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ONE-DIMENSIONAL SYMMETRY OF BOUNDED ENTIRE
SOLUTIONS OF SOME ELLIPTIC EQUATIONS

H. BERESTYCKI, F. HAMEL,and R. MONNEAU

1. Introduction. This article is devoted to the classification of the functionsu

that are solutions of the semilinear elliptic equation

�u+f (u)= 0 inRn (1.1)

and that satisfy|u| ≤ 1 together with the asymptotic conditions
u(x′,xn)

xn→±∞
�� ±1 uniformly in x′ = (x1, . . . ,xn−1). (1.2)

The given functionf = f (u) is Lipschitz-continuous in[−1,1]. Clearly, for (1.1),
(1.2) to have a solution,f has to be such thatf (±1)= 0. Here we assume furthermore
that there existsδ > 0 such that

f is nonincreasing on[−1,−1+δ] and on[1−δ,1]; f (±1)= 0. (1.3)

We prove that any solutionu of the multidimensional equation (1.1) with the
limiting conditions (1.2) has one-dimensional symmetry.

Theorem 1. Letu be a solution of (1.1), (1.2) such that|u| ≤ 1. Thenu(x′,xn)=
u0(xn), whereu0 is a solution of{

u′′0+f (u0)= 0 in R,

u0(±∞)=±1, (1.4)

andu is increasing with respect toxn. In particular, the existence of a solutionu of
(1.1), (1.2) such that|u| ≤ 1 implies the existence of a solutionu0 of (1.4). Lastly,
this solutionu is unique up to translations of the origin.

For the 1-dimensional problem, we refer to [5], [11], [19], or [23]. For the low
dimensions casen = 2,3 (assuming also thatf is C1), the same result had been
obtained by Ghoussoub and Gui [21]. Their method relies on spectral properties of
some Schrödinger operators and is different from the one we use in this paper in any
dimensionn. We have recently learned that a result similar to Theorem 1 has been
proved independently by Barlow, Bass, and Gui [7], using a very different method
relying on probabilistic arguments.
Let us point out that Theorem 1 is related to a more difficult question, known as a

conjecture of De Giorgi.
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Conjecture (De Giorgi [17]). If u is a solution of�u+ u− u3 = 0 such that
|u| ≤ 1 in Rn, limxn→±∞u(x′,xn) = ±1 for all x′ ∈ Rn−1, and ∂u/∂xn > 0, then
there exists a vectora ∈ Rn−1 and a functionu1 : R→ R such thatu(x′,xn) =
u1(a ·x′ +xn) in Rn.

In the particular case wheref = u−u3, we see that this conjecture is stronger than
Theorem 1 in the sense that for the conjecture of De Giorgi, the limits asxn→±∞
are only simple inx′, whereas they are uniform inx′ for Theorem 1.
In fact, for a general nonlinearityf , the conjecture of De Giorgi has been proved in

dimensionn = 2 by Ghoussoub and Gui [21] (see also a presentation of Berestycki,
Caffarelli, and Nirenberg [10]), and, very recently, it has been proved in dimension
n= 3 by Ambrosio and Cabré [3]. See also earlier works by Modica and Mortola [24]
for dimension 2 and by Caffarelli, Garofalo, and Segala [15] for general inequalities
related to this problem.
Recently, some new results in higher dimensions have been obtained by Farina

[18] and Barlow, Bass, and Gui [7]. Farina proves one-dimensional symmetry for the
solutions of (1.1) provided that they minimize a certain energy in a cylinderω×R
included inRn. Barlow, Bass, and Gui, with probabilistic arguments, derive this
symmetry result from a Liouville-type theorem, assuming monotonicity in a cone
of directions. We also refer to the papers of Berestycki, Caffarelli, and Nirenberg
[10] and Barlow [6] about the connection between spectral properties of Schrödinger
operators and the conjecture of De Giorgi.
However, the conjecture of De Giorgi, in its general form, remains open in dimen-

sions greater than 3.
Let us now turn to more general semilinear elliptic equations of the type

Lu+g(xn,u)= 0 inRn, (1.5)

where

Lu= aij (x)∂ij u+bj (x)∂ju

(here we use standard summation conventions). This operator is not necessarily self-
adjoint. We assume that the coefficientsaij (x), bj (x) are continuous functions and
that

∃c′0 ≥ c0> 0, ∀x ∈Rn, ∀ξ ∈Rn, c0|ξ |2 ≤ aij (x)ξiξj ≤ c′0|ξ |2. (1.6)

Here it is natural to ask whether the one-dimensional symmetry still holds for
the solutions of (1.5), (1.2) with a general elliptic operatorL instead of the Laplace
operator. Nothing has been known so far about this problem, even in low dimensions.
The following two theorems show that the qualitative results actually depend on the
structure of the coefficientsaij andbj .
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In the following results,g(xn,u) is required to be defined and continuous onR×
[−1,1] and to satisfy the conditions

g is nondecreasing inxn, (1.7)

∀xn ∈R, g(xn,±1)= 0, (1.8)

∃δ > 0 such that(xn,s) �−→ g(xn,s) is nonincreasing ins

onR×[−1,−1+δ]∪R×[1−δ,1], (1.9)

∃C0> 0, ∀xn ∈R, ∀s, s̃ ∈ [−1,1], ∣∣g(xn, s̃)−g(xn,s)
∣∣≤ C0|s̃−s|. (1.10)

We first consider the case where the coefficientsaij andbj are constant; we prove
the same symmetry result as in Theorem 1.

Theorem 2. Assume thatL andg satisfy (1.6) and (1.7)–(1.10), and assume that
the coefficientsaij ,bj , i,j = 1, . . . ,n are constant. Letu be a solution of (1.5), (1.2),
such that|u| ≤ 1. Thenu(x′,xn)= u0(xn), whereu0 is a solution of{

annu
′′
0+bnu

′
0+g(xn,u0)= 0 in R,

u0(±∞)=±1, (1.11)

and u is increasing with respect toxn. In particular, the existence of a solutionu
of (1.5), (1.2), such that|u| ≤ 1 implies the existence of a solutionu0 of (1.11).
Furthermore, this solutionu is unique up to translations of the origin, and ifg is
increasing inxn, thenu is unique.

