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Introduction. In a recent paper [3] we have considered the Stefan problem in
the case of an arbitrary space-dimension n. We have proved existence, uniqueness,
stability and asymptotic theorems for a weak solution. As a by-product we have
obtained the following results for a two-phase problem in the case « = 1 :

(1) The weak solution u(x, t) is a continuous function.
(2) If the boundary data converge at f = oo in a suitable way, then u(x, t) -*- w(x)

uniformly with respect to x, where w(x) is the solution of the appropriate stationary
problem.

The weak solution of [3] is a classical solution of the appropriate parabolic
equation in every open set where u=0 and a(u) = 0 (or where u-0 and a(u)S -«).
However the set W where w=0 and — a<a(«)<0 was not investigated in [3]
except for the fact that (for any «^ 1) W stays away from the fixed boundaries. It
is not known, for instance, whether or not W has a positive measure or interior
points. For the one-phase problem, however, it was proved in [3] that W is
contained in the boundary of measurable point and, consequently, has no interior
points. Physically, IT represents the "weak" free boundary between the solid and
the liquid of the problem.

The first purpose of the present paper is to prove that, in the case « = 1, Wi%
actually a continuous curve x=s(t) (which is then the free boundary in the usual
sense) and that u(x, 0^0 at.all the points where x^s(t). This result is stated in
Theorem 3 below, and is proved in §§2, 3. The second purpose of the paper is to
extend the results from two-phase problems to &-phase problems for any k. This
is done in §§5-7. The lines í = a¡ where some of the phases degenerate cause some
difficulty. There may occur perhaps some intervals on f=o-, where u(x, at)=0
(see §6) and regions lying above such intervals where u=0 (see §7). But in any case
we prove that If consists of a finite number of curves x = x(f) which are continuous
in the intervals (aiy ax + x).

As far as we know, global existence theorems of classical solutions for the tWo-
phase Stefan problem were considered only by Rubinstein [4], However, there is
a fundamental gap in his proof of existence. In §8 we explain the nature of this gap.
Thus it is not known, at this point, whether classical solutions do in fact exist
globally.
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In §8 we also give some generalizations of the results of the previous sections.

1. The main results for the 2-phase problem.   Consider the system of equations

du, = ö d\       for ex < x < s(t),   0 < f < T if i = 1,
dt      Pi dx2      and s(t) < x < ba, 0 < t < T if / - 2,o-i)     -B-ßr-a

where ft > 0,

(1.2) u((bt, t) = gi(t)      for 0 è t < T   (i = l,2)

where g1>0,g2<0,

«,(x, 0) = h,(x)      for />! < x < è if i = 1,
and ¿> < x < è2 if ' = 2,(1.3)

where /^ > 0, n2 < 0, s(0)=6,

(1.4) u,(X0, f) = 0      for 0 g f < T   (i = 1, 2),

(1.5) ßßuJdx-ßüdUü/dx = -ctds/df       for x = s(f),   0 < t < T

where ct>0. Given g(, A(, b, the classical two-phase Stefan problem consists of
finding («i, «a, s) such that (1.1)—(1.5) hold. It is required that all the derivatives
of «j, u2, s which occur in (1.1)—(1.5) exist in the usual sense and are continuous
in the appropriate regions (compare [1]). We then call (uu u2, s) a classical solution.

As proved in [1], a classical solution of (1.1)—(1.5) is known to exist locally (i.e.
for 0gf<e, e sufficiently small) provided gt and ht satisfy some smoothness
assumptions.

Set a, = 1/$ and introduce

,, „ a(u) = a2u-a       if u £ 0,
(L6) = alU if « > 0,

fl ?. ? = Si/«i on x = blt
= ga/«2 on x = ¿a,

n = Ax/aj for bi < x < b,
(1.8) = n2/t>!2 for b < x < b2,

= 0 for x = b.

Finally we set G={x; bj. < x < b2), £2r = G x {0 < t < T).
Definition. A bounded measurable function u(x, t) on £2r is called a weak

solution of (1.1)—(1.5) if the equality

(1.9) JJn  [u<pxx+a(u)<pt] dxdt = JJ [g<f,x]%Zll dt-jg a(h)<p(x, 0) dx

holds for any <f> such that <f>„ <f>xx, </>t are continuous in ÙT and <f>=0 on x=f>1;
x=62 and on t=T. Here, the function a(u(x, t)) on the set where w(x, f)=0 is
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1968] ONE DIMENSIONAL STEFAN PROBLEMS 91

defined as an arbitrary function ß(x,t) subject to the following conditions:
(i) -agß(x, í)áO, (ii) a(u(x, 0) is measurable in Q.T.

As proved in [3], if (ux, u2,s) is a classical solution of (1.1)—(1.5), and if we set

u = ux/ax       at the points where ux > 0,
= u2/a2      at the points where u2 < 0,

then « is a weak solution of (1.1)—(1.5). Conversely, if u is a weak solution, if the
set where u=0 is given by a curve x=s(t), and if« and s satisfy some smoothness
conditions, then (ux, u2,s) is a classical solution of (1.1)—(1.5), where the h( are
defined by (1.10).

We shall need the following conditions :
(Ax) 0 < yx g gi(t) â ñ,   y2 é g2 á y2 < 0.
(A2) There exists a function T(x, f) with T*, Yxxt Y( continuous in iiT such

that xF=gi on x=bi and yV=h¡ on f=0, for all x with |x—6,| sufficiently small.
(A3) h is continuous on G and its first strong derivative is in L2(G).
The following two theorems are contained in [3].

Theorem 1. Assume that (Ai)-(A3) hold with some Tgco. Then there exists a
unique weak solution u(x, t) q/" (1.1)—(1.5). Furthermore, (i) u(x, t) is a continuous
function in ÙT, and (ii) w(x, f ) ̂  e0 for bxgxgbx + 8o,0gt<T and u(x, t ) ̂  — e0 for
b2 — 80gxgb2,0¿t<T, where e0, 80 are positive constants.

Theorem 2. Assume that (AX)-(A3) hold with T= oo and that

(1.11) |g'(f)| g const < oo,   J    |g'(f)| dt < oo,   j   (g(t)-g(n))2dt < oo.

Denote by g,(oo)/a¡ the value of g(oo) on x = bu and by w(x) the linear function in
G which satisfies: w(bi)=gi(co)/ai. Then

(1.12) sup |«(x, f) —w(x)| -»-0       as. t -> oo.
xea

Note that if the condition (A2) holds with T= s for some e > 0 and if g'(t) is a
continuous function for 0<tgT0, then (A2) holds also with T=TQ.

Set Wa={xe G; u(x, a)=0}, W=\JoSa<T W„. By [3], u is a classical solution
of the appropriate parabolic equation in the open set QT — W. We now state one
of the principal results of the paper.

Theorem 3. Assume that (Aj)-(A3) hold with some Tg oo. Then the set W coincides
with a set {(x, f); x=j(f), O^f <T) where s(t) is a continuous function for Ogt<T.

Thus there is a free boundary in the usual sense, u is a classical solution of (1.1)
for x#j(f), it satisfies (1.2)—(1.4) in the usual, sense. The only condition which is
satisfied in the weak sense is (1.5). This condition reads as follows:
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For every 0 < f0 < T and <f> e C °° with compact support in a neighborhood of
(sito), to) contained in £2r,

(1.13)
lim    #[& dujdx]xm,tífí dt -lim    [ß2 du2/dx]x=e*m dt
e-0 J e->0 J

= lim [aiu)<pt + uxx<f>]dxdt;
e-0 J Ja'T

here x=íc(í) and x=s\t) are smooth curves which approximate x=j(f ) uniformly,
Sei1) < sit) < seit), and £2f is the complement in £2r of the set of all points (x, f ) with
$<¡(0 = x=í£(0- If' in particular, ds/dt exists and is continuous in some interval
|f—f0| <e and if Sm((x, t)/dx are continuous up to the free boundary for |f—f0| < e,
then (as is easily seen from (1.13)) (1.5) is satisfied in the usual sense.

In §4 we shall derive another weak form of (1.5), which is more explicit than
(1.13).

From Theorems 2, 3 we get

Corollary. Under the assumptions of Theorem 2,

(1.14)      sit)-^bl + a2g1ico)ib2-bl)lia2g1ico)-a1g2ico))       as t ^ oo.

We shall need later on some additional results of [3].
Suppose A(x) is any bounded measurable function on G, and let /?(x) be a measur-

able function defined as aQiix)) if n(x)^0 and satisfying -a^jS(x)^0 at points
where n(x)=0. We shall write aih) (or aiHx))) for the function ß (or )S(x)).-We then
define a weak solution of (1.1)—(1.5) with a(«) = a(n) on f=0 by the condition (1.9).
As an illustration we mention that Corollary 1 to Theorem 3 in [3] in fact asserts
that the weak solution of (1.1)—(1.5) is also, for o£t<T, a weak solution with
a(«) = aik) on f = a, where kix) = w(x, a). Note that aih) actually determines h
uniquely.

