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ONE-DIMENSIONAL SYMMETRY OF BOUNDED ENTIRE
SOLUTIONS OF SOME ELLIPTIC EQUATIONS

H. BERESTYCKI, F. HAMEL,anp R. MONNEAU

1. Introduction. This article is devoted to the classification of the functians
that are solutions of the semilinear elliptic equation

Au+ f(w)=0 inR" (1.2)

and that satisfyu| < 1 together with the asymptotic conditions

u(x’, x,) +1 uniformly inx’ = (x1,...,x,_-1). 1.2)

Xp—> 00
The given functionf = f(«) is Lipschitz-continuous iri—1, 1]. Clearly, for (1.1),
(1.2) to have a solutiory, has to be such thgt(+1) = 0. Here we assume furthermore
that there exist8 > 0 such that

f is nonincreasing of+-1, —1+ 6] and on[1—§, 1]; f&E1yH =0. (1.3)

We prove that any solution of the multidimensional equation (1.1) with the
limiting conditions (1.2) has one-dimensional symmetry.

THEOREM 1. Letu be a solution of (1.1), (1.2) such thiaf < 1. Thenu(x’, x,) =
uo(x,), whereug is a solution of

ug+ fug) =0 inR,

ug(doo) = +1, (1.4)

andu is increasing with respect t@,. In particular, the existence of a solutionof
(1.1), (1.2) such thatx| < 1 implies the existence of a solutiag of (1.4). Lastly,
this solutionu is unique up to translations of the origin.

For the 1-dimensional problem, we refer to [5], [11], [19], or [23]. For the low
dimensions case = 2,3 (assuming also thaf is C1), the same result had been
obtained by Ghoussoub and Gui [21]. Their method relies on spectral properties of
some Schrddinger operators and is different from the one we use in this paper in any
dimensionn. We have recently learned that a result similar to Theorem 1 has been
proved independently by Barlow, Bass, and Gui [7], using a very different method
relying on probabilistic arguments.

Let us point out that Theorem 1 is related to a more difficult question, known as a
conjecture of De Giorgi.
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CoNJECTURE (De Giorgi [17]) If u is a solution of Au +u — u® = 0 such that
lul < 1in R", limy, & 10ou(x’,x,) = £1 for all x’ € R"~1, and du/dx, > 0, then
there exists a vectaz € R"~1 and a functionuy : R — R such thatu(x’, x,,) =
ui(a-x'+x,) in R",

In the particular case where= u —u3, we see that this conjecture is stronger than
Theorem 1 in the sense that for the conjecture of De Giorgi, the limitg as +o0
are only simple inx’, whereas they are uniform i for Theorem 1.

In fact, for a general nonlinearity, the conjecture of De Giorgi has been proved in
dimensionm = 2 by Ghoussoub and Gui [21] (see also a presentation of Berestycki,
Caffarelli, and Nirenberg [10]), and, very recently, it has been proved in dimension
n = 3 by Ambrosio and Cabré [3]. See also earlier works by Modica and Mortola [24]
for dimension 2 and by Caffarelli, Garofalo, and Segala [15] for general inequalities
related to this problem.

Recently, some new results in higher dimensions have been obtained by Farina
[18] and Barlow, Bass, and Gui [7]. Farina proves one-dimensional symmetry for the
solutions of (1.1) provided that they minimize a certain energy in a cylindeiR
included inR". Barlow, Bass, and Gui, with probabilistic arguments, derive this
symmetry result from a Liouville-type theorem, assuming monotonicity in a cone
of directions. We also refer to the papers of Berestycki, Caffarelli, and Nirenberg
[10] and Barlow [6] about the connection between spectral properties of Schrodinger
operators and the conjecture of De Giorgi.

However, the conjecture of De Giorgi, in its general form, remains open in dimen-
sions greater than 3.

Let us now turn to more general semilinear elliptic equations of the type

Lu+g(nu)=0 inR", (1.5)

where

Lu= a,-j(x)aiju+bj(x)8ju

(here we use standard summation conventions). This operator is not necessarily self-
adjoint. We assume that the coefficients(x), b;(x) are continuous functions and
that

Iy >co>0, ¥x € R", VE € R", colé]? <a;;(x)&E; < cplé]?. (1.6)

Here it is natural to ask whether the one-dimensional symmetry still holds for
the solutions of (1.5), (1.2) with a general elliptic operatoinstead of the Laplace
operator. Nothing has been known so far about this problem, even in low dimensions.
The following two theorems show that the qualitative results actually depend on the
structure of the coefficientg; andb;.
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In the following resultsg(x,,, 1) is required to be defined and continuousRix
[—1, 1] and to satisfy the conditions

g is nondecreasing in;,, Q.7
Vx, e R, g(x,,+£1) =0, (1.8)
3§ > 0 such thatx,,s) —> g(x,, s) iS nonincreasing iR
onR x[-1,—1+5JUR x[1-6,1],
3Co >0, Vx, € R, Vs, 5 € [-1,1], [g(x.5) —g(xn.5)

(1.9)

<Coli—s|. (1.10)

We first consider the case where the coefficientsandb; are constant; we prove
the same symmetry result as in Theorem 1.

THEOREM 2. Assume thal andg satisfy (1.6) and (1.7)—(1.10), and assume that
the coefficients;;, b;, i, j = 1,...,n are constant. Lek be a solution of (1.5), (1.2),
such thatiu| < 1. Thenu(x', x,) = uo(x,), whereug is a solution of

annu6+bnu6+g(xnv up) =0 inR,

(1.11)
uo(£00) = +1,

and u is increasing with respect te,. In particular, the existence of a solutian
of (1.5), (1.2), such thalu| < 1 implies the existence of a solutiory of (1.11).
Furthermore, this solutiom is unique up to translations of the origin, andgfis
increasing inx,,, thenu is unique.