For general operators with nonconstant coefficients, however, this symmetry prop-
erty does not hold. For example, it is natural to ask if a solution of the equation

�u+b(x1)∂x1u−c∂x2u+f (u)= 0 inR2 (1.12)

together with the uniform limiting conditions (1.2) actually satisfiesu = u(x2) (and
therefore the termb(x1)∂x1u drops). This is not the case, as the following counter-
example in dimension 2 shows.

Theorem 3. There exist some real numbersc, some functionsf (s) fulfilling the
assumptions of Theorem 1, and some continuous functionsb(x1) such that the two-
dimensional equation (1.12), together with the uniform limiting conditions (1.2),
admits both a planar solutionu0 and infinitely many nonplanar solutions (i.e., solu-
tions whose level sets are not parallel lines).

Remark 1.1. It is natural to ask whether the one-dimensional symmetry holds or
not if the coefficients of the operator only depend onxn. Recently, Alessio, Jeanjean,
and Montecchiari [2] actually proved the existence of solutions that satisfy (1.2) and
that do not depend onxn only, for some equations of the type

a(xn)�u+f (u)= 0 inRn.
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Lastly, whereas Theorems 1 and 2 state symmetry properties for the solutions of
some elliptic equations inRn, the following theorem, which can be proved in the
same way as Theorems 1 and 2 (see Section 4), deals with the case of the half-space
Rn+ = {xn > 0}.
Theorem 4. LetL satisfy (1.6), and let the coefficientsaij ,bj , i,j = 1, . . . ,n be

constant. Assume that the function(xn,s) �→ g(xn,s) is defined and continuous on
[0,∞)×[0,1] and satisfies

g is nondecreasing inxn, (1.13)

∀xn ≥ 0, g(xn,1)= 0,
∃δ > 0 such that(xn,s) �−→ g(xn,s) is nonincreasing ins

on [0,+∞)×[1−δ,1],
∃C0> 0, ∀xn ∈ [0,+∞), ∀s̃, s ∈ [0,1], |g(xn, s̃)−g(xn,s)| ≤ C0|s̃−s|,

g(0,0)≥ 0. (1.14)

Letu ∈ C(Rn+) be a solution of

Lu+g(xn,u)= 0 in Rn+ (1.15)

satisfying0≤ u≤ 1 together with the following boundary and limiting conditions:

u= 0 on {xn = 0},
lim

xn→+∞
u(x′,xn)= 1 uniformly inx′ = (x1, . . . ,xn−1) ∈Rn−1. (1.16)

Thenu(x′,xn)= u0(xn), whereu0 is a solution of{
annu

′′
0+bnu

′
0+g(xn,u0)= 0 in (0,+∞),

u0(0)= 0, u0(+∞)= 1, (1.17)

andu is increasing inxn. In particular, the existence of a solutionu of (1.15), (1.16),
such that0 ≤ u ≤ 1, implies the existence of a solutionu0 of (1.17). Lastly, this
solutionu is unique.

The following theorem extends to more general operators and equations a result
of Clément and Sweers [16], who also considered the case of uniform limits as
xn→ +∞.
Theorem (Clément and Sweers [16]). Let f ∈ C1,γ for someγ ∈ (0,1) satisfy

∃ρ1< 1 such thatf (ρ1)= f (1)= 0 and f > 0 in (ρ1,1),

∀ρ ∈ [0,1),
∫ 1

ρ

f (s)ds > 0,

∃δ > 0 such thatf ′ ≤ 0 in (1−δ,1).
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Letu ∈ C2(Rn+)∩C(Rn+) be a solution of
�u+f (u)= 0 in Rn+

that satisfies0≤ u < 1 in Rn+ together with (1.16). Thenu(x′,xn) = u0(xn), where
u0 is a solution of {

u′′0+f (u0)= 0 in (0,+∞),

u0(0)= 0, u0(+∞)= 1,
andu is monotonic inxn.

The method to prove this theorem is different from the one we use in this paper. It
relies on comparisons with suitable one-dimensional sub- and supersolutions and on
shooting-type arguments.
Other problems in half-spaces have been considered by Angenent [4] and

Berestycki, Caffarelli, and Nirenberg [8], [10], where no assumption is imposed on
the limiting behaviour ofu asxn→+∞. These symmetry results can also be thought
of as extensions of the Gidas, Ni, and Nirenberg [20] symmetry result for spheres.
The main device to prove Theorems 1 and 2 (and also Theorem 4) is the slid-

ing method, which was developed by Berestycki and Nirenberg [12] and has been
used in various works of Berestycki, Caffarelli, and Nirenberg [8], [9], and [10]. For
another semilinear elliptic equation of the type (1.5) inRn with conical limiting con-
ditions, Bonnet, Hamel, and Monneau have also applied this method to state some
monotonicity and uniqueness results (see [14], [22]).

2. Proof of Theorem 1. The proof uses a sliding method and a version of the
maximum principle in unbounded domains. Let us start by stating the following
comparison result, which directly follows from [9, Lemma 1] (based on the maximum
principle).

Lemma 2.1 [9]. Letf be a Lipschitz-continuous function, nonincreasing on[−1,
−1+δ] and on[1−δ,1] for someδ > 0. Assume thatu1, u2 are solutions of

�ui+f (ui)= 0 in �

and are such that|ui | ≤ 1 (i = 1,2). Furthermore, assume that
u2 ≥ u1 on ∂�

and that either

u2 ≥ 1−δ in �

or

u1 ≤−1+δ in �.

