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Abstract

In this work, we study the thermoelastic properties of an isotropic and homogeneous one dimensional semi-infinite elastic

medium subjected to a laser short-pulse heating of time exponentially decaying pulse type in the light of the new theory

of fractional order strain thermoelasticity. The solution for temperature, stress and strain distribution functions has been ob-

tained in the Laplace domain. To obtain the different inverse field functions numerically we used a complex inversion formula

of Laplace transform based on a Fourier expansion. The effects of different parameters; namely; the pulse intensity, time,

fractional order and relaxation time on the thermodynamical temperature, stress and on the strain distribution, are presented

graphically.
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1 Introduction

Fourier heat conduction equation is not able to explain the

correct rise in temperature in the irradiated regions of metal-

lic surfaces due to short-pulse laser heating and assump-

tion of infinite speed. These anomalies are overcome while

considering the hyperbolic heat equation, since its analyt-

ical solution help in assessing the thermal response of the

irradiated surface. Many research works have been under-

taken in this area and the approximate solution of hyper-

bolic heat conduction equation due to mode locked pulses

was reported by Hector et al.[1]. They proved the failure

of classical Fourier heat equation in predicting the result-

ing temperature distribution in substrate material. Later

Lin et al. [2] discussed the unsteady form of a unified

heat conduction equation and formulated non-dimensional

hyperbolic conduction equation and obtained the solution

using separation of variables. Subsequently, Duhamel [3]

gave the finite integral transform method to analyze the

wave model of conduction. The results obtained by this

method were similar to those of solving hyperbolic con-

duction equation using standard methods. Ali and Hany

[4] derived directly the hyperbolic heat conduction equa-

tion from the relativity theory which was a direct conse-

quence of space time duality without any consideration of

microstructure of the heat conduction medium, which ex-

plained the relativistic heat conduction incorporating the

wave nature of heat transfer. Wang [5] found the solu-

tion structure of hyperbolic heat conduction equation and

reported the impact of both initial temperature distribution

and the source disturbance in the temperature field in those

equations. Ottoman [6] introduced the method of direct in-

tegration by means of the matrix exponential in the field of

generalized thermoelasticity with two relaxation times to

study the problem of a thick plate subjected to heating on

the upper and lower surfaces of the plate varying exponen-

tially with time. Further, Orodnez-Miranda and Alvarado-

Gil [7] investigated the thermal wave oscillations and ther-

mal relaxation time in a hyperbolic heat transport model

by showing that the frequency range of strong oscillations

in temperature when the thermal relaxation time of finite

layer was close to its thermalization time. Christov [8] in-

troduced the Maxwell Cattaneo finite speed heat conduc-

tion. The material-invariant version of the Maxwell Cat-

taneo law was proposed in which the relaxation rate of the

heat flux was given by Oldroyds upper-converted deriva-

tive [9]. The approximate solution of the hyperbolic heat

conduction equation was obtained by Yilbas and Pakdemir

[10] by using the perturbation method and reported that the

temperature was limited to certain range of time and space

variables. Later, Al-Theeb and Yilbas [11] gave the closed

form solution for the hyperbolic heat equation by reduc-

ing the hyperbolic equation from the electron kinetic the-

ory approach. Al-Qahtani and Yilbas [12] also obtained

the closed form solutions for thermal stress fields for the

short heating duration and explained the wave nature of the

stress behaviour. The earlier analytical solutions of hyper-

bolic heat conduction equation had limitations due to space
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and time domains owing to the technique used in perturba-

tion method [10]. For instance, Ready [13] gave the analyt-

ical solution for constant intensity laser pulse heating while

Blackwell [14] presented the closed-form solution for tem-

perature field considering a convective boundary at the sur-

face. Later, analytical solutions for temperature rise due to

laser pulses similar to those used in real life laser heating

was given by Yilbas [15] and Yilbas and Kalyon [16].