Theorem 4. If g, h, aQi) are bounded measurable functions, then there exists a
unique weak solution o/(l.l)-(1.5) with aiu) = aih) on f=0.

Corollary. If g*, h*, aih*) are also bounded measurable functions, and if
g*^g, a(«*)^a(A), then u*^u almost everywhere, where u* is the weak solution
with data g*, aih*).

The proofs of Theorem 4 and its corollary, for any n^ 1, are given in [3].

2. Proof of Theorem 3.

Lemma 1. Let D be a subdomain o/£2r bounded by 4 curves: an interval y0 lying
on t=p.0, an interval yx lying on t=p.1 ip-o<rli), a continuously differentiable closed
curve y2 connecting the right end-points ofy0, yx and lying iexceptfor its end-points)
in /t0<f</x1, and a continuously differentiable closed curve y3 connecting the left
end-points of y0, yx and lying iexcept for its end-points) in p,Q<t<p.^ Assume that
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the tangent lines to y2, y3 are never parallel to the x-axis. Ifu(x, t)>0ony0Uy2U y3
then u(x, f)>0 in D.

Proof. Since « is continuous in ÙT, the set If where w = 0 is a closed set. Hence,
if the assertion is false then there exists a number a, p.0 < a ̂  px, such that u(x, f) > 0
in D„ = D n {f; t<a) and u(x°, <r)=0 for some point (x°, a) e D0 which does not
lie on y2 u y3. In D„ we have a(u(x, t)) = axu(x, t) and thus, by (1.9), u(x, t) is a
weak (and, consequently, a classical) solution of axut = uxx. Consider next the
solution w of

(2 n «iWt = wxx       in A
W = U on y0 U y2 U y3.

Its existence follows by [2]. By the maximum principle, w > 0 in D. By uniqueness,
w>=« in Z>„. Since «is continuous in D„, we get w(x°, cr)=w(x°, <r)>0; a contradiction.

We shall need later on the following slightly stronger statement than Lemma 1.

Lemma 1'. If in Lemma 1 the assumption that «>0 at the points yx n y2, yx n y3
is replaced by the assumption that u~0 at these points, then «>0 in D with the
exception of these two points.

The only difference in the proof occurs in case o=p.x. We can still proceed as
before, but we have to apply to w, in DU1, the strong maximum principle.

Set B„={(x, o) e ÙT; u(x, o-)>0}, B= Uos<r<r B„.

Lemma 2. For each a, 0<a<T, the set Ba consists of one open interval.

Proof. Since « is continuous in HT, B„ is an open subset of G x {a}. By Theorem
1, Ba contains an interval with bx¿x¿bx + 80 and excludes an interval with
b2 — S0áx^Z?2. Suppose now that the assertion of the lemma is false. Then for
some a with 0 < o < T, the set B„ consist of disjoint (open) intervals /0, Ix,...
(whose number is at least 2) such that :

In /o, bx^x<cx.
In Ik, c2k<x<c2k + x (k^l); ct/ if j/, and Cj<b2 — 80 for all j. Note that

u(Cj, a)=0for ally.
Consider open connected subsets Q* of B lying in ü„ and having the following

property: Each point (x°, f °) of Q* can be connected to some point (y, a) of Ix by
a continuously differentiate "curve y lying in Of except for one end-point and given
by x=x(f) where dx(t )/dt #0 for all f. We shall call such curves y monotone curves.
The union Qx of all the sets g* is again a set having the same property. Thus Qx
is the maximal Q*-set.

Let (x°, f°) be a boundary point of Qx which does not belong to Ix. Then
u(x°,t0)=0. We shall prove

(i) Ifw(x°, f°)>0then0<fo<cr;
(ii) if 0<f°<(7 then u(x°, f°)=0.
It would then follow that u(x, t) attains its maximum in Qx on the set Qxu Ix.
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Since «i is a solution ofa1ut=uxx in Qx u 71( the strong maximum principle yields
u=const in Qx, which is impossible. It thus remains to prove (i), (ii).

Suppose t° = a. Since u(x°, ct)>0, there exists a disc V with center (x°, a) such
that u >0 in V. Since (x°, a) e Qx, we can find a point (x', <j') lying in Qx n F.
Let y2 be a monotone curve in Qx connecting (x', a) to a point in 71; and let y3
be the straight segment connecting (x', a') to (x°, a). With y0 being the point
(x', a'), we have the situation considered in Lemma 1. It follows that u(x, a)>0
for all (x, a) in the interval connecting (x°, o) to some point of 7j. This is impossible
since u vanishes at the end-points of lt.

Suppose next that f°=0. Since u(x°, f°)>0, we must have b1^x°<b. Take a
disc V about (x°, 0) such that u>0 in Knü„ and let (x', a') be a point lying in
Vn £2ff. Take y2 to be a monotone curve in gj connecting (x', a) to some point
in /j. Connect (x', a') to (x°, 0) by a straight segment y£ and set y2=y'2 V y'2.
Denote by y0 the interval connecting (x°, 0) to (bx, 0) and by y3 the interval
connecting (b, 0) to (b, a). Then we can again apply Lemma 1. We conclude that
u(x, a)>0 for all x in the interval bx^x^c2. But this is impossible if x=c2.

We now prove (ii). Suppose then that u(x°, f°)>0 and that 0<f°<a. Let V be
a disc with center (x°, f°), lying in £2„, such that m>0 in V. Denote by V+ and V~
the intersection of F with f>f° and t<t° respectively. Denote by JKli the interval
{(x, f0);x0-A<x<x0+/x}. Since(x°, f°) is not in Qlt V+ n Qx=0 (here we use the
maximality of Qx). Since (x°, f °) is a boundary point of Qx, there exists a sequence
of points (xm, fm) inV~ C\ Qx such that xm -> x°, tm / t°. It is therefore clear that
V-^QX.

Choose A, p. such that JXu is the largest interval on which u(x, f°)>0. If the left
end-point of 7A(i lies on x=bx, then we can construct a straight segment y0 lying on
t=t°-e, for some sufficiently small e>0, which begins on x=bx and ends at some
point P in V, such that m>0 on y0. P can be connected to Ix by a monotone curve
y2 in Qx. Denoting by y3 the interval connecting (b, t° — e) to (b, o) we can now
apply Lemma 1 and conclude that u(c2, a) > 0, a contradiction.

We have thus proved that the left end-point of JXu lies in Dff. The right end-point
of JKtl also lies in Q.a, since «<0 on x=b2. Hence, by the maximality of JKlL, «=0
at the end-points of JXlL.

Let y be a monotone curve in Qx connecting Ix to a point (x\ a) in V~. y
cannot intersect JXli for, otherwise, we can construct a monotone curve connecting
7! to (x°, f°) on which «>0; thus (x°, f°) would belong to Qx, which contradicts
the assumption that (x°, f °) is a boundary point of Qx. Thus, y intersects the line
t = t° either to the right or to the left of JKu. Suppose it intersects it to the right of
7A(1, and denote by y2 the part of / lying in f^f°. We connect (x', a) to (x°, f°)
by a straight segment y3 and then apply Lemma 1. We conclude that u(x°+p., t °) > 0,
a contradiction.

From Lemma 2 it follows that there is a curve x=j+(f) such that u(x, f)>0 if
bx<x<s+(t), 0£t<T, and u(x, f)^0 if s+(t)<x<b2,0¿t<T.  Similarly one
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proves that there exists a curve x=s_(f) such that m(x, f)<0 if í_(f)<x^¿>2,
0^t<Tand u(x, t)=0 if bx^x<s.(t), 0 = t<T. Hence
(2.2) Wa = {(x, a); s+(o) í x g s.(a)}.

The continuity of u implies that i+(f) is a lower semicontinuous function and
S-(t) is an upper semicontinuous function. If we prove that s+(t)=s-(t)=s(t)
then it would follow that the curve x=j(f) is continuous and the proof of
Theorem 3 is complete.

3. Proof of Theorem 3 (continued).

Lemma 3. If w=0 on an interval
(3.1) / = {(x, a); x0 é x ^ xx}

with 0<a<T, x0<xx, then there cannot exist any rectangle R={(x, t); y0^x¿yx,
a—e¿t<a} where x0^y0<yxúxx, e>0 such that «>0 in R.

Proof. The existence of such a rectangle contradicts Lemma 1'.

Lemma 4. The function t -+ a(u(x, t))from [0, T) into L2(G) is weakly continuous,
i.e. for any j> eL2(G), §<to<T,

lim     a(u(x, t))<Kx) dx =      a(u(x, o-))<f>(x) dx.
t-oJa Jo

This lemma, which is true also when x is n-dimensional, follows from Corollary
1 to Theorem 3 in [3].

Remark. In the definition of a weak solution, a(u(x, t )) was defined up to a set of
measure zero. In proving Lemma 4 one normalizes a(u(x, t)) in an appropriate
manner so that the assertion holds for all a. From now on this normalization is
always assumed (also for the many-phase problems in §§5-7 (Lemma 4 is valid
also for such problems)). Thus, for each a, O^ckT, the function a(u(x, a)) is a
uniquely defined measurable function in x, i.e. it is determined up to a set of
measure zero in G.