If � ⊂ Rn is an open connected set such thatRn\� contains an infinite open con-
nected cone, thenu2 ≥ u1 in �.
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Here this result is applied for domains that are half-spaces.
Let us now consider a solutionu of (1.1), (1.2) such that|u| ≤ 1, and letf satisfy

(1.3). We are first going to prove thatu is increasing in any directionν = (ν1, . . . ,νn)

such thatνn > 0. In order to do so, for anyt ∈ R, we define the functionut by
ut (x)= u(x+ tν).
From (1.2), there exists a reala > 0 such thatu(x′,xn) ≥ 1− δ for all x′ ∈ Rn−1

andxn ≥ a andu(x′,xn)≤−1+δ for all x′ ∈Rn−1 andxn ≤−a. For anyt ≥ 2a/νn,
the functionsu andut are such that


ut (x′,xn)≥ 1−δ for all x′ ∈Rn−1 and for allxn ≥−a,

u(x′,xn)≤−1+δ for all x′ ∈Rn−1 and for allxn ≤−a,

ut (x′,−a)≥ u(x′,−a) for all x′ ∈Rn−1.
(2.1)

Consequently,u andut fulfill the assumptions of Lemma 2.1 in both� = Rn−1×
(−∞,−a) and�=Rn−1×(−a,+∞). Therefore, it follows thatut ≥ u in Rn.
Let us now decreaset . We claim thatut ≥ u for all t > 0. Indeed, defineτ =

inf {t > 0, ut ≥ u in Rn}. By continuity, we see thatuτ ≥ u in Rn. Let us now argue
by contradiction and suppose thatτ > 0. Two cases may occur.

Case 1. Suppose that

inf
Rn−1×[−a,a]

(uτ −u) > 0. (2.2)

From standard elliptic estimates,u is globally Lipschitz-continuous. Hence, there
exists a realη0 small enough, which can be chosen smaller thanτ , such that for all
τ ≥ t > τ−η0, we have

ut (x′,xn)−u(x′,xn) > 0 for all x′ ∈Rn−1 and xn ∈ [−a,a]. (2.3)

Sinceu≥ 1−δ in Rn−1×[a,+∞), it follows that

ut (x′,xn)≥ 1−δ for all x′ ∈Rn−1, xn ≥ a and for allt > 0.

We may now apply Lemma 2.1 in the two half-spaces�+ = {xn > a} and�− =
{xn < −a}. We then infer that, for allη ∈ [0,η0], uτ−η(x′,xn) ≥ u(x′,xn) for all
x′ ∈Rn−1 and for allxn ∈ (−∞,−a)∪(a,+∞) and so for allxn ∈R owing to (2.3).
This is in contradiction with the minimality ofτ . Hence (2.2) is ruled out.

Case 2. Suppose that

inf
Rn−1×[−a,a]

(uτ −u)= 0. (2.4)

Then there exists a sequence(xk)k∈N ∈Rn−1×[−a,a] such thatuτ (xk)−u(xk)→ 0
ask →∞. Setuk(x) = u(xk + x). By standard elliptic estimates and the Sobolev
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injections, up to extraction of a subsequence, the functionsuk approach locally a
solutionu∞ of (1.1) ask →∞. We haveuτ∞(0) = u∞(0) anduτ∞ ≥ u∞ because
uτ
k ≥ uk for anyk ∈N. The functionz= uτ∞−u∞ satisfies


�z+c(x)z= 0 inRn,

z ≥ 0 inRn,

z(0)= 0
(2.5)

for some bounded functionc(x) defined by

c(x)= f
(
uτ∞(x)

)−f
(
u∞(x)

)
uτ∞(x)−u∞(x)

if uτ∞(x) �= u∞(x) and, say,c(x) = 0 if uτ∞(x) = u∞(x). The strong maximum
principle yields thatz ≡ 0. This means thatu∞(x) ≡ u∞(x+ τν). Letting ξ = τν,
we see thatu∞ is periodic with respect to the vectorξ . Recalling that−a ≤ xk

n ≤ a, we
see that the functionu∞ also satisfies the uniform limiting conditions (1.2). Hence,
sinceξn > 0, the functionu∞ cannot beξ -periodic. So Case 2 with (2.4) is also
ruled out.
Therefore, we have proved thatτ = 0. The functionu is then increasing in any

directionν = (ν1, . . . ,νn) such thatνn > 0. From the continuity of∇u, we deduce
that∂νu ≥ 0 for anyν such thatνn = 0. If νn = 0, by takingν and−ν, we find that
∂νu= 0. Since this is true for allν with νn = 0, this implies thatu(x)= u(xn).
Since the solutions of (1.4) are unique up to translations, it then follows that the

solutionsu of (1.1), (1.2) such that|u| ≤ 1 are unique up to translations of the origin.
The proof of Theorem 1 is complete.

3. More general elliptic operators. In this section, we consider solutionsu with
|u| ≤ 1 of more general equations

Lu+g(xn,u)= 0,
whereL is a general linear elliptic second-order operator with no zero-order term:

Lu= aij ∂ij u+bj ∂ju.

We treat separately the case of constant coefficients where symmetry holds (see
Theorem 2) and the case of nonconstant coefficients where the symmetry may be
lost (see Theorem 3).

3.1. Constant coefficients

Proof of Theorem 2.Assume thatL and g satisfy (1.6) and (1.7)–(1.10) and
assume that the coefficientsaij ,bj , i,j = 1, . . . ,n, are constant. Let us consider a
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solution u of (1.5), (1.2) such that|u| ≤ 1. As in Theorem 1, we prove that the
functionu depends onxn only.
The scheme of the proof is similar to that of Theorem 1, apart from the fact that

instead of the maximum principle stated in Lemma 2.1 for the Laplace operator, we
use an extended version of the maximum principle for general second-order elliptic
operators in infinite slab-type domains.
We prove thatu is increasing in any directionν = (ν1, . . . ,νn) such thatνn > 0.

For anyt ∈R, let ut be the functionut (x)= u(x+ tν).
We first observe that for allt ≥ 0, the functionut is a supersolution for (1.5).

Indeed, for allt ≥ 0 and for allx ∈Rn, we have

Lut+g
(
xn,u

t
)= Lu(x+ tν)+g

(
xn,u(x+ tν)

)
≤ Lu(x+ tν)+g

(
xn+ tνn,u(x+ tν)

)
by (1.7)

≤ 0.
(3.1)

Next, as in Section 2, there exists a reala such that for anyt ≥ 2a/νn,

ut (x′,xn)≥ 1−δ for all x′ ∈Rn−1andxn ≥−a,

u(x′,xn)≤−1+δ for all x′ ∈Rn−1andxn ≤−a,

ut (x′,−a)≥ u(x′,−a) for all x′ ∈Rn−1.
(3.2)

We now want to say thatut ≥ u in Rn. To this end, we use the following version of
the maximum principle in infinite slab-type domains for general second-order elliptic
operators.