For general operators with nonconstant coefficients, however, this symmetry prop-
erty does not hold. For example, it is natural to ask if a solution of the equation

Au+b(x1)dy 1 —cdpu+ f(u) =0 inR? (1.12)

together with the uniform limiting conditions (1.2) actually satisiies u(x2) (and
therefore the ternb(x1)d,, u drops). This is not the case, as the following counter-
example in dimension 2 shows.

THEOREM 3. There exist some real numberssome functiong (s) fulfilling the
assumptions of Theorem 1, and some continuous funaion$ such that the two-
dimensional equation (1.12), together with the uniform limiting conditions (1.2),
admits both a planar solutiong and infinitely many nonplanar solutions (i.e., solu-
tions whose level sets are not parallel lines).

Remark 1.1. It is natural to ask whether the one-dimensional symmetry holds or
not if the coefficients of the operator only dependwgnRecently, Alessio, Jeanjean,
and Montecchiari [2] actually proved the existence of solutions that satisfy (1.2) and
that do not depend ag, only, for some equations of the type

a(x,)Au+ f(u)=0 inR".
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Lastly, whereas Theorems 1 and 2 state symmetry properties for the solutions of
some elliptic equations ifR", the following theorem, which can be proved in the
same way as Theorems 1 and 2 (see Section 4), deals with the case of the half-space
R’ = {x, > 0}.

THeOREM 4. Let L satisfy (1.6), and let the coefficients,b;,i,j =1,...,n be
constant. Assume that the function,, s) — g(x,, s) is defined and continuous on
[0, c0) x [0, 1] and satisfies

g is nondecreasing iw,,, (1.13)
Vxn >0, g(xy,1) =0,
38 > 0 such that(x,, s) —> g(x,,s) iS nonincreasing in
on [0, +o0) x [1—4,1],
3Co > 0, Vx, € [0, +00), V5,5 €[0,1], |g(xn,5) —g(xy,s)| < Cols —s|,
g(0,0)>0. (1.14)

Letu € C(R") be a solution of
Lu+g(xy,u)=0 inR" (1.15)

satisfying0 < u < 1 together with the following boundary and limiting conditions:

u=20 on {x, = 0},
lim u(x’,x,)=1 uniformlyinx’ = (x1,...,x,—1) € R* L. (1.16)
Xp—>+00
Thenu(x’, x,,) = ug(x,), whereug is a solution of
annu6+bnu6+g(xn’ ug) =0 in (0, +00), (1.17)

uo(0) =0, ug(4+00) =1,

andu is increasing inx,. In particular, the existence of a solutianof (1.15), (1.16),
such thatO < u < 1, implies the existence of a solutiafg of (1.17). Lastly, this
solutionu is unique.

The following theorem extends to more general operators and equations a result
of Clément and Sweers [16], who also considered the case of uniform limits as
X, —> —+o00.

TueoreM (Clément and Sweers [16])Let f € CL7 for somey € (0, 1) satisfy

dp1 <1 suchthatf(p1))=f(1) =0 and f >0 in(p1,1),

1
Vp €[0,1), / f(s)ds > 0,
P

3§ >0 suchthatf’ <0 in(1-56,1).



ONE-DIMENSIONAL SYMMETRY OF ELLIPTIC EQUATIONS 379

Letu € C?(R%)NC(R™) be a solution of
Au+f(u)=0 inR%

that satisfie) < u < 1in R} together with (1.16). Then(x’, x,,) = uo(x,), where
ug is a solution of

ug+ f(uo) =0 in (0, +00),
up(0) =0, up(+00) =1,
andu is monotonic inx,,.

The method to prove this theorem is different from the one we use in this paper. It
relies on comparisons with suitable one-dimensional sub- and supersolutions and on
shooting-type arguments.

Other problems in half-spaces have been considered by Angenent [4] and
Berestycki, Caffarelli, and Nirenberg [8], [10], where no assumption is imposed on
the limiting behaviour of: asx,, — +00. These symmetry results can also be thought
of as extensions of the Gidas, Ni, and Nirenberg [20] symmetry result for spheres.

The main device to prove Theorems 1 and 2 (and also Theorem 4) is the slid-
ing method, which was developed by Berestycki and Nirenberg [12] and has been
used in various works of Berestycki, Caffarelli, and Nirenberg [8], [9], and [10]. For
another semilinear elliptic equation of the type (1.5Rhwith conical limiting con-
ditions, Bonnet, Hamel, and Monneau have also applied this method to state some
monotonicity and uniqueness results (see [14], [22]).

2. Proof of Theorem 1. The proof uses a sliding method and a version of the
maximum principle in unbounded domains. Let us start by stating the following
comparison result, which directly follows from [9, Lemma 1] (based on the maximum
principle).

LemMA 2.1 [9]. Let f be a Lipschitz-continuous function, nonincreasing e,
—1+4] and on[1—34, 1] for somes > 0. Assume that1, uo are solutions of

Aui+ f(uj)=0 inQ
and are such thay;| < 1 (i = 1, 2). Furthermore, assume that
U2 >u1 0NIK
and that either
up>1-5 inQ
or
u1 <-1468 inQ.

If @ c R” is an open connected set such tfRft\Q contains an infinite open con-
nected cone, themy > uq in Q.
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Here this result is applied for domains that are half-spaces.