Assume now that there is an interval /as in (3.1) on which «=0. Suppose a point
(y, a) in / is a limit point of a sequence {(ym, am)} with om / a and that u(ym, om) > 0
for all m. By Lemma 2, w(x, orm)>0 if bx^x^ym and, therefore, a(u(x, om))
=axu(x, arm). Since, by Lemma 4, a(u(x, am)) -» a(u(x, a)) in L2(iIli „, (where "—*"
means weak convergence), and since u(x, am) ->• 0 as m -> oo, for all x in the interval
x0<x<.v, we conclude that a(u(x, o))=0 for almost all x in the interval x0Sx£y.

If, on the other hand, u(ym, am) < 0 for all m, where {( vm, am)} is a sequence
which converges to (y, a) el as before, then we conclude in a similar manner tha
o(«(x, o))= — a for almost all x in the interval y^x^xx.

It follows that if (y, a) e I is a limit of a sequence {(ym, am)} with u(ym, am)>0,
then each point (y, a) with x0£y<y is not a limit point of a sequence of points on
which u < 0. On the other hand, each such point (y, a) is a limit of the sequence
{(y, <rm)} on which «>0 (by Lemma 2).
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From the above remarks it follows that there exist points x°, xx with x0^x0
¿ Xi £ Xi such that the following properties hold*:

(a) If x0èy<x0, then there exists a sequence {(ym, am)} such that ym-+y,
<rm / °, u(ym, am)>0 for all m.

(ß) lfxx<z¿xx then there exists a sequence {(zm, am)} such that zm -> z, am / a,
u(zm, am) < 0 for all m.

(y) x0 is the largest value and xx is the smallest value for which («), (ß) hold.
There are three cases (the first two may occur simultaneously) :
(3.2) x0<x0;
(3.3) Xi<Xi;
(3.4) Xo = Xo,    xx—xx.
Later on we shall analyze these cases.
Definitions. A closed interval (of positive length) on which «=0 will be called

a zero interval. We shall consider below zero intervals Jyu={(y, t); a—p^t^o-}. If
Jyu is not contained in any zero interval Jyv with v < p, then we call it maximal. If
Jyu is maximal and o-p>0, then there exists a sequence of points (y, Am) with
Am / a—p such that u(y, Am)#0 for all m. If one can find such a sequence with
u(y,. Am) > 0 ( < 0) then one says that Jyu has a positive (negative) end. Jyu may have
both a positive end and a negative end simultaneously.

Lemma 5. Suppose u=0 on an interval I given by (3.1). Denote by Y the set of
all y with x0<y<xx such that there exists a zero intervalJyu. Then the set Y cannot
contain any subinterval (z0, zx) of (x0, xx).

Proof. We may assume that the Jyu are maximal zero intervals. We may also
assume that p<a. Indeed, there can be at most one value of y (namely y=b) for
which p=a (since u(x, 0)^0 if x^b).

Assume now that the assertion is false, i.e. Y contains an interval (z0, zx).
There exist two points yx, y2 satisfying z0<yx<y2<zx such that the intervals

JyiUl and JV2U2 (where pt=p(yt)) have both either a positive end or a negative end.
It suffices to consider the case of a positive end. By Lemma 2 it follows that px ̂  p2.
Suppose yx<y<y2. If /¿i = /¿2 then, by Lemma 2, Jy¡t has a positive end and
p,x^p^p2. If p.x<p2 then Jyu also must have a positive end. In fact, if it has a
negative end then Lemma 2 implies that y.=p.2 and thus Jyil must also have a
positive end. From the positivity of the end of Jyu and from Lemma 2 it now follows
that px ;§ p. ;£ p2.

Dividing the interval (yx, y2) successively into smaller intervals whoss lengths
decrease to 0, and applying successively the last result, we conclude that p=p(y)
is a monotone increasing function in the intervals [yx, y2] and Jyit has a positive end.

Denote by A the curve whose points are (a—p(y), y), yx<y<y2. Let j? be a
point in (yx, y2), and set t0~o—fi where ß=p(y). Since Jsi has a positive end, by
applying Lemmas 2, 4 we find that a(n(x, f0)) = a.xu(x, t0) for almost all x in the
interval (bx, y).
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Denote by Ü* the rectangle bx<x<y+e, t0<t<a for some e>0, e<y2—y.
We also introduce the segment S={(y+e, t); t0<t<o-}. Clearly, u vanishes in
some neighborhood of 5 which lies in t0St^a. From this it easily follows that u,
which (by Corollary 1 to Theorem 3 of [3]) is a weak solution of (1.1)—(1.5) in
G x (f0, a) (with a(u) = a(k) on f = f0 where k(x) = u(x, f0)) is also a weak solution in
Ü* of the appropriate free boundary problem.

Note that a(k(x)) = axu(x, a)>0 if bx<x<y and - a S a(k(x)) = 0 if y<x<y+e.
We shall compare u with the solution w of the free boundary problem with

boundary data gx(t) on x = ¿>ls 0 on x=y+e, and initial data on t = t0 such that
a(w)£a(u). We take w(x, f0)=0 for bx<x<y+e, a(w(x, f0))=0 for bx<x<y and
a(w(x, t0))= — « for y<x<y+e. By [1] there exists a classical solution w, s with
the free boundary satisfying s(t0)=y, and s(t) is a monotone increasing function.
Thus w(x, f)>0 if bx<x<y, t0<t<a. w is also a weak solution with a(w(x, t0))
as prescribed above.

By the corollary to Theorem 4, u(x, t)^w(x, f)>0 if bx<x<y, t0<t<a. But
this is impossible since «=0on JVlUl-

Remark. Lemma 5 implies that the set in Q.T where u=0 has no interior points.
It is this fact (rather than the stronger assertion of Lemma 5) that will be used in
the future.

Lemma 6. Let I be a zero interval given by (3.1) and let x0, xx be the values which
occur in (3.2)-(3.4). Then x0=xx.

Indeed, if x0<x"i then there exists a rectangle R0 given by x0 + e^x^xx — e,
cr-e^f^CT such that m=0 in R0. This contradicts Lemma 5.

We can now complete the proof of Theorem 3. From Lemma 6 it follows that
either x0>x0 or xx<xx (or both). It suffices to consider the case x0>x0. Then
there exists a rectangle R given by x0^x^x0 + S, a— 8<t<a, for some 8>0,
such that u=0 in R. Let n be any zero interval in R, lying on a line f=const > a—8.
Applying Lemma 6 to it and recalling that u=0 in R, we conclude that every point
in 77 is the limit of a sequence in R on which u > 0. By Lemmas 2, 4 it follows that
a(u) = <xxu almost everywhere on -n. Consequently a(u) = axu almost everywhere in
R. From (1.9) we then conclude that m is a weak (and hence a classical) solution of
axut=uxx in R. Since «ä0 and «^0 in R, the maximum principle shows that
u(x, f)>0 in R. But this contradicts Lemma 3.

4. Another weak form of the condition on the free boundary. Recalling the
notation (1.10), we shall prove the following theorem.

Theorem 5. Assume that (AX)-(A3) hold for some T^ oo. Then
/•s«) rb2 çb

as(t) = as(0)—       ux(x, t) dx-      u2(x, t) dx+      hx(x) dx
,. ... Jbi Js(t) Jbi

/% /•' 8 f 8+ I     h2(x) dx+ß2\   ^ U2(b2, a) da - ßx I   — ux(bx, a) da.
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The relation (4.1) may be considered as another weak form of (1.5). In fact,
suppose «¡, dUi/dx, d2ut/dx2 exist and are continuous for bxSx^s(t), |f —f„|<e
if i = l and for s(t)^x^b2, \t—t0\ <e if i = 2. Suppose also that ds(t)/dt exists and
is continuous if |f-f0| <e. Then, writing (4.1) for t = t0 + 8 and for t = t0, dividing
the difference by 8 and taking 8 -> 0, we obtain the relation (1.5).

Proof of Theorem 5. In [3] we have considered the system

(4.2) a;(t;m) dvjdt = d2vjdx2   in£2r,

(4.3) vm = g   on x = bx, x = b2,0 < f < T,

(4.4) vm = n   for x e G, f = 0,

and proved that some subsequence of {vm} is convergent weakly in L2(£2r) and
almost everywhere in £2r to a function u which is the weak solution of (1.1)—(1.5).
Furthermore, the convergence is uniform for (x, f ) e Q*0 where Qf0 is defined by

bx£xgbx + 80   or   b2-80^x^b2,       0 ^ f < T.

Finally, we have also proved that

(4.5) sup   f
o<f<r J

where C is independent of m.
From Sobolev's lemma and (4.5) we find that

(4.6) \vm(x, t)-vm(x', f)| á C'lx-x'l1'2       (x, x' 6 G, 0 < f < T),

where C is a constant independent of m.
From the differentiality assumptions (A2), (A3) and the fact (also proved in [3])

that in £2^, a'm(vm)=ax if bx ̂  xá bx + 80 and a'm(vm)=a2ifb2-80^x^ b2, it follows
that for a suitable subsequence of the w's.

