
Open access to the Proceedings of the

27th USENIX Security Symposium

is sponsored by USENIX.

One&Done: A Single-Decryption EM-Based Attack
on OpenSSL’s Constant-Time Blinded RSA

Monjur Alam, Haider Adnan Khan, Moumita Dey, Nishith Sinha, Robert Callan,

Alenka Zajic, and Milos Prvulovic, Georgia Tech

https://www.usenix.org/conference/usenixsecurity18/presentation/alam

This paper is included in the Proceedings of the

27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

ISBN 978-1-939133-04-5

One&Done: A Single-Decryption EM-Based Attack

on OpenSSL’s Constant-Time Blinded RSA

Monjur Alam
Georgia Tech

Haider A. Khan
Georgia Tech

Moumita Dey
Georgia Tech

Nishith Sinha
Georgia Tech

Robert Callan
Georgia Tech

Alenka Zajic
Georgia Tech

Milos Prvulovic
Georgia Tech

Abstract

This paper presents the first side channel attack approach

that, without relying on the cache organization and/or

timing, retrieves the secret exponent from a single de-

cryption on arbitrary ciphertext in a modern (current ver-

sion of OpenSSL) fixed-window constant-time imple-

mentation of RSA. Specifically, the attack recovers the

exponent’s bits during modular exponentiation from ana-

log signals that are unintentionally produced by the pro-

cessor as it executes the constant-time code that con-

structs the value of each “window” in the exponent,

rather than the signals that correspond to squaring/multi-

plication operations and/or cache behavior during multi-

plicand table lookup operations. The approach is demon-

strated using electromagnetic (EM) emanations on two

mobile phones and an embedded system, and after only

one decryption in a fixed-window RSA implementation

it recovers enough bits of the secret exponents to enable

very efficient (within seconds) reconstruction of the full

private RSA key.

Since the value of the ciphertext is irrelevant to our at-

tack, the attack succeeds even when the ciphertext is un-

known and/or when message randomization (blinding) is

used. Our evaluation uses signals obtained by demodu-

lating the signal from a relatively narrow band (40 MHz)

around the processor’s clock frequency (around 1GHz),

which is within the capabilities of compact sub-$1,000

software-defined radio (SDR) receivers.

Finally, we propose a mitigation where the bits of the

exponent are only obtained from an exponent in integer-

sized groups (tens of bits) rather than obtaining them one

bit at a time. This mitigation is effective because it forces

the attacker to attempt recovery of tens of bits from a sin-

gle brief snippet of signal, rather than having a separate

signal snippet for each individual bit. This mitigation

has been submitted to OpenSSL and was merged into its

master source code branch prior to the publication of this

paper.

1 Introduction

Side channel attacks extract sensitive information, such

as cryptographic keys, from signals created by electronic

activity within computing devices as they carry out com-

putation. These signals include electromagnetic emana-

tions created by current flows within the device’s com-

putational and power-delivery circuitry [2, 3, 14, 21, 33,

46], variation in power consumption [9, 12, 15, 17, 23,

26, 34, 35, 36, 41], and also sound [6, 16, 24, 42], tem-

perature [13, 29], and chasis potential variation [23] that

can mostly be attributed to variation in power consump-

tion and its interaction with the system’s power delivery

circuitry. Finally, not all side channel attacks use ana-

log signals: some use faults [11, 25], caches [8, 43, 44],

branch predictors [1], etc.

Most of the research on physical side-channel attacks

has focused on relatively simple devices, such as smart-

cards and simple embedded systems, where the side-

channel signals can be acquired with bandwidth much

higher than the clock rates of the target processor and

other relevant circuitry (e.g. hardware accelerators for

encryption/decryption), and usually with highly intrusive

access to the device, e.g. with small probes placed di-

rectly onto the chip’s package [19, 35]. Recently, at-

tacks on higher-clock-rate devices, such as smartphones

and PCs , have been demonstrated [7, 20, 21, 22]. They

have shown that physical side channel attacks are pos-

sible even when signals are acquired with bandwidth

that is much lower than the (gigahertz-range) clock rates

of the processor, with less-intrusive access to the de-

vice, and even though advanced performance-oriented

features, such as super-scalar (multiple instructions per

cycle) execution and instruction scheduling, and system

software activity, such as interrupts and multiprocessing,

cause significant variation in both shape and timing of

the signal produced during cryptographic activity.

To overcome the problem of low bandwidth and vari-

ation, successful attacks on high-clock-rate systems tend

USENIX Association 27th USENIX Security Symposium 585

to focus on parts of the signal that correspond to activity

that takes many processor cycles. A representative exam-

ple of this is decryption in RSA, which consists of modu-

lar exponentiation of the ciphertext with an exponent that

is derived from the private key. The attacker’s goal is to

recover enough bits of that secret exponent through side-

channel analysis, and use that information to compute the

remaining parts of the secret key. Most of the computa-

tional activity in large-integer modular exponentiation is

devoted to multiplication and squaring operations, where

each squaring (or multiplication) operation operates on

large integers and thus takes many processor cycles.

Prior physical side-channel attacks on RSA rely on

classifying the signals that correspond to large-integer

square and multiply operations that together represent

the vast majority of the computational work when per-

forming large-integer exponentiation [10, 20, 23, 24].

Between these long-lasting square and multiply opera-

tions are the few processor instructions that are needed

to obtain the next bit (or group of bits) of the se-

cret exponent and use that to select whether the next

large-integer operation will be squaring or multiplica-

tion, and/or which operands to supply to that operation.

The focus on long-lasting operations is understandable,

given that side channel attacks ultimately recover infor-

mation by identifying the relevant sub-sequences of sig-

nal samples and assessing which of the possible cate-

gories is the best match for each sub-sequence. The

sub-sequences that correspond to large-integer opera-

tions produce long sub-sequences of samples, so they 1)

are easier to identify in the overall sequence of samples

that corresponds to the entire exponentiation, and 2) pro-

vide enough signal samples for successful classification

even when using relatively low sampling rates.

However, the operands in these large-integer opera-

tions are each very regular in terms of the sequence of

instructions they perform, and the operands used in those

instructions are ciphertext-dependent, so classification of

signals according to exponent-related properties is diffi-

cult unless 1) the sequence of square and multiply oper-

ations is key-dependent or 2) the attacker can control the

ciphertext that will be exponentiated, and chooses the ci-

phertext in a way that produces systematically different

side channel signals for each of the possible exponent-

dependent choices of operands.

1.1 Our Contributions

In this paper we present a side-channel attack that is

based on analysis of signals that correspond to the brief

computation activity that computes the value of each

window during exponentiation, i.e. activity between

large-integer multiplications, in contrast to most prior

work that focuses on the large-integer multiplications

themselves and/or the table lookups that obtain the mul-

tiplicand for the computed window value. The short du-

ration of these window value computations may hinder

signal-based classification to some extent. However, the

values these computations operate on are related to the

individual bits of the secret exponent and not the message

(ciphertext). This absence of message-induced variation

allows the small variation caused by different values of

an individual exponent bit to “stand out” in the signal and

be accurately matched to signals from training. More

importantly, this message-independence makes the new

attack completely immune to existing countermeasures

that focus on thwarting chosen-ciphertext attacks and/or

square/multiply sequence analysis.

The experimental evaluation of our attack approach

was performed on two Android-based mobile phones and

an embedded system board, all with ARM processors op-

erating at high (800 MHz to 1.1 GHz) frequencies, and

the signal is acquired in the 40 MHz band around the

clock frequency, resulting in a sample rate that is <5% of

the processor’s clock frequency, and well within the sig-

nal capture capabilities of compact commercially avail-

able sub-$1,000 software-defined radio (SDR) receivers

such as the Ettus B200-mini. The RSA implementation

we target is the constant-time fixed-window implemen-

tation used in OpenSSL [38] version 1.1.0g, the latest

version of OpenSSL at the time this paper was written.

Our results show that our attack approach correctly re-

covers between 95.7% and 99.6% (depending on the tar-

get system) of the secret exponents’ bits from the sig-

nal that corresponds to a single instance of RSA decryp-

tion, and we further verify that the information from each

instance of RSA encryption/signing in our experiments

was sufficient to quickly (on average <1 second of ex-

ecution time) fully reconstruct the private RSA key that

was used.

To further evaluate our attack approach, we apply it to

a sliding-window implementation of modular exponen-

tiation in OpenSSL – this was the default implementa-

tion in OpenSSL until Percival et al. [39] demonstrated

that its key-dependent square/multiply sequence makes it

vulnerable to side channel attacks. We show that in this

implementation our approach also recovers nearly all of

the secret-exponent bits from a single use (exponentia-

tion) of that secret exponent.

To mitigate the side-channel vulnerability exposed by

our attack approach, we change the window value com-

putation to obtain a full integer’s worth of bits from the

exponent, then mask that value to obtain the window

value, rather than constructing the window value one bit

at a time with large-number Montgomery multiplication

between these one-bit window-value updates. This mit-

igation causes the signal variation during the brief win-

dow computation to depend on tens of bits of the expo-

586 27th USENIX Security Symposium USENIX Association

nent as a group, i.e. the signal variation introduced by

one bit in the exponent during the window computation

is now superimposed to the variation introduced by the

other bits in the group, instead of having each bit’s vari-

ation alone in its own signal snippet. Our experiments

show that this mitigation actually improves exponenti-

ation performance slightly and, more importantly, that

with this mitigation the recovery rate for the exponents

bits becomes equivalent to random guessing. This miti-

gation has been submitted to OpenSSL and was merged

into its master source code branch on May 30th, 2018,

prior to the publication of this paper.

1.2 Threat Model

1.2.1 Assumptions

Our attack model assumes that there is an adversary

who wishes to obtain the secret key used for RSA-based

public-key encryption or authentication. We further as-

sume that the adversary can bring a relatively compact

receiver into close proximity of the system performing

these RSA secret-key operation, for example a smart-

infrastructure or smart-city device which uses public key

infrastructure (PKI) to authenticate itself and secure its

communication over the Internet, and which is located in

a public location, or that the adversary can hide a rela-

tively compact receiver in a location where systems can

be placed in close proximity to it, e.g. under a cellphone

charging station at a public location, under the tabletop

surface in a coffee shop, etc.).