Let us now consider a solutianof (1.1), (1.2) such thai| < 1, and letf satisfy
(2.3). We are first going to prove thatis increasing in any directiom= (v1, ..., v,)
such thatv, > 0. In order to do so, for any € R, we define the functiom’ by
u' (x) = u(x+1v).

From (1.2), there exists a real> 0 such that:(x’, x,) > 1—6 for all x’ € R"~1
andx, > a andu(x’, x,) < —1+4 forall x’ € R*~* andx, < —a. Foranyr > 2a/v,,
the functionsy andu! are such that

u'(x',x,) >1-3 for all x’ € R"~1 and for allx, > —a,
u(x’',x,) < —1+6 for all x’ € R"~1 and for allx, < —a, (2.1)
u'(x',—a) > u(x',—a) forallx’ e R*1,

Consequentlyy andu’ fulfill the assumptions of Lemma 2.1 in both = R"~1 x
(—o0, —a) and = R"1 x (—a, +00). Therefore, it follows that’ > u in R”.

Let us now decrease We claim thatu’ > u for all + > 0. Indeed, defineg =
inf{r > 0, u' > u in R"}. By continuity, we see that® > « in R". Let us now argue
by contradiction and suppose that- 0. Two cases may occur.

Case 1. Suppose that

inf " —u)>0. (2.2)

R"=1x[—a,a]

From standard elliptic estimates,is globally Lipschitz-continuous. Hence, there
exists a realg small enough, which can be chosen smaller thasuch that for all
T >1t > 1 —1)0, We have

u' (' xp)—u(x’,x,) >0 forallx’ e R"! and x, €[—a,al. (2.3)
Sinceu > 1—48 in R" 1 x [a, +00), it follows that
u' (X', xp) >1—5 forallx’ e R"% x,>a and forallr> 0.

We may now apply Lemma 2.1 in the two half-spa¢&s = {x, > a} and Q™ =
{x, < —a}. We then infer that, for alh € [0, nol, u*"(x’,x,) > u(x’, x,) for all
x’ € R*1and forallx, € (—o00, —a)U(a, +00) and so for alk,, € R owing to (2.3).
This is in contradiction with the minimality of. Hence (2.2) is ruled out.

Case 2. Suppose that
inf w® —u)=0. (2.4)

R"=1x[—a,a]

Then there exists a sequen@é)icn € R" 1 x [—a, a] such thau® (x*) —u(x¥) — 0
ask — oco. Setug(x) = u(x* +x). By standard elliptic estimates and the Sobolev
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injections, up to extraction of a subsequence, the functignapproach locally a
solutionuq, of (1.1) ask — oco. We haveu’ (0) = u(0) andul, > us, because
up > uy for anyk e N. The functionz = u}, —u, satisfies

Az+c(x)z=0 inR",
z=0 in R, (2.5)
z2(00=0

for some bounded function(x) defined by

Fui @) = f(uoo(x))

Ugo(x) — oo (x)

c(x)=

if ul (x) # uso(x) and, sayc(x) = 0 if ul, (x) = us(x). The strong maximum
principle yields that = 0. This means that,, (x) = uco(x + 7v). Letting& = v,

we see that, is periodic with respect to the vectprRecalling that-a < x* < a, we
see that the function., also satisfies the uniform limiting conditions (1.2). Hence,
since§, > 0, the functionus, cannot bet-periodic. So Case 2 with (2.4) is also
ruled out.

Therefore, we have proved that= 0. The functionu is then increasing in any
directionv = (v1, ..., v,) such thatv, > 0. From the continuity oVu, we deduce
thata,u > 0 for anyv such that, = 0. If v, = 0, by takingv and —v, we find that
d,u = 0. Since this is true for all with v, = 0, this implies thai:(x) = u(x,).

Since the solutions of (1.4) are unique up to translations, it then follows that the
solutionsu of (1.1), (1.2) such thgi| < 1 are unique up to translations of the origin.
The proof of Theorem 1 is complete. O

3. More general elliptic operators. In this section, we consider solutionsvith
lu| <1 of more general equations

Lu+g(x,,u) =0,
whereL is a general linear elliptic second-order operator with no zero-order term:
Lu= al'jaiju +bj8ju.

We treat separately the case of constant coefficients where symmetry holds (see
Theorem 2) and the case of nonconstant coefficients where the symmetry may be
lost (see Theorem 3).

3.1. Constant coefficients

Proof of Theorem 2. Assume thatl and g satisfy (1.6) and (1.7)—(1.10) and
assume that the coefficients;, b;, i, j = 1,...,n, are constant. Let us consider a
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solutionu of (1.5), (1.2) such thatu| < 1. As in Theorem 1, we prove that the
functionu depends on,, only.

The scheme of the proof is similar to that of Theorem 1, apart from the fact that
instead of the maximum principle stated in Lemma 2.1 for the Laplace operator, we
use an extended version of the maximum principle for general second-order elliptic
operators in infinite slab-type domains.

We prove that: is increasing in any direction = (vy, ..., v,) such thatv, > 0.

For anyr € R, letu’ be the function:’ (x) = u(x +1v).

We first observe that for all > 0, the functionu! is a supersolution for (1.5).

