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Abstract

Improving accuracy in genetic studies would greatly accelerate understanding the genetic

basis of complex diseases. One approach to achieve such an improvement for risk variants

identified by the genome wide association study (GWAS) approach is to incorporate previ-

ously known biology when screening variants across the genome. We developed a simple

approach for improving the prioritization of candidate disease genes that incorporates a net-

work diffusion of scores from known disease genes using a protein network and a novel inte-

gration with GWAS risk scores, and tested this approach on a large Alzheimer disease (AD)

GWAS dataset. Using a statistical bootstrap approach, we cross-validated the method and

for the first time showed that a network approach improves the expected replication rates in

GWAS studies. Several novel AD genes were predicted including CR2, SHARPIN, and

PTPN2. Our re-prioritized results are enriched for established known AD-associated biologi-

cal pathways including inflammation, immune response, and metabolism, whereas standard

non-prioritized results were not. Our findings support a strategy of considering network infor-

mation when investigating genetic risk factors.
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Author summary

Integrating multiple types of -omics data is a rapidly growing research area due in part to

the increasing amount of diverse and publicly accessible data. In this study, we demon-

strated that integration of genetic association and protein interaction data using a network

diffusion approach measurably improves reproducibility of top candidate genes. Applica-

tion of this approach to Alzheimer disease (AD) using a large dataset assembled by the

Alzheimer’s Disease Genetics Consortium identified several novel candidate AD genes

that are supported by pre-existing knowledge of AD pathobiology. Our findings support a

strategy of considering network information when investigating genetic risk factors.

Finally, we developed a transparent and easy-to-use R package that can facilitate the

extension of our methodology to other phenotypes for which genetic data are available.

Introduction

The discovery of disease-associated genomic variation has numerous clinical and scientific

applications, including earlier disease prognosis, improved understanding of disease patho-

physiology, and development of personalized treatment therapies [1]. A commonly used tech-

nique for identifying these mutations is the genome wide association study (GWAS) approach

[2]. Typically, a large sample of affected and unaffected individuals are genotyped for many

single nucleotide polymorphisms (SNPs) using a high-density microarray chip and then test

statistically if the allele frequency of each variant is associated with disease status [2]. Signifi-

cant associations in this first step (“discovery phase”) are deemed to be robust if they replicate

in an independent cohort (“replication phase”). In this study, we focused on improving the

replicability of GWAS results for Alzheimer disease (AD), although our methodology is appli-

cable to genetic data for other diseases and traits. AD is a neurodegenerative disease resulting

in irreversible dementia and memory loss with elevated prevalence in older populations [3].

Recent estimates suggest that approximately 5.4 million Americans have AD, and the number

of cases of AD is expected to increase dramatically in future years if medical advances continue

to improve life expectancy, thereby allowing more individuals to reach ages where AD is on

the rise [3].

Genetic studies of AD have led to identifying numerous AD associated genes such as APP

[4], PSEN1 [5], and PSEN2 [6] for early onset AD (EOAD), as well as APOE [7, 8] and SORL1

[8, 9] for late onset AD (LOAD). Common variants in more than 20 other genes have been

robustly associated with AD risk [8]. However, not all AD associated genes will reach genome

wide significance in current datasets of sample sizes below 100,000 individuals. It is well recog-

nized that incorporating other forms of biological data improves confidence in genetic find-

ings [10–12].

Our computational framework is based on the following biological hypothesis. If a known

AD variant is associated with a gene that is involved in a particular biological process (BP) (e.g.

inflammation), we assume as a probabilistic prior that other AD variants might be associated

with proteins involved in this BP or proteins that physically interact with this BP. This hypoth-

esis can be tested computationally using a protein interaction network [13–15] by extending

the “guilt by association” principle via propagation of probabilistic evidence in a network [16,

17]. This general idea has similarity to the Google ranking algorithm of web pages, in which a

web page that has a short link distance to many “important” pages will itself be considered

“important”.
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In the case of protein interactions, guilt by association-based inference is typically per-

formed by inspecting the function of direct neighbors of a predicted disease gene in a protein-

interaction network. This approach has been incorporated in multiple interpretation systems

as well as commercially such as Ingenuity Pathway Analysis (IPA). However, it has been

shown that network propagation, diffusion or other related methods that go beyond simple

neighbor-based analysis can carry functional or disease associations further in the network

with improved predictive accuracies [10, 11]. This idea extends to predicting both gene func-

tion and disease phenotypes associated with genes [11, 18–22].

We hypothesize that this general framework, and network diffusion in particular, can be

extended to aid prioritization of AD genes. Although the underlying biology of AD may be far

more diverse than a single function, there are several biological pathways that are aberrantly

activated in AD brains, and not surprisingly, most of the genes identified by AD GWAS con-

tribute to these pathways [23]. For example, a primary indicator of AD is the accumulation of

amyloid beta plaques in the brain, resulting from mis-processing of APP protein [23].