(4.7) dvjdx -► du/dx      uniformly in SI*

for any 0 < 8 < S0.
Integrating (4.2) over £2t we obtain

(4-8)   £ pg^)_8«^] da m £. am{Vm{Xi t)) &_ £. aMx)) dx

For fixed f we can take (because of (4.6)) a subsequence of {vm} such that
tfm(x, f) -*■ t>(x, f) uniformly with respect to x. Using Theorem 3, we find

p»2 rs«> r»a fa
(4.9) am(vm(x, t)) dx ->-        ^«(x, f)dx+       oc2m(x, í)dx-       a¿x.

Jdi Ji>! Js(f) Js(t)

0X Um(*, 0 dx ^ C
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Taking in (4.8) m -> oo on an appropriate subsequence of m's, and using (4.9),
(4.7) and the notation of (1.8), (1.10), we get (4.1).

5. The many-phase problem. We shall generalize the previous results to the
case of many-phase problems. Thus, on f=0 there are given k intervals (dx, d2),
(d2, d3),..., (dk, dk+x) with dx = bx, dk + x=b2.

On each interval (du di + x) we are given a function ht(x), and (-l)i~1hi(x)>0.
In the classical formulation of the problem we are looking for k functions ux,...,uk
and k— 1 free boundaries sx,..., sk-x such that bx<sx(t)<s2(t)< ■ ■ ■ <sk~x(t)<b2
and u¡ is defined for si-1(t)<x<si(t) (here s0 = bx, sk = b2). ut satisfies ut=ßxuxx
if i is odd and ut=ß2uxx if i is even. «¡=0 on the free boundaries which bound its
domain of definition, w¡ = /z¡ for i=0, di<x<dl + x, ux=gx for x=¿>l5 0<i<T,
uk=gi for x=b2, 0<f<r, and, finally,

ßx^-ß2^8T = (-l)lali       onx = si(t)foTi=l,...,k-l.

Actually, some of the phases may disappear after some time f, so that the
classical formulation needs to be modified. We shall not give here such a modifi-
cation, but instead proceed immediately to the weak formulation of the problem.

The notations (1.6), (1.7) will be kept, but instead of (1.8), (1.10) we set

h = ht/ax      for di < x < di + x, i odd,
(5.1) = ht/a2       for dt < x < di + x, i even

= 0 for x = dt,

u = «,/«!       if «, > 0,
= Mt/0£2 if », < 0.

Definition. A bounded measurable function u in Qr is called a weak solution
of the k-phase Stefan problem (with initial data h and boundary data g) if (1.9)
holds for all <f> such that <f>x, <f>xx, <j>t are continuous in C1T and <j>=0 on x=bx,
x=b2 and on t = T. The meaning of a(u) is the same as in §1.

One can show that a classical solution is a weak solution (via the relation (5.2)).
Theorems 1, 2, 4 remain true for the k-phase problem, and only slight changes in

the original proofs are required. Thus, in proving the existence of a region Í2,*
as in (2.10) of [3], which is independent of m, one constructs the function w
satisfying w<h and (2.9) (of [3]) simply as a linear function. Theorems 1, 2, 4
obviously extend also to the case where g2(t)>0, i.e. the case where k is odd.

Our main purpose is to generalize Theorem 3. From now on it is always assumed
that the assumptions (A!)-(A3) (ifk is odd then 0<y2^g2(t)^y2) hold.

Lemmas 1, 1', 3, 4 remain true (with the same proofs) for the k-phase problem.
On t=a, the set where u(x, a)>0 consists of disjoint intervals Ix, I2,.... They

are all open intervals except the one initiating at x=bx (and the one ending on
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x = 62 in case g2(f ) >0, i.e. in case k is odd). We call the 7, positive phases and denote
their number by n+(o). Similarly we define negative phases and denote their number
by n.(o).

Theorem 6. If o o then n+(o)Sn+(o'), n_(a)gn_(<r').

Proof. It suffices to prove the assertion for n + . Set m=n+(a), m'=n+(c') and
denote by Ix,..., Im and I'x,..., I'm, the positive phases on f = a and t = a respec-
tively. We enumerate these intervals in such a way that 7t (7¡') is to the left of I¡
(I'j) if i<j. In §2 we have defined the domain Qx with respect to Ix. We now
introduce in the same manner the domain Qt with respect to 7,, and set
ûi=Qit~\{t>o'}.

Let (x°, f°) be a boundary point of 0, which does not belong to 7(. We claim
(i) If u(x°, f°)>0 then f°«r;if u(x°, f°)>0 and f° = </ then (x°, f°) belongs to

some interval I'm and j(i)¥=j(i) if i^i-
(ii) If a' < f ° < a, then u(x°, f °)=0.
The proofs of (i), (ii) are similar to the proofs of the statements (i), (ii) which

occur in the proof of Lemma 2.
If now m>m', then it follows from (i), (ii) that, for some i, «=0 on all the

boundary of Qi with the exception of 7( where «>0. But this contradicts the
maximum principle for u in Qt.

From Theorem 6 and the continuity of u we get

Corollary. n+(o) and n_(a) are continuous at a=0; thus there exists a ax>0
such that n+(a)=n+(0), n_(<r)=n_(0) if0^a<ox.

We shall take <rx to be the largest number such that n+(a), n.(o) are constants
in the interval [0, ax).

Lemma 7. There are no zero intervals of the form (3.1) for any 0<a<ax.

Proof. We use the notation Q, introduced above. Then (i), (ii) hold with
ct'=0, i.e. with Qi = Qi- Using Lemma 1 we immediately see that g, n ß,= 0 if

Each Qi must have a boundary point on f=0 where w>0, since, otherwise, by
(i), (ii) and the maximum principle, «s0 in Qt which is impossible. That boundary
point must belong to some interval (dm, dm + x). It is now easily seen that there
exists a monotone curve y, in Q, connecting 7¡ to some point in (dm, dm+x). Since
the 7j are arranged in a monotone increasing order on t=a, and since j(i)¥^j(i)
if iftf, the interval (dm, dm + x) is actually the interval (d2,-x, d2l). Note that
Yi nYm=0 if fVm.

In the same way one proves that there exist monotone curves yt connecting the
negative phases 7t on t=a to the intervals (d2(, d2i+1), such that u <0 on yt, and
Ytr>Ym=0 if iVm.
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y¡ can be represented in the form x = xt(p), O^p^a. Similarly, y( can be repre-
sented in the form x=Jc,(p), 0 ̂  p ̂  a. Hence there exist intervals It(p) = (x¡(p) — et(p),
Xi(p) + 8i(p)) and Ji(p) = (xi(p)-ëi(p), x((p) + 8"((p)) on t=p such that u(x, p)>0 on
It(p), u(x, p) < 0 on Jt(p) and u=0 at the end-points of these intervals. Since
n+(p)=n+(a), «_(/>)=«_ (a), we actually have

u(x,p) = 0   if   **(U/.(P))U(LM(P))

Suppose now that the Lemma is false. Then there exists a zero interval / of the
form (3.1). It lies between two intervals /¡, /( or Jt, Ii + X. It will be enough to
consider the first case.

Denote by Qf the region bounded by yu y,, f=0 and t=a. If we can extend
Lemma 5 to the case of zero intervals of the form (3.1) lying in ü.¡, then we can derive
a contradiction to the fact that / (on Q( n {t=a}) is a zero interval using the same
arguments as at the end of §3.

Note that zero intervals of the form Jyu cannot intersect yt u y, and thus must
stay in the interior of D¡ (except for their initial point on /). Following the proof
of Lemma 5 we shall construct a weak solution w to a free boundary problem in
Q* n {í0<í<í0 + S}, for some 8<ct-í0, with boundary data égx(t) on x=bx,
0 on x=y + e and with a(w)Sa(u) on f=f0 such that w(x, f)>0 on the points
(y, t) with yx<y<y, a-p.(y)<t<a which lie sufficiently close to (y, t0). (Such
points exist if we choose (y, f0) to be a point of continuity of A.) Since by the
corollary to Theorem 4, u^w in Q* n{í0<í<í0 + S} and since u(y,t)=0 if
yx<y<y, a—p(y)^t^a, we will thus get a contradiction.

Since «>0 on y¡, there exist points on the interval {(x, f0); x<x<y), where
x=Vi n {t = t0}, on which m>0. We therefore can take w(x, t0) to be a continuously
differentiable function for bx^x¿y+e, satisfying w(x, f0)<0 if ¿!<x<x,
w(x, f0)=0 and ^0 if x<x<^, w(x,to)=0 if y<x<y+e, w(x, t0)^u(x, t0) if
bx<x<y+e. We take a(w(x, f0))=0 if w(x, f0)=0, x<x<y, and ^(x, f0))= — «
if y< x< y + e. We also take the boundary data on x = bx to be negative and smooth
and on x=y+e to be 0.