The above solutions were just based on solid heating and

not on surface evaporation due to the complexity of its na-

ture. Lu [17] analyzed the effect at the work piece sur-

face by a laser beam with Gaussian intensity. He investi-

gated the square-shaped temperature distribution there on

but the phase change process was omitted. Modest and

Abaikans[18] omitted the absorption of the laser beam and

phase changes in the semi-infinite work piece during the

process of heating. They analyzed analytically the rise in

temperature in a moving semi-infinite substrate material

due to conduction of heat from the laser. Shi et al.[19]

studied the laser heating and phase change process and in-

ferred that the rise in temperature and the rate of melting

of surface is proportional to laser power intensity. Moro-

zov et al. [20] presented an analytical model for inverse

pulse laser heating. They predicted the thickness of molten

material and compared their results with the experimental

results and the comparison was satisfactory. Later, Gurasov

and Smurov [21] studied the laser vapor plume interac-

tion by proposing a model under estimated amount of en-

ergy absorbed by the ablated surface. Yilbas and Kalyon

[16] introduced a closed form solution for laser evapora-

tive heating process for pulses varying exponentially and

introduced an expression for the evaporation front velocity

in their analysis. The above analysis gave good results with

experimental findings using the temporal variations of laser

pulse being limited with exponential form.

Recently, Othman et al [22]-[25] studied the behavior of

a thermoelastic , linear isotropic medium with voids sub-

jected to laser pulse heating in the presence of different pa-

rameters; such as, the magnetic field, initial stress, time,

rotation and gravity. Their studies were made in the con-

text of G-N theory of types II and III. They found that these

parameters are of great influence on the behavior of the

physical quantities; temperature, stress and the component

of displacement. They also reported that the amplitudes

of these physical quantities depend strongly on the initial

stress and rotation. They also deduced that the nature of

the applied forces and the type of thermal loading have

great effects on the distribution of these physical quantities.

They carried out comparison between their studies and dif-

ferent theories of thermoelasticity, such as, Lord and Shul-

man theory and Chandrasekharaiah and Tzou model.

It is found that there are two types of common pulse shapes

which depend mainly on the type and operation of the laser

used; it may be in the form of step input pulses or time

exponential decaying pulses. The mathematical analysis,

therefore, will depend on the appropriate pulse type under

consideration.

In recent times, fractional calculus has been proved useful
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in improving various models of physical process including

those of polymer materials. The fractional order differen-

tial operator is non-local , this leads to the dependency of

the current state of system to its previous state. Various

definitions and applications of fractional derivatives, have

been studied by many researchers [26]-[39]. The famous

Riemann-Liouville definition of derivative of fractional or-

der β ∈ (n−1, n) of the function f(t) ; plays an important

role in the theory of fractional derivatives and integrals, de-

fined as follows [26]:

RLD
β
t f(t) =

dn

dtn
[

1

Γ (n− β)

∫ t

0

(t− τ)n−β−1f(τ)dτ ]

n− 1 < β < n

(1)

Another definition was proposed by Caputo [27]:

CD
β
t f(t) =

1

Γ(n− β)

t
∫

0

(t− τ)n−β−1 d
nf(τ)

dτn
dτ

n− 1 < β < n

(2)

where Γ (β) is the Gamma function. There are two major

advantages of Caputo’s definition; the first one is the initial

conditions required when using the fractional differential

operator. In case of Caputo fractional differentiation op-

erator standard initial conditions in terms of integer order

derivatives are required, whereas in Riemann - Liouville

definition initial conditions of fractional derivatives are re-

quired. The second difference which is most impressing in

conformities between the two operators is the differentia-

tion of the constant function. According to Caputo’s defi-

nition it holds:

CD
β
t c = 0, c = constant (3)

whereas according to the definition of Riemann-Liouville

it holds:

RLD
β
t c =

c

Γ (1− β)
t−β 6= 0, c = constant (4)

However, if f(0) = 0 then, the fractional derivative defined

by Caputos and Riemann - Liouville is the same as [28].

The case 0 < β < 1 represents the weak diffusion, while

β = 1 represents normal diffusion, 1 < β < 2 is strong

diffusion whereas β = 2 represents the ballistic diffusion.