We developed a novel re-prioritization approach that can be integrated easily into the cur-

rent genetic analysis design (Fig 1). First, we curated the AD literature to produce a set of

approximately 60 robust AD (RAD) genes that includes those that have been associated with

AD at the genome-wide significance level or that contain variants shown to affect AD-related

processes directly (Table 1). We then constructed a network of protein-protein interactions

and applied network diffusion to score and rank genes based on their proximity to the RAD

genes. Network diffusion allows modeling of indirect interactions, modules and protein com-

plexes that are not modeled if only the direct interactions of proteins are considered. Next, we

combined our genetic association results with the network diffusion scores to produce a newly

re-prioritized ranking of genes. Finally, we validated our methodology using a novel approach

involving bootstrap aggregation on one of the largest assembled genetic datasets of AD. Net-

work-augmented genetic results have measurably improved replication rates in this validation

approach. We also show that our main results and key predictions were essentially unchanged

Fig 1. Summary of analysis steps. A set of AD genes that are reproducible (RAD genes) across different genetic
studies was assembled through literature curation. The RAD genes were assigned a high initial risk score, and graph
theoretical diffusion was employed to derive network diffusion scores for the rest of the genes in the network. Scores
obtained from genetic screens and network diffusion were integrated to derive a new prioritization.

https://doi.org/10.1371/journal.pgen.1007306.g001
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after restricting the RAD set to 19 genes which have had been functionally validated as well as

replicated in independent datasets.

Results

RAD genes are proximal in a PPI network

We assembled a PPI network using interactions pooled from multiple PPI databases (Consen-

susPathDB [13], iRefIndex [14], and Human Interactome Y2H [15]) inspired by recent work

[21]. Pooling interactions from these three databases resulted in a connected network that

includes a large percentage of the genes in our GWAS dataset. We then determined if the RAD

genes are proximal within this network. The first proximity measure tested was the average

shortest path (ASP) distance [50]. The ASP distance between RAD genes, determined by

cross-validation (See Methods), is much smaller than would be expected by random chance

(Table 2). One problem is that ASP distance between RAD genes and genes with many inter-

actions (the number of interactions a gene has corresponds to its “degree” and high degree

genes are considered to be hubs) tends to be small (Table 3). In this situation, all hub genes

will be falsely predicted to be AD-related. Thus, we incorporated instead the Regularized

Laplacian diffusion kernel [51] which penalizes paths going through hubs. The diffusion dis-

tance between RAD genes is smaller than would be expected by chance (p = 0.00054)

(Table 2). Simultaneously, the problematic hub genes in the network have discounted scores

as demonstrated by the notable drop in ranking of the 10 genes with the highest number of

overall interactions (Table 3).

Table 1. RAD genes and the type of study that identified them.

Chr. Gene Evidence Chr. Gene Evidence Chr. Gene Evidence

1 CR1 GWAS–AD [8, 24] 7 ZCWPW1 GWAS–AD [8] 12 SRRM4 GWAS–endo [25]

1 PSEN2 Linkage [26] 7 EPHA1 GWAS–AD [27] 13 SLCA10A2 GWAS–AD [8, 28]

2 BIN1 GWAS–AD [8] 7 PLXNA4 GWAS–AD [29] 14 FERMT2 GWAS–endo. [8]

2 INPP5D GWAS–AD [8] 8 PTK2B GWAS–AD [8] 14 PSEN1 Linkage [26]

2 CASP8 WES [30] 8 CLU GWAS–AD [24] 14 SLC2A4A GWAS–AD [8]

3 KCNMB2 GWAS–endo [31] 8 TP53INP1 GWAS–AD [32] 14 PLD4 GWAS–endo. [33]

3 OSTN GWAS–endo [34] 8 PDGFRL GWAS–endo [35, 36] 15 TRIP4 GWAS–AD [37]

4 UNC5C WES [38] 9 LMX1B GWAS–endo [39] 16 PLCG2 GWAS–AD [40]

4 GALNT7 GWAS–endo [31] 9 MVB12B GWAS–endo 17 MAPT GWAS–AD [41]

5 MEF2C GWAS–AD [8] 10 ECHDC3 GWAS–AD [36] 17 KANSL1 GWAS–AD [41]

5 SORCS2 CGS [9] 10 SORCS1 CGS [9] 17 ABI3 GWAS–AD [40]

5 PFDN1 GWAS–AD [36] 10 SORCS3 CGS [9] 17 ACE CGS [42]

6 HLA-DRB5 GWAS–AD [8] 11 CELF1 GWAS–AD [8] 19 ABCA7 GWAS–AD [8]

6 TREM2 WES [43] 11 SPI1 GWAS–AD [44] 19 PLD3 WES [45]

6 NCR2 GWAS–endo [34] 11 MS4A6A GWAS–AD [8] 19 APOE Linkage [46]

6 CD2AP GWAS–AD [27] 11 MS4A4A GWAS–AD [8] 19 CD33 GWAS–AD [8, 27]

6 TPBG GWAS–AD [36] 11 MSA6 GWAS–AD [8, 47] 20 CASS4 GWAS–AD [8]

7 COBL GWAS–AD [28] 11 PICALM GWAS–AD [24] 21 APP Targeted Seq. [26]

7 AKAP9 WES [48] 11 SORL1 CGS [8, 9] 21 ABCG1 GWAS–endo. [31]

7 PILRA GWAS–AD [49] 11 C1QTNF4 GWAS–endo [25]

GWAS = genome-wide association study, linkage = family-based linkage study, endo. = AD-related endophenotype, CGS = candidate gene study, WES = whole exome

sequencing, target seq. = targeted gene resequencing. Genes that are highlighted in bold text met more stringent criteria and were included in the conservative set of

RAD genes.

https://doi.org/10.1371/journal.pgen.1007306.t001
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Filtering by network diffusion score improves replication rate