By the methods of [1], there exists a classical solution (w, sx, s2) in some interval
f0 < f < f0 + 8, where sx(t), s2(t) are the two free boundaries, and sx(t0) = x, s2(t)=y.
Using the maximum principle we find that w(x, f)>0 if f0<f<f0+8, i1(f)<x<52(f).
Hence w(x, f)>0 on the points (y, t) with yx<y<y, t0<t<t0 + 8 which are
sufficiently close to (y, t0). Since w is also a weak solution, the desired contra-
diction is obtained.

We have thus completed the proof of Lemma 7.
From Lemma 7 and the continuity of m it follows that there exist k— 1 continuous

curves x=s¡(f) for 0<f<(7i such that bx<sx(t)<s2(t)< ■ ■ ■ <sk-x(t)<b2;
u(x,t)>0 if S2i(0<^<'S2i+i(0 aQd u(x, 0<0 if s2j.x(t)<x<s2j(t). (Here
s0(t) = bx, sk(t)sb2.)

Naturally, we call these curves the free boundaries of the fc-phase problem.
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Theorem 7. There exist k—\ continuous functions st(t), for 0¿t<ax, such that
bx<sx(t)< ■ ■ ■ <sk-x(t)<b2 andsuch that u(x, f)>0 i/i,2i(f)<x<j2i + 1(f), O^f <ax
andu(x, t)<0 ifs2i^x(t)<x<s2i(t), 0¿t<a1 (heres0(t)=bx, sk(t)=b2). Furthermore,

Je-l fc-1 k-1   »5       (()

a  2  (-l)'-"*(0 = «  2   (-O'-^liO)-   2 Ui(X, t)dx
i = l i = l i = l   Jsi(i)

x-1 rs1+1(0) /-t  g
(5.3) +   > nj(x)dx+/32     —u2(b2,a)da

t=o J«i(0) Jo ox

-ßii0icUi(-bi'a)da-

We have already proved all the assertions of the theorem except for (5.3). The
proof of (5.3) is similar to the proof of Theorem 5 and is therefore omitted.

6. Degeneracy of phases of order 2. We denote by It(a) (0<a<T) that positive
phase on t = a which can be joined to the interval (d2i.x, d2i) on f = 0 by a monotone
curve along which u>0. Similarly we denote by //a) that negative phase on t=u
which can be joined to the interval (d2i, d2l + x) on f=0 by a monotone curve along
which m<0. These notations agree with notations introduced in §5 for 0£o<ox.

Set k(o) = n+(o) + n-(o). If k(ox-0)-k(ax + 0)=p then we say that there is a
degeneracy of (the nonzero) phases of order p at a = ax.

In this section we consider the case p g 2. There are a priori three possibilities :
(6.1) n_(a1-0)-n_(a1 + 0)=0;
(6.2) n_(a1-0)-n_(a1 + 0)=l;
(6.3) n_(o-1-0)-n_(a1+0) = 2.
We first consider the case (6.2) and later on show that the cases (6.1), (6.3) do

not occur.
We divide the case (6.2) into two subcases :
(6.4) n_(a1) = n_(a1-0)-l;
(6.5) n_(<71) = n_(t71-0).
We first consider the subcase (6.4). Then one of the intervals Ji(ax) does not occur.

If gz(t)<0 then this cannot be the last negative phase.
It is impossible that both 7,(a1) and 7i + 1(tr1) are not present, for then the de-

generacy is of order =3. Thus we may assume that 7i(o-a)#0 (the case 7( + 1(ct1)^0
can be treated in a similar manner). For simplicity of notation we shall take ¡'= 1.

We have to distinguish two cases :
(6.6) I2(ox)¥=0;
(6.7) 72(CTl)=0.
We first consider the case (6.6) and denote by I(ax) the interval oqí=u1 connect-

ing the end-point of Ix(ax) to the initial-point of I2(ax). It is clear that w=0 on I(ox).
We again consider two cases :
(6.8) I(ax) is an interval {(x, ax); Sj^x^S2} with S!<S2;
(6.9) I(ax) consists of one point, say (x, o-).
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Lemma 8. Let (6.4), (6.6) hold. If(6.S) holds, then a(u(x, ax))=0for almost all x,
8x^x^82.

The physical interpretation of the assertion of the lemma is that the interval
I(ax) is occupied with water at zero temperature.

Proof. For any point (y, ox) lying in the interior of I(ox), there cannot exist a
disc V with center (y, ax) such that u < 0 in V r\{t< ax}. In fact, the existence of
such a disc would contradict Lemma 1'.

It follows that for any (y, ax) in the interior of I(ax) there exists a sequence
{()>m< tm)} with ym -+ y, tm / ax such that u(ym, tm) ̂  0 for all m. Since the points
(x, f) with t<ax on which u(x, f)=0 are of the form x=st(t) (i^i=k—i) and
since the sign of u(x, t) alternates from one side of free boundary to the other, we
can take the points (ym, tm) such that u(ym, tm)>0. But then u(x, tm)=0 on at least
one of the intervals bx^x£ym, ym^x^s3(t). Applying Lemma 4 we conclude that
either a(u(x, ox))=0 for almost all x, 8x^x<y, or a(u(x, ax))=0 for almost all x,
y^x^82. Since this is true for any y e (8X, 82), the assertion of the lemma follows.

We shall now prove

Lemma 9. Let (6.4), (6.6), (6.8) hold. Then there exists an e>0 such that
n + (a) = n + (ox — 0)—l,n.(a)=n.(ax—0)—l if ax<a<ax + e. Furthermore, thereare
no zero intervals of the form (3.1 ) if ax < a < ax + e.

Proof, m is a weak solution for ax < t < T and a(u(x, ax))=0 on I(ax) (by Lemma
8). We claim that there exists a rectangle R defined by 8X — 8 < x < 82 + 8, ax < t < ax
+ e such that u>0 in R. This can be proved by comparison, employing the
corollary to Theorem 4. Indeed, we take smooth initial data k(x) on t=ox such that
k(x)¿0, a(k(x))^a(u(x, ax)) outside an interval 8x — 8'<x<82 + 8' and k(x)^0,
k(x)&0, a(k(x)) = axk(x) in this interval. The boundary data are taken to be smooth
negative functions, smaller than the corresponding boundary data of u.

By [1], there exists a classical solution (w,sx,s2) to the new problem for
<7j < f < ax + 8", where sx, s2 are the free boundaries, and sx(ax) = 8X — 8', s2(ax)
= 82 + 8'. By the maximum principle, w(x, f)>0 if sx(t)<x<s2(t). Since w is also
a weak solution, the corollary to Theorem 4 shows that u^w. Hence m>0 in the
rectangle R introduced above.

From the last statement and the continuity of u it is clear that Ix(a)=I2(o) if
ax <a<ax + e. Hence n+(a) = n+(ax) — l=n+(ax—0).

The assertion n.(a)=n-(ax— 0)— 1 now follows from Theorem 6 and the
continuity of u. Finally, if there is a zero interval on f = a, ax < a < ax+e, it must lie
to the right of I2(o) and the proof of Lemma 7 then applies. Thus we obtain a
contradiction.

If instead of (6.8) we assume that (6.9) holds, then sx(t ) -* x, s2(t) ->• x as f / ax.
Furthermore, by introducing a weak solution (as before) for comparison with u,
we get

Corollary. Let (6.4), (6.6), (6.9) hold. Then the assertions of Lemma 9 are valid.
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We next consider the case where (6.6) is replaced by (6.7). We introduce I(ax)
as before and treat the cases (6.8), (6.9) separately.

Lemma 10. Let (6.4), (6.7) hold. If (6.9) holds, then there exists a point (y, ox)
with 8x^y^82 such that

>, 1/Y. a(u(x, ax)) = 0 if 8X< x < y,
(6.10) if y < x < 82
for almost all x.

The physical interpretation of the assertion of the lemma is that the interval
{(x, cx); 8X ¿x<y} is occupied with water at zero temperature, whereas the interval
{(x, ax); y<x< 82} is occupied with ice at zero temperature.

Proof. Set
zx = lim sup sx(t),       z2 = liminf s3(f).

i/a\ t/ax

If zx = z2 then, by Lemma 4, it follows that the assertion is valid with y=zx. It
therefore suffices to show that the inequality zx < z2 is impossible. (Note that z2 < zx
is impossible since it is easily seen to imply, by Lemma 4, that a(u(x, ax)) equals
both 0 and — a for almost all x in (z2, zx).)

Suppose then that zx <z2 and take any y with zx <y<z2. By the argument given
at the beginning of the proof of Lemma 8 it follows that for any point y g (8x, 82)
there exists a sequence {(ymX, tmX)} with ymX -> y, tml / <jx such that u(ymX, tmX)>0
for all m. Similarly there exists a sequence {(yml, fm2)} with ym2 -* y, fm2 / ax
such that u(ym2, tm2) < 0 for all m.

If we apply Lemma 4 we find that

a(u(x, ax)) = 0 if zx < x < y,
= — a        if y < X < z2,

for almost all x. Since y is an arbitrary point in (zx, z2), this is impossible.

Lemma 11. Let (6.4), (6.7), (6.8) hold. Then there exists an e>0 such that n + (a)
= n+(ox— 0)— 1, n_(<r) = n_(a1—0)—1 if ox<o<o-x + e. Furthermore, there are no
zero intervals of the form (3.1) if ax< a <ax + e.