We assume that the adversary can access another de-

vice of the same type as the one being attacked, which

is a highly realistic assumption in most attack scenarios

described above, and perform RSA decryption/authen-

tication with known keys in preparation for the attack.

Unlike many prior attacks on RSA, we do not assume

that the adversary can choose (or even know) the mes-

sage (ciphertext for RSA decryption) to which the pri-

vate key will be applied, and we further assume that the

RSA implementation under attack does utilize blinding

to prevent such chosen-ciphertext attacks. Finally, we as-

sume that it is highly desirable for the attacker to recover

the secret key after only very few uses (ideally only one

use) of that key on the target device. This is a very re-

alistic assumption because PKI is typically used only to

set up a secure connection, typically to establish the au-

thenticity of the communication parties and establish a

symmetric-encryption session key, so in scenarios where

the attacker’s receiver can only be in close proximity to

the target device for a limited time, very few uses of the

private RSA key may be observed.

1.2.2 Targeted Software

The software we target is OpenSSL version 1.1.0g [38],

the latest version of OpenSSL at the time this paper was

written. Its RSA decryption uses constant-time fixed-

window large-number modular exponentiation to miti-

gate both timing-based attacks and attacks that exploit

the exponent-dependent variation in the square-multiply

sequence. The lookup tables used to update the result

at the end of each window are stored in scattered form

to mitigate attacks that examine the cache and memory

behavior when reading these tables, and the RSA imple-

mentation supports blinding (which we turn on in our

experiments) to mitigate chosen-ciphertext attacks.

1.2.3 Targeted Hardware

The hardware we target are two modern Android-based

smartphones and a Linux-based embedded system board,

all with ARM processor clocked at frequencies around

1GHz. In our experiments we place probes very close,

but without physical contact with the (unopened) case of

the phone, while for the embedded system board we po-

sition the probes 20 cm away from the board, so we con-

sider the demonstrated attacks close-proximity but non-

intrusive.

1.2.4 Current Status of Mitigation

The mitigation described in this paper has been sub-

mitted as a patch for integration into the main branch

of OpenSSL. This patch was merged into the “master”

branch of OpenSSL’s source code on May 20th, 2018,

before this paper was published.

2 Background

Long-lasting operations (such as large-integer square and

multiply operations) facilitate matching by producing

numerous signals samples even when the signal is col-

lected at a limited sample rate.

A representative example is RSA’s decryption, which

at its core performs modular exponentiation of the ci-

phertext c with a secret exponent (d) modulo m or, in

more a efficient implementation that rely on the Chi-

nese Reminder Theorem (CRT), two such exponentia-

tions, with secret exponents dp and dq with modulo p

and q, respectively. The side-channel analysis thus seeks

to recover either d or, in CRT-based implementations, dp

and dq, using side-channel measurements obtained while

exponentiation is performed.

The exponentiation is implemented as either left-to-

right (starting with the most significant bits) or right-

to-left (starting with the least significant bits) traversal

USENIX Association 27th USENIX Security Symposium 587

1 / / r e s u l t r s t a r t s o u t as 1

2 BN one (r) ;

3 / / For each b i t o f e x p o n e n t d

4 f o r (b= b i t s −1;b>=0;b−−){
5 / / r = r∗ r mod m

6 BN mod mul (r , r , r ,m) ;

7 i f (B N i s b i t s e t (d , b))

8 / / r = r∗c mod m

9 BN mod mul (r , r , c ,m) ;

10 }

Figure 1: A simple implementation of large-number

modular exponentiation

of the bits of the exponents, using large-integer modu-

lar multiplication to update the result until the full expo-

nentiation is complete. Left-to-right implementations are

more common, and without loss of generality we use c

to denote the ciphertext, d for the secret exponent, and m

for the modulus. A simple implementation of exponen-

tiation considers one exponent bit at a time, as shown in

Figure 1, which is adapted from OpenSSL’s source code.

The BN prefix in Figure 1 stands for “Big Number” (i.e.

large integer). Each large integer is represented by a vec-

tor of limbs, where a limb is an ordinary (machine-word-

sized) integers. The BN is bit set(d,b) function re-

turns the value (0 or 1) of the b-th bit of large-integer

exponent d, which only requires a few processor instruc-

tions: compute the index of the array element that con-

tains the requested bit, load that element, then shift and

bit-mask to keep only the requested bit. The instructions

that implement the loop, the if statement, and function

call/return are also relatively few in number.

However, the BN mod mul operation is much more

time-consuming: it requires numerous multiplication in-

structions that operate on the limbs of the large-integer

multiplicands. Large integers c, d, and m (or, in CRT-

based implementations the dq, dp and the corresponding

moduli), all have O(n) bits and thus O(n) limbs, where n

is the size of the RSA cryptographic key. A grade-school

implementation of BN mod mul thus requires O(n2) limb

multiplications, but the Karatsuba multiplication algo-

rithm [30] is typically used to reduces this to O(nlog23)≈
O(n1.585), In most modern implementations a significant

further performance improvement is achieved by con-

verting the ciphertext to a Montgomery representation,

using Montgomery multiplication for BN mod mul dur-

ing exponentiation, and at the end converting the result r

back to the standard representation.

Even with Montgomery multiplication, however, the

vast majority of execution time for large-number expo-

nentiation is spent on large-number multiplications, so

performance optimizations focus on reducing the num-

ber of these multiplications. Likewise, most of the side-

channel measurements (e.g. signal samples) collected

during large-number exponentiation correspond to large-

number multiplication activity, so existing side channel

cryptanalysis approaches tend to target multiplication ac-

tivity.

One class of attacks focuses on distinguishing be-

tween squaring (r ∗ r) and multiplication (r ∗ c) opera-

tions, and recovering information about the secret ex-

ponent from the sequence in which they occur. Ex-

amples of such attacks include FLUSH+RELOAD [45]

(which uses instruction cache behavior) and Percival’s

attack [39], which uses data cache behavior. In the naive

implementation above, an occurrence of squaring tells

the attacker that the next bit of the exponent is being

used, and an occurrence of multiplication indicates that

the value of that bit is 1, so an attack that correctly re-

covers the square-multiply sequence can trivially obtain

all bits of the secret exponent.

To improve performance, most modern implementa-

tions use window-based exponentiation, where squaring

is needed for each bit of the exponent, but a multipli-

cation is needed only once per a multi-bit group (called

a window) of exponent bits. A left-to-right (starting at

the most significant bit) sliding-window implementation

scans the exponent bits and forms windows of varying

length. Since a window that contains only zero bits re-

quires no multiplication (and thus cannot benefit from

forming multi-bit windows), only windows that begin

and end with 1-valued bits are allowed to form multi-

bit windows, whereas zero bits in-between these win-

dows are each treated as their own single-bit windows

that can omit multiplication. A sliding-window imple-

mentation is shown in Figure 2, using code adapted from

OpenSSL’s source code for sliding-window modular ex-

ponentiation. The sliding-window approach chooses a

maximum size wmax for the windows it will use, pre-

computes a table ct that contains the large-integer value

cwvalmodm for each possible value wval up to wmax

length, and then scans the exponent, forming windows

and updating the result for each window.

In this algorithm, a squaring (lines 7 and 26 in Fig-

ure 2) is performed for each bit while the multiplication

operation (line 29) is performed only at the (1-valued)

LSB of a non-zero window. Thus the square-multiply

sequence reveals where some of the 1-valued bits in

the exponent are, and additional bits of the exponent

have been shown to be recoverable [10] by analyzing

the number of squaring between each pair of multiplica-

tions. The fraction of bits that can be recovered from the

square-multiply sequence depends on the maximum win-

dow size wmax, but commonly used values of wmax are

relatively small and prior work [10] has experimentally

demonstrated recovery of 49% of the exponent’s bits on

average when wmax= 4 based on the square-multiply se-

quence. Additional techniques [10, 28] have been shown

588 27th USENIX Security Symposium USENIX Association

1 BN one (r) ;

2 w s t a r t = b i t s −1;

3 whi le (w s t a r t >=0){
4 i f (! B N i s b i t s e t (d , w s t a r t)) {
5 / / Window i s 0 , sq ua re and

6 / / b e g i n a new window

7 BN mod mul (r , r , r ,m) ;

8 w s t a r t −−;

9 c o n t in u e ;

10 }
11 wval =1 ;

12 w=1;

13 / / Scan up t o max window l e n g t h

14 f o r (i =1 ; i<wmax ; i ++){
15 / / Don ’ t go below e x p o n e n t ’ s LSB

16 i f (w s t a r t −i <0)

17 break ;

18 / / I f 1 e x t e n d window t o i t

19 i f (B N i s b i t s e t (d , w s t a r t −i)) {
20 wval =(wval<<(i−w+ 1)) + 1 ;

21 w= i ;

22 }
23 }
24 / / Square r e s u l t w t i m e s

25 f o r (i =0 ; i<w; i ++)

26 BN mod mul (r , r , r ,m) ;

27 / / M u l t i p l y window ’ s r e s u l t

28 / / i n t o o v e r a l l r e s u l t

29 BN mod mul (r , r , c t [wval >>1],m) ;

30 / / Begin a new window

31 w s t a r t −=w;

32 }

Figure 2: Sliding-window implementation of large-

number modular exponentiation

to recover the full RSA private key once enough of the

exponent bits are known, and for wmax = 4 this has al-

lowed full key recovery for 28% of the keys [10]. Fi-

nally, recent work has shown that fine-grained control

flow tracking through analog side channels can be very

accurate [32]. Because this sliding-window implemen-

tation uses each bit of the exponent to make at least one

control flow decision, highly accurate control flow recon-

struction amounts to discovering the exponent’s bits with

some probability of error.

Concerns about the exponent-dependent square-

multiply sequences have led to adoption of fixed win-

dow exponentiation in OpenSSL, which combines the

performance advantages of window-based implementa-

tion with an exponent-independent square-multiply se-

quence. This implementation is represented in Figure 3,

again adapted from OpenSSL’s source code.