We next tested if genes with high diffusion scores replicate more frequently in order to demon-

strate that diffusion scores are informative when used in conjunction with genetic data. Boot-

strap aggregation [52] was applied to our genetic dataset to produce a large number of pairs of

discovery and replication datasets (See Methods). In each discovery + replication pair, we con-

ducted a standard genetic workflow, beginning with a screen in the discovery dataset followed

by validating top findings in the replication dataset. For each pair, a replication rate was calcu-

lated by determining the percentage of genes that surpass a given significance threshold also

replicated. To test if network diffusion scores improved replication, we altered the standard

discover + replication approach. We ranked genes by their network diffusion score and then

Table 2. Proximity between RAD genes in PPI network. Each RAD gene was ranked (in comparison to the other 19,972 genes in the network) based upon its degree
(number of interactions in network), its ASP distance to the RAD genes, and total diffusion distance from the RAD genes. The average ranking of the RAD genes was
7,949 using ASP (60th percentile, t-test p = 0.015) and 6,959 for diffusion (65th percentile, t-test p = 0.00054).

Gene Rank Gene Rank Gene Rank

Degree ASP Diffusion Degree ASP Diffusion Degree ASP Diffusion

APP 2 2 1248 MEF2C 3012.5 3072.5 2619 SORCS2 12984 14902.5 1081

CASP8 238.5 76 754 ABI3 3012.5 10739 3228 SORCS3 14153 16106.5 1170

PSEN1 558.5 119.5 441 SORL1 4372.5 9964 2675 ABCG1 14153 7689.5 16627

MAPT 600.5 9 342 TPBG 4516.5 4551.5 5100 TP53INP1 14153 11727 10975

PTK2B 800 175 670 PDGFRL 4862 13192.5 7434 PLXNA4 14153 15296.5 14933

CLU 883 785 1935 LMX1B 5236.5 10441.5 7905 KCNMB2 15703.5 11038.5 12216

PFDN1 930.5 2268 4465 HLA-DRB5 5666.5 4554 7104 SORCS1 15703.5 17153 9425

CD2AP 1043.5 2275.5 585 CD33 5666.5 2281.5 1682 MS4A6A 15703.5 19883.5 19955

PSEN2 1188 454 642 PLD3 5891.5 4554.5 4320 ABCA7 15703.5 7689.5 17609

AKAP9 1230 4547.5 2996 CELF1 5891.5 789 3793 SRRM4 18290 18462.5 18934.5

PLCG2 1255 281 868 PILRA 6640.5 13274.5 8762 CASS4 18290 14847.5 16647.5

APOE 1517 283 626 CR1 7296.5 15652 12460 ECHDC3 18290 19700.5 19390

INPP5D 1582 455 795 GALNT7 7296.5 7688 8782 PLD4 18290 7689.5 17433

BIN1 1691 457 977 MVB12B 7995.5 7688.5 4498 TREM2 18290 19587 1566

TRIP4 2509 4548.5 5679 ACE 8878 4555 9212 SLC10A2 18290 7689.5 17128

PICALM 2640 3070.5 1207 EPHA1 9380.5 7689 8437 ZNF804B 18290 18465 18406

KANSL1 2780 3069.5 3734 COBL 9928.5 13930 9416 NCR2 18290 19587 1566

FERMT2 2857.5 1496.5 3313 UNC5C 12984 14796.5 15064

https://doi.org/10.1371/journal.pgen.1007306.t002

Table 3. Proximity of non-RAD hub genes to RAD genes.

Rank

Gene Degree ASP Diffusion

UBC 1 1 1433

SUMO2 2 20.5 1570

CUL3 3 51 2515

SUMO1 4 20.5 1502

EGFR 5.5 3 937

TP53 5.5 7 983

GRB2 7 2 905

SUMO3 8 181 2433

HSP90AA1 9 10 978

MDM2 10 51 1096

https://doi.org/10.1371/journal.pgen.1007306.t003
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iteratively dropped genes that had ranking diffusion scores below a given stringency threshold.

At first we retained only genes in the 50th percentile of network scores, then gradually

increased the threshold to only include genes in the 60th, 70th, 80th, and 90th percentiles. For

each threshold, we computed the replication rate and compared to the baseline. As shown in

Fig 2, filtering based upon network score percentile noticeably increased replication rate.

Genes with a–log(p-value) of> 6 replicated at a rate of approximately 16% in simulations (far-

thest right purple point), while additional strict network filtering improved the replication rate

to nearly 34% (farthest right red point).

Combined Z-scores predict novel AD genes

Since filtering on network diffusion score improved replication rate, we next sought to inte-

grate the network diffusion scores and genetic results into a single score. First, we converted

the p-value of each gene from genetic analysis into a Z-score (“GWAS Z-Scores”) and then

converted the network diffusion percentile of each gene into a Z-score (“Network Z-scores”).

Linear regression analysis showed that the Network and GWAS Z-scores are independent (Fig

3A). Next, we assigned each gene a replication rate based upon how frequently the gene repli-

cated in our bootstrapped validation datasets (See Methods). We observed that replication

rates were higher for genes with higher network Z-scores compared to genes with lower net-

work Z-scores (Fig 3B).

