in Fig. 6.

2) UPDATING AT LOW TEMPORAL RESOLUTIONS

Updating with near-surface soil moisture observa-
tions once per day may be feasible for some low-spatial-

resolution satellites, such as current-generation passive
microwave sensors, but updating with high-spatial-res-
olution observations, such as those from current-gen-
eration active microwave sensors, requires updating
with a much lower temporal resolution. In addressing
the effects from less frequent updating, simulations have
been run with the forecasting model updated once every
5, 10, and 20 days. These simulation results are given
in Figs. 9, 10, and 11, respectively, with the initial soil
moisture profile set to the porosity.

The simulation results from less frequent updating
suggest that total soil moisture profile storage is sim-
ulated more accurately as the update frequency is re-
duced, but the near-surface soil moisture is modeled
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FIG. 11. Same as Fig. 7, but the soil moisture profile was updated once every 20 days.

more poorly. The reason is most evident from Fig. 11,
in which it can be seen that the forecast near-surface
soil moisture content was updated to the observed near-
surface soil moisture content at each update step, with
a corresponding increase in the soil moisture content of
the deeper soil layers.

During the interobservation period, the forecasting
model predicted a drydown of the entire soil profile,
with near-surface soil moisture content estimates being
less than the observed near-surface soil moisture content
and the total soil moisture profile storage estimate ap-
proaching the observed total soil moisture profile stor-
age. When the forecast model was updated more fre-
quently, as in Figs. 9 and 10, the model was forced to

follow the near-surface soil moisture content more
closely. The effect of this forcing was a poorer retrieval
of the total soil moisture storage. This was a result of
the systematic error in the soil moisture forecasting
model and insufficient time for the forecasting model
dynamics to influence the soil moisture profile retrieval
significantly.

The systematic error observed in the forecasting mod-
el was that, for a given near-surface soil moisture con-
tent greater than the residual soil moisture content, the
model predicted a greater total soil moisture storage than
that observed in the field. This was also noted in Fig.
6 and is believed to result from the forecasting model
not having a root water uptake term. By including a
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root water uptake term in the soil moisture model, a
drier total soil moisture profile storage could be pre-
dicted for a given near-surface soil moisture content,
meaning that the Kalman filter would be able to estimate
better the soil moisture profile from observations of the
near-surface soil moisture content. These simulations
would suggest that retrieval of the correct soil moisture
profile using the Kalman filter assimilation scheme is
more dependent on the forecasting model being able to
forecast adequately the soil moisture profile dynamics
than on the frequency of updating information. It does
not mean that infrequent updating is more desirable than
frequent updating, just that it is important to have an
unbiased forecast model in order to obtain an unbiased
model update.

c. Discussion

This study has yielded several important insights that
will require careful consideration in future assimilation
studies at both the one- and three-dimensional levels.
Most important, if either the model forecasts or obser-
vations are systematically biased in any way, then with-
out the removal of such biases it will be impossible to
improve the forecast of the soil moisture profile, no
matter how good the assimilation scheme is. Although
the effect of model bias on the assimilation is not di-
rectly obvious, it has serious implications for application
to real-life situations. This means that assimilation of
near-surface soil moisture observations for retrieval of
the soil moisture profile is only useful when errors in
the soil moisture forecasts derive directly from errors
in the initial conditions and/or atmospheric forcing data
and not as a result of error in the physics of the soil
moisture model.

Model and observation bias are potentially serious,
but there are other secondary factors, including the ini-
tial conditions, soil type, observation frequency, and
model approximation. Of these factors, model approx-
imation is potentially the most serious. However, pro-
viding the model approximation does not introduce a
systematic bias in the model, such as neglect of the root
water uptake, the use of approximations in the fore-
casting model probably has no detrimental effect on the
assimilation. Soil porosity and residual soil moisture
content are the most important soil parameters for cor-
rect retrieval of the soil moisture profile. A residual soil
moisture content that is too high or a soil porosity value
that is too low will restrain the forecasting model from
ever reaching the correct soil moisture content during
extreme wet or extreme dry periods, even with an as-
similation scheme.

5. Conclusions

In this paper, a computationally efficient soil moisture
model has been developed, based on a conceptualization
of the Buckingham–Darcy moisture flux equation. Al-

though the simplified soil moisture model was a good
approximation to the Richards equation, even when us-
ing only a few soil layers, a root water uptake term
should be added to simulate field-measured soil mois-
ture accurately. Without the root water uptake term or
calibration to extreme drying events, the model over-
predicts the soil moisture of deeper soil layers during
extreme drying events.

Simulation results have indicated that, providing the
soil porosity and residual soil moisture content param-
eters have been identified correctly, the soil moisture
profile may be modeled correctly during sustained dry
and sustained wet periods without assimilation of near-
surface soil moisture observations, meaning that the
forecasting model resets itself whenever it hits a state
boundary. However, during dynamic wetting and drying
periods, assimilation of near-surface soil moisture ob-
servations is important for correct simulation of the soil
moisture profile.

Our results indicate that soil moisture profile retrieval
with the Kalman filter assimilation scheme is only as
good as the model representation of the dominant soil
physical processes and its calibration. When the model
overpredicts or underpredicts the soil moisture profile
for a given near-surface soil moisture content, then the
retrieved soil moisture profile is likely to be poor. More-
over, retrieval of the soil moisture profile using the Kal-
man filter assimilation scheme has been shown to be
more dependent on the adequacy of the forecasting mod-
el to predict correctly the soil moisture profile dynamics
than on the temporal resolution of near-surface soil
moisture measurements. This result means that assim-
ilation of near-surface soil moisture observations is only
useful for correcting error in soil moisture forecasts as
a result of errors in initial conditions and/or atmospheric
forcing data and not as a result of error in the physics
of the soil moisture model.
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