Lemma 3.1. Letw be a function satisfying

�w ≤ 0 in �=Rn−1×(b,c),

whereb,c ∈R and where

�u= αij (x)∂iju+βj (x)∂ju+γ (x)u.

Assume that the coefficientsαij (x), βj (x) are uniformly continuous in� and that the
αij satisfy (1.6). Furthermore, assume that

−C ≤ γ (x)≤ 0 for all x ∈�

for some positive real numberC. The functionw is required to be continuous in�
and to satisfy

�w ∈ L∞(�)

and

m≤ w ≤M in �

for somem,M ∈R.
If w ≥ 0 on ∂�, thenw ≥ 0 in �.
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Postponing the proof of the above lemma, let us conclude the proof of Theorem 2.
Let us first prove thatut ≥ u inRn−1×(−a,+∞) for all t ≥ 2a/νn. Setz= ut−u.

Owing to (3.2), we already know thatz ≥ 0 onRn−1×{−a}. We now show thatz ≥ 0
in Rn−1×(−a,+∞).
Due to (3.1) and (1.10), the functionz satisfies

Lz+c(x)z ≤ 0 inRn−1×(−a,+∞)

for some bounded functionc(x) defined by

c(x)= g
(
xn,u

t (x)
)−g

(
xn,u(x)

)
ut (x)−u(x)

if ut (x) �= u(x) and, say,c(x)= 0 if ut (x)= u(x).
Set γ (x) = min(c(x),0). If x ∈ Rn−1× (−a,+∞) is such thatz(x) ≤ 0, then

1−δ ≤ ut (x)≤ u(x), whence, owing to (1.9), we havec(x)≤ 0 andγ (x)= c(x). If
z(x)≥ 0, then

Lz+γ (x)z ≤ Lz+c(x)z ≤ 0.
Therefore, it follows that

Lz+γ (x)z ≤ 0 inRn−1×(−a,+∞), (3.3)

where the functionγ (x) is bounded and nonnegative inRn−1×(−a,+∞).
We now apply Lemma 3.1 in slabs of the type

�h =Rn−1×(−a,h)

with h >−a.
Due to (1.2), there exists a functionε(h) ≥ 0 such thatz(x′,h) ≥ −ε(h) for all

x′ ∈Rn−1 andε(h)→ 0 ash→+∞. Choose anyh >−a and set

w = z+ε(h).

The functionw is bounded and, from standard elliptic estimates, it is continuous in
�. Setting�= L+γ (x), we have

�w = Lz+γ (x)z+γ (x)ε(h) in �h

≤ γ (x)ε(h) by (3.3)

≤ 0
sinceγ ≤ 0 andε(h)≥ 0. Furthermore, by the definition ofw,

�w =−g
(
xn+ tνn,u(x+ tν)

)+g
(
xn,u(x)

)+γ (x)w ∈ L∞(�h)

becauseg, γ , andw are bounded (the boundedness ofg resorts to (1.8) and (1.10)).
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Lemma 3.1 can then be applied to the functionw and the operator� in �h. We
havew ≥ 0 on∂�h. Therefore, it follows thatw ≥ 0 in �h. By passing to the limit
h→+∞ and recalling thatw = ut−u+ε(h), we conclude that

ut (x′,xn)≥ u(x′,xn) for all x′ ∈Rn−1 and xn ≥−a.

Similarly, we could show that

ut (x′,xn)≥ u(x′,xn) for all x′ ∈Rn−1 and xn ≤−a,

whenceut ≥ u in Rn.
Defineτ = inf {t > 0, ut ≥ u in Rn}. By arguing as in the proof of Theorem 1,

it then follows thatτ = 0. More precisely, if we suppose thatτ > 0, then under the
same notation as in the proof of Theorem 1, Case 1 is ruled out. Moreover, Case 2 is
also ruled out. Indeed, if Case 2 occurs, we can then assume that up to extraction of
a subsequence,xk

n → xn ∈ [−a,a] and the functionsuk(x) = u(x+xk) approach a
functionu∞ solving

Lu∞+g(xn+xn,u∞)= 0 inRn.

As we did in (3.1), the functionuτ∞ satisfiesLuτ∞+g(xn+xn,u
τ∞)≤ 0. Eventually,

z= uτ∞−u∞ verifies 

Lz+c(x)z ≤ 0 inRn,

z ≥ 0 inRn,

z(0)= 0
for some bounded functionc. The impossibility of Case 2 then follows, as in the proof
of Theorem 1, from the strong maximum principle and from the uniform limiting
conditions (1.2).
Hence,u is increasing in any directionν such thatνn > 0. This implies that

u= u(xn) and thatu is a solution of (1.11). The same sliding method also allows us
to conclude that ifu(xn) andv(xn) are two solutions of (1.11), then there exists a
real numberτ such thatu(xn+ τ) = v(xn) for all xn ∈ R. The functionv(xn) then
satisfies {

annv
′′ +bnv

′ +g(xn,v)= 0,
annv

′′ +bnv
′ +g(xn+τ,v)= 0.

Therefore, ifg is increasing inxn, it follows thatτ = 0, whence we getu= v.

Proof of Lemma 3.1.Let� andw fulfill the assumptions of Lemma 3.1. Suppose
that

inf
�

w =−λ < 0.

Then there exists a sequence(xk)k∈N ∈Rn−1×(b,c) such thatw(xk)→−λ ask→
∞. From standard elliptic estimates, the functionw is globally Lipschitz-continuous
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in �. Recalling thatw ≥ 0 on∂�, then there existsε > 0 such that up to extraction
of a subsequence,

xk
n −→ xn ∈ [b+ε,c−ε] ask −→∞. (3.4)

Set
wk(x′,xn)= w

(
x+x′k,xn

)
andαk

ij (x
′,xn)= αij (x

′+x′k,xn), βk
j (x

′,xn)= βj (x
′+x′k,xn), γ k(x′,xn)= γ (x′+

x′k,xn) for all (x′,xn) ∈�. The functionswk satisfy

αk
ij ∂ijw

k+βk
j ∂jw

k ≤−γ kwk in �

≤−γ kwk−γ kλ sinceγ k ≤ 0 and λ≥ 0
≤ C (wk+λ)

sincewk + λ ≥ 0 and−γ k ≤ C. Up to extraction of subsequences, from Ascoli’s
theorem the functionsαij , βj locally converge to some functionsαij , βj , and from
standard elliptic estimates the functionswk locally approach a functionw ask →
+∞. By passing to the limitk→∞, the functionz= w+λ satisfies