Povestenko [26] and [29] studied the thermal stress the-

ories using state space time telegraphic equation. Ezzat

and Karamany [30] gave a new model using expansion of

time given by Taylors fractional order expansion. Using the

linear fractional order two temperature theory, they anal-

ysed anisotropic elastic non-homogeneous solid. They also

build a new electro-thermo-elasticity model with references

to the fractional order with heat conduction. By consid-

ering derivatives of order 0 < β ≤ 2, Sherief et al [31]

derived the following heat conduction equation:

qi + τo
∂qi
∂tβ

= −κ ∂T

∂t
0 < β ≤ 2 (5)

where κ is the thermal diffusivity coefficient.

Youssef [32] introduced a new form of the heat conduction

law as follows:

qi + τo q̇ = −κ Iβ−1Ti 0 < β ≤ 2 (6)
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and proved the uniqueness of the solution in this case.

Considerable research studies and different contributions

of the fractional order approaches have been carried out by

Bassiouny and Zeinab [33], Bassiouny and Sabry [34], Oth-

man et al [35]-[36] and many other authors [37]-[40].

Within the framework of the new theory of generalized

thermo-elasticity with fractional order strain equation given

by Youssef [39]; we investigate in the present study, the

thermoelastic properties of an isotropic and homogeneous

one dimensional semi-infinite elastic medium subjected to

a laser short-pulse heating of time conduction exponen-

tially decaying pulses type. Based on the definition intro-

duced by Podlubny [38] given by:

Dβ
t f(t) =

1

Γ(1− β)

t
∫

0

f ′(τ)

(t− τ)β
dτ, β > 0 (7)

the solution of the thermodynamic temperature , stress and

strain distribution functions are obtained in the domain of

Laplace transform and are presented graphically. Discus-

sions are also made in the light of the new theory of gener-

alized thermoelasticity with fractional order strain equation

given by Youssef [39].

2 One Dimensional Formulation

In industrial applications of laser, in general, the size of

the laser spot at the work piece is small and the absorption

depth of the work piece is considerably smaller than the

thickness of the work piece. Consequently, one-dimensional

heating situation may become appropriate to formulate the

heating problem [41]. For this we consider a half-space

(x ≥ 0) with the x-axis pointing into the medium with

initial temperature distribution T0. This half-space is ir-

radiated uniformly the bounding plane (x = 0) with non-

Gaussian laser pulse. We assume that there are no body

forces affecting the medium and all the state functions ini-

tially are equal to zero. The generalized thermoelastic gov-

erning differential equations, in the absence of body force,

inner heat sources and free charge can be found in Youssef

[39]. For the present one dimensional model, it is conve-

nient to assume the following form of the displacement:

ux = u (x, t) , uy = uz = 0 (8)

where ux is the component of the displacement vector and

the following one dimensional linearized system of equa-

tions given by:

The heat equation:

K (
∂2θ(x, t)

∂x2
) = (

∂

∂t
+ τo

∂2

∂t2
)(ρCE θ(x, t)+

Toγ(1 + τβDβ
t )e(x, t))− (1 + τo

∂

∂t
)I1δe

−(Ωt+δx)

(9)

where K is the thermal conductivity, τo is the relaxation

time, ρ is the density, CE is the specific heat at constant

stain, T0 is the reference temperature, γ = αT (3λ + 2µ),

αT is the thermal linear expansion coefficient, θ = T − T0

is the temperature increment such that θ/T0 ≪ 1, I1 is the

power intensity , δ is the absorption coefficient, Ω is pulse

parameter and e is the cubic dilatation.
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Equation of motion:

ρ
∂2e(x, t)

∂t2
= (λ+ 2µ) (1+τβDβ

t )
∂2e(x, t)

∂x2
−γ ∂

2θ(x, t)

∂x2

(10)

and the constitutive equation can be written in the form:

σ(x, t) = (1 + τβDβ
t )(λ+ 2µ)e(x, t)− γθ(x, t) (11)

and

e(x, t) =
∂u(x, t)

∂x
(12)

where λ, µ are Lamé constants and σ is the principal stress

component.