To combine the Network and GWAS Z-scores, we developed an approach that uses a linear

support vector machine (SVM) [53] to determine how heavily each type of score should be

weighted in order to maximize replication rate (See Methods). These weights were then used

Fig 2. Filtering on network score improves replication rate. The replication rate was computed for all genes
surpassing the significance threshold for each GWAS. This procedure was repeated in each bootstrapped dataset and
the average replication rate was determined (purple). This process was repeated using increasingly strict filters on the
network diffusion scores. The baseline replication rate without utilizing network scores (naïve method) is represented
by the purple points. The strictest network filter (red) has a consistently higher replication rate than the naïve method.

https://doi.org/10.1371/journal.pgen.1007306.g002
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in conjunction with the meta-analysis method for combining summary results implemented

in METAL [54]. The weights predicted by the SVM (Fig 4) were 0.703 (GWAS) and 0.297

(Network). As further confirmation, we conducted binomial (logit family) logistic regression

using network and GWAS Z-scores as predictors and the replication class (high/low) as the

outcome. Both network and GWAS score were significant, (GWAS: coefficient = -0.659, p

<2.0×10−16) (Network: coefficient = -0.229, p = 0.0016). The coefficients derived from logistic

regression are very similar to the SVM-derived weights (GWAS weight = 0.742, Network

weight = 0.258).

Fig 3. Comparison of GWAS and network Z-scores. A. Transformed Z-scores are uncorrelated. B.Genes with high
network scores had higher replication rates compared to those with low network scores, as further visualized and
confirmed statistically as shown in Fig 4. Reprate = replication rate.

https://doi.org/10.1371/journal.pgen.1007306.g003

Fig 4. Support vector machine training to predict GWAS and network Z-score weights. Selection of genes with a
high replication rate (> 0.7, blue points) and low replication rate (<0.1, red points) yielded a balanced number of
genes in each replication class (high/low). A linear SVMmodel was trained to predict replication class using the
GWAS and network Z-scores of each gene. Genes represented as X’s were used as support vectors for the training of
the SVM, whereas genes represented as O’s were not. Both network and GWAS Z-scores contributed to the decision
boundary, as demonstrated by the significance of their predicted coefficients using logistic regression (GWAS:
p<2.0×10−16, Network: p = 0.0016).

https://doi.org/10.1371/journal.pgen.1007306.g004
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Next, we applied our combined approach genome-wide, excluding the RAD genes and

genes containing significantly associated variants (p<1.0x10-7) to focus on novel candidates.

Among the genes with largest combined Z-scores (Table 4, S1 Table), several have important

roles in inflammation. CR2 (p = 5.95×10−7) is a receptor protein involved in immune response

(genecards.com [55]). SHARPIN (p = 1.43×10−5) is a component of the LUBAC complex that

plays a regulatory role in inflammation [55]. PTPN2 (p = 3.21×10−5) is a phosphatase that also

serves an important role in regulation of inflammation and glucose homeostasis [55]. The

Bonferroni-corrected significance threshold when considering only genes in the 75th percentile

of network scores is p = 1.46 x 10−5, although this is likely to be overly strict since proximally

located genes are not inherited independently.

We performed pathway analysis using Gene Set Enrichment Analysis (GSEA) [56] to deter-

mine if AD-related pathways are more enriched when genes are ranked by their combined Z-

scores versus GWAS-only Z-scores (See Methods). Notably, ranking genes based upon com-

bined Z-scores resulted in several significantly enriched AD-related pathways including

immune response, FOX03 targeting (indicates enrichment for aging), and hippocampal devel-

opment (Table 5). By comparison, ranking genes based only upon their GWAS Z-scores

resulted in virtually no significant pathways entirely (Table 6).

Table 4. Top predicted AD genes using combination approach.

Z-Score

Gene GWAS Network Combined

CR2 4.084 2.832 4.857

SHARPIN 3.983 1.320 4.185

PTPN2 3.805 1.259 3.997

C4B 2.846 2.928 3.750

TUBB2B 3.166 1.314 3.428

EPS8 3.156 1.156 3.358

PSMC3 3.145 1.036 3.302

STRAP 3.051 1.157 3.262

HSPA2 2.977 1.325 3.258

STUB1 2.895 1.407 3.213

https://doi.org/10.1371/journal.pgen.1007306.t004

Table 5. GSEA results after ranking genes by combined Z-scores.

PATHWAY NAME SIZE ES NES FWER p-val

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 64 0.487 2.231 0.042

DELPUECH_FOXO3_TARGETS_DN 37 0.527 2.181 0.07

BIOCARTA_PGC1A_PATHWAY 20 0.613 2.180 0.071

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 85 0.436 2.171 0.073

MURAKAMI_UV_RESPONSE_6HR_DN 20 0.592 2.124 0.117

GOLUB_ALL_VS_AML_DN 18 0.629 2.118 0.127

REACTOME_RNA_POL_I_PROMOTER_OPENING 28 0.552 2.100 0.149

MODY_HIPPOCAMPUS_PRENATAL 36 0.519 2.098 0.153

FARMER_BREAST_CANCER_CLUSTER_5 17 0.632 2.090 0.161

ZUCCHI_METASTASIS_DN 35 0.516 2.067 0.197

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP 61 0.456 2.058 0.205

INGA_TP53_TARGETS 15 0.635 2.049 0.222

https://doi.org/10.1371/journal.pgen.1007306.t005
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Discussion

GWAS of AD and AD-related endophenotypes have discovered and replicated associations

with more than 60 genes (Table 1), many of which have roles in AD-related pathways (amy-

loid β aggregation, inflammation, cholesterol transport, immune response, etc.). To identify

additional AD-related genes, we hypothesized that genes having suggestive evidence for associ-

ation from a genome-wide screen and protein-level interactions (both direct and indirect) are

more likely to replicate. This idea has been referred to as functional linkage [57]. To test this

hypothesis, we developed a novel approach for improving the prioritization of candidate dis-

ease genes that incorporates a network diffusion of scores from known disease genes using a

protein network and integration with GWAS risk scores. We tested this approach on a large

AD GWAS dataset and validated the performance of the methodology using bootstrap aggre-

gation. Several novel AD genes were predicted including CR2, SHARPIN, and PTPN2.