All windows now have the same number of bits w,

with exactly one multiplication performed for each win-

dow – in fact, all of the control flow is now exactly the

same regardless of the exponent. Note that the window

1 b= b i t s −1;

2 whi le (b>=0){
3 wval =0 ;

4 / / Scan t h e window ,

5 / / s q u a r i n g t h e r e s u l t as we go

6 f o r (i =0 ; i<w; i ++) {
7 BN mod mul (r , r , r ,m) ;

8 wval<<=1;

9 wval+= B N i s b i t s e t (d , b) ;

10 b−−;

11 }
12 / / M u l i t p l y window ’ s r e s u l t

13 / / i n t o t h e o v e r a l l r e s u l t

14 BN mod mul (r , r , c t [wval] ,m) ;

15 }

Figure 3: Fixed-window implementation of large-

number modular exponentiation

value (which consists of the bits from the secret expo-

nent) directly determines which elements of ct are ac-

cessed. These elements are each a large integers, each of

which is typically stored as an array or ordinary integers

(e.g. OpenSSL’s “Big Number” BN structure). Since

each such array is much larger than a cache block, differ-

ent large integers occupy distinct cache blocks, and thus

the address the cache set that is accessed when reading

the elements of the ct array reveals key material. Perci-

val’s attack [39], for example, can note the sequence in

which the cache sets are accessed by the victim during

fixed-window exponentiation, which reveals which win-

dow values were used and in what sequence, which in

turns yields the bits of the secret exponent. To mitigate

such attacks, the implementation in OpenSSL has been

changed to store ct such that each of the cache blocks it

contains parts from a number of ct elements, and there-

fore the sequence of memory blocks that are accessed in

each ct[wval] lookup leak none or very few bits of that

lookup’s wval.

Another broad class of side channel attacks relies on

choosing the ciphertext such that the side-channel be-

havior of the modular multiplication reveals which of

the possible multiplicands is being used. For example,

Genkin et al. [23, 24] construct a ciphertext that produces

many zero limbs in any value produced by multiplication

with the ciphertext, but when squaring such a many-zero-

limbed value the result has fewer zero limbs, resulting in

an easily-distinguishable side channel signals whenever

a squaring operation (BN mod mul(r,r,r,m) in our ex-

amples) immediately follows a 1-valued window (i.e.

when r is equal to rprev ∗ c mod m). This approach has

been extended [21] to construct a (chosen) ciphertext that

reveals when a particular window value is used in mul-

tiplication in a windowed implementation, allowing full

recovery of the exponent by collecting signals that cor-

USENIX Association 27th USENIX Security Symposium 589

respond to 2w chosen ciphertexts (one for each window

value). However, chosen-ciphertext attacks can be pre-

vented in the current implementation of OpenSSL by en-

abling blinding, which combines the ciphertext with an

encrypted (using the public key) random “ciphertext”,

performs secret-exponent modular exponentiation on this

blinded version of the ciphertext, and then “unblinding”

the decrypted result.

Overall, because large-integer multiplication is where

large-integer exponentiation spends most of its time,

most of the side-channel measurements (e.g. signal sam-

ples for physical side channels) also correspond to this

multiplication activity and thus both attacks and miti-

gation tend to focus on that part of the signal, leaving

the (comparably brief) parts of the signal in-between the

multiplications largely unexploited by attacks but also

unprotected by countermeasures. The next section de-

scribes our new attack approach that targets the signal

that corresponds to computing the value of the window,

i.e .the signal between the multiplications.

3 Proposed Attack Method

In both fixed- and sliding-window implementations, our

attack approach focuses on the relatively brief periods of

computation that considers each bit of the exponent and

forms the window value wval. The attack approach has

three key components that we will discuss as follows.

First, Section 3.1 describes how the signal is received

and pre-processed. Second, Section 3.2 describes how

we identify the point in the signal’s timeline where each

interval of interest begins. Finally, we describe how the

bits of the secret exponent are recovered from these sig-

nal snippets for fixed-window (Section 3.3) and sliding-

window (Section 3.4) implementations.

3.1 Receiving the Signal

The computation we target is brief and the different val-

ues of exponent bits produce relatively small variation in

the side-channel signal, so the signals subjected to our

analysis need to have sufficient bandwidth and signal-

to-noise ratio for our analysis to succeed. To maximize

the signal-to-noise ratio while minimizing intrusion, we

position EM probes just outside the targeted device’s en-

closure. We then run RSA decryption in OpenSSL on

the target device while recording the signal in a 40 MHz

band around the clock frequency. The 40 MHz band-

width was chosen as a compromise between recovery

rate for the bits of the secret exponent and the avail-

ability and cost of receivers capable of capturing the de-

sired bandwidth. Specifically, the 40 MHz bandwidth

is well within the capabilities of Ettus USRP B200-mini

receiver, which is very compact, costs less than $1,000,

and can receive up to 56 MHz of bandwidth around a

center frequency that can be set between 70 MHz and 6

GHz, and yet the 40 MHz bandwidth is sufficient to re-

cover nearly all bits of the secret exponent from a single

instance of exponentiation that uses that exponent.

We then apply AM demodulation to the received sig-

nal, and finally upsample it by a factor of 4. The upsam-

pling consists of interpolating through the signal’s exist-

ing sample points and placing additional points along the

interpolated curve. This is needed because our receiver’s

sampling is not synchronized in any way to the compu-

tation of interest, so two signal snippets collected for the

same computation may be misaligned by up to half of the

sample period. Upsampling allows us to re-align these

signals with higher precision, and we found that 4-fold

upsampling yields sufficient precision for our purposes.

3.2 Identifying Relevant Parts

of the Signal

Figure 4 shows a brief portion of the signal that begins

during fixed-window exponentiation in OpenSSL. It in-

cludes part of one large-number multiplication (Line 7 in

Figure 3), which in OpenSSL uses the Montgomery al-

gorithm and a constant-time implementation designed to

avoid multiplicand-dependent timing variation that was

exploited by prior side-channel attacks. The point in time

where Montgomery multiplication returns and the rele-

vant part of the signal begins is indicated by a dashed

vertical line in Figure 4. In this particular portion of the

signal, the execution proceeds to lines 8 and 9 Figure 2,

where a bit of the exponent is obtained and added to

wval, then lines 10 and 6, and then 7 where, at the point

indicated by the second dashed vertical line, it enters an-

other Montgomery multiplication, whose signal contin-

ues well past the right edge of Figure 4. As indicated in

the figure, the relevant part of the signal is very brief rel-

ative to the duration of the Montgomery multiplication.

A naive approach to identifying the relevant snippets

in the overall signal would be to obtain reference sig-

nal snippets during training and then, during the attack,

match against these reference snippets at each position

in the signal and use the best-matching parts of the sig-

nal. Such signal matching works best when looking for a

snippet that has prominent features, so they are unlikely

to be obscured by the noise, and whose prominent fea-

tures occur in a pattern which is unlikely to exist else-

where in the signal. Unfortunately, the signal snippets

relevant for our analysis have little signal variation (rela-

tive to other parts of the signal) and a signal shape (just

a few up-and-downs) that many other parts of the sig-

nal resemble. In contrast, the signal that corresponds

to the Montgomery multiplication has stronger features,

and they occur in a very distinct pattern.

590 27th USENIX Security Symposium USENIX Association

Demodulated Signal Moving Median Slope of Moving Median

Relevant Part

(only 23 sample points)

Constant-Time

Montgomery Multiplication

Begins

Constant-Time

Montgomery Multiplication

Ends

Figure 4: Signal that includes the end of one Montgomery multiplication, then the part relevant to our analysis, and

then the beginning of another Montgomery multiplication. The horizontal axis is time (from left to right) and the

vertical axis is the magnitude of the AM-demodulated signal.

Therefore, instead of finding instances of relevant

snippets by matching them against their reference sig-

nals from training, we use as a reference the signal that

corresponds to the most prominent change in the sig-

nal during Mongtomery multiplication, where the signal

abruptly changes from a period with a relatively low sig-

nal level to a period with a relatively high signal level.

We identify this point in the signal using a very effi-

cient algorithm. We first compute the signal’s moving

median (thick dashed black curve in Figure 4) to im-

prove resilience to noise. We then examine the deriva-

tive (slope) of this moving median (thick red curve in

Figure 4) to identify peaks that significantly exceed its

statistically expected variation. In Figure4 the thick red

arrow indicates such a peak, which corresponds to the

most prominent change in the Montgomery multiplica-

tion that precedes the relevant part of the signal. Be-

cause the implementation of the Montgomery multipli-

cation was designed to have almost no timing variation,

the signal snippet we actually need for analysis is at a

fixed time offset from the point of this match.

Because this method of identifying the relevant snip-

pets of the signal is based on the signal that corresponds

to the Montgomery multiplication that precedes each rel-

evant snippet, the same method can be used for extract-

ing relevant signal snippets for both fixed-window and

sliding-window exponentiation – in both cases the rele-

vant snippet is at the (same) fixed offset from the point at

which a prominent-enough peak is detected in the deriva-

tive of the signal’s moving median.

3.3 Recovering Exponent Bits in

the Fixed-window Implementation

In the fixed-window implementation, large-number mul-

tiplication is used for squaring (Line 7 in Figure 3) and

for updating the result after each window (Line 14). Thus

there are four control-flow possibilities for activity be-

tween Montgomery multiplications.