Proof. Since n+(ax) = n + (a1 — 0) — 1, n _ (aj) = n _ (ax — 0) — 1 and each two phases
of the same sign are separated, on t=ox, by a phase of the opposite sign, Theorem
6 and the continuity of u imply that n+(o-)=n+(o-1—0)—1, n_(o-)=n_(a1—0) —1
in some interval ax < a < ax + e.

The proof of Lemma 7 applies if there are no zero intervals 7 of the form (3.1),
ox <<7<<71+e, lying to the right of J2(a). Hence, that if there exists a zero interval 7
of the form (3.1), ox<o<ox + e, then it must lie between 7j(o-) and J2(o). (Note
that 72(a) does not exist if o>ax; in the situation of Lemma 9, 72(a)=71(a) if
ax < a < ax + e.) Denote the initial and end-points of 7 by (x0(<r), a) and (xx(o), a)
respectively.
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We claim that

(6.11) X0(a) /     if a/ Xx(a)\     if a / .

To prove (6.11) we first show that the projection of / on t=ax must be contained
in the interval I(ax). Suppose this is false, then by taking a subinterval of / v/e may
assume that its projection on t=ax does not intersect /(<ti).

We can now proceed to derive a contradiction by employing the arguments of
§3. We note that the maximal intervals Jyit do not reach the line t = ax and thus are
either of positive end or of negative end (or both). Lemma 5 can be extended with
some modifications in the proof, similar to those introduced in the proof of
Lemma 7. In the present case we introduce monotone curves yx, y2 whose inter-
section with f = a, ax^a<ax + E, lies in Ix(a) and J2(a) respectively. Further details
may be omitted.

Having derived a contradiction to the assumption that the projection of / does
not lie in I(ax), we next observe that the same proof shows also that the projection
of the zero interval / of the form (3.1) on the line t=a', for any ax < a' < a, must lie
in the zero interval 1(a) of u which is located on t = a between Ix(a) and J2(a).
Since a, a' are arbitrary, (6.11) follows.

There are now three cases to consider :
(6.12) y = 8x;
(6.13) y = 82;
(6.14) 8x<y<82.
Suppose (6.12) holds. We shall prove that for any 8>0 sufficiently small there

exists a rectangle R of the form 8X + S < jc < 82, ax < t < ax + 8' with 8' > 0 such that
«<0 in R. This and (6.11) would then show that x0(<T1)=x1(ff1), i.e. there are no
zero intervals for ax < a < ax + e.

To construct R as stated above, we employ the technique of comparison, via
the corollary to Theorem 4. We construct a solution w with initial data on t = ax
such that a(w)~^a(u) on t = ox and with boundary data larger than those of u.
We can choose all these data to be sufficiently smooth and such that w(x, ax) g 0,
w(x, ox)£0 for y+8"Sx^82 + 8" for some 8">0, and w(x, ox)>0 if x<y + 8" or
x>82 + 8". The function a(w) on t = ox is chosen so that a(w(x,ax))= —a if
w(x,ax)=0, y+8"¿x?¿82 + 8". There exists a classical solution (w, sx, s2) for
ax<t <ax + 8*, and its two free boundaries x=sx(t), x=s2(t) satisfy: sx(ax)=y+8",
s2(ox) = 82 + 8". Furthermore, by the maximum principle, w(x, f)<0 if sx(t)<x
<s2(t), ax<t<ax + 8*. Since by the corollary to Theorem 4, u^w, we conclude
that there exists a rectangle R as above with u < 0 in R.

The previous considerations obviously extend to the case where (6.12) is replaced
by (6.13). If (6.14) holds, then we first have to construct a rectangle R as in the case
of (6.12) (and the construction is, in fact, the same as for that case) and then to
construct a rectangle as in the case of (6.14).

The proof of Lemma 11 is thereby completed.
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If instead of (6.8) we assume that (6.9) holds, then sx(t) -*■ x, s2(t) -> x, s3(t) ->■ x,
and Theorem 7 can be applied with f=0 replaced by t=ax. Hence,

Lemma 11'. Let (6.4), (6.7), (6.9) hold. Then the assertions of Lemma 11 are valid.

We now consider the case where instead of (6.4) we assume that (6.5) holds.
Thus, the number of negative phases on t = ax is the same as on f=o- for a<ax.
We claim that there must exist two negative phases 7(, 7( + 1 on o-=<r1 such that w=0
on the closed interval 7 connecting the end-point of Jt to the initial-point of/, rl.
Indeed, if this not true then from Theorem 6 and the continuity of u we find that
n_(a1 + e)=«-(ori) if e is sufficiently small, which contradicts (6.2).

There are two cases to consider, namely, the case where 7 is an interval of positive
length and the case where 7 consists of one point. It is clear that in the first case we
have a situation similar to (6.4), (6.6), (6.8) with the roles of the negative and
positive phases interchanged. If 7 consists of one point then we have- a situation
similar to (6.4), (6.6), (6.9) with the roles of the negative and positive phases
interchanged.

Having analyzed completely the case (6.2), we now turn to the case (6.1). If

(6.15) n+(ox-0)-n+(ox+0)= 1,

then, by the previous results with the roles of the positive and negative phases
interchanged, we conclude that (6.2) holds; a contradiction. Thus (6.1) cannot
occur.

If (6.1) holds and

(6.16) n+(ox-0)-n+(<jx + 0) = 2,

then we again get a contradiction. In fact, we then must have n+(ax)=n+(ox - 0) - 2
(for otherwise the continuity of u implies that (6.16) cannot hold). If the two
positive phases which do not occur on t = ax are not adjacent, then, the previous
methods (of the case of (6.2)) show that (6.3) holds. If, on the other hand, they are
adjacent then the negative phase lying between them cannot occur. Thus, in both
cases (6.1) is contradicted.

We have thus proved that (6.1) cannot hold.
Finally, (6.3) also cannot hold. In fact, by arguing as in the case where (6.16)

holds we find that if (6.3) holds then n + (cr1-0)-n+(a1+0)^ 1. Thus the de-
generacy is of order p ^ 3, a contradiction.

We sum up the results of this section.

Theorem 8. If the degeneracy p = k(o1—0)-k(ox+0) is positive and S2, then
p=2. There exists an e>0 such that n_((j)=n(o-1 -0)-1, n+(cr)=n+(ax -0)- 1 and
such that there are no zero intervals of the form (3.1) whenever ox<a<ax + e. On
a=ax there may be at most one zero interval and (if it exists) it is the union of two
disjoint intervals (one of which may consist of just one point) such that a(u(x, ax))=0
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for almost all x in one interval and a(u(x, ax)) = — a for almost all x in the other
interval.

We can now apply Theorem 7 with t=0 replaced by t = a, for some a e (ax, ax + e).
Denoting by a2 the largest number such that k(a)=k(ox+0) for all ax<a<a2, we
conclude that

Corollary. 77iere exist k — 3 continuous functions Si(t),for ax^t<a2, such that
bx < sx(t) < ■ ■ ■ < sk _ 3(f ) < b2 and such that u(x, t ) > 0 if s2i(t ) <x<s2i + x, ax<t< a2
andu(x, f)<0 ifs2i.x(t)<x<s2i(t) (here s0(t)s¡bx, sk.2(t)=b2).

The analog of (5.3) also holds.
The s~i(t) are continuations of the i/f) with appropriate indexing.
If the degeneracy at a=a2 is again of order ^ 2, then Theorem 8 and its corollary

can obviously be extended with the role of ax given to a2. This procedure can be
further applied with o3, ct4, ..., until we have gone through all the finite number,
say q, of points of degeneracy (assuming that their degeneracy is always of order
^2). For aq-£=t<T, the free boundaries, say sx(t),..., sk_2q(t), are continuous
functions and the analog of Theorem 7 holds in the interval [aq, T).

7. Degeneracy of phases of any order. We shall study the case where p=k(ax—0)
-k(ox+0)~z3, and set

(7.1) p0 = «_(<71-0)-«_(a1+0).

Then p0 ̂  2 (since p0 ̂  1 implies, by §6, that p á 2).
There are two cases to be considered :
(7.2) po=n-(ax-0)-n-(ax);
(7.3) p0 > n _ (ax - 0) - n _ (ax).

We shall consider here only the case (7.2), leaving out the necessary modifications
in the case (7.3). Thus, there are p0 negative phases Jt(a) (a < ax) which disappear
at a=ax. We shall assume that their indices are consecutive since, otherwise, we
may consider separately what happens at each block of consecutively degenerating
phases. For the same reason we assume that each positive phase lying between two
degenerating negative phases also disappears at a=ox.

Thus, for some i, Jt(a), Ji + X(a),..., Jl+Po_x(a) and /)+i(ct), ..., Ii+Po.x(a) do
not occur at a=ax. We shall consider here only the case where Ii(ax)^ 0. The
considerations in the case where h(ax) = 0 are similar. For simplicity of notation
we take i=l. Thus the phases Jx(ox),..., JPo(ax) and /2(<r), I3(a),... ,IPo(o)
disappear at a=ax.