Part of the motivation for our approach was to identify genes that are more obviously bio-

logically relevant to AD. This is exemplified by SHARPIN, whose principal known function is

to form the LUBAC complex and prevent inflammation, a major process through which amy-

loid aggregation and AD are thought to develop [23]. Similarly, CR2, a homolog of CR1which

is a well-established AD gene [8], is involved in immune response. Many immune response

genes are differentially expressed between healthy and AD brains, and investigations into the

connection between expression in cell types and the presence of AD has led to growing interest

in the role microglial cells (a first responder in the immune response pathway) [58]. Finally,

PTPN2 is involved in multiple AD-related pathways; it has roles in negatively regulating

inflammation and de-phosphorylation of key glucose metabolism kinases including INSR and

EGFR [59]. The AD-related roles of each of our novel AD gene predictions, in combination

with their strong network and genetic scores, make them highly promising candidates.

One biological form of functional linkage that does not require direct physical interaction is

membership in the same signaling pathway or protein complex. For example, our study identi-

fied interaction between FOXO and INSR that is consistent with evidence of a multi-link sig-

naling pathway comprised of direct physical interactions in the insulin-signaling pathway [60].

By comparison, neighborhood enrichment approaches (i.e., testing a gene’s direct interac-

tions) cannot detect indirect interactions. Furthermore, neighborhood enrichment approaches

are unreasonable for AD because some RAD genes are network hubs (e.g., APP has more than

2000 interactions) which would result in an unreasonably high number of genes having AD-

enriched neighborhoods.

Table 6. GSEA results after ranking genes by GWAS only Z-scores.

PATHWAY NAME SIZE ES NES FWER p-val

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP 61 0.440 2.108 0.134

FARMER_BREAST_CANCER_CLUSTER_5 17 0.610 2.016 0.261

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 64 0.397 1.950 0.418

GOLUB_ALL_VS_AML_DN 18 0.560 1.888 0.591

CHIARETTI_T_ALL_REFRACTORY_TO_THERAPY 23 0.499 1.879 0.608

SHIN_B_CELL_LYMPHOMA_CLUSTER_5 15 0.541 1.772 0.864

ZUCCHI_METASTASIS_DN 35 0.423 1.769 0.873

KIM_HYPOXIA 22 0.456 1.704 0.964

DELPUECH_FOXO3_TARGETS_DN 37 0.400 1.672 0.985

NIELSEN_LIPOSARCOMA_UP 15 0.514 1.650 0.993

ROVERSI_GLIOMA_COPY_NUMBER_UP 56 0.351 1.643 0.996

https://doi.org/10.1371/journal.pgen.1007306.t006
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Some distance metrics capture indirect interactions by calculating the proximity between a

pair of genes based upon short paths between them in the network. However, after testing a

simple distance metric known as average shortest path (ASP), we observed that hub genes

were still the top-ranked predicted genes. Since hub genes have many interactions, they tend

to have short overall paths to any genes in a network, although their functions are highly

generic and unlikely tied to a particular disease. Ubiquitin C (UBC), for example, has nearly

9,000 interactions; however, this is simply because protein degradation is essential for regulat-

ing the vast majority of proteins. Therefore, a more nuanced network propagation approach

can aid in making disease specific inferences.

Network diffusion is a widely used class of spectral graph clustering methods that have been

applied to many computational disciplines [51]. We used this approach to propagate evidence

in the form of AD scores throughout the network. A protein in the network that has a short

“diffusion distance” to one or more well-established AD genes will receive a high network risk

score. Notably, we observed that network diffusion down-weights hubs while simultaneously

outperforming ASP distance when applying leave-one-out cross-validation to the RAD genes.

Many diffusion kernels have been proposed in graph theory, however the Regularized Lapla-

cian [51] approach used in this study has the highly desirable properties of requiring very little

parameterization (in fact, only a single parameter is required to be set) and also more compu-

tationally efficient than other diffusion kernels. Network diffusion methods have been applied

in other genetics research contexts such as labeling somatic network mutations in cancer [61],

characterizing gene sets [62], and predicting risk genes for amyotrophic lateral sclerosis [21].

We also observed that genes with high diffusion scores tended to replicate more frequently

in our 125 pairs of bootstrapped discovery and replication datasets. However, network Z-

scores and GWAS Z-scores in the full dataset were not strongly correlated. Taken together,

these observations indicate the importance of considering jointly protein interaction data and

genetic results even though they are independent because the integration of both types of

information will likely yield noticeable improvement in replicability of findings. Since our

bootstrapping procedure required splitting the original dataset, the simulations were con-

ducted using datasets that contained only one-half of the total sample. This suggests that our

network scores aided in determining which genetic associations were real in datasets with

reduced power. We note that our bootstrapping approach was performed on the same data

from which we derived the GWAS Z-scores used to train the SVM. Therefore, the selection of

combination weights may have been biased in favor of GWAS Z-scores. Furthermore, it is

unclear whether the weight combination used in this study (0.297/0.703) would be appropriate

for combining genetic and network data for other disorders or traits.