The first two control flow possibilities begin when the

Montgomery multiplication in line 7 completes. Both

control flow possibilities involve updating the window

value to include another bit from the exponent (lines 8,

9, and 10), and at line 6 incrementing i and checking it

against w, the maximum size of the window. The first

control flow possibility is the more common one - the

window does not end and the execution proceeds to line

7 when another multiplication at line 7. We label this

control flow possibility S-S (from a squaring to a squar-

ing). The second control flow possibility occurs after the

last bit of the window is examined and added to wval,

and in that case the loop at line 6 is exited, the parame-

ters for the result update at line 14 are prepared, and the

Montgomery multiplication at line 14 begins. The pa-

rameter preparation in our code example would involve

computing the address of ct[wval] to create a pointer that

would be passed to the Montgomery multiplication as its

second multiplicand. In OpenSSL’s implementation the

ct is kept in a scattered format to minimize leakage of

wval through the cache side channel while computing the

Montgomery multiplication, so instead the value of wval

is used to gather the scattered parts of ct[wval] into a pre-

allocated array that is passed to Montgomery multiplica-

tion. Since this pre-allocated array is used for all result-

update multiplications, memory and cache behavior dur-

ing the Montgomery multiplication no longer depend on

wval. This means that in this second control-flow pos-

sibility involves significant activity to gather the parts of

the multiplicand and place them into the pre-allocated

array, and only then the Montgomery multiplication at

line 14 begins. We label this control flow possibility S-U

(from a squaring to an update).

USENIX Association 27th USENIX Security Symposium 591

The last two control flow possibilities occur after the

result update in line 14 completes its Montgomery mul-

tiplication. The loop condition at line 2 is checked, and

then one control flow possibility (third of the four) is that

the entire exponentiation loop exits. We label this con-

trol flow possibility U-X (from an update to an exit). The

last control-flow possibility, which occurs for all win-

dows except the last one, is that after line 2 we execute

line 3, enter the window-scanning loop at line 6, and be-

gin the next large-number Montgomery multiplication at

line 7. We label this control flow possibility U-S (from

an update to a squaring).

The sequence in which these four control flow pos-

sibilities are encountered in each window is always the

same: w−1 occurrences of S-S, then one occurrence of

S-U, then either U-S or U-X, where U-X is only possible

for the last window of the exponent.

The first part of our analysis involves distinguishing

among these four control flow possibilities. The reason

for doing so is that noise bursts, interrupts, and activity

on other cores can temporarily interfere with our signal

and prevent detection of Montgomery multiplication. In

such cases, sole reliance on the known sequence of con-

trol flow possibilities would cause a “slip” between the

observed sequence and the expected one, causing us to

use incorrect reference signals to recover bits of the ex-

ponent and to put the recovered bits at incorrect positions

within the recovered exponent.

The classification into the four possibilities is much

more reliable than recovery of exponent’s bits. Com-

pared to the other three possibilities, S-U spends sig-

nificantly more time between Montgomery multiplica-

tions (because of the multiplicand-gathering activity), so

it can be recognized with high accuracy and we use it

to confirm that the exponentiation has just completed a

window. The U-X possibility is also highly recogniz-

able because, instead of executing Montgomery multi-

plication after it, it leads to executing code that converts

from Montgomery to standard large-number format, and

it serves to confirm that the entire exponentiation has

ended. The S-S and U-S snippets both involve only a

few instructions between Montgomery multiplications so

they are harder to tell apart, but our signal matching still

has a very high accuracy in distinguishing between them.

After individual snippets are matched to the four pos-

sibilities, that matching is used to find the most likely

mapping of the sequence of snippets onto the known

valid sequence. For example, if for w = 5 we observe

S-U, U-S, S-S, S-S, S-S, S-U, all with high-confidence

matches, we know that one S-S is missing for that win-

dow. We then additionally use timing between these

snippets to determine the position of the missing S-S.

Even if that determination is erroneous, we will correctly

begin the matching for the next window after the S-U, so

a missing snippet is unlikely to cause any slips, but even

when it does cause a slip, such a slip is very likely to

be “contained” within one exponentiation window. Note

that a missing S-U or S-S snippet prevents our attack

from using its signal matching to recover the value of the

corresponding bit. A naive solution would be to assign

a random value to that bit (with a 50% error rate among

missing bits). However, for full RSA key recovery miss-

ing bits (erasures, i.e. the value of the bit is known to

be unknown) are much less problematic than errors (the

value of the bit is incorrect but not known a priori to be

incorrect), we label these missing bits as erasures.

Finally, for S-S and S-U snippets we perform addi-

tional analysis to recover the bit of the exponent that

snippet corresponds to. Recall that, in both S-S and S-U

control flow possibilities, in line 9 a new bit is read from

the exponent and is added to wval, and that bit is the one

we will recover from the snippet. For ease of discussion,

we will refer to the value of this bit as bval. To recover

bval, in training we obtain examples of these snippets for

each value of bval. To suppress the noise in our reference

snippets and thus make later matching more accurate,

these reference snippets are averages of many “identical”

examples from training. Clearly, there should be separate

references for bval = 0 (where only bval = 0 examples

are averaged) and for bval = 1 (where only bval = 1 ex-

amples are averaged. However, bval is not the only value

that affects the signal in a systematic way – the signal

in this part of the computation is also affected by previ-

ous value of wval, loop counter i, etc. The problem is

that these variations occur in the same part of the signal

where variations due to bval occur, so averaging of these

different variants may result in attenuating the impact of

bval. We alleviate this problem by forming separate ref-

erences for different bit-positions within the window, e.g.

for window size w = 5 each value of bval would have 4

sets of S-S snippets and one set of S-U snippets, because

the first for bits in the window correspond to S-S snip-

pets and the last bit in the window to an S-U snippet. To

account for other value-dependent in the signal, in each

such set of snippets we cluster similar signals together

and use the centroid of each cluster as the reference sig-

nal. We use the K-Means clustering algorithm and the

distance metric used for clustering is Euclidean distance

(sum of squared differences among same-position sam-

ples in the two snippets). We found that having at least

6-10 clusters for each set of snippets discussed above im-

proves accuracy significantly. Beyond 6-10 clusters our

recovery of secret exponent’s bits improves only slightly

but requires more training examples to compensate for

having fewer examples per cluster (and thus less noise

suppression in the cluster’s centroid). Thus we use 10

clusters for each window-bit-position for each of the two

possible values of bval. Overall, the number of S-S ref-

592 27th USENIX Security Symposium USENIX Association

Relevant Part

Figure 5: Example signal references (cluster centroid)

for S-S snippets. Two references are shown for each

value of the exponent’s bit that corresponds to the snip-

pet.

erence snippets for bval recovery is 2 ∗ (w − 1) ∗ 10 –

two possible values of bval, w− 1 bit-positions, 10 ref-

erence signals (cluster centroids) for each, while for S-U

snippets we only have 20 reference snippets because S-

U only happens for the last bit-position in the window.

For commonly used window sizes this results in a rel-

atively small overall number of reference snippets, e.g.

for w = 5 there are only 100 reference snippets. To il-

lustrate the difference in the signals created by the value

of the exponent’s bit, Figure 5 shows two reference S-S

snippets (cluster centroids) for each value of the expo-

nent’s bit, with the most significant differences between

0-value and 1-value signals indicated by thick arrows.

Recall that, before attempting recovery of an unknown

bit of the secret exponent, we have already identified

which control-flow possibility (S-S or S-U) the snippet

under consideration belongs to, and for S-S which bit-

position it belongs to, so there are 20 reference snippets

that each snippet-under-consideration is compared to (10

clusters for bval = 0 and 10 clusters for bval = 1). Thus

the final step of our analysis involves finding the clos-

est match (using Euclidean distance as a metric) among

these 20 reference snippets and taking the bval associ-

ated with that reference snippet.

3.4 Recovering Exponent Bits in

the Sliding-window Implementation

The sliding-window implementation of large-integer ex-

ponentiation (Figure 2) has three sites where Mont-

gomery multiplication is called: the squaring within a

window at line 26, which we label S, the update of the

result at line 29, which we label U , and the squaring for a

zero-valued window at line 7, which we label Z. The con-

trol flow possibilities between these include going from

a squaring to another squaring (which we label as S-S).

This transition is very brief (it only involves staying in

the loop at line 25). The other transitions are S-U, which

consumes more time because it performs the ct[wval]
computation; U-Z, which involves executing line 31, line

3, line 4 (where a bit of the exponent is examined), and fi-

nally entering Montgomery multiplication at line 7; U-S,

which involves executing line 31, line 3, line 4, lines 11

and 12, and the entire window-scanning loop at lines 14-

23, then line 25 and finally entering Montgomery multi-

plication at line 26; Z-Z where after line 7 the execution

proceeds to line 8, line 9, line 3, line 4, and line 7 again;

Z-S where after line 7 the execution proceeds to lines

8, 9, 3, 4, and then to lines 11 and 12, the loop at line

14-23, then line 25 and finally line 26; U-X where after

the Montgomery multiplication at line 29 the execution

proceeds to line 31 and then exits the loop at line 3; and

finally S-X, where after Montgomery multiplication at

line 7 the execution proceeds to lines 8 and 9 and then

exits the loop at line 3.

Just like in fixed-window implementations, our recov-

ery of the secret exponent begins with determining which

snippet belongs to which of these control-flow possibili-

ties. While in Section 3.3 this was needed only to correct

for missing snippets, in the sliding-window implemen-

tation the window size varies depending on which bit-

values are encountered in the exponent, so distinguishing

among the control-flow possibilities is crucial for cor-

rectly assigning recovered bits to bit-positions in the ex-

ponent even if no snippets are missing. Furthermore,

many of the exponent’s bits can be recovered purely

based on the sequence of these control-flow possibilities.

Our overall approach for distinguishing among control

flow possibilities is similar to that in Section 3.3, except

that here there are more control-flow possibilities, and

the U-S and Z-S coarse-grained possibilities each have

multiple control flow possibilities within the snippet: for

each bit considered for the window, line 19 determines

whether or not to execute lines 20 and 21. However, at

the point in the sequence where U-S can occur, the only

alternative is U-Z, which is much shorter and thus they

are easy to tell apart. Similarly, the only alternative to

Z-S is the much shorter Z-Z, so they are also easy to tell

apart.

By classifying snippets according to which control-

flow possibility they belong (where U-S and U-Z are

each treated as one possibility), and by knowing the rules

the sequence of these must follow, we can recover from

missing snippets and, more importantly, use rules similar

to those in [10] to recover many of the bits in the secret

exponent. However, in contrast to work in [10] that could

only distinguish between a squaring (line 7 or line 26, i.e.