Note that a phase Iq(ax) with q>p0 +1 cannot disappear at a=ax for, otherwise,
by the considerations of §6 or those which follow below (with the roles of the
positive and negative phases interchanged) it would follow that either /, _ j^cr)=J„(a)
or at least one of the phases Jq _ x(a), Jq(a) do not occur for a>ax,a near ax, so that
(7.1) is contradicted.
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We distinguish two cases :
(7.4) 7Po + 1(a1)^0;
(7.5)7Po + 1(a1)=0.
We first consider the case (7.4) and denote by I(ax) the interval connecting the

end-point of 71(o-1) to the initial-point of 7Po + x(ax).
We again distinguish two cases :
(7.6) 7(0^) consists of an interval {(x, ax); 8x¿x^82} with 8X < 82;
(7.7) 7(ctj) consists of one point, say, (x, ax).

Lemma 12. Assume that (7.4), (7.6) hold. Then there exist 2q points (z(, ax) on
I(ax) with 8xSzx<z2< ■ ■ ■ <z2q^82, l^qSpo—1, such that

a(u(x, ax)) = 0       if 8X < x < zx, ifz2q < x < 82, orifz2i < x < z2i + 1
(7.8) for some i, 1 £ i ¿ q— 1,

= — a   i/z2i-i < x < z2i   for some i, l è i è q

for almost all x.

Proof. The free boundaries whose limit sets as f / ax lie on I(ax) are precisely
Si(t), s2(t), ...,s2Po(t). Set

zx = lim sup .s^f),       z2q = z'2P0 = liminf j2Po(i).
t/o\ t/ax

Then, by Lemma 4, a(w(x, o-1))=0 for almost all x in i8x, zx) and in (z2„ o2). Set

z'i = lim sup Siit)       Í2ÚJÚ 2p0 -1),

and suppose that z'2>zx. Note that for every sequence {iym, tm)} converging to
some point iy, ax) with zx<y<z2, tm<ox, if iym, fm)e/2(fm) then also, for any
e>0, e<y — zx, the interval {iy, tm); zx + e^y<ym} belongs to 72(fm) if m is suffi-
ciently large. Using Lemma 4 we conclude that a(«(x, ax)) = — a for almost all x
with zx <x<y. Since y is an arbitrary point in (zx, z'2), the last assertion holds also
if y — z'2. We then take z2=z'2 and proceed to the next interval. If z'2=zx then we
proceed to the next interval directly.

If z'3>z2 then we find, by the above reasoning, that a(w(x, cr1))=0 for almost
all x in the interval z'2<x<z3. We then set z3=z'3 (or z2=z'3 if z'2=zx) and proceed
to the next interval. If z'3 = z'2 then we proceed to the next interval directly.

It is clear that in this way we arrive at (7.8) with some qSp0- Thus it remains
to show that q¥=Po- If 1 =Po then

Si Ú ZX < Z2 < Z3 < ■ ■ ■ < Z2Po_! < z2Po ^  S2.

Let zx<y<z2. In view of Lemma 1' there must exist a sequence {iym, fm)} with
y m -*-p,tm/i o-j, such that u(ym, fm) >0 for all m. Hence (ym, tm) e 7,(fm) for some
i* ̂ 2. The length of 7¡(ím) must converge to 0 as m-* oo for, otherwise, using Lemma
4 we conclude that a(u(x, ax))=0 for almost all x in some interval containing y,
which is impossible.
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Next, Jt(tm) contains points (ym, tm) with ym -*■ y. Hence the end-points
(Pm.i, tm) of Ji(tm) satisfy: lim supym,iúz'2 (since otherwise we find, by Lemma 4,
that a(u(x, ax)) = — a for almost all x in some subinterval of (z2, z3)).

Next we find that the end-points (ym%i + x,tm) of /¡ + x(tm) satisfy lim sup ym<i + x ¿ z3 ;
the end-points (ym¡i + x, tm) of Ji + X(tm) satisfy lim supym,i + xèz'i, etc. Finally, the
end-points (ym,Po, tm) of JPo(tm) satisfy lim supymiPo^z2po_2i+2. Since, however,
lim supym¡Po = iim inf(/-ffl s2Po(t)=z'2Po and i^2, we get a contradiction.

In contrast with the case p ¿ 2, we now may possibly have zero intervals for
a > ax. The considerations of §6 show that if there is a zero interval 1(a) of the form
(3.1) with ax < a < ax + e (e sufficiently small so that no new degeneracy occurs) then
there is in fact a zero region Aff bounded by the curves

t = ax,       t = a,       x = x0(t),       x = xx(t)   (x0(f) < x^O)

where x0(f) is monotone increasing and xx(t) is monotone decreasing. Further-
more,

*1 â X0(o-X), xx(ax) á Ziq.

From Theorem 6 and the continuity of u we also infer that there cannot exist two
distinct zero intervals of the form (3.1) if ax < a < ax + e where e is sufficiently small.
Hence we actually have

(7.9) x0(ax) = zx,        xx(ax) = Z2q.

To analyze the behavior of u for a>ax, let us assume at first, that there are no
further degeneracies at any future time.

Lemma 13. If a set S defined by z2i_x<x< z2i, ax<t<a is contained in the zero
region Aa, then u(x, t)=0, a(u(x, t))= —a in S (for each t, almost everywhere in x).
Similarly, if a set S' defined by z2i<x<z2i + x, ax<t<a is contained in A„, then
u(x, f) = 0, a(u(x, t)) = 0 in S' (for each t, almost everywhere in x).

Proof. We only need to prove the assertions concerning a(u). Now, from (1.9)
it follows that the weak f-derivative of a(u(x, t)) in S or in S' is zero. Since also
t -*■ a(u(x, t)) is a weakly continuous function into L2(G), it follows that a(u(x, t))
is independent of t. Now use (7.8).

Lemma 14. The function x = x0(a) is strictly monotone decreasing. If it meets the
line x=z2 at a=af then it is continuous in the interval ax<a<af, and, if q> 1, it
has a discontinuity of the first kind at o=a\*, with jump z3 — z2 (provided x0(a) is
defined in some interval containing af).

If the curve further meets the line x=z4 at a=a*, then it is continuous for
af<a<o^ and has a jump z^-z^ at a=a2, provided q>2. Similar results hold
for Xx(a).

Proof. If x0(a) is not strictly monotone, then x0(a') = x0(a") for some ax < a' < a".
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But then x0(ct)=x0(ct') for a'¿a^o". Denote by T the interval {(x, a); x = x0(a),
a<a< a"}, and by N the intersection of a neighborhood of F with {(x, f ) ; x < x0io'),
a'<t<o-"}. Then axut = uxx in Nand w=0 on I\ By known theorems [2] ux is con-
tinuous up to the boundary T. From the weak form of (1.5) and from the fact that
w=0 to the right of T we also conclude that ux=0 on T. Since, however, u attains
its minimum oniVuTonT, we have [2] ux<0 on T, a contradiction.

We next prove that x0(a) is continuous if ax<a<af. Suppose the assertion is
false. Then there occurs a jump at some point a, ax<5<a*. Let (x, 5) be a point
with x0(d—0)<x<x0(ct+0) and let V be a disc about (x, a) with radius
< [x0(ä+0)-Xo(ö-0)]/2. Take in (1.9) a C00 function <j> with support in V. Setting
Ve= V-{(x, t)eV;\t-ö\ >e}, we have

lim I   [u(j>xx + a(u)4>t] dx dt = 0,

provided V does not intersect the boundary of £2T. If we now integrate by parts
and then use the definition of a(u) for w>0, Lemma 13, and the continuity of u,
we obtain

/•»„(a + O)
a</>(x, d) dx = 0,

Jjto(tf-O)
which is impossible.

Suppose next that x0(o* — 0)=z2. The fact that x0(<x) has a jump at a=o* then
follows by comparison (via the corollary to Theorem 4), employing some of the
arguments appearing in the proof of Lemma 11.

So far, we have considered the case (7.6). If (7.7) holds then the situation is much
simpler. In particular, no zero regions will develop.

Consider finally the case where instead of (7.4) we assume that (7.5) holds.
Instead of the assertion (7.8) of Lemma 12, we now have

a(u(x, 0) = 0       if S1<x<z1 or if z2i<x<z2i + x for some i, l£Hiq— 1,
= -a   if z25_!<x<S2 orifz2(_i<x<z2(forsomei, lúiúq— 1;

here q^p. Lemmas 13, 14 remain valid.
We sum up most of the results obtained in this section :

Theorem 9. Assume that there is only one degeneracy, that it occurs on o=ax in
one block of phases, and that its order is ^ 3. Then

n_(aj-0) = n.(a)+p0,       n+(o-j-0) = n+(a)+p0(a)   for ox < o < T,

where either p0(a)=p0 or there exists a 5, ox<5<t, such that p0(a)=p0—\ if
ox<a<ö andp0(a)—p0 if a> 5. Ona=ax, there is at most one zero interval I. It can
be broken into at most Po+Pofai+O) intervals such that in adjacent intervals
a(u(x, ax)) alternates its values from 0 to —a (its signature on the first and last
intervals is the same as its signature on the intervals preceding and following I
respectively).
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If there is a zero region above I, then its lateral boundary is given by x = x0(a),
x=xx(a). These functions satisfy the properties stated in Lemma 14. Finally, in the
zero region, for each t, a(u(x, t)) = a(u(x, ax)) almost everywhere in x.