Mz−Cz ≤ 0 in�,

whereM = αij ∂ij +βj∂j .
Due to the definition ofλ, we havez ≥ 0 in�. Furthermore, from (3.4) it follows

thatz(0,xn)= 0 with xn ∈ [b+ε, c−ε]. The strong maximum principle then yields
that

z= w+λ≡ 0 in�. (3.5)

On the other hand, sincew is globally Lipschitz-continuous, there exists a real
numberδ > 0 such that, say,w(x′,xn)≥−λ/2 for all x′ ∈Rn−1 andb ≤ xn ≤ b+δ.
As a consequence,z ≥ λ/2> 0 in Rn−1×[b,b+ δ]. This is ruled out by (3.5) and
the proof of the lemma is complete.

Let us now observe that Theorem 2 does not hold in general if instead of the
uniform limiting conditions (1.2), we only assume thatu(x′,xn)→±1 asxn→±∞
for eachx′ ∈Rn−1.
Consider the equation

�u−c∂x2u+f (u)= 0 inR2 (3.6)

with

u(x1,x2)−→±1 asx2−→±∞, pointwise, for allx1 ∈R. (3.7)
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Let us further assume that
∂u

∂x2
> 0 inR2. (3.8)

Herec is a constant parameter andf is someC1-function. The limits in (3.7) are
only pointwise and are not required to be uniform. Whenc = 0, it follows from the
result of Ghoussoub and Gui [21] thatu is a function of one variable only.
This does not hold for (3.6)–(3.8) as soon asc �= 0. Indeed, Bonnet and Hamel

[14] have constructed, for some particular functionf and for somec > 0, a solution
u such that


u
(
λ�k)

λ→+∞
�� −1 for all �k = (cosϕ,sinϕ) with − π

2
−α < ϕ <−π

2
+α,

u
(
λ�k)

λ→+∞
�� +1 for all �k = (cosϕ,sinϕ) with − π

2
+α < ϕ <

3π

2
−α

for each angleα ∈ (0,π/2]. Such a solution cannot have one-dimensional symmetry
(with level sets being parallel lines). This problem arises in the modelling of Bunsen
burner flames (see [14] and [22] for details).
Therefore, from this example we learn that for some functionsf (u), De Giorgi’s

conjecture cannot be extended to elliptic operators with nonzero first-order terms,
even in dimension 2.

3.2. Nonconstant coefficients.Our goal in this section is to prove Theorem 3.
More precisely, we prove that for an equation of the type (1.12)

�u+b(x1)∂x1u−c∂x2u+f (u)= 0 inR2

together with the limiting conditions (1.2), there exist both a solution depending on
only x2 and infinitely many nonplanar solutions, that is, solutions whose level sets
are not parallel lines.
The construction is somewhat involved and technical. It first relies on the choice

of special types of functionsb(x1) andf . Next we construct a family of nonplanar
solutions of (1.12), (1.2) that are between suitably chosen sub- and supersolutions.
Let us first state the type ofb andf we consider. We choose a continuous function

x1 �→ b(x1) such that for someξ ∈R andχ0> 0, the function
χ(x1)=

∫ x1

ξ

e−
∫ y
0 b(s)ds dy verifiesχ(±∞)=±χ0. (3.9)

A constant functionb(x1) ≡ b0 does not fulfill this condition. In contrast, all the
functions of the typeb(x1) = α tanhx1+ β (with α > |β|) or of the typeb(x1) =
αx1+β (with α > 0 andβ ∈R) fulfill this condition.
The functionf is chosen so as to satisfy the following conditions:

f ∈ C1([−1,1]), f (±1)= 0, (3.10)

∃θ ∈ (−1,1) such thatf ≤ 0 in [−1,θ ], f ≥ 0 in [θ,1], (3.11)
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and either

f ≤ 0 in [−1,θ ], f > 0 in (θ,1),
∫ 1

−1
f (s)ds > 0, (3.12)

or

f < 0 in (−1,θ), f ≥ 0 in [θ,1],
∫ 1

−1
f (s)ds < 0, (3.13)

or

f < 0 in (−1,θ), f > 0 in (θ,1). (3.14)

Furthermore, assume that iff is positive somewhere in[−1,1], then
inf{f (v)>0}f

′(v)= f ′(1) < 0, (3.15)

and that iff is negative somewhere in[−1,1], then
inf{f (v)<0}f

′(v)= f ′(−1) < 0. (3.16)

On the one hand, condition (3.12) includes the case wheref has an ignition tem-
perature profile (f ≡ 0 in [−1,θ ] andf > 0 in (θ,1)). On the other hand, case (3.14)
corresponds to the so-called bistable profile.
From [19], [23], there exist a unique realc whose sign is that of

∫ 1
−1f (s)ds, and

a functionz(x2) solving the one-dimensional problem:{
z′′ −cz′ +f (z)= 0 inR,

z(±∞)=±1. (3.17)

The solutionz of (3.17) is unique up to translations and is increasing. Furthermore,
it has the following asymptotic behaviour asx2→±∞ (see [5], [13], [19]):{

z(x2)=−1+Ceλx2+o
(
eλx2

)
z′(x2)= Cλeλx2+o

(
eλx2

) asx2−→−∞, (3.18)

{
z(x2)= 1− C̃e−µx2+o(e−µx2)

z′(x2)= C̃µe−µx2+o(e−µx2)
asx2−→+∞, (3.19)

where

λ=
√
c2−4f ′(0)+c

2
, µ=

√
c2−4f ′(1)−c

2
(3.20)

andC,C̃ are two positive constants. Under the assumptions (3.12)–(3.16), we can see
thatλ andµ are always positive.
Theorem 3 is a consequence of the following proposition.
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Proposition 3.2. Under the previous assumptions, for anya ∈ (−1,1), there exist
functionsψ+(x1) andψ−(x1) such that
(i) ψ− ≤ ψ+;
(ii) the functionua(x1,x2)= z(x2+ψ+(x1)) is a supersolution of (1.12), and the

functionua(x1,x2)= z(x2+ψ−(x1)) is a subsolution of (1.12);
(iii) ψ+ andψ− are increasing ifa > 0 and decreasing ifa < 0, and ifa = 0, then

ψ+ ≡ ψ− ≡ 0;
(iv) ψ+(−∞)= ψ−(−∞) ∈R and ψ+(+∞)= ψ−(+∞) ∈R;
(v) l− = l−(a) := ψ±(−∞) is decreasing with respect toa, and l+ = l+(a) :=

ψ±(+∞) is increasing.