S or Z in our sequence notation) and an update (line 29, U

in our sequence notation) using memory access patterns

within each Montgomery multiplication (which imple-

ments both squaring and updates), our method uses the

signal snippets between these Montgomery multiplica-

USENIX Association 27th USENIX Security Symposium 593

tions to recover more detailed information, e.g., for each

squaring our recovered sequence indicates whether it is

an S or a Z, and this simplifies the rules for recovery of

exponent’s bits and allows us to extract more of them.

Specifically, after a U-S or Z-S, which compute the win-

dow value wval, the number of bits in the window can

be obtained by counting the S-S occurrences that follow

before an S-U is encountered. For example, consider the

sequence U-S, S-S, S-S, S-U, U-Z, Z-Z, Z-Z, Z-S. The

first U-S indicates that a new window has been identified

and a squaring for one of its bits is executed. Then the

two occurrences of S-S indicate two additional squaring

for this window, and S-U indicates that only these three

squaring are executed, so the window has only 3 bits. Be-

cause the window begins and ends with 1-valued bits, it

is trivial to deduce the values of two of these 3 bits. If we

also know that wmax = 5, the fact that the window only

has 3 bits indicates that the two bits after this window

are both 0-valued (because a 1-valued bit would have ex-

panded the window to include it). Then, after S-U, we

observe U-Z, which indicates that the bit after the win-

dow is 0-valued (which we have already deduced), then

two occurrences of Z-Z indicate two more 0-valued bits

(one of which we have already deduced), and finally Z-

S indicates that a new non-zero window begins, i.e. the

next bit is 1. Overall, out of the seven bits examined dur-

ing this sequence, six were recovered solely based on the

sequence. Note that two of the bits (the two zeroes after

the window) were redundantly recovered, and this redun-

dancy helps us correct mistakes such as missing snippets

or miss-categorized snippets.

In general, this sequence-based analysis recovers all

zeroes between windows and two bits from each win-

dow. In our experiments, when using wmax = 5 this

analysis alone on average recovers 68% of the secret ex-

ponent’s bits, and with using wmax = 6, another com-

monly used value for wmax, this analysis alone on aver-

age recovers 55% of the exponent’s bits. These recovery

rates are somewhat higher than what square-update se-

quences alone enable [10], but recall that in our approach

sequence recovery is only the preparation for our analy-

sis of exponent-bit-dependent variation within individual

signal snippets.

Since the only bits not already recovered are the “in-

ner” (not the first and not the last) bits of each window,

and since U-S and Z-S snippets are the only ones that ex-

amine these inner bits, our further analysis only focuses

on these. To simplify discussion, we will use U-S to de-

scribe our analysis because the analysis for Z-S snippets

is virtually identical.

Unlike fixed-window implementations, where the bits

of the exponent are individually examined in separate

snippets, in sliding-window implementations a single

U-S or Z-S snippet contains the activity (line 4) for

examining the first bit of the window and the execu-

tion of the entire loop (lines 14-23) that constructs the

wval by examining the next wmax − 1. Since these

bits are examined in rapid succession without interven-

ing highly-recognizable Montgomery multiplication ac-

tivity, it would be difficult to further divide the snippet’s

signal into pieces that each correspond to consideration

of only one bit. Instead, we note that wmax is rela-

tively small (typically 5 or 6), and that there are only

2wmax possibilities for the control flow and most of the

operands in the entire window-scanning loop. Therefore,

in training we form separate reference snippets for each

of these possibilities, and then during the attack we com-

pare the signal snippet under consideration to each of the

references, identify the best-matching reference snippet

(smallest Euclidean distance), and use the bits that corre-

spond to that reference as the recovered bit values.

3.5 Full Recovery of RSA Private Key Us-

ing Recovered Exponent Bits

Our RSA key recovery algorithm is a variant of the

algorithm described by Henecka et al. [27], which is

based on Heninger and Shacham’s branch-and-prune al-

gorithm [28]. Like Bernstein et al. [10], we recover from

the side channel signal only the bits of the private expo-

nents dp and dq, and the recovery of the full private key

relies on exploiting the numerical relationships (Equa-

tions (1) in Bernstein et al. [10]) between these private

exponents (dp and dq), the public modulus N and expo-

nent e, and p and q, the private factors of N:

edp = 1+ kp(p−1) mod 2i

edq = 1+ kq(q−1) mod 2i

pq = N mod 2i

where kp and kq are positive integers smaller than

the public exponent e and satisfy (kp − 1)(kq − 1) ≡
kpkqN mod e. The public exponent practically never ex-

ceeds 32 bits [28] and in most cases e = 65537, so a key

recovery algorithm needs to try at most e pairs of kp, kq.

We could not simply apply Bernstein’s algorithm [10]

to the exponents recovered by our signal analysis be-

cause, like the original branch-and-prune algorithm, such

recovery requires certain knowledge of the bit values at

some fraction of bit-positions in dp and dq, while the re-

maining bits are unknown but known to be unknown, i.e.

they are erasures rather than errors. Such branch-and-

prune search has been shown to be efficient when up to

50% of the bit-positions (chosen uniformly at random) in

dp and dq are erasures, while its running time grows ex-

ponentially when the erasures significantly exceed 50%

of the bit positions.

Henecka’s algorithm [27] can be applied with the

above pruning equations to recover the private key when

594 27th USENIX Security Symposium USENIX Association

some of the bits are in error. However, its pruning is

based on a key assumption that errors are uniformly dis-

tributed, and it does not explicitly consider erasures. Re-

call, however, that for some of the bit positions our anal-

ysis cannot identify the relevant signal snippet for match-

ing against training signals (see Section 3.2), which re-

sults in an erasure. A naive approach for handling era-

sures would be to randomly assign a bit value for each

erasure (resulting in a 50% error rate among erasures)

and then apply Henecka’s algorithm. Unfortunately, the

erasures during our recovery are a product of distur-

bances in the signal that are very large in magnitude, and

such a disturbance also tends to last long enough to af-

fect multiple bits. With random values assigned to era-

sures, this produces 50%-error-rate bursts that are highly

unlikely to be produced by uniformly distributed errors,

causing Henecka’s algorithm to either prune the correct

partial candidate key or become inefficient (depending

on the choice of the ε parameter).

Instead, we modify Henecka’s algorithm to handle

erasures by branching at a bit position when it encoun-

ters an erasure, but ignoring that bit position for the pur-

poses of making a pruning decision. We further extend

Henecka’s algorithm to not do a “hard” pruning of a can-

didate key when its error count is too high. Instead, we

save such a candidate key so that, if no candidate keys re-

main but the search for the correct private key is not com-

pleted, we can “un-prune” the lowest-error-count candi-

date keys that were previously pruned due to having too

high of an error count. This is similar to adjusting the

value of ε in Henecka’s algorithm and retrying, except

that the work of previous tries is not repeated, and this

low cost of relaxing the error tolerance allows us to start

with a low error tolerance (large ε in Henecka et al.) and

adjust it gradually until the solution is found.

We further modify Henecka’s algorithm to, rather than

expand a partial key by multiple bits (parameter t in He-

necka et al.) at a time, expand by one bit at a time and,

among the newly created partial keys, only further ex-

pand the lowest-recent error-count ones until the desired

expansion count (t) is reached. In Henecka’s algorithm,

full exansion by t bits at a time creates 2t new candi-

date keys, while our approach discovers the same set of t-

times-expanded non-pruned candidates without perform-

ing all t expansions on those candidates that encounter

too many errors even after fewer than t single-bit expan-

sions. For a constant t, this reduces the number of partial

keys that are examined by a constant factor, but when the

actual error rate is low this constant factor is close to 2t .

Overall, our actual implementation of this modified al-

gorithm is very efficient - it considers (expands by one

bit) about 300,000 partial keys per second using a single

core on recent mobile hardware (4th generation Surface

Pro with a Core i7 processor), and for low actual error

1000

10000

100000

1000000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Errors

Erasures

50% Mix

Figure 6: Single-bit expansion steps needed to recon-

struct the private RSA key (vertical axis, note the log-

arithmic scale) as a function of the rate at which errors

and/or erasures are injected (horizontal axis).

rates typically finds a solution after only a few thousand

partial keys are considered. We evaluate its ability to

reconstruct private RSA keys using dp and dq bits that

contain errors and/or erasures by taking 1,000 RSA keys,

introducing random errors, random erasures, and a half-

and-half mix of errors and erasures, at different error/era-

sure rates, and counting how many partial keys had to be

considered (expanded by a bit) before the correct private

key was reconstructed. The median number of steps for

each error/erasure rate is shown in Figure 6. We only

show results for error/erasure rates up to 10% because

those are the most relevant to our actual signal-based re-

covery of the exponent’s bits.

We observe that our implementation of reconstruction

quickly becomes inefficient when only errors are present

and the error rate approaches 7%, which agrees with the

theoretical results of Henecka et al. – since dp and dq are

used, the m factor in Henecka et al. is 2, and the upper

bound for efficient reconstruction is at 8.4% error rate. In

contrast, when only erasures are present, our implemen-

tation of reconstruction remains very efficient even as the

erasure rate exceeds 10%, which agrees with Bernstein et

al.’s finding that reconstruction should be efficient with

up to 50% erasure rates. Finally, when equal numbers of

errors and erasures are injected, the efficiency for each

injection rate is close to (only slightly worse than) the ef-

ficiency for error-only injection at half that rate, i.e. with

a mix of errors and erasures, the efficiency of reconstruc-

tion is largely governed by the errors.

Figure 7 shows the percentage of experiments in

which the correct RSA key was recovered in fewer than

5,000,000 steps (about 17 seconds on the Surface 4

tablet). When only errors are present, < 90% of the re-

constructions take fewer than 5,000,000 steps until the

error rate exceeds 5.4%, at which point the percent-

age of under-five-million-steps reconstructions rapidly

USENIX Association 27th USENIX Security Symposium 595

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Errors

Erasures

50% Mix

Figure 7: Percentage of keys recovered in fewer than

5,000,000 single-bit expansion steps (vertical axis) as a

function of the rate at which errors and/or erasures are

injected (horizontal axis).

declines and drops below 10% at the 7.9% error rate.