Indeed, for allk > 0 and for allx € R", we have

Lut—i—g(xn, ut) = Lu(x —}-tv)—i—g(x,,, u(x+tv))
< Lu(x—}—tv)—f—g(xn +1tvy,, u(x+tv)) by (1.7) (3.1)
<0.
Next, as in Section 2, there exists a reauch that for any > 2a/v,,
W' (X' x,) >1-38 for all x’ € R""landx, > —a,
ulx’',x,) < =146 for all x’ € R"landx, < —a, (3.2)
u'(x',—a) > u(x',—a) forallx’ e R*1,

We now want to say that’ > « in R”. To this end, we use the following version of
the maximum principle in infinite slab-type domains for general second-order elliptic
operators.

Lemma 3.1 Letw be a function satisfying
Fw<0 inQ=R"1x(@®,o0),
whereb, ¢ € R and where
Pu=o;j(x)0;u+B;(x)ju+y(x)u.

Assume that the coefficients (x), B, (x) are uniformly continuous i and that the
«;; satisfy (1.6). Furthermore, assume that

—C<yx)<0 forallxeQ

for some positive real number. The functionw is required to be continuous if?
and to satisfy

Pw e LP(Q)
and
m<w<M inQ

for somem, M € R.
If w>00n0dL, thenw >0in Q.
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Postponing the proof of the above lemma, let us conclude the proof of Theorem 2.
Let us first prove that’ > u in R" 1 x (—a, +00) forallt > 2a/v,. Setz = u’ —u.
Owing to (3.2), we already know that> 0 onR"~1 x {—a}. We now show that > 0
in R"1x (—a, +00).
Due to (3.1) and (1.10), the functiansatisfies

Lz+c(x)z<0 inR"x(~a,+00)
for some bounded function(x) defined by

g(xna ut(x)) _g('xnv M(X))
ul(x) —u(x)

c(x)=

if u’(x) #u(x)and, sayc(x) =0 if u’ (x) = u(x).

Sety (x) = min(c(x),0). If x € R"1 x (—a, +00) is such thatz(x) < 0, then
1-6 <u’(x) < u(x), whence, owing to (1.9), we havéx) < 0 andy (x) = c(x). If
z(x) > 0, then

Lz+y(x)z <Lz4+c(x)z <0.

Therefore, it follows that
Lz+y(®)z<0 inR"1x(—a,+00), (3.3)

where the functiory (x) is bounded and nonnegative R 1 x (—a, +00).
We now apply Lemma 3.1 in slabs of the type

Qp=R" 1 x(—a,h)

with & > —a.
Due to (1.2), there exists a functierih) > 0 such that:(x’, #) > —e(h) for all
x" € R* 1 ande(h) — 0 ash — +o0. Choose any: > —a and set

w=z+eh).

The functionw is bounded and, from standard elliptic estimates, it is continuous in
Q. Setting = L+ y (x), we have

Fw=Lz+yx)z+yx)e(h) inQ,
<y(x)e(h) by (3.3
<0

sincey < 0 ande(h) > 0. Furthermore, by the definition af,
fw=— (xn +1tvy, u(x—l—tv)) +g(xn, u(x)) +y@w € L™(Q)

because, y, andw are bounded (the boundednesgotsorts to (1.8) and (1.10)).
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Lemma 3.1 can then be applied to the functiorand the operato# in ;. We
havew > 0 ond<2;,. Therefore, it follows thatv > 0 in Q. By passing to the limit
h — +oo and recalling thatv = u” —u +(h), we conclude that

u'(x',xp) > u(x’,x,) forallx'e R 1 and x,> —a.
Similarly, we could show that
u' (X', x,) >uix’,x,) forallx’ e R"1 and Xp < —a,

whenceu’ > u in R”.

Definet = inf{r > 0, ¥’ > u in R"}. By arguing as in the proof of Theorem 1,
it then follows thatr = 0. More precisely, if we suppose that- 0, then under the
same notation as in the proof of Theorem 1, Case 1 is ruled out. Moreover, Case 2 is
also ruled out. Indeed, if Case 2 occurs, we can then assume that up to extraction of
a subsequence! — x, € [—a,a] and the functions (x) = u(x +x*) approach a
functionu solving

Lo+ 8g(xn+Xn, o) =0 inR".

As we did in (3.1), the function’ satisfiesLu’ +g(x, +X,,ul,) < 0. Eventually,
7 =ul, —uxo verifies

Lz+c(x)z <0 inR",

z>0 in R",

z(0)=0

for some bounded functian The impossibility of Case 2 then follows, as in the proof
of Theorem 1, from the strong maximum principle and from the uniform limiting
conditions (1.2).

Hence,u is increasing in any directiom such thatv, > 0. This implies that
u = u(x,) and thatu is a solution of (1.11). The same sliding method also allows us
to conclude that if«(x,) andv(x,) are two solutions of (1.11), then there exists a
real numberr such thatu(x, +t) = v(x,) for all x, € R. The functionv(x,) then
satisfies

ann V" +bpv' 4 g (xy,v) =0,

anp V" + b, v +g(x, +1,0) =0.
Therefore, ifg is increasing in,, it follows thatr =0, whence we gat =v. O

Proof of Lemma 3.1.Let ¥ andw fulfill the assumptions of Lemma 3.1. Suppose
that
infw=-x<0.
Q

Then there exists a sequen@®)icn € R* 1 x (b, ¢) such thatw (x¥) — —x ask —
oo. From standard elliptic estimates, the functioris globally Lipschitz-continuous
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in Q. Recalling thatw > 0 on <2, then there exists > 0 such that up to extraction
of a subsequence,

x,’j —> X, €b+e,c—e] ask — oo. (3.4)
Set

wk(x/,xn) = w(x +x/k,xn)
andarf; (v, ) = i O+ ), B () = By (), () =y (1
+'K x,) for all (x', x,) € Q. The functionsw* satisfy

afjoiwt +Bow < —y 't inQ
< —y*wk—y*1 sincey* <0 and >0
<C (wr4x)

sincew® +1 > 0 and—y* < C. Up to extraction of subsequences, from Ascoli’'s
theorem the functions;;, B; locally converge to some functions;, g;, and from

standard elliptic estimates the function$ locally approach a functiom ask —
+00. By passing to the limit — oo, the functionz = w+ A satisfies

Mz—Cz<0 inqQ,

whereM = «;j0;j +Ej8j.