Remark 3.3.Since the functionz is increasing, assertion (i) implies that

ua(x1,x2)≤ ua(x1,x2) for all (x1,x2) ∈R2.
Remark 3.4. In the case wheref is positive somewhere, we can show that Propo-

sition 3.2 is still true if assumption (3.15) is replaced withf ′(1) < 0. To this end,
we approximatef in L∞([−1,1]) norm by a sequence of functions satisfying (3.15).
In the case wheref is negative somewhere, Proposition 3.2 is also true if (3.16) is
replaced withf ′(−1) < 0.
Postponing the proof of this proposition, let us first state two preliminary lemmas

and conclude the proof of Theorem 3.

Lemma 3.5. If a functionu(x1,x2) is such thatua ≤ u≤ ua with a �= 0, thenu is
not a function of onlyx2. Moreover, it is not a planar function (i.e., a function whose
level sets are parallel lines).

Proof. First assume that there exists a functionx2 �→ v(x2) such thatu(x1,x2)=
v(x2) for all (x1,x2) ∈R2. By the definitions ofua andua, we have

z
(
x2+ψ−(x1)

)≤ v(x2)≤ z
(
x2+ψ+(x1)

)
for all (x1,x2) ∈R2.

Choosex2= 0 and take the limitsx1→±∞. By Proposition 3.2(iv), it then follows
thatv(0) = z(l−) = z(l+). Sincez is increasing, we find thatl− = l+. This is ruled
out by (iii).
Assume now that there exist a functiont �→ v(t) and two realsα andβ such that

u(x1,x2)= v(αx1+βx2) for all (x1,x2) ∈R2. Then
z
(
x2+ψ−(x1)

)≤ v(αx1+βx2)≤ z
(
x2+ψ+(x1)

)
for all (x1,x2) ∈R2.

Fromwhat precedes, only the caseα �= 0 remains to be treated. Now choosex1= γ x2,
whereγ =−β/α. We have

z
(
x2+ψ−(γ x2)

)≤ v(0)≤ z
(
x2+ψ+(γ x2)

)
for all x2 ∈R.

Since the functionsψ± are bounded andz(±∞)=±1, the limits asx2→±∞ imply
thatv(0)=−1 andv(0)= 1. This is impossible.
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Lemma 3.6. If two functionsu(x1,x2) and v(x1,x2) are such thatub ≤ u and
ua ≥ v with a �= b, thenu �= v.

Proof. Assume thatu ≡ v and writeua andub asua(x1,x2) = z(x2+ψ+a (x1))

andub(x1,x2)= z(x2+ψ−b (x1)). We then have

z
(
x2+ψ−b (x1)

)≤ u(x1,x2)= v(x1,x2)≤ z
(
x2+ψ+a (x1)

)
for all (x1,x2) ∈R2.

Therefore, sincez is increasing, it follows that

ψ−b (x1)≤ ψ+a (x1) for all x1 ∈R.

By taking the limit asx1→ −∞, we find thatl−(b) ≤ l−(a). By (v), this implies
that a ≤ b. Similarly, the limit asx1→ +∞ yields thata ≥ b. Eventually,a = b.
This is in contradiction with the assumptiona �= b, and the proof of the lemma is
complete.

Proof of Theorem 3.Choose anya ∈ (−1,1) and, under the notation of Proposi-
tion 3.2, consider the functionsψ+, ψ− andua, ua. By Remark 3.3, we know that
ua ≤ ua. Sinceua andua are respectively sub- and supersolutions for (1.12), there
then exists a solutionua of (1.12) such thatua ≤ ua ≤ ua; that is,

z
(
x2+ψ−(x1)

)≤ ua(x1,x2)≤ z
(
x2+ψ+(x1)

)
for all (x1,x2) ∈R2.

Due to (iv), the functionsψ+ andψ− are bounded. As a consequence, the functionua

still satisfies the uniform limiting conditions (1.2). Therefore, for eacha ∈ (−1,1),
there exists a solutionua of (1.12), (1.2). Ifa = 0, we simply haveu0= z.
By Lemma 3.5, the functionua is not planar ifa �= 0. By Lemma 3.6, we have

ua �= ub if a �= b. Hence, (1.12) together with the limiting conditions (1.2) has a family
of solutionsua parametrized bya ∈ (−1,1) that are different from one another and
are not planar fora �= 0.
Let us now turn to the proof of Proposition 3.2.

Proof of Proposition 3.2.Choose a reala ∈ (−1,1). By definition, the function
χ(x1) is increasing; it then satisfies|χ(x1)|< χ0 for all x1 ∈R. We can then consider
the functions 


ψ− = ψ−a (x1)=− 1

µ
ln

(
1−a

χ(x1)

χ0

)
,

ψ+ = ψ+a (x1)= 1
λ
ln

(
1−α

χ(x1)

χ0

)
+β,
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where the positive real numbersλ andµ have been defined in (3.20) and where

α = αa = tanh
(
− λ

µ
tanh−1(a)

)
∈ (−1,1),

β = βa =− 1
µ
ln(1+a)− 1

λ
ln(1+α).

Proof of (iii). If a = 0, the conclusion is obvious. Take nowa > 0. We have

(ψ−)′(x1)= a

µχ0

χ ′(x1)
1−a

(
χ(x1)/χ0

) > 0 for all x1 ∈R

sincea, µ, andχ0 are positive and the functionχ is increasing. As far as the function
ψ+ is concerned, we have

(ψ+)′(x1)=− α

λχ0

χ ′(x1)
1−α

(
χ(x1)/χ0

) for all x1 ∈R.

Like a, µ, andχ0, the real numberλ is positive. Therefore,α is negative andψ+ is
increasing.
The casea < 0 can be treated similarly.