In contrast, all erasure-only reconstructions are under

5,000,000 steps even at the 10% erasure rate. Finally,

when erasures and errors are both present in equal mea-

sure, the percentage of under-5,000,000-step reconstruc-

tions remains above 90% until the injection rate reaches

9.8% (4.9% of the bits are in error and another 4.9% are

erased).

4 Evaluation

In this section we describe our measurement setup and

obtained results for recovering keys from blinded RSA

encryption runs on three different devices.

4.1 Experimental Setup

We run the OpenSSL RSA application on Android smart

phones Samsung Galaxy Centura SCH-S738C [40] and

Alcatel Ideal [4], and on an embedded device (A13-

OLinuXino board [37])) . The Alcatel Ideal cellphone

has quad-core 1.1 GHz Qualcomm Snapdragon proces-

sor with Android OS(version 6) and the Samsung phone

has a single-core 800 MHz Qualcomm MSM7625A

Chipset with Android OS(version 5). The A13- OLin-

uXino board is a single-board computer that has an in

order, 2-issue Cortex A8 ARM processor [5] and runs

Debian Linux operating system.

In our experimental setup, we receive signals using

small magnetic probe. We place the probe close to the

monitored system as shown in Figure 8. The signals col-

lected by the probe are recorded with Keysight N9020A

MXA spectrum analyzer [31]. Our decision to use spec-

trum analyzer was mainly driven by its existing features

such as built-in support for automating measurements,

saving and analyzing measured results, visualizing the

signals when debugging code, etc. We have observed

very similar signals when using less expensive equip-

ment such as Ettus USRP B200-mini receiver [18]. The

analysis was implemented in MATLAB and on a per-

sonal computer runs in under one minute per decryption

instance (i.e. per recovered 1024-bit exponent).

4.2 Experimental Results

4.3 Results for OpenSSL’s Constant-Time

Fixed-Window Implementation

Our first set of experiments evaluates the attack’s abil-

ity to recover bits of the 1024-bit secret exponent dp

used during RSA-2048 decryption. OpenSSL uses a

fixed window size w = 5 for exponentiation of this size.

Note that RSA decryption involves another exponentia-

tion, with dq, and uses the Chinese Remainder Theorem

to combine their results. However, the two exponentia-

tions use exactly the same code and dp and dq are of the

same size, so results for recovering dq are statistically the

same to those shown here for recovering dp.

For each device, our training uses signals that corre-

spond to 15 decryption instances, one for each of 15

randomly generated but known keys, and with cipher-

text that is randomly generated for decryption. Note that

these 15 decryptions provide around 12 thousand exam-

ples of S-S signal snippets, 3 thousand S-U, 3 thousand

U-S, and 15 U-X snippets. This is more than enough ex-

amples of each control flow possibility to distinguish be-

tween these control flow possibilities accurately. More

importantly, this provides on average 1,500 snippet ex-

amples for each of the 100 (2∗5∗w) clusters whose cen-

troids are used as reference snippets when recovering the

bits of the unknown secret exponents. Note that using

larger RSA keys proportionally increases the number of

snippets produced by each decryption, while w changes

little or not at all. Thus for larger RSA keys we expect

that even fewer decryptions would be needed for train-

ing.

After training we perform the actual attack. We ran-

domly generate 135 RSA-2048 keys, and for each of

these keys we record, demodulate, and upsample (see

Section 3.1) the signal that corresponds to only one de-

cryption with that key, using a ciphertext that is ran-

domly generated for each decryption. Next, the sig-

nal that corresponds to each decryption is processed to

extract the relevant snippets from it (see Section 3.2).

Then, as described in Section 3.3, each of these snip-

pets is matched against reference snippets (from train-

ing) to identify which of the control-flow possibilities

each snippet belongs to and, for S-S and S-U snippets,

which bit-position in the exponent (and the window) the

596 27th USENIX Security Symposium USENIX Association

Figure 8: The measurement setup for each of the three devices (shown in the right-to-left order): Samsung Galaxy

Centura SCH-S738C smart phone, Alcatel Ideal smart phone, and the A13-OLinuXino board.

snippet corresponds to. Finally, S-S and S-U snippets are

matched against the 20 clusters that correspond to its po-

sition in the window to recover the value of the bit at that

position in the secret exponent.

The metric we use for the success of this attack is the

success rate for recovery of exponent’s bits, i.e. the frac-

tion of the exponent’s bits for which the recovery pro-

duces the value that the secret exponent at that position

actually had. To compute this success rate, we compare

the recovered exponents to the actual exponents dp and

dq that were used, counting the bit positions at which the

two agree and, at the end, dividing that count with the

total number of bits in the two exponents.

95%

96%

97%

98%

99%

100%

Samsung Galaxy
Centura Phone

Alcatel Ideal
Phone

OLinuXino
Board

Max

Median

Min

Figure 9: Success rate for recovery of secret exponent

dp’s bits during only one instance of RSA-2048 decryp-

tion that uses that exponent. For each device, the maxi-

mum, median, and minimum success rate among decryp-

tion instances (each with a different randomly generated

key) is shown.

The maximum, median, and minimum success rate

for each of the three targeted devices is shown in Fig-

ure 9. We observe that the success rate of the attack is

extremely high - among all decryptions on all three de-

vices the lowest recovery rate is 95.7% of the bits. For

the OLinuXino board, most decryption instances (>85%

of them) had all bits of the exponent recovered correctly,

except for the most significant 4 bits. These 4 bits are

processed before entering the code in Figure 3 to leave a

whole number of 5-bit windows for that code, so we do

not attempt to recover them and treat them as erasures.

Among the OLinuXino decryption instances that had any

other reconstruction errors, nearly all had only one addi-

tional incorrectly recovered bit (error, not erasure), and a

few had two.

The results for the Samsung phone were slightly worse

– in addition to the 4 most significant bits, several de-

cryption instances had one additional bit that was left

unknown (erasure) because of an interrupt that occurs be-

tween the derivative-of-moving-median peak and the end

of the snippet that follows it, which either obliterates the

peak or prevents the snippet from correctly being cate-

gorized according to its control flow. In addition to these

unknown (but known-to-be-unknown) bits, for the Sam-

sung phone the reconstruction also produced between 0

and 4 incorrectly recovered (error) bits.

Finally, for the Alcatel Ideal phone most instances of

the encryption had between 13 and 16 unknown bits in

each of the two exponents, mostly because activity on

the other three cores interferes with the activity on the

core doing the RSA decryption), and a similar number of

incorrectly recovered bits (errors).

USENIX Association 27th USENIX Security Symposium 597

98.0%

98.5%

99.0%

99.5%

100.0%

#1
(Self)

#2 #3 #4 #5 #6 #7 #8

Max

Median

Min

Figure 10: Success rate for recovery of secret exponent

dp’s bits during only one instance of RSA-2048 decryp-

tion that uses that exponent, when training on OLin-

uXino board #1 and then using that training data for

unknown exponent recovery on the same board and on

seven other boards. For each device, the maximum, me-

dian, and minimum success rate among decryption in-

stances (each with a different randomly generated key)

is shown.

To examine how the results would be affected when

training using signals collected on one device and then

recovering exponent bits using signals obtained from an-

other device of the same kind, we use eight OLinuXino

boards1, which we label #1 through #8. Our training

uses signals obtained only from board #1, and then the

unknown keys are used on each of the eight boards and

subjected to analysis using the same training data (from

board #1). The results of this experiment are shown in

Figure 10, where the leftmost data points correspond to

training and recovery on the same device, while the re-

maining seven sets of data points correspond to training

on one board and recovery on another.

These results indicate that training on a different de-

vice of the same kind does not substantially affect the

accuracy of recovery.

Finally, for each RSA decryption instance, the recov-

ered exponent bits, using both the recovered dp and the

recovered dq, were supplied to our implementation of the

full-key reconstruction algorithm. For each instance, the

correct full RSA private key was reconstructed within

one second on the Core i7-based Surface Pro 4 tablet,

including the time needed to find the kp and kq coeffi-

cients that were not known a priori. This is an expected

result, given that even the worst bit recovery rates (for

the Alcatel phone) correspond to a an error rate of about

1.5%, combined with an erasure rate of typically 1.5%

but sometimes as high as 3% (depending on how much

system activity occurs while RSA encryption is execu-

1The OLinuXino boards are much less expensive than the phones,

so we could easily obtain a number of OLinuXino boards

50%

60%

70%

80%

90%

100%

S-M-Z Sequence Overall

Max

Median

Min

Figure 11: Success rate for recovery of secret exponent

dp’s bits during only one instance of RSA-2048 decryp-

tion that uses that exponent for sliding-window exponen-

tiation. The maximum, median, and minimum success

rate among decryption instances (each with a different

randomly generated key) is shown for recovery that only

uses the snippet-type sequence (S-M-Z Sequence), and

for recovery that also recovers window bits from U-S and

Z-S snippets (Overall).

tion on the phone), which is well withing the range for

which our full-key reconstruction is extremely efficient.

4.4 Results for the Sliding-Window

Implementation

To improve our understanding of the implications for

this new attack approach, we also apply it to RSA-

2048 whose implementation uses OpenSSL’s sliding-

window exponentiation – recall that this was the de-

fault implementation used in OpenSSL until it switched

to a fixed-window implementation in response to at-

tacks that exploit sliding-window’s exponent-dependent

square-multiply sequence.

In these experiments we use 160 MHz of bandwidth

and target the OLinuXino board. Recall that in a sliding-

window implementation our method can categorize the

snippets according to their beginning/ending point to

recover the sequence of zero-squaring (Z), window-

squaring (S), and result update (M) occurrences. The

fraction of the exponent’s bits recovered by this se-

quence reconstruction (shown as “S-M-Z Sequence” in

Figure 11) is in our experiments between 51.2% and

57.7% with a median of 54.5%. This sequence-based re-

covery has produces no errors in most cases (keys), and

among the few encryptions that had any errors, none had

more than one.