The medium is traction free and it is subjected to the fol-

lowing boundary conditions at the near end x = 0 :

θ(0, t) = 0, σ(0, t) = 0, (13)

and it satisfies the following conditions at x = ∞

θ(∞, t) = 0, , σ(∞, t) = 0, 0 < t <∞ (14)

The medium is assumed to be initially at rest and has

reference temperature T0 so that the initial conditions be-

come:

θ(x, 0) = 0, e(x, 0) = 0, σ(x, 0) = 0,

∂θ(x, 0)/∂t = 0, ∂e(x, 0)/∂t = 0, ∂σ(x, 0)/∂t = 0

(15)

It is convenient now to introduce the following dimen-

sionless variables Youssef [39]

u′ = coηu, t
′ = c2oηt, η =

ρCE

κ
, σ′ =

σ

λ+ 2µ
,

t′o = c2oηto, θ′ =
γ θ

λ+ 2µ
, x′o = coηx,

c2o =
λ+ 2µ

ρ
, Ω′ = Ω/c2oη, τ

′ = c2oητ,

τ ′o = c2oητo, τ
′β = c2oητ

β , δ′ = δ/coδη

(16)

where co is the longitudinal wave speed and η is the ther-

mal viscosity.

Using equations (16) after dropping the primes for conve-

nience,into the equations (9) and (10) lead to:

∂2θ(x, t)

∂x2
= [

∂

∂t
+ τ0

∂2

∂t2
](θ(x, t) +

ε1ξ(1 + τβDβ
t )e(x, t))− ε2I1δe

−(Ωt+δx)

(17)

∂2e(x, t)

∂t2
= (1 + τβDβ

t )
∂2e(x, t)

∂x2
− ω

∂2θ(x, t)

∂x2
(18)

while the constitutive equations (11) and (12) become:

σ(x, t) = (1 + τβDβ
t )e(x, t)− ωθ(x, t) (19)

and

e(x, t) =
∂u(x, t)

∂x
(20)

where ε2 = I1δ(1−τoΩ)
coηK

, ξ = γ
ρCE

, ω = γ To

λ+2µ ,

ε1 = γ2K
̺CE(λ+2µ) and ε2 = I1δ(1−τoΩ)

coηK
are non dimen-

sional constants.

Using the definition of Laplace transform

L{f(t)} =

∞
∫

0

e−stf(t)dt (21)

6
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with the Laplace transform for the fractional order deriva-

tive according to Podlubny [38]:

L{CDβ
t f(t)} = s(β −n)L{f (n)(t)} (22)

where s denotes the complex parameter related to Laplace

transform. Following Youssef [39], we apply the transfor-

mations (21) and (22) to the of equations (17) - (20), we get

the following generalized thermoelasticity system of equa-

tions based on the fractional order strain equation of gen-

eralized thermoelasticity [39]: the heat equation takes the

following form:

∂2θ(x, s)

∂x2
= s(sτo + 1)[(ε1ξ(τ

βsβ + 1) e(x, s) +

θ(x, s)]− εe−δx

(23)

and the transformed equation of motion assumes the form;

∂2e(x, s)

∂x2
=

s2e(x, s)

(1 + sβτβ)
+

(1 + s)ω

(1 + sβτβ)

∂2θ(x, s)

∂x2
(24)

while the transformed constitutive equations take the form;

σ(x, s) = (1 + sβτβ) e(x, s)− ω (1 + s)θ(x, s) (25)

e(x, s) =
∂u (x, s)

∂x
(26)

Combining equations (24) and (25) gives:

∂2σ(x, s)

∂x2
= s2e(x, s) (27)

where ε = ε2
s+Ω .