Due to the definition of, we havez > 0 in Q. Furthermore, from (3.4) it follows
thatz(0,x,) =0 withx, € [b+¢, ¢ —¢]. The strong maximum principle then yields
that

(=T+r=0 inQ. (3.5)

On the other hand, since is globally Lipschitz-continuous, there exists a real
numbers > 0 such that, say(x’, x,) > —i/2 for allx’ € R*~Landb < x,, < b+3.
As a consequence,> A/2 > 0 in R"~1 x [b, b+3§]. This is ruled out by (3.5) and
the proof of the lemma is complete. O

Let us now observe that Theorem 2 does not hold in general if instead of the
uniform limiting conditions (1.2), we only assume tha’, x,) — +1 asx, — £o00
for eachx’ € R 1,

Consider the equation

Au—cdu+ f)=0 in R? (3.6)
with

u(xy, x2) — +1 asxo — +oo0, pointwise, for allx; € R. 3.7)
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Let us further assume that

M0 inR2 (3.8)
0x2
Herec is a constant parameter arfdis someC*-function. The limits in (3.7) are
only pointwise and are not required to be uniform. Wieea 0, it follows from the
result of Ghoussoub and Gui [21] thais a function of one variable only.

This does not hold for (3.6)—(3.8) as sooncag 0. Indeed, Bonnet and Hamel
[14] have constructed, for some particular functipand for some: > 0, a solution
u such that

- - . . T T
u (k) Fuavsalnd’ for all k = (cosp, sing) with — Sa<¢<-s+a

- > . . b4 3
u(1k) S 1 for all k = (cosp, sing) with — Sta<g<—o —a
for each angler € (0, 7/2]. Such a solution cannot have one-dimensional symmetry
(with level sets being parallel lines). This problem arises in the modelling of Bunsen
burner flames (see [14] and [22] for detalls).
Therefore, from this example we learn that for some functifns), De Giorgi's

conjecture cannot be extended to elliptic operators with nonzero first-order terms,
even in dimension 2.

3.2. Nonconstant coefficientOur goal in this section is to prove Theorem 3.
More precisely, we prove that for an equation of the type (1.12)

Au~+b(x1) 0y u —cdu+ f(u) =0 in R?

together with the limiting conditions (1.2), there exist both a solution depending on
only x> and infinitely many nonplanar solutions, that is, solutions whose level sets
are not parallel lines.

The construction is somewhat involved and technical. It first relies on the choice
of special types of functions(x1) and f. Next we construct a family of nonplanar
solutions of (1.12), (1.2) that are between suitably chosen sub- and supersolutions.

Let us first state the type éfand f we consider. We choose a continuous function
x1 — b(x1) such that for somé € R and g > 0, the function

X1 v
x (x1) = /g e~ JoP6)ds gy verifies x (£00) = % xo. (3.9)

A constant functionb(x1) = bg does not fulfill this condition. In contrast, all the
functions of the type(x1) = atanhys + 8 (with o > |8]) or of the typeb(x1) =
ax1+ B (with @ > 0 andg € R) fulfill this condition.

The functionf is chosen so as to satisfy the following conditions:

fecl(-11y,  fEDH =0, (3.10)
39 € (-1,1) suchthatf <0 in[—1,6], f>=0 in[6,1], (3.11)
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and either
1
f <0 in[-1,0], f>0 1in(,1), / f(s)ds >0, (3.12)
-1
or
1
f <0 in(=10), f>0 in[6,1], / f(s)ds <0, (3.13)
-1
or
f<0 in(=10), f>0 in@®,1. (3.14)
Furthermore, assume thatffis positive somewhere i1, 1], then
inf "w)y= (1) <0, 3.15
{f(v)>0}f() @ (3.15)
and that if f is negative somewhere [r-1, 1], then
inf _ f'(v)=f'(-1) <O. 3.16
{f(u)<0}f ) =f(-D< (3.16)

On the one hand, condition (3.12) includes the case wlidras an ignition tem-
perature profile f =0in[—1,0]and f > 0in (6, 1)). On the other hand, case (3.14)
corresponds to the so-called bistable profile.

From [19], [23], there exist a unique realhose sign is that of_llf(s)ds, and
a functionz(x2) solving the one-dimensional problem:

{z —cZ+f(z)=0 inR, (3.17)
z(+o0) = £1.

The solutionz of (3.17) is unique up to translations and is increasing. Furthermore,
it has the following asymptotic behaviour as— +oo (see [5], [13], [19]):

— —1+C )»xg_,r_ Axo

2x2) ) e —oo, (3.18)
7/ (x2) = Chre**2 —i—o(e)‘x?)