The GWAS approach has a very limited capability to identify the entire set of genes which

contribute to the risk of a complex disease like AD, even in datasets containing up to 100,000

individuals, because some genes do not contain variants that are sufficiently frequent and/or

exert a large enough effect to yield a statistically significant association. To overcome this limi-

tation, we developed a novel SVM approach to integrate the genetic and network scores by

propagating GWAS Z-scores in a PPI network. In the AD example presented here, we initial-

ized the RAD genes to have an identical high score in the network, thereby allowing re-priori-

tization of genes in any AD dataset regardless of the internal Z-scores of the RAD genes.

We acknowledge that our initial choice to treat each RAD gene equally may be controver-

sial. Arguably, we could have seeded our analyses with GWAS Z-scores for each RAD gene

from the original studies. However, our approach permits unbiased exploration of interactions

of all plausible AD genes and does not require adjustment to these Z-scores for sample size or

allele frequencies. Moreover, results derived from weighted RAD genes would be dominated

by interactions with APOE for which the significance level exceeded a–log(p-value) of more
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than 100 in several datasets (compared to< 10 for most other RAD genes in the total group of

datasets). Also, several key AD-related genes (e.g., APP, PSEN1 and PSEN2) which show little

evidence for association with individual SNP or gene-based tests for AD would be undervalued

in analyses using weighted Z-scores. In order to make our software maximally flexible and sup-

port weights derived from confidence in the seed genes, we implemented an option for users

to specify unequal weights on the seed genes at their own discretion.

A potential concern about our results is the strategy for selecting RAD genes because many

significant GWAS findings include variants located in intergenic regions. The most parsimoni-

ous explanation is that the variant responsible for the association peak influences the nearest

gene, but there is abundant evidence suggesting this assumption is often incorrect. To address

this issue, we repeated our analyses using a more restricted set of RAD genes that included

only those supported by genome-wide significant evidence of association with AD risk and

replication in independent datasets or by other genetic evidence plus experiments linking

them to AD-related pathophysiology. Our leave-one-out cross validation approach demon-

strated that the genes in the restricted RAD set had closer network proximity to each other

than would be expected by chance (p = 5.93x10-5, S2 Table). The statistical support for the

novel genes CR2 (p = 4.09x10-7), SHARPIN (p = 1.10x10-5), and PTPN2 (p = 2.41x10-5)

remained the same (S3 Table). Finally, combined Z-scores that were derived using diffusion

from the more conservative RAD gene set yielded similar AD-related pathways such as Fx03

targets (FWER p = 0.064), antigen processing (FWER p = 0.02), and hippocampal develop-

ment (FWER p = 0.065) (S4 Table). These results confirm that the genes with a clear func-

tional role in AD produce network diffusion-based predictions that are consistent with the

results presented here. Curiously, the inclusion or exclusion of the portion of RAD genes that

have an ambiguous or non- validated functional role in AD did not affect our results.

We also acknowledge that several of the novel putative AD genes may have been errone-

ously prioritized because they are in the same locus with RAD genes. This concern is unlikely

noting that there are several instances where a genetic association peak includes multiple genes

that may have a possible functional role in AD (e.g., the MS4A gene cluster [8]). Although one

of our novel AD genes, CR2, is located close to CR1, which is an unambiguous RAD gene

given its robust replication in GWAS and effect on deposition of neuritic amyloid plaque [63],

CR2 is also an intriguing AD candidate gene because it has been shown to regulate hippocam-

pal neurogenesis [63]. Thus, our findings suggest that our approach will aid in predicting truly

multiple AD-related genes at a locus, however additional biological evidence may be required

in some instances to make this distinction.

Previous AD studies have implicated inflammation and immune response genes, but we

did not observe enrichment for these pathways when incorporating only GWAS scores in the

analysis. However, these and other recognized AD-related pathways emerged after applying

our network re-prioritization method (Table 6) suggesting that incorporation of network data

can help minimize discrepancies in predictions across different genetic datasets. On the other

hand, other well-established AD-related pathways, including cholesterol metabolism and

endocytosis, were not detected by our approach. Further inspection of the results revealed, for

example, that enrichment for the cholesterol homeostasis pathway is not significant when

applying GSEA to the genetic data only (FWER p = 1). This pathway as defined in the Molecu-

lar Signatures Database (MSigDB) is very broad and contains many genes that are weakly asso-

ciated with AD which consequently diminish the enrichment of the set. The evidence for this

pathway is greater in the analysis using only network scores (FWER p = 0.18), which indicates

our method still improves the detection of cholesterol homeostasis. Even pathways such as

HDL-mediated lipid transport that were enriched in analyses considering only genetic data
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(largely due to the strong signal from APOE) were not ranked highly by our network diffusion

algorithm because RAD genes such as APOE are ignored to minimize bias.

Although merging of multiple databases to obtain a very highly connected network is a

requirement for the diffusion algorithm to work properly, our approach offers several advan-

tages in comparison to other network-based approaches including biological transparency,

ease of integration with a variety of GWAS methods, and the ability to balance data-driven sta-

tistics and biological prior probabilities. The extensive simulations we conducted provide a

general basis for further establishing the practicality of genetic and network-based integration.