3 Solution in the Laplace Domain

Eliminating e between the equations (23) and (24), we get

the following fourth order equation;

ce−δx + bθ − a
∂2θ

∂x2
+
∂4θ

∂x4
= 0 (28)

where

a =
s2

l2
− L, b =

l1s
3

l2
, c =

ε(l2δ
2 − s2)

(s+Ω)l2
(29)

The most general solution of equation (28) is of the form:

θ(x, s) =

2
∑

i=1

θie
−kix + ψe−δx (30)

where ψ = −c/(b − aδ2 + δ4) and ±k1,±k2 are the

roots of the characteristic equation:

b− ak2 + k4 = 0 (31)

It is worth mentioning that the roots of the characteristic

equation (28) are functions of s and given by:

k1 = ±(

√

a+
√

a2 − 4b)/
√
2,

k2 = ±(

√

a−
√

a2 − 4b)/
√
2

(32)

Hence the most general solution of the equations (23) and

(24) take the following forms:

e =

2
∑

i=1

θie
−kix(k2i − l1) + f1(s)e

−δx (33)

σ =

2
∑

i=1

θie
−kix(k2i − L) + f2(s)e

−δx (34)
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4 Determination of the Parameters:

Using the dimensionless variables (16) and applying the

Laplace transform to the boundary and initial conditions (13), (14)

and (15) respectively yield: the boundary conditions in Laplace

domain:

θ(0, s) = 0, σ(0, s) = 0

θ(∞, s) = 0, σ(∞, s) = 0 (35)

while the initial conditions (15) take the following forms:

θ(x, 0) = 0, e(x, 0) = 0, σ(x, 0) = 0 (36)

Using these conditions, the parameters L, θi and fi(s), i =

1, 2 are determined as given below:

θ1 = −θ2 =
ε+ ψ(δ2 − sL)(s+Ω)

(k21 − k22)(s+Ω)
(37)

f1(s) =
1

sε1ξl1l2
[ψ(δ2 − sl1) +

ε

s+Ω
] (38)

f2(s) =
1

sε1ξl1(s+Ω)
[ε+ ψ(δ2 − sL(s+Ω))] (39)

where l1 = 1 + sτo, l2 = 1 + sβτβ and L =

l1(1 + (1 + s)ε1ξω).

Equations (30), (33) and (34) represent the complete solu-

tion in the Laplace transform domain.

5 Numerical Inversion of the Laplace

Transform

To obtain the solutions of the non-dimensional field func-

tions in the domain of Laplace, we compute numerically

the inverse of these field functions by a method based on

Fourier expansion technique. In this technique, the original

function f(t) of the Laplace transform f (s) is approxi-

mated by:

f(t) =
exp(ct)

t1
[
1

2
f (c)+

ℜ(
N
∑

1

f (c+
ikπ

t1
exp(

ikπ

t1
)] 0 < t1 < 2t

(40)

where ℜ is the real part, i is imaginary number unit and

N is a sufficiently large integer representing the number of

terms in the truncated Fourier series chosen such that:

exp(ct)ℜ
[

f (c+
iNπ

t1
) exp(

iNπt

t1
)

]

≤ ǫ1 (41)

where ǫ1 is prescribed small positive number that corre-

sponds to the degree of accuracy required. The parameter c

is a positive free parameter that must be greater than the real

part of all the singularities of f(s) . The optimal choice of

c was obtained according to the criteria described in Honig

and Hirdes [42].

6 Numerical Results and Discussion

For numerical computation, we use the following physical

constants of copper materials extracted from [39]:

k = 386N/Ksec, αT = 1.78(10)5K−1,CE = 383.1m2/K,

η = 8886.73m2/sec, µ = 3.86(10)10N/m2, λ = 7.76(10)10

N/m2, ρ = 8954 kg/m3, τ0 = 0.02 sec, To = 293 K,

8
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ξ = 1.60861, ω = 0.0104, ε1 = 1.618, I1 = 1013.

In all figures the dotted black lines represent the case when

the parameter takes the minimum value; the red dashed

lines represent the case when the parameter takes the max-

imum value and the solid black lines represent the case

when the value of the parameter lie between the minimum

and the maximum value.

We investigate the distributions of the field functions; the

thermodynamic temperature θ, the normal stress compo-

nent σ and the strain distribution e with different values

of the parameters such as the pulse intensity Ω, fractional

order β and time t. The results were presented in three

groups of figures, each group presents the effect of one of

the parameters Ω, β and t. Figures 1 show the dependence

of the field functions; the thermodynamical temperature θ,

the stress σ and the strain e on the impulse intensity Ω.