Proof of (iv). The proof is straightforward owing to the definitions ofψ± and to
the fact thatχ(±∞)=±χ0.

Proof of (v). We havel−(a) = −(1/µ) ln(1+a) and l+(a) = −(1/µ) ln(1−a).
Sinceµ is positive, this yields (v).

Proof of (i). The casea = 0 is obvious. Now choosea �= 0 and define
v(x1)= ψ+(x1)−ψ−(x1).

Part (iv) says thatv(±∞)= 0. To prove thatv is nonnegative inR, it is then sufficient
to show thatv′(x1) is positive in an interval of the type(−∞,γ ) and negative in
(γ,+∞). A straightforward calculation leads to

v′(x1)= A(x1)B(x1) for all x1 ∈R,

where

A(x1)= χ ′(x1)
λµχ0

1

1−a
(
χ(x1)/χ0

) 1

1−α
(
χ(x1)/χ0

) > 0 for all x1 ∈R,

and where

B(x1)=−(aλ+αµ)+aα(λ+µ)
χ(x1)

χ0
for all x1 ∈R.
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The productaα is always negativewhatever the sign ofamay be.Moreover, remember
thatλ andµ are positive and thatχ is increasing. Hence the functionB is (strictly)
decreasing. IfB did not change sign, thenv would be monotone and then identically
zero. That would yieldv′ ≡ 0 andB ≡ 0. The latter is impossible sinceB is decreas-
ing. Hence the functionB changes sign. Since it is decreasing, there exists a realγ

such thatB(x1) > 0 in (−∞,γ ) andB(x1) < 0 in (γ,+∞). The conclusion follows.

Proof of (ii). Choosea ∈ (−1,1) and consider the function
ua(x1,x2)= z

(
x2+ψ−(x1)

)
.

Owing to its definition, it is easy to check that the functionψ = ψ− is a solution of
the following ordinary differential equation:

µψ ′2−ψ ′′ −b(x1)ψ
′ = 0. (3.21)

SetI (u) :=�u+b(x1)∂x1u−c∂x2u+f (u). We have

I (ua)=
(
1+ψ ′2

)
z′′ +(−c+ψ ′′ +bψ ′

)
z′ +f (z)

= (
1+ψ ′2

)(
cz′ −f (z)

)+(−c+µψ ′2
)
z′ +f (z) by (3.17) and(3.21)

=−ψ ′2f (z)+(µ+c)ψ ′2z′

= −
(
f (z)

z′
+ f ′(1)

µ

)
ψ ′2z′ sinceµ2+cµ+f ′(1)= 0.

We now claim that

f
(
z(y)

)
z′(y)

+ f ′(1)
µ

≤ 0 for all y ∈R. (3.22)

Indeed, first the functionv(y)= f (z(y))/z′(y) satisfies

v′ = v2−cv+f ′(z).

If the supremum ofv were reached at a pointb ∈R, then

f
(
z(b)

)
z′(b)

= v(b)=
c±

√
c2−4f ′(z(b))
2

.

Owing to (3.10) and (3.11), we always havef ′(1)≤ 0. Therefore, iff (z(b))≤ 0,
thenv(y)≤ v(b)≤ 0 for all y ∈R and the claim (3.22) follows.
Let us now consider the case wheref (z(b)) > 0. By the definition ofµ and by

(3.15), it follows that

v(b)≤ c+√
c2−4f ′(1)
2

=−f ′(1)
µ

.
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Moreover, limsupy→−∞ v(y) ≤ 0 owing to (3.11) andz(−∞) = −1. On the other
hand,v(+∞)=−f ′(1)/µ >0 by (3.19). Consequently, we have supR v ≤−f ′(1)/µ.
This yields (3.22).
This implies thatI (ua)≥ 0 inR2, that is,ua is a subsolution of (1.12).
Similarly, we can show that the functionua is a supersolution of (1.12). The proof

of Proposition 3.2 is complete.

Remark 3.7. This counterexample shows that there are infinitely many nonplanar
solutionsua to (1.12).We can see that for anya �= 0, these solutions are not symmetric
with respect to any vertical axis{x1 = b}. In fact, we conjecture thatu0 = z is the
unique solution that is symmetric with respect to a vertical axis.
For an equation of the type (1.12),

�u+b(x1)∂x1u−c∂x2u+f (u)= 0 inR2,

and for some functionsf , as we said earlier, there are nonplanar solutions withb ≡ 0
andc �= 0 satisfyingu(x′,xn)→±1 asxn→±∞ for eachx′ ∈Rn−1.
If uniform limits (1.2) are satisfied, then we know from Theorem 2 that any solu-

tion u has one-dimensional symmetry wheneverb is constant. Nevertheless, Theo-
rem 3 shows that this symmetry property does not hold for some nonconstant and yet
bounded functionsb and some functionsf . More precisely, the nonplanar solutions
ua of (1.12) we have constructed are such that, say, fora > 0,

z−(x2) := z(x2+ l−)≤ u(x1,x2)≤ z+(x2) := z(x2+ l+)

and 

u(x1,x2) ��

x2→±∞
±1 uniformly in x1,

u(x1,x2) ��
x1→±∞

z±(x2),
(3.23)

where l− < l+ and z± are solutions of (3.17). The profile of a function safisfying
these properties is drawn in Figure 1.
Recently, similar results have been proved for different equations by Alessio,

Jeanjean, and Montecchiari [2] and Alama, Bronsard, and Gui [1]. Alessio, Jeanjean,
and Montecchiari, with methods based on Hamiltonian systems, have proved the
existence of nonplanar functionsu(x1,x2) satisfying the same kind of limits as in
(3.23) and solving the equation

−�u+a(x2)W
′(u)= 0 inR2

for some functionsa(x2) that are positive and periodic. HereW is a multiple well
potential. Alama, Bronsard, and Gui [1], with energy methods, have proved the
existence of nonplanar solutionsU = (u1,u2) for a system of two equations of the
type