= 1— CeMx2 —px2
) =1=Ce2toe™®) vy — too. (3.19)

¢/ (xg) = Cpae 2 4 o(e™2)

where
JZ—4f(0 V241 -

A= ¢’ n= % (3_20)

andcC, C are two positive constants. Under the assumptions (3.12)—(3.16), we can see
thatA andu are always positive.
Theorem 3 is a consequence of the following proposition.
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ProrosiTION 3.2 Under the previous assumptions, for ang (—1, 1), there exist
functionsy *(x1) and v~ (x1) such that

i) v=<y™

(i) the functioniz, (x1, x2) = z(x2+ ¥ " (x1)) is a supersolution of (1.12), and the
functionu , (x1, x2) = z(x2+ ¥~ (x1)) is a subsolution of (1.12);

(i) v andy~ are increasing itz > 0 and decreasing i < 0, and ifa = 0, then
Yyt =y~ =0;

(iv) ¥ (=00) =y~ (—o0) e R and ¢t (+00) =y~ (4+00) € R;

(v) I_ =1_(a) := y*(—o0) is decreasing with respect o, andl, = I (a) :=
¥+ (+00) is increasing.

Remark 3.3. Since the function is increasing, assertion (i) implies that
u,(x1,x2) <Tg(x1,x2) forall (x1,x2) € R?,

Remark 3.4. In the case wher¢ is positive somewhere, we can show that Propo-
sition 3.2 is still true if assumption (3.15) is replaced wijth1l) < 0. To this end,
we approximatef in L ([—1, 1]) norm by a sequence of functions satisfying (3.15).
In the case wher¢ is negative somewhere, Proposition 3.2 is also true if (3.16) is
replaced withf’(—1) < 0.

Postponing the proof of this proposition, let us first state two preliminary lemmas
and conclude the proof of Theorem 3.

Lemma 3.5 If a functionu(x1, x2) is such that, < u <u, witha 3 0O, thenu is
not a function of only,. Moreover, it is not a planar function (i.e., a function whose
level sets are parallel lines).

Proof. First assume that there exists a function— v(x2) such thatu(x1, x2) =
v(x2) for all (x1, x2) € R2. By the definitions of:, andu,, we have

Z(x2+ ¥~ (x1) <v(x2) < z(x2+ ¥ T (xp) forall (xq,x2) € R2.

Chooser, = 0 and take the limits; — Fo0. By Proposition 3.2(iv), it then follows
thatv(0) = z(I_) = z(l). Sincez is increasing, we find thdt. =/, . This is ruled
out by (iii).

Assume now that there exist a functior> v(¢) and two realsx and 8 such that
u(x1, x2) = v(ax1+ Bxz) for all (x1, x2) € R2. Then

Z(x2 ¥~ (x1) < vlaxi+Bx2) < z(xa+ ¥ (xp) forall (xq,x2) € R2.

From what precedes, only the case: 0 remains to be treated. Now choage= y x2,
wherey = —8/a. We have

Z(x2+ ¥~ (yx2) <v(0) <z(x2+v¥ T (yx2)) forallxz € R.

Since the functiong * are bounded ang(+o0c) = +1, the limits asc; — +oo imply
thatv(0) = —1 andv(0) = 1. This is impossible. O
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LemMma 3.6, If two functionsu(x1, x2) and v(x1, x2) are such that, <« and
U, > v witha # b, thenu # v.

Proof. Assume thakt = v and writeu, andu,, asu,(x1,x2) = z(x2+ ¥ (x1))
andu,, (x1,x2) = z(x2+ ¥, (x1)). We then have

z(x2+, (x1) < u(x1,x2) = v(x1,x2) < z(x2+ ¥, (x1)) for all (x1,x2) € R2.
Therefore, since is increasing, it follows that
¥, (x1) <y (x1) forallxp e R.

By taking the limit asx; — —oo, we find that/_(b) < I_(a). By (v), this implies
thata < b. Similarly, the limit asx; — +oc yields thata > b. Eventually,a = b.
This is in contradiction with the assumptian# b, and the proof of the lemma is
complete. O

Proof of Theorem 3.Choose any: € (—1, 1) and, under the notation of Proposi-
tion 3.2, consider the functiong™, v~ andu,, u,. By Remark 3.3, we know that
u, <u,. Sinceu, andu, are respectively sub- and supersolutions for (1.12), there
then exists a solution, of (1.12) such thak, < u, <u,; that is,

2(x24+ ¥~ (1) < ua(x1,x2) < z(x2+¥F(x1)) forall (x,x2) € R?.

Due to (iv), the functiong+ andy, ~ are bounded. As a consequence, the funatjon
still satisfies the uniform limiting conditions (1.2). Therefore, for each (-1, 1),
there exists a solution, of (1.12), (1.2). Ifa = 0, we simply have:g = z.

By Lemma 3.5, the functiom, is not planar ifa # 0. By Lemma 3.6, we have
ug # up if a # b. Hence, (1.12) together with the limiting conditions (1.2) has a family
of solutionsu, parametrized by € (—1, 1) that are different from one another and
are not planar four # 0. O

Let us now turn to the proof of Proposition 3.2.

Proof of Proposition 3.2. Choose a reat € (—1,1). By definition, the function
x (x1) is increasing; it then satisfiég (x1)| < xo for all x1 € R. We can then consider
the functions

V=1, (x1) = —Eln <1_aX(x1)>,
® X0

w-i— :1//+(x1) — :_Lln (1—0[X(xl))—|—‘3,
¢ A X0
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where the positive real numbexsand . have been defined in (3.20) and where

A
=0y = tanh(— —tanh‘l(a)) €(-1,1),
W

1
B=Ba=

= ——In(1+a)—:—L|n(1+04)~
P X

Proof of (iii). If a =0, the conclusion is obvious. Take naw- 0. We have

a x'(x1)

— == >0 forallx;eR
mxo 1—a(x(x1)/xo0)

W) (x) =
sincea, 1, andyg are positive and the function is increasing. As far as the function
¥ is concerned, we have

ey @ X))
¥ (x) Axo 1—a(x (x1)/x0)

Like a, u, and xo, the real numbek is positive. Thereforey is negative ands ™ is
increasing.
The case: < 0 can be treated similarly.

for all x1 € R.