Our network methodology was developed with the goal of accommodating known complica-

tions of genetic analysis.

The software developed for this study is open source, accessible to most users (incorporated

in an R package), and applicable to any set of variant- or gene-level disease association results.

Importantly, it requires only a set of GWAS results and a list of previously known disease

genes and, therefore, does not necessitate changes to previously established genetic analysis

pipelines. Although we used an SVM procedure to determine the weights for the score combi-

nation, a user can specify any weights or simply use our defaults that are based on the 0.297/

0.703 ratio determined by SVM. Our package is accessible through GitHub (https://github.

com/lancour/ignition).

Methods

Assembling an AD gene list

A set of genes ascribed to AD with a high degree of certainty was assembled through curation

of published findings ascertained through PubMed searches that emerged from studies

using a variety of approaches including GWAS of AD risk and AD-related endophenotypes,

family-based linkage analysis, positional cloning, whole exome sequencing (WES), and can-

didate gene testing (CGS) (Table 1). Criteria for inclusion in this set included (1) genome-

wide significance for GWAS and WES studies (p< 5x10-8) and LOD score> 3 for linkage

studies and (2) replication of association signals in independent datasets; or (3) biological

evidence that demonstrate functional relevance to AD of associated variants or the encoded

protein.

Harmonizing protein-protein interaction databases

A set of interacting gene-gene pairs (in HGNC symbol format) is required as input for this

software. To compile this set, three databases (RefIndex v14 [14], ConsensusPathDB v31 [13],

and Human Interactome Y2H DB vHI-II-14 [15]) were selected based on their demonstrated

utility in recent work [21]. iREFINDEX and ConsensusPathDB interactions were filtered to

remove self and complex (more than two proteins) interactions. The ConsensusPathDB inter-

actions are given in uniProt ID format, which were converted to HGNC symbols using the

official website (http://www.genenames.org). iREFINDEX provides a HGNC symbol for each

interactor of an interaction when possible, and so only interactions which had a HGNC for

both interactors were kept. The Human Interactome DB already provides a set of binary gene-

gene interactions in HGNC format, so no processing was required. The union of the processed

sets from each database was used as the final interaction set. The unified set contains 19,972

unique gene symbols and 236,642 interactions. These databases are curated collections of

experimentally determined interactions (typically binding or affinity) reported in the litera-

ture, such as from co-immunoprecipitation, as well as predicted interactions in a small num-

ber of databases.
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Assigning network scores to genes through diffusion

Network diffusion is a very well-studied spectral approach to graph clustering and annotation

[17, 51, 64, 65]. It attempts to mimic node-to-node distance in the graph that in turn aims to

capture functional relevance. The first step of the diffusion method is to model the protein

interactions as a network. A network is comprised of a set of nodes, V, and a set of edges

between nodes, E. For this work, nodes represent genes, and edges represent an interaction

present in the unified set. Although we use unweighted edges in this work, our network meth-

ods and software are able to receive weighted input as well, such as protein interactions with

confidence measures taken from STRING [66]. The construction of diffusion kernels using

weighted edges has been well studied and is equally valid [51]. n is the number of nodes in the

network, which is 19,972 (yielding 236,642 edges). All network methods were implemented in

R. The regularized Laplacian kernel [51] is constructed by:

K ¼ ðI þ aLÞ
�1

ð1Þ

where K is the resulting kernel, I is the identity matrix, L is the graph Laplacian, and alpha is a

constant (see S1 Text and [51] for additional details). For this study, an alpha value of 0.1 was

used, consistent with other work in this field [17]. Next, a network diffusion score was com-

puted for each gene. To do this, the diffusion score vector, y, was initialized to be a length n

vector that contains 1’s in the indices of the RAD genes, and 0’s otherwise. Risk scores for all

genes in the graph were then derived by multiplication of K by the diffusion score vector y:

ỹ = Ky.

Validation of diffusion approach using leave-one-out cross validation

To test if RAD genes had closer than random diffusion proximity to other RAD genes in a net-

work, leave-one-out cross validation [67] was applied to the RAD gene set. First, a single RAD

gene from the RAD set was set to 0 in the initial diffusion score vector, y. Then, diffusion

scores were computed based upon this new initialization of y. The diffusion scores were sorted

and the sorted rank of the removed RAD gene’s diffusion score was determined in comparison

to all other non-RAD genes. This process was repeated for each gene in the RAD set, resulting

in a list of ranks. If diffusion proximity is informative and potentially predictive, the average

rank of the RAD genes should be significantly lower than the average rank of all genes, (n+1) /

2, which was verified using a one-tailed t-test.

ADGC GWAS dataset

The Alzheimer’s Disease Genetics Consortium (ADGC) is an NIA-funded project whose goal

is to identify genes associated with an increased risk of developing late-onset Alzheimer disease

(LOAD) by assembling and analyzing genetic and phenotypic data from large cohorts contain-

ing rigorously evaluated AD cases and cognitively normal controls of various ethnic ancestries.