In our attack approach, after this sequence-based re-

construction, the U-S and Z-S snippets are subjected to

further analysis to recover the remaining bits of the win-

dow computed in each U-S and Z-S snippet. At the end

598 27th USENIX Security Symposium USENIX Association

of this analysis, the fraction of the exponent’s bits that are

correctly recovered (“Overall” in Figure 11) is between

97.7% and 99.6%, with a median of 98.7%.

This rate of recovery for exponent bits provides for

very rapid reconstruction of the full RSA key. How-

ever, we note that it is somewhat inferior to our results on

fixed-window exponentiation on the same device (OLin-

uXino board), in spite of using more bandwidth for at-

tacks on sliding-window (160MHz bandwidth) than on

fixed-window (40MHz bandwidth) implementation. The

primary reason for this is that in the fixed-window im-

plementation each analyzed snippet corresponds to ex-

amining only one bit of the exponent, whereas in the

sliding-window implementation wmax = 6 bits of the

exponent are examined in a single U-S or Z-S snippet,

while the exponent-dependent variation in the snippet is

not much larger. Since sliding-window recovery tries to

extract several times more information from about the

same amount of signal change, its recovery is more af-

fected by noise and thus slightly less accurate.

5 Mitigation

We focus our mitigation efforts on the fixed-window

implementation, which is the implementation of choice

in the current version of OpenSSL, and which already

mitigates the problem of exponent-dependent square-

multiply sequences and timing variation. We iden-

tify three key enablers for this attack approach, which

roughly correspond to discussion in Sections 3.1, 3.2,

and 3.3. Successful mitigation requires removing at least

one of these enablers, so we now discuss each of the at-

tack enablers along with potential mitigation approaches

focused on that enabler.

The first enabler of the specific attack demonstrated

in this paper is the existence of computational-activity-

modulated EM signals around the processor’s clock fre-

quency, and the attacker’s ability to obtain these signals

with sufficient bandwidth and signal-to-noise ratio. Po-

tential mitigation thus include circuit-level approaches

that reduce the effect the differences in computation have

the signal, additional shielding that attenuates these sig-

nals to reduce their signal-to-noise ratio outside the de-

vice, deliberate creation of RF noise and/or interference

that also reduces the signal-to-noise ratio, etc. We do not

focus on these mitigation because all of them increase the

device’s overall cost, weight, and/or power consumption,

all of them are difficult to apply to devices that are al-

ready in use, and all of them may not provide protection

against attacks that use this attack approach but through

a different physical side channel (e.g. power).

The second enabler of our attack approach is the at-

tacker’s ability to precisely locate, in the overall signal

during an exponentiation operation, those brief snippets

of signal that correspond to examining the bits of the ex-

ponent and constructing the value of the window. A sim-

ple mitigation approach would thus insert random addi-

tional amounts of computation before, during, and/or af-

ter window computation. However, additional computa-

tion that has significant variation in duration would also

have a significant mean of that duration, i.e. it would

slow down the window computation. Furthermore, it

is possible (and indeed likely) that our attack can be

adapted to identify and ignore the signal that corresponds

to this additional activity.

The final (third) enabler of our attack approach is

the attacker’s ability to distinguish between the signals

whose computation has the same control flow but uses

different values for a bit in the exponent. In this regard,

the attack benefits significantly from 1) the limited space

of possibilities for value returned by BN is bit set –

there are only two possibilities: 0 or 1, and from 2) the

fact that the computation that considers each such bit is

surrounded by computation that operates on highly pre-

dictable values – this causes any signal variation caused

by the return value of BN is bit set to stand out in a

signal that otherwise exhibits very little variation.

Based on these observations, our mitigation relies on

obtaining all the bits that belong to one window at once,

rather than extracting the bits one at a time. We accom-

plish this by using the bn get bits function (defined in

bn exp.c in OpenSSL’s source code), which uses shifts

and masking to extract and return a BN ULONG-sized

group of bits aligned to the requested bit-position – in

our case, the LSB of the window. The BN ULONG is

typically 32 or 64 bits in size, so there are billions of pos-

sibilities for the value it returns, while the total execution

time of bn get bits is only slightly more than the time

that was needed to append a single bit to the window (call

to BN is bit set shifting the wval, and or-ing to up-

date wval with the new bit). For the attacker, this means

that there are now billions of possibilities for the value to

be extracted from the signal, while the number of signal

samples available for this recovery is similar to what was

originally used for making a binary (single-bit) decision.

Intuitively, the signal still contains the same amount of

information as the signal from which one bit used to be

recovered, but the attacker must now attempt to extract

tens of bits from that signal.

This mitigation results in a slight improvement in ex-

ecution time of the exponentiation and, as shown in Fig-

ure 12, with the mitigation the recovery rate for the ex-

ponent’s bits is no better than randomly guessing each

bit (50% recovery rate). In fact, the recovery rate with

the mitigation is lower than 50% because, as in our

pre-mitigation results, the bits whose signal snippets

could not be located are counted as incorrectly recov-

ered. However, these bits can be treated as erasures, i.e.

USENIX Association 27th USENIX Security Symposium 599

40%

45%

50%

55%

60%

65%

Samsung Galaxy

Centura Phone

Alcatel Ideal

Phone

OLinuXino

Board

Max

Median

Min

Figure 12: Success rate for recovery of secret exponent

dp’s bits after the initial implementation of our window

value randomization mitigation is applied.

for each such bit the attacker knows that the value of the

bit is unknown, as opposed to a bits whose value is incor-

rect but the attacker has no a-priori knowledge of that, so

our recovery rate can be trivially improved by randomly

guessing (with 50% accuracy) the value of each erasure,

rather than having 0% accuracy on them. With this, the

post-mitigation recovery rate indeed becomes centered

around 50%, i.e. equivalent to random guessing for all

of the bits.

This mitigation has been submitted to OpenSSL and

was merged into its master source code branch on May

20th, prior to the publication of this paper.

6 Conclusions

This paper presents the first side channel attack approach

that, without relying on the cache organization and/or

timing, retrieves the secret exponent from a single de-

cryption on arbitrary ciphertext in a modern (current ver-

sion of OpenSSL) fixed-window constant-time imple-

mentation of RSA. Specifically, the attack recovers the

exponent’s bits during modular exponentiation from ana-

log signals that are unintentionally produced by the pro-

cessor as it executes the constant-time code that con-

structs the value of each “window” in the exponent,

rather than the signals that correspond to squaring/multi-

plication operations and/or cache behavior during multi-

plicand table lookup operations. The approach is demon-

strated using electromagnetic (EM) emanations on two

mobile phones and an embedded system, and after only

one decryption in a fixed-window RSA implementation

it recovers enough bits of the secret exponents to enable

very efficient (within seconds) reconstruction of the full

private RSA key.

Since the value of the ciphertext is irrelevant to our at-

tack, the attack succeeds even when the ciphertext is un-

known and/or when message randomization (blinding) is

used. Our evaluation uses signals obtained by demodu-

lating the signal from a relatively narrow band (40 MHz)

around the processor’s clock frequency (around 1GHz),

which is within the capabilities of compact sub-$1,000

software-defined radio (SDR) receivers.

Finally, we propose a mitigation where the bits of the

exponent are only obtained from an exponent in integer-

sized groups (tens of bits) rather than obtaining them one

bit at a time. This mitigation is effective because it forces

the attacker to attempt recovery of tens of bits from a sin-

gle brief snippet of signal, rather than having a separate

signal snippet for each individual bit. This mitigation

has been submitted to OpenSSL and was merged into its

master source code branch prior to the publication of this

paper.

7 Acknowledgments

We thank the anonymous reviewers for their very help-

ful comments and recommendations on revising this pa-

per, and the developers of OpenSSL for helping us merge

our mitigation into OpenSSL’s source code repository on

GitHub. This work has been supported, in part, by NSF

grant 1563991and DARPA LADS contract FA8650-16-

C-7620. The views and findings in this paper are those

of the authors and do not necessarily reflect the views of

NSF and DARPA.

References

[1] ACIIÇMEZ, O., KOÇ, C. K., AND SEIFERT, J.-P. On the power

of simple branch prediction analysis. In Proceedings of the 2nd

ACM Symposium on Information, Computer and Communica-

tions security (ASIACCS) (Mar. 2007), ACM Press, pp. 312–320.

[2] AGRAWAL, D., ARCHAMBEULT, B., RAO, J. R., AND RO-

HATGI, P. The EM side-channel(s). In Proceedings of Crypto-

graphic Hardware and Embedded Systems - CHES 2002 (2002),

pp. 29–45.

[3] AGRAWAL, D., ARCHAMBEULT, B., RAO, J. R., AND RO-

HATGI, P. The EM side-channel(s): attacks and assessment

methodologies. In http://www.research.ibm.com/intsec/emf-

paper.ps (2002).

[4] ALCATEL. Alcatel Ideal / Streak Specifications. http://

www.phonescoop.com/phones/phone.php?p=5097, Feb 24,

2016.

[5] ARM. ARM Cortex A8 Processor Manual. https://www.arm.

com/products/processors/cortex-a/cortex-a8.php,

accessed April 3, 2016.

[6] BACKES, M., DURMUTH, M., GERLING, S., PINKAL, M., AND

SPORLEDER, C. Acoustic side-channel attacks on printers. In

Proceedings of the USENIX Security Symposium (2010).

[7] BALASCH, J., GIERLICHS, B., REPARAZ, O., AND VER-

BAUWHEDE, I. DPA, Bitslicing and Masking at 1 GHz. In Cryp-

tographic Hardware and Embedded Systems (CHES) (2015),

T. Güneysu and H. Handschuh, Eds., Springer Berlin Heidelberg,

pp. 599–619.

600 27th USENIX Security Symposium USENIX Association

http://www.phonescoop.com/phones/phone.php?p=5097
http://www.phonescoop.com/phones/phone.php?p=5097
https://www.arm.com/products/processors/cortex-a/cortex-a8.php
https://www.arm.com/products/processors/cortex-a/cortex-a8.php

[8] BANGERTER, E., GULLASCH, D., AND KRENN, S. Cache

games - bringing access-based cache attacks on AES to prac-

tice. In Proceedings of IEEE Symposium on Security and Privacy

(2011).