If there is another degeneracy in a different block of phases, at any time a^ax,
then there may develop another zero region A'. In view of the monotonicity
property of the lateral boundary of the zero regions, the two zero regions cannot
intersect.

It is possible however that at some time a=a2 there will occur a degeneracy that
will involve the zero region of Theorem 9 with some other phases. Then the analysis
of the situation is very similar to that considered before, except that now one of the
two intervals bounding the new zero interval (on o=a2) is itself a zero interval.

We shall not bother to state here in detail the most general situation that may
occur. We only mention, in conclusion, two facts :

(i) Denote by ru r2,..., rm the points of degeneracy of the total number of
phases (i.e. positive, negative, zero with a(u)=0, and zero with a(u)= -a); then
m-k — 2. In each interval tí<í<tj + 1 (t0=0, rm+x = T) there exist continuous
functions x = \i(t)(j= 1, • • ,j(i);j(i) \ if i/) with Xx(t) = bx, \m(t) = b2, \x(t)<
A2(0< • • • < Ay(t)(0, such that the following holds:

In each region defined by Ay(f ) < x < A,+x(t ), t{<í<tí + x exactly one of the follow-
ing situations is valid : (a) u(x, t)>0;(ß) u(x, t) < 0; (y) u(x, f )=0 and a(u(x, t)) = 0,
and (8) u(x, f) = 0 and a(u(x, t))= —a.

(ii) Each set G={f=Tj} consists of a finite number of intervals If, (y= !>•••>
j*(i);j*(i)\ if i/0 sucn tnat on eacn n, precisely one of the cases (a), (ß), (y),
(8) of (i) is valid.

8. Miscellaneous remarks.
8.1. We explain the gap which occurs in the proof of existence of classical

solutions for the two-phase Stefan problem, as given by Rubinstein [4]. He proves
that if f0 < tx < • • • < tn < • • •, f« -+1* and if a classical solution exists for f < f* and
(-1)" ds(t)/dt^0 in (tk, tk + x), and if, finally, \du{(x, f)/3x| ájS (/= 1, 2) for x e G,
t = t0 (where jß is sufficiently large, say, jSäj30, and ß0 depends only on the data),
then \8uf(x, t)/8x\Sß for x e G, t0èt<t*.

This result, however, does not yet prove that a solution, if existing for all f < a,
can be continued beyond t = a.

To show this, we introduce a function/(f) (0^ f^ 1) defined as follows: at each
point Ta of the Cantor set S its value is zero, and in each open interval (ra, t$)
lying outside S, whose end-points ra, re belong to S, it is defined by

f(t)  =  f-T8 if Ta   <   t   <   Ta + (r0-Ttt)/3,
=   t-Tß if Ta + 2(Tg-Ta)/3   <   t   <   Tg,

and in the interval Ta + (Tß-Ta)/3et^ra + 2(Tß-ra)/3 f(t) is the linear function
with values (re — ra)/3 and — (re — ra)¡3 at the initial- and end-points respectively.
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Since |/(f)| ^dist (t, S), it is easily seen that/(f) is a continuous function for
0 á t ̂  1. Note that if t„ e S then/(f) has an infinite number of oscillations in every
interval (ra, ra + e) and (ra — e, Ta).

Going back to Rubinstein's work, all one knows about the smoothness of ds/dt
is that this function is continuous. If, then, this function coincides, for a— 1 < f < a-,
with the function f(t +1 - a), then the procedure of Rubinstein fails to yield a
continuation of the solution across t = a. In fact whenever f0 is a point of the form
t0 +1 - a (and there are such points arbitrarily close to a) then there does not exist
a sequence {f„} as above. The situation cannot be remedied by replacing t0 by f0+e
and then trying to take e -> 0. In fact, if t0 + e is not in S, Rubinstein's method
yields extension of the bound on ux(x, t) from f = f0 + e up to t = t0 + e + 8(e) and
8(e) -> 0 as e -+ 0.

It is thus clear that the gap in [4] is of a fundamental nature. It is therefore not
known whether classical solutions do in fact exist. This restricts the meaningfulness
of the asymptotic results in [4], since the solutions considered there are classical
ones.

8.2. Generalizations. All the results of this paper extend to the case where the
equations in (1.1) are replaced by the more general equations

(8.1) ^ = ßta(x, t) ^+ßtb(x, t) g+c'(x, t)u       (i = l, 2)

where c'(x, f)^0 and a, b, cl satisfy some smoothness properties. Indeed, as
mentioned in [3], Theorems 1, 2 certainly extend to these equations. A review of
the previous sections now shows that all the results extend to the case of (1.1) with
trivial modifications.

Note that the methods of [4] do not apply to equations as general as (8.1).
The results of the §§2-4 extend without (essentially) any change in the proofs

to the case where s(0)=bx or s(Q) = b2. The same is true for the remaining sections
(with sx(0) = bx or sk(0) = b2).

If, on f=0, one of the functions n¡(x) is identically zero, then all the results of the
previous sections remain valid. In fact, the situation is similar (though much
simpler) to the situation for a>ax, a near ax (where t=ax is the first line of
degeneracy).

If the boundary conditions (1.2) are replaced by

(8.2) Xi(dUi(bi, t)ldx)+PiUi(bi, t) = gi(t)       (X, fc 0,* £ 0, Xf+pf > 0),

then under suitable conditions (on the g¡ or on the magnitude of T) Theorems 1, 2
remain true. Also the results of this paper are then valid (with minor modifications
in the proofs).

8.3. Remark. One can use Theorem 2 and the corollary to Theorem 4 in order
to obtain information on the free boundaries. For instance, if gi(f)ayi>0,
g2(t) ̂  y2 > 0 for all t > 0, then we can compare this problem with another problem
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for which gx(t)=yx, g2(t) = y2 for all f > 1 (thereby using the corollary to Theorem
4). For the new problem we may apply Theorem 2 and conclude, in particular,
that the solution is ^£0>0 if f is sufficiently large, say, t^T0. Hence, all the free
boundaries disappear before f = 7'0.

If, on the other hand, g2(t)ey2<0 and the conditions of Theorem 2 on g(i)
hold, then the assertion (1.14) is true for whichever free boundaries x=j¡(í) that
exist for all f sufficiently large.

Added in proof. (I) Recently there appeared a paper by J. Douglas, J. R.
Cannon and C. D. Hill, A multi-boundary Stefan problem and the disappearance
of phases, J. Math. Mech. 17 (1967), 21-34. In this paper the authors prove the
existence of a classical solution for the 3-phase Stefan problem with initial values
0<hx(x)^Kx, -K2¿h3(x)£Q, 0¿h3(x)¿Kx in intervals (-oo, d2), (d2,d3) and
(d3, oo) respectively, satisfying

(*) Kx + K2 < a      (a as in (1.5)).

Their method extends to any number of phases as well as to the case where the
infinite interval (—00,00) is replaced by a finite interval (bx, b2). The crucial step
in their proof is the derivation of an a priori bound on the functions du¡/dx at the
free boundaries (or, equivalently, on the functions ds¡¡dt). This bound is derived by
use of the maximum principle. It is in the derivation of this bound that the assump-
tion (*) enters. It may be noted that, once this a priori bound is derived, the
existence and uniqueness of a classical solution can be established also by the
method of Friedman [1].

(II) Since this manuscript went to the printer we have noticed several papers in
the Chinese literature dealing with the 2-phase Stefan problem. These are:

(a) Chiang Li-Shang, The two-phase Stefan problem. II, Chinese Math.—Acta
5 (1964), 36-53 [Acta Math. Sínica 14 (1964), 33-49],

(ß)-, Existence and differentiability of the solution of a two-phase Stefan
problem for quasilinear parabolic equations, Chinese Math.—Acta 7 (1965),
481-496 [Acta Math. Sinica 15 (1965), 749-764], and several other articles quoted
in the above papers, These papers claim to have proven existence of a classical
solution for any finite f-interval. However they are based on a false derivation of
a priori bounds on dux\dx, du2\dx and, thus, the "proofs" they provide are invalid.
We shall briefly explain the nature of the crucial mistake, as it occurs, say, in the
article (a).

The author indicates (in (a), p. 45) that if dux\dx, considered in 0^x^s(0>
O^f^r, takes its minimum at a point (s(t*), f*) on the free boundary, then
ds(t*)/dt>0. Similarly, if du2\dx takes its minimum at a point (s(i), t) on the free
boundary, then ds(i)¡dt < 0. Next he concludes that each of the functions dujdx
(i = l, 2) cannot take its minimum at some point of the free boundary, by tacitly
assuming that t* = t. This assumption, however, is not only unfounded but should
also be generally false.
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