Proof of (iv). The proof is straightforward owing to the definitionsyt and to
the fact thaty (£00) = £ xo.

Proof of (v). We havel_(a) = —(1/u)In(1+a) andl(a) = —(1/p)In(1—a).
Sincepu is positive, this yields (v).

Proof of (i). The caser = 0 is obvious. Now choose # 0 and define
v(x1) =¥ () — ¥ (x0).

Part (iv) says that(+o00) = 0. To prove thab is nonnegative iR, it is then sufficient
to show thatv’(x1) is positive in an interval of the typé—oco, y) and negative in
(v, +00). A straightforward calculation leads to

v (x1) = A(x1)B(x7) forallx; e R,

where
! 1 1
Ay = XD ~0 forallx;eR,
Arxo 1—a(x(x1)/x0) 1—a(x (x1)/x0)
and where

x (x1)

B(x1) = —(ar+ap)+ac(r+pn) for all x1 € R.
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The product:«x is always negative whatever the sigmahay be. Moreover, remember
that andu are positive and that is increasing. Hence the functidhis (strictly)
decreasing. 1B did not change sign, thenwould be monotone and then identically
zero. That would yield’ = 0 andB = 0. The latter is impossible sina@is decreas-
ing. Hence the functio® changes sign. Since it is decreasing, there exists greal
such thatB(x1) > 0 in (—oo, y) andB(x1) < 0 in (y, +00). The conclusion follows.

Proof of (ii). Choosez € (—1, 1) and consider the function
U, ()C]_, X2) = Z(XZ + 1/’_ (X]_)).

Owing to its definition, it is easy to check that the functignr= v~ is a solution of
the following ordinary differential equation:

wp'? =" —b(xpy’ =0. (3.21)
Setl (u) := Au+b(x1)dx,u —cdy,u+ f (). We have

Tu,) = (1492 + (—c+v" +by") I + f2)

=(1+ WZ) (cZ = f(2) +(—c+/M///2)z’+ f(z) by (3.17) and(3.21)
2y

=92 @)+ u+oyv'’z

= _(fZ(/Z) +—flil)>1//2z’ sinceu®+cu+ f'(1) = 0.

We now claim that

fz») @
+
Z(y) 7

Indeed, first the functiom(y) = f(z(y))/z’(y) satisfies

<0 forallyeR. (3.22)

v = vz—cv—i—f/(z).

If the supremum ob were reached at a poiate R, then

@0 _ o CEVEHE®)

Z/(b) 2

Owing to (3.10) and (3.11), we always hay&1) < 0. Therefore, iff (z(b)) <0,
thenv(y) < v(b) <0 for all y € R and the claim (3.22) follows.

Let us now consider the case wheféz(b)) > 0. By the definition ofu and by
(3.15), it follows that

cHV/EATD _ D

v(b) < > "
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Moreover, limsup_, _,,v(y) < 0 owing to (3.11) and(—oc) = —1. On the other
hand,y(+00) =— f'(1)/u > 0by (3.19). Consequently, we have gup< — f'(1)/u.
This yields (3.22).

This implies that/ (x,) >0 in R2, that is,u, is a subsolution of (1.12).

Similarly, we can show that the functiafy is a supersolution of (1.12). The proof
of Proposition 3.2 is complete. O

Remark 3.7. This counterexample shows that there are infinitely many nonplanar
solutionsy, to (1.12). We can see that for amy£ 0, these solutions are not symmetric
with respect to any vertical axisis = b}. In fact, we conjecture thatg = z is the
unigue solution that is symmetric with respect to a vertical axis.

For an equation of the type (1.12),

Au+b(x1)dy,u —cdgu+ f(u) =0 inR?,

and for some functiong, as we said earlier, there are nonplanar solutions it
andc # 0 satisfyingu(x’, x,,) — +1 asx, — oo for eachx’ € R*~1.

If uniform limits (1.2) are satisfied, then we know from Theorem 2 that any solu-
tion u has one-dimensional symmetry whenebes constant. Nevertheless, Theo-
rem 3 shows that this symmetry property does not hold for some nonconstant and yet
bounded functiong and some functiong. More precisely, the nonplanar solutions
u, of (1.12) we have constructed are such that, say; fer0,

2 (x2) == z(x2+1-) <u(xy,x2) < z4(x2) :=z(x2+1y)
and

u(xy,x2) — =+1 uniformly inxq,

Xp— %00 (323)
u(x1, x2) m z+(x2),

wherel_ < I andzy are solutions of (3.17). The profile of a function safisfying
these properties is drawn in Figure 1.

Recently, similar results have been proved for different equations by Alessio,
Jeanjean, and Montecchiari [2] and Alama, Bronsard, and Gui [1]. Alessio, Jeanjean,
and Montecchiari, with methods based on Hamiltonian systems, have proved the
existence of nonplanar functiongx1, x2) satisfying the same kind of limits as in
(3.23) and solving the equation

—Au+a(x)W @) =0 inR?

for some functionsi(x2) that are positive and periodic. Helg is a multiple well
potential. Alama, Bronsard, and Gui [1], with energy methods, have proved the
existence of nonplanar solutiodis = (u1, u2) for a system of two equations of the
type

—AU+VW (U)=0,  x=(x1,x2) € R?
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FiGure 1. Profile of a functionu(x1, x2) satisfying (3.23)

satisfying asymptotic limiting conditions ag, x — oo similar to (3.23). There
W : R? — R is also a multiple well potential.