[9] BAYRAK, A. G., REGAZZONI, F., BRISK, P., STANDAERT, F.-

X., AND IENNE, P. A first step towards automatic application

of power analysis countermeasures. In Proceedings of the 48th

Design Automation Conference (DAC) (2011).

[10] BERNSTEIN, D. J., BREITNER, J., GENKIN, D., BRUIN-

DERINK, L. G., HENINGER, N., LANGE, T., VAN VREDEN-

DAAL, C., AND YAROM, Y. Sliding right into disaster: Left-to-

right sliding windows leak. Conference on Cryptographic Hard-

ware and Embedded Systems (CHES) 2017, 2017.

[11] BIHAM, E., AND SHAMIR, A. Differntial Cryptanalysis of the

Data Encryption Standard. In Proceedings of the 17th Annual

International Cryptology Conference (1997).

[12] BONEH, D., AND BRUMLEY, D. Remote Timing Attacks are

Practical. In Proceedings of the USENIX Security Symposium

(2003).

[13] BROUCHIER, J., KEAN, T., MARSH, C., AND NACCACHE, D.

Temperature attacks. Security Privacy, IEEE 7, 2 (March 2009),

79–82.

[14] CALLAN, R., ZAJIC, A., AND PRVULOVIC, M. A Practical

Methodology for Measuring the Side-Channel Signal Available

to the Attacker for Instruction-Level Events. In Proceedings

of the 47th International Symposium on Microarchitecture (MI-

CRO) (2014).

[15] CHARI, S., JUTLA, C. S., RAO, J. R., AND ROHATGI, P. To-

wards sound countermeasures to counteract power-analysis at-

tacks. In Proceedings of CRYPTO’99, Springer, Lecture Notes

in computer science (1999), pp. 398–412.

[16] CHARI, S., RAO, J. R., AND ROHATGI, P. Template attacks. In

Proceedings of Cryptographic Hardware and Embedded Systems

- CHES 2002 (2002), pp. 13–28.

[17] COPPENS, B., VERBAUWHEDE, I., BOSSCHERE, K. D., AND

SUTTER, B. D. Practical Mitigations for Timing-Based Side-

Channel Attacks on Modern x86 Processors. In Proceedings

of the 30th IEEE Symposium on Security and Privacy (2009),

pp. 45–60.

[18] ETTUS. USRP-B200mini. https://www.ettus.com/

product/details/USRP-B200mini-i, accessed February 4,

2018.

[19] GANDOLFI, K., MOURTEL, C., AND OLIVIER, F. Electromag-

netic analysis: Concrete results. In Proceedings of the Third

International Workshop on Cryptographic Hardware and Em-

bedded Systems (London, UK, UK, 2001), CHES ’01, Springer-

Verlag, pp. 251–261.

[20] GENKIN, D., PACHMANOV, L., PIPMAN, I., SHAMIR, A., AND

TROMER, E. Physical key extraction attacks on pcs. Commun.

ACM 59, 6 (May 2016), 70–79.

[21] GENKIN, D., PACHMANOV, L., PIPMAN, I., AND TROMER, E.

Stealing keys from PCs using a radio: cheap electromagnetic at-

tacks on windowed exponentiation. In Conference on Crypto-

graphic Hardware and Embedded Systems (CHES) (2015).

[22] GENKIN, D., PACHMANOV, L., PIPMAN, I., TROMER, E., AND

YAROM, Y. ECDSA Key Extraction from Mobile Devices via

Nonintrusive Physical Side Channels. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Se-

curity (2016), CCS ’16, ACM, pp. 1626–1638.

[23] GENKIN, D., PIPMAN, I., AND TROMER, E. Get your hands

off my laptop: physical side-channel key-extraction attacks on

PCs. In Conference on Cryptographic Hardware and Embedded

Systems (CHES) (2014).

[24] GENKIN, D., SHAMIR, A., AND TROMER, E. RSA key extrac-

tion via low-bandwidth acoustic cryptanalysis. In International

Cryptology Conference (CRYPTO) (2014).

[25] GIRAUD, C. DFA on AES. In Advanced Encryption Standard -

AES, 4th International Conference, AES 2004 (2003), Springer,

pp. 27–41.

[26] GOUBIN, L., AND PATARIN, J. DES and Differential power

analysis (the ”duplication” method). In Proceedings of Crypto-

graphic Hardware and Embedded Systems - CHES 1999 (1999),

pp. 158–172.

[27] HENECKA, W., MAY, A., AND MEURER, A. Correcting Errors

in RSA Private Keys. In Proceedings of CRYPTO (2010).

[28] HENINGER, N., AND SHACHAM, H. Reconstructing rsa private

keys from random key bits. In International Cryptology Confer-

ence (CRYPTO) (2009).

[29] HUTTER, M., AND SCHMIDT, J.-M. The temperature side

channel and heating fault attacks. In Smart Card Research

and Advanced Applications, A. Francillon and P. Rohatgi, Eds.,

vol. 8419 of Lecture Notes in Computer Science. Springer Inter-

national Publishing, 2014, pp. 219–235.

[30] KARATSUBA, A., AND OFMAN, Y. Multiplication of many-

digital numbers by automatic computers. Proceedings of the

USSR Academy of Sciences 145, 293-294 (1962).

[31] KEYSIGHT. N9020A MXA Spectrum Analyzer. https://

www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-

signal-analyzer-10-hz-to-265-ghz?cc=US&lc=eng,

accessed February 4, 2018.

[32] KHAN, H. A., ALAM, M., ZAJIC, A., AND PRVULOVIC, M.

Detailed tracking of program control flow using analog side-

channel signals: a promise for iot malware detection and a

threat for many cryptographic implementations. In SPIE De-

fense+Security - Cyber Sensing (2018).

[33] KHUN, M. G. Compromising emanations: eavesdropping risks

of computer displays. The complete unofficial TEMPEST web

page: http://www.eskimo.com/˜joelm/tempest.html (2003).

[34] KOCHER, P. Timing attacks on implementations of Diffie-

Hellman, RSA, DSS, and other systems. In Proceedings of

CRYPTO’96, Springer, Lecture notes in computer science (1996),

pp. 104–113.

[35] KOCHER, P., JAFFE, J., AND JUN, B. Differential power anal-

ysis: leaking secrets. In Proceedings of CRYPTO’99, Springer,

Lecture notes in computer science (1999), pp. 388–397.

[36] MESSERGES, T. S., DABBISH, E. A., AND SLOAN, R. H.

Power analysis attacks of modular exponentiation in smart cards.

In Proceedings of Cryptographic Hardware and Embedded Sys-

tems - CHES 1999 (1999), pp. 144–157.

[37] OLIMEX. A13-OLinuXino-MICRO User Manual.

https://www.olimex.com/Products/OLinuXino/A13/

A13-OLinuXino-MICRO/open-source-hardware, accessed

April 3, 2016.

[38] OPENSSL SOFTWARE FOUNDATION. OpenSSL Cryptography

and SSL/TLS Toolkit. https://www.openssl.org.

[39] PERCIVAL, C. Cache missing for fun and profit. In Proc. of

BSDCan (2005).

[40] SAMSUNG. Samsung Galaxy Centura SCH-S738C User Manual

with Specs. http://www.boeboer.com/samsung-galaxy-

centura-sch-s738c-user-manual-guide-straight-

talk/, June 7, 2013.

[41] SCHINDLER, W. A timing attack against RSA with Chinese re-

mainder theorem. In Proceedings of Cryptographic Hardware

and Embedded Systems - CHES 2000 (2000), pp. 109–124.

USENIX Association 27th USENIX Security Symposium 601

https://www.ettus.com/product/details/USRP-B200mini-i
https://www.ettus.com/product/details/USRP-B200mini-i
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?cc=US&lc=eng
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?cc=US&lc=eng
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?cc=US&lc=eng
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
https://www.openssl.org
http://www.boeboer.com/samsung-galaxy-centura-sch-s738c-user-manual-guide-straight-talk/
http://www.boeboer.com/samsung-galaxy-centura-sch-s738c-user-manual-guide-straight-talk/
http://www.boeboer.com/samsung-galaxy-centura-sch-s738c-user-manual-guide-straight-talk/

[42] SHAMIR, A., AND TROMER, E. Acoustic cryptanalysis (On nosy

people and noisy machines). http://tau.ac.il/˜tromer/acoustic/.

[43] TSUNOO, Y., TSUJIHARA, E., MINEMATSU, K., AND

MIYAUCHI, H. Cryptanalysis of block ciphers implemented

on computers with cache. In Proceedings of the International

Symposium on Information Theory and its Applications (2002),

pp. 803–806.

[44] WANG, Z., AND LEE, R. B. New cache designs for thwarting

software cache-based side channel attacks. In ISCA ’07: Pro-

ceedings of the 34th annual international symposium on Com-

puter architecture (2007), ACM, pp. 494–505.

[45] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A High

Resolution, Low Noise, L3 Cache Side-Channel Attack. In 23rd

USENIX Security Symposium (USENIX Security 14) (San Diego,

CA, 2014), USENIX Association, pp. 719–732.

[46] ZAJIC, A., AND PRVULOVIC, M. Experimental demonstration

of electromagnetic information leakage from modern processor-

memory systems. Electromagnetic Compatibility, IEEE Transac-

tions on 56, 4 (Aug 2014), 885–893.

602 27th USENIX Security Symposium USENIX Association

	Introduction
	Our Contributions
	Threat Model
	Assumptions
	Targeted Software
	Targeted Hardware
	Current Status of Mitigation

	Background
	Proposed Attack Method
	Receiving the Signal
	Identifying Relevant Parts of the Signal
	Recovering Exponent Bits in the Fixed-window Implementation
	Recovering Exponent Bits in the Sliding-window Implementation
	Full Recovery of RSA Private Key Using Recovered Exponent Bits

	Evaluation
	Experimental Setup
	Experimental Results
	Results for OpenSSL's Constant-Time Fixed-Window Implementation
	Results for the Sliding-Window Implementation

	Mitigation
	Conclusions
	Acknowledgments