Details of ascertainment, collection, quality control (QC), and analysis of genotype and pheno-

type data in the individual datasets of the ADGC are provided elsewhere [8, 68]. Here we

examined genotype data that were generated using high-density SNP microarrays from 32 pro-

spective, case-control, and family-based studies of LOAD comprising 16,175 case and 17,176

controls of European ancestry. After QC steps to filter low-quality SNPs and individuals with

low genotype call rates, principal components (PCs) of ancestry were computed within each

dataset using EIGENSTRAT [69] and a set of 21,109 SNPs common to all genotyping plat-

forms and datasets in order to account for population substructure in genetic association anal-

ysis. Samples with outlier PC values>six standard deviations from the mean were excluded
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from subsequent analyses. Genotypes for a much larger set of SNPs were imputed using the

Haplotype Reference Consortium panel release 1.1 [70, 71], which includes 64,976 haplotypes

derived from 39,235,157 SNPs, and the Michigan Imputation Server (https://imputationserver.

sph.umich.edu/) running MiniMac3 [72, 73].

Genome-wide association analysis

Association of AD with the imputed dosage of the minor allele for each SNP (a quantitative

estimate between 0 and 2) genome-wide was conducted using logistic regression models

implemented in PLINK [74] that included covariates for age-at-onset/age-at-exam, sex, the

first three PCs, and an indicator variable for each dataset. Joint analysis was chosen in favor of

meta-analysis to avoid problems that could be introduced if bootstrap aggregation under-sam-

pled small cohorts, resulting in unreliable association estimates for those cohorts. To account

for relatedness in family datasets, subsets of maximally-unrelated affected and unaffected indi-

viduals were sampled from each pedigree. Each variant was annotated to a gene region accord-

ing to RefSeq release 69 [75] using the program ANNOVAR [76]. Then, each gene was

assigned the minimum p-value of all variants annotated to it, after applying the following for-

mula:

PGene0

g ¼ 1� ð1� PBestSNP
g Þ

Nþ1

2 ð2Þ

where N is the number of variants analyzed that were annotated to the gene. Previously, this

correction [77] has been shown to perform comparably to more complex adjustments based

upon gene length, recombination hotspots, and similar gene features [78].

Validation of genetic re-prioritization through bootstrap aggregation

Since the availability of large AD genetic datasets is limited, bootstrap aggregation [52] was

used to generate a high number of datasets for method validation. First, the full ADGC dataset

was equally separated into discovery and replication halves. Then, 25 iterations of bootstrap

aggregation were applied to the discovery half and then the replication half. The resultant 25

discovery and 25 replication datasets were then matched (D1 and R1, D2 and R2. . ..D25 and

R25). To further ensure robustness, the splitting procedure was repeated a total of 5 times,

with 25 iterations of bootstrap aggregation applied each time, resulting in 125 total pairings

(D1 and R1, D2 and R2. . . .D125 and R125). Each pairing represents a discovery dataset as

well as an independent replication dataset.

For each pairing, the previously described genetic analysis was conducted on the discovery

half. Then all genes that passed a designated significance threshold (the number of passing

genes is denoted as r) were selected to be tested again in the replication half using a signifi-

cance threshold of (0.05 / r). The replication rate was computed by determining the percentage

of passing genes in the discovery half that also passed in the replication half. A replication rate

was estimated for each pairing, and the mean replication rate was then determined. Next, the

replication rate was re-determined for each pairing, with the added criterion that selected

genes must also have a top percentile network diffusion score (top 10th, 20th, 30th, 40th, and

50th were tested). The average replication rate for each filtering threshold was compared to the

average replication rate without filtering.

Integrating GWAS and network diffusion scores

The p-values from genetic analysis of the ADGC dataset were converted to Z-scores using the

qnorm function in R. Then, the network diffusion scores were converted into percentiles. The
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percentiles are transformed into Z-scores using the qnorm function, with the additional speci-

fication of lower.tail = F. The weighting scheme fromMETAL was applied to combine the

GWAS and network Z-scores:

Zcombined ¼
w

1
� Zgwas þ w

2
� Znetwork

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2

1
þ w2

2

p ð3Þ

Although any weight selection can be used, the weights were “learned” using an SVM [53]

due to the observation that the GWAS and network scores did not contribute equally to pre-

dicting replication rate. First, a replication rate was determined for each gene. If a gene had a

p-value of<0.05 in d discovery datasets and a replication p-value of<0.05 in r of the paired

replication datasets, it was assigned a replication rate of r/d. To reduce model overfitting, cre-

ate sufficient separation between the classes, and achieve a balance of high and low replicating

genes, only high replication genes (�0.7, n = 676) and low replication genes (<0.1, n = 475)

representing approximately 8.4% of the total genes with both a network and GWAS scores

were extracted. By comparison, using a threshold of 0.8 or 0.9 would result in an imbalanced

training set with very few high replication genes because highly replicating genes are uncom-

mon. A linear SVM [53] was trained using the network Z-scores and the genetic association Z-

scores as features, and “high” and “low” as the classes. The resulting slope of decision boundary

was then used to determine appropriate weights (w1 = 0.703, w2 = 0.297).

Pathway analysis using the re-prioritized ordering of genes

Pathway enrichment was performed using the Gene Set Enrichment Analysis (GSEA) software

[56]. GSEA’s pre-ranked analysis tool requires that the user provide a numeric measure for

ordering genes. To establish a baseline, enrichment was done using our internal GWAS Z-

scores to order genes. Then, enrichment was done using the alternative ordering genes based

upon their combined Z-scores (see above for combination method). The gene sets tested for

enrichment were the GSEA C2 pathways in MSigDb, which are the “curated gene sets” com-

piled from multiple sources including KEGG [60], Reactome [79], and domain experts. The

significance threshold was set at FDR< 0.25, as suggested previously for this hypothesis gener-

ating approach [56].
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