Let us now consider De Giorgi’s nonlinearif(x) = u — u°. It satisfies the con-
ditions (3.10), (3.11), (3.14), (3.15), and (3.16). Furthermg?ﬂg,f(s)ds =0. The
unigue speed that is a solution of (3.17) is then equal to zero. Now choose a function
b(x1) satisfying (3.9). As a consequence of the preceding results, the bidimensional
equation

Au+b(x1)duu+fu)=0 inR? (3.24)

together with the uniform limiting conditions (1.2), admits both a planar solution and
infinitely many nonplanar solutions. The same result obviously holds in any dimension
n > 2 by considering the same equation (3.24Rthand choosing special solutions

of the typev(xs,..., x,) = u(x1,x2). As a conclusion, in any dimension> 2 and

even if uniform limits (1.2) are required, De Giorgi's conjecture cannot be extended
for a class of nonconstant functiomsxi) (including some bounded functions) to
equations of the type (3.24) involving the additional first-order téfm)dy, u.

4. Half-space case.Let L andg satisfy the assumptions of Theorem 4, and let
u € C(R}) be a solution of (1.15), (1.16). As in the proofs of Theorems 1 and 2, we
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prove thatu is increasing in any direction = (v1, ..., v,) such that, > 0. For any
t > 0, we define the function’ in {x, > —tv,} by u’ (x) = u(x +tv).
As we did in (3.1), we have, for army> 0,

Lu'+g(xp,u") <0 infx, > —rv,) DR (4.1)

Owing to (1.16), there exists a real > 0 such thatu(x’,x,) > 1—§ for all
x' € R"Yandx, > a. For allt > a/v,, the functionu’ is then such that

u'(x',xp) =18 for all x’ € R"~! andx, > 0,
u'(x',0)>0=u(x',0) forallx’ e R* 1

As we did in the proof of Theorem 2, using especially Lemma 3.1, it then follows
thatu’ > u in R,

Let us now decreaseWe claim that” > u in R” forallz > 0. Definer =inf{r >
0, u* >uin R’} }. By continuity, we see that®™ > u in [R_’jr = {x, > 0}. Let us now
argue by contradiction and suppose that 0. Two cases may occur.

Case 1. Suppose that
inf - w"—u)>0.
R"=1x[0,a]
In this case, as in the proof of Theorem 1, there would exist angeal (O, t) such
thatu’ > u in R’ for all r € [z —no, z]. This would be in contradiction with the
minimality of .

Case 2. Suppose that
inf - W —u)=0.
R7=1x[0,a]
Then there exists a sequen@é);cn € R* 1 x [0, a] such thate® (x*) —u(x¥) — 0
ask — oo. Up to extraction of a subsequence, two subcases may occur.

Subcase 2.1.Suppose thazt;C — X, € (0,a] ask — oo. This subcase is ruled out
as Case 2 in the proof of Theorem 2.

More precisely, the functions; (x', x,,) = u(x’—}—x/k,x,,) then approach locally in
R’ a functionu, solving

Luco+g(xn, Uso) = 0 in [RflF

The functionu, satisfiesLu’, + g(x,,ul,) <0 in R’.. Furthermoreu’, > u in
R’ andu (0,X,) = ux(0,X,). From the strong maximum principle, it then follows
thatul, = u in R. The functionu is then periodic with respect to the vector
E=1v.

From elliptic regularity theory, the functiom is globally Lipschitz-continuous in
R_’jr. Sinceu satisfies (1.16) and since thg¢ are obtained fronx by shifting it with
respect to the’-variables, it follows that the function,, satisfies (1.16) as well.
Hence, sincé&, > 0, it cannot be -periodic.
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Subcase 2.2.Suppose that* — 0 ask — oco. Sincex = 0 on {x, = 0} andu is
globally Lipschitz-continuous iffx, > 0}, it then follows that

u(xk—i—rv) —>0 ask — oo.

Setuy(x) = u(x +x%). This function is defined itix,, > —x,’,‘} D {x, > 0}. By stan-
dard elliptic estimates, up to extraction of a subsequence, the (nonnegative) functions
uy approach locally iffx, > 0} a functionu, > 0 ask — oco. We haveu(tv) = 0.

Furthermore, as we did in (3.1) or (4.1) and sinfe> 0, we have
Luk(x)—i—g(xn,uk(x)) <0 forallx’eR*™?! and x,> —x,li.
As a consequence, for all € R"~1 andx, > —x,’l‘, we have
Luj(x)+ g(xn, ug (x)) — g(x,,0) < —g(x,,0) <0 by (1.13) and (1.14)
Finally, there exists then a bounded functigm) such that
Lugo+cuice <0 inRY = {x, > 0}.

Sinceu is nonnegative and vanishes at the interior painte R”, the strong
maximum principle implies thak,, = 0 in R’,. Recalling that 0< xk < a, we
see that the function, is such thato(x’, x,) — 1 asx, — +oo (uniformly in
x’ € R"~1). So Subcase 2.2 is also ruled out.

Consequentlyy = 0, and as in the proof of Theorem 1, the functiotihen depends
only onx, and solves (1.17).

Lastly, if u(x,) andv(x,) are two solutions of (1.17), then the previous proof
implies that we simultaneously hawe> v andv > u. As a conclusion, the solution
u of (1.15), (1.16) is unique, and the proof of Theorem 4 is complete.
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