Figure 1(a) shows that the rise of the temperature is rapid at

the end near to the point of application of heat on the mate-

rial. The increase in the pulse intensity results in decreasing

the amplitude of the temperature. The cooling cycle starts

at x ∼= 0.6 and the temperature decreases as x-coordinates

increases. It is also noticed that the temperature decay is

gradual, on moving away from the point of application of

heat.

Figure 1(b) illustrates that the stress is compressive at the

near end of the medium. As value of x- axis increases,

the stress becomes tensile and then starts to reduce rapidly

at x ∼= 1. The absolute value of the amplitude of the stress

distribution decreases with increasing the impulse intensity.

Gradual decay has been noticed as x- axis increases due to

the internal energy gain from the irradiated field.

Figure 1(c ) shows that the strain distribution resembles the

same behaviour like the stress distribution function but at

x = 0 the magnitude of the strain e 6= 0 and the compo-

nent σ = 0. It is also noticed that as the impulse intensity

increases the magnitude of the strain decreases.

Figures 2 show the effect of the fractional order parameter

β on the field functions; θ, σ and e. Figure 2(a) reflects the

profile of the thermodynamical temperature along x- axis.It

can be seen that the temperature increases rapidly at the

near end and at x ≈ 0.6 it attains its maximum. At x ' 0.6

the temperature starts decreasing rapidly along x - axis and

vanishes at x ∼= 3.5 It can also be seen from figure 2(a)

that the temperature decay inside the material starts grad-

ually, which is associated with internal energy gain from

the irradiated field in the region. We further notice that

next to the surface vicinity the temperature decreases ex-

ponentially and it is towards the far end of the material.

Comparison with figure 1(a) indicates that the temperature

resembles the same behaviour and profile.

Figure 2(b) shows that the absolute value of the magnitude

of the stress component σ decreases as the value of frac-

tional order parameter β increases and it is compressive

through the entire domain.

Figure 2(c) shows that the strain distributions function re-

sembles the same behaviour under the variation of the im-

pulse intensity but it vanishes early at x ∼= 2.0.

Figures 3 illustrate the variation of different distribu-
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tion field functions with different value of time. Figure

3(a) shows that the magnitude of temperature increases as

the time t increases resembling similar behaviour as in fig-

ure1(a) and not like in figure2(a). As the absorbed power

equals the conducted one inside the material the tempera-

ture attains its maximum value at x ∼= 0.6 and the cooling

cycle starts beyond this point.

It is also noticed that the temperature initially increases

with increasing the value of the time near the heated end.

This may be due to the increased absorbed energy which

over compensates the heat loss due to the heat conduction

inside the material.

Figure 3(b) illustrates the dependence of the stress dis-

tribution on time. The stress is compressive in the entire

domain because of the diffusional energy transfer from the

surface to the solid bulk which suppresses the internal en-

ergy gain from the irradiated field in the surface region.

Figure 3(c) shows that the absolute value of the ampli-

tude of the strain distribution function increases as the time

increases. The absolute value of the magnitude starts de-

creasing at the point x ∼= 0.45 and vanishes at x = 3.

Conclusions

The effect of the parameters Ω, β and t are studied and it is

noticed that:

All the field functions θ, σ and e are strongly influenced by

the parameters Ω, β and t.

The increase of the value of the parameters Ω and β results

in decreasing the absolute value of the amplitude of these

field functions, but the increase of the parameter t results

in increasing these amplitudes.

The behaviour of the thermally induced stress and strain of

the medium resemble the same behaviour except at x = 0.

The components of the stress and strain attain the equilib-

rium state at the same points with the variation of the pa-

rameters.

The thermodynamical temperature attains its equilibrium

state faster than the stress and strain functions. It attains

the equilibrium state at x = 0.

All figures illustrate that the numerical solution of the field

functions satisfies the boundary conditions.
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