−�U+∇W (U)= 0, x = (x1,x2) ∈R2
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Figure 1. Profile of a functionu(x1,x2) satisfying (3.23)

satisfying asymptotic limiting conditions asx1,x2→ ±∞ similar to (3.23). There
W :R2→R is also a multiple well potential.
Let us now consider De Giorgi’s nonlinearityf (u) = u−u3. It satisfies the con-

ditions (3.10), (3.11), (3.14), (3.15), and (3.16). Furthermore,
∫ 1
−1f (s)ds = 0. The

unique speedc that is a solution of (3.17) is then equal to zero. Now choose a function
b(x1) satisfying (3.9). As a consequence of the preceding results, the bidimensional
equation

�u+b(x1)∂x1u+f (u)= 0 inR2, (3.24)

together with the uniform limiting conditions (1.2), admits both a planar solution and
infinitelymany nonplanar solutions. The same result obviously holds in any dimension
n ≥ 2 by considering the same equation (3.24) inRn and choosing special solutions
of the typev(x1, . . . ,xn) = u(x1,x2). As a conclusion, in any dimensionn ≥ 2 and
even if uniform limits (1.2) are required, De Giorgi’s conjecture cannot be extended
for a class of nonconstant functionsb(x1) (including some bounded functions) to
equations of the type (3.24) involving the additional first-order termb(x1)∂x1u.

4. Half-space case.Let L andg satisfy the assumptions of Theorem 4, and let
u ∈ C(Rn+) be a solution of (1.15), (1.16). As in the proofs of Theorems 1 and 2, we
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prove thatu is increasing in any directionν = (ν1, . . . ,νn) such thatνn > 0. For any
t ≥ 0, we define the functionut in {xn ≥−tνn} by ut (x)= u(x+ tν).
As we did in (3.1), we have, for anyt ≥ 0,

Lut+g
(
xn,u

t
)≤ 0 in {xn >−tνn} ⊃Rn+. (4.1)

Owing to (1.16), there exists a reala > 0 such thatu(x′,xn) ≥ 1− δ for all
x′ ∈Rn−1 andxn ≥ a. For all t ≥ a/νn, the functionut is then such that{

ut (x′,xn)≥ 1−δ for all x′ ∈Rn−1 andxn ≥ 0,
ut (x′,0)≥ 0= u(x′,0) for all x′ ∈Rn−1.

As we did in the proof of Theorem 2, using especially Lemma 3.1, it then follows
thatut ≥ u in Rn+.
Let us now decreaset . We claim thatut ≥ u inRn+ for all t > 0. Defineτ = inf {t >

0, ut ≥ u in Rn+}. By continuity, we see thatuτ ≥ u in Rn+ = {xn ≥ 0}. Let us now
argue by contradiction and suppose thatτ > 0. Two cases may occur.

Case 1. Suppose that
inf

Rn−1×[0,a]
(uτ −u) > 0.

In this case, as in the proof of Theorem 1, there would exist a realη0 ∈ (0,τ ) such
that ut ≥ u in Rn+ for all t ∈ [τ − η0,τ ]. This would be in contradiction with the
minimality of τ .

Case 2. Suppose that
inf

Rn−1×[0,a]
(uτ −u)= 0.

Then there exists a sequence(xk)k∈N ∈Rn−1×[0,a] such thatuτ (xk)−u(xk)→ 0
ask→∞. Up to extraction of a subsequence, two subcases may occur.
Subcase 2.1.Suppose thatxk

n → xn ∈ (0,a] ask→∞. This subcase is ruled out
as Case 2 in the proof of Theorem 2.
More precisely, the functionsuk(x

′,xn)= u(x′ +x′k,xn) then approach locally in
Rn+ a functionu∞ solving

Lu∞+g(xn,u∞)= 0 inRn+.

The functionuτ∞ satisfiesLuτ∞+g(xn,u
τ∞) ≤ 0 in Rn+. Furthermore,uτ∞ ≥ u∞ in

Rn+ anduτ∞(0,xn)= u∞(0,xn). From the strong maximum principle, it then follows
that uτ∞ ≡ u∞ in Rn+. The functionu∞ is then periodic with respect to the vector
ξ = τν.
From elliptic regularity theory, the functionu is globally Lipschitz-continuous in

Rn+. Sinceu satisfies (1.16) and since theuk are obtained fromu by shifting it with
respect to thex′-variables, it follows that the functionu∞ satisfies (1.16) as well.
Hence, sinceξn > 0, it cannot beξ -periodic.
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Subcase 2.2.Suppose thatxk
n → 0 ask→∞. Sinceu = 0 on {xn = 0} andu is

globally Lipschitz-continuous in{xn ≥ 0}, it then follows that
u
(
xk+τν

)−→ 0 ask −→∞.

Setuk(x) = u(x+xk). This function is defined in{xn ≥ −xk
n} ⊃ {xn ≥ 0}. By stan-

dard elliptic estimates, up to extraction of a subsequence, the (nonnegative) functions
uk approach locally in{xn > 0} a functionu∞ ≥ 0 ask→∞. We haveu∞(τν)= 0.
Furthermore, as we did in (3.1) or (4.1) and sincexk

n ≥ 0, we have
Luk(x)+g

(
xn,uk(x)

)≤ 0 for all x′ ∈Rn−1 and xn >−xk
n.

As a consequence, for allx′ ∈Rn−1 andxn >−xk
n, we have

Luk(x)+g
(
xn,uk(x)

)−g(xn,0)≤−g(xn,0)≤ 0 by (1.13) and (1.14).

Finally, there exists then a bounded functionc(x) such that

Lu∞+cu∞ ≤ 0 inRn+ = {xn > 0}.
Sinceu∞ is nonnegative and vanishes at the interior pointτν ∈ Rn+, the strong
maximum principle implies thatu∞ ≡ 0 in Rn+. Recalling that 0≤ xk

n ≤ a, we
see that the functionu∞ is such thatu∞(x′,xn)→ 1 asxn → +∞ (uniformly in
x′ ∈Rn−1). So Subcase 2.2 is also ruled out.
Consequently,τ = 0, and as in the proof of Theorem 1, the functionu then depends

only onxn and solves (1.17).
Lastly, if u(xn) and v(xn) are two solutions of (1.17), then the previous proof

implies that we simultaneously haveu ≥ v andv ≥ u. As a conclusion, the solution
u of (1.15), (1.16) is unique, and the proof of Theorem 4 is complete.
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