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One gene, many phenotypes
Prasun P, Pradhan M, Agarwal S

ABSTRACT
“Phenotype” is the visible or quantifiable effect of the expression of a gene, whereas the specific genetic 
constitution responsible for a phenotype is called “genotype”. It was hoped that phenotype could be accurately 
predicted if the genotype could be characterized. But, the relationship between the genotype and phenotype 
is not straightforward. Similar genetic lesions can have entirely different phenotypes. In recent years, there 
has been tremendous progress in the understanding of the genetic basis of diseases. The extent to which it 
will be possible to relate findings at the DNA level to the clinical phenotype is difficult to delineate on many 
occasions. The elucidation of mechanisms underlying genotype-phenotype discrepancies is important as it 
will influence the use of DNA-based tests in the diagnosis, therapy and counseling of individuals affected 
with genetic disorders. This issue is pertinent to almost every aspect of medical practice and research in this 
post-genome era. In this article, we have tried to summarize those factors which are responsible for varied 
manifestations of lesion(s) in a single gene.
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Review Article

M utations in different genes can lead to similar phenotype 
e.g., hereditary spherocytosis can be due to mutations 

in the genes encoding for spectrin, ankyrin, protein 4.2 or band  
3.[1-4] In contrast, defects in a single gene have been implicated 
in different phenotypes. For example, cystic fibrosis is caused by 
homozygous/compound heterozygous mutations in the CFTR 
gene. Mutations in the same gene can lead to isolated congenital 
bilateral absence of vas deferens (CBAVD).[5-7] There may be 
considerable phenotypic heterogeneity even among individuals 
who have identical mutations at the disease-causing locus. This 
is best exemplified by sickle cell anemia, in which all patients 
are homozygous for a similar genetic lesion in the beta globin 
gene, but the phenotypic diversity ranges from �life-threatening� 
to �symptom-free�.[8-14]

With rapid advancement in the field of genetics, thousands 
of genes involved in human diseases have been cloned. It was 
expected that knowledge of mutations would lead to consistent 
genotype-phenotype correlations, clarifying why a given genetic 
change results in a particular phenotype. However, genotype-
phenotype correlation is often incomplete. Monogenic diseases 
provide the simplest models for studying genotype-phenotype 
relationships. The understanding of mechanisms underlying 
genotype-phenotype discrepancies is important, as it will move 
clinical genetics towards predictive medicine, allowing better 
selection of therapeutic strategies and individualized counseling 
of persons affected with genetic disorders.

From ‘Genotype’ to ‘Phenotype’

There are several steps involved in the expression of a gene. 

These are:
Transcription: Process whereby genetic information is 
transmitted from DNA to mRNA.
mRNA processing: The mRNA leaves the nucleus and 
undergoes a number of modifications such as, 5� capping, 
polyadenylation and splicing. The intervening sequences 
(non-coding regions) are excised and the exons (coding 
regions) are joined to form the mature RNA during the 
process of splicing.
Translation: Process whereby the mRNA is decoded on 
ribosomes to direct synthesis of specific proteins.
Posttranslational modification: Many proteins undergo 
modification before they attain functional activity. These 
modifications are of various types. The most common are the 
specific cleavage of precursor proteins; formation of disulfide 
bonds; or covalent addition or removal of groups leading to 
modifications such as acetylation, formylation, glycosylation, 
hydroxylation, methylation, oxidation or phosphorylation.

Each of these steps in the gene expression is subject to complex 
regulations and multiple interactions, which can result in 
variable and unexpected expressions of the same gene. For 
example, alternative mRNA splicing can produce several 
species of mRNA from a single gene.[15] The polypeptide chains 
produced after translation may be modified in numerous ways 
leading to many versions of the final protein. Thus, a single 
gene can generate hundreds and possibly thousands of different 
protein molecules by the processes of alternative splicing and 
posttranslational modifications.

At present, only a fraction of gene function can be inferred 
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from the primary gene sequence. The need of developing 
strategies to define gene function and better understanding 
of the biological systems has led to the emergence of many 
revolutionary disciplines like proteomics, functional genomics, 
chemical genetics and systems biology.

�Proteomics� focuses on gene products i.e., proteins, which are 
the active agents in cells. It attempts to characterize proteins, 
compare variations in their expression levels in normal and 
disease states, study protein-protein interactions and identify 
their functional roles.[16-18] �Systems biology� (also called 
�integrated biology�) uses an integrated approach to understand 
the biological systems. The organism or the biological system 
is analyzed in its entirety rather than by just studying limited 
number of components at a time. Information regarding all the 
mRNA levels (transcriptome) and protein levels (proteome) 
in a biological system during health and disease are collected 
and analyzed.[19]

It is hoped that the processes underlying health and disease will 
be better understood in the near future with these novel and 
integrative approaches.

One Gene, Many Phenotypes

I. One gene, many mutations, many phenotypes
It is very interesting to know that mutations at a single locus 
can lead to diseases with entirely different clinical features. For 
example, mutations in the RET gene have been implicated in 
the etiology of Hirshprung disease as well as multiple endocrine 
neoplasia (MEN) Type 2. This phenomenon, whereby different 
mutations at the same locus result in different phenotypes is 
known as allelic heterogeneity. The underlying mechanism is 
either quantitative or qualitative change in the gene product. 
Some of the examples of allelic heterogeneity have been listed 
in Table 1. A few illustrative examples are discussed here.

Nonfunctional vs. partially functional/truncated gene product 
Duchenne and Becker muscular dystrophies are caused by 
mutations in the dystrophin gene. Mutations that partially 
inactivate the gene product cause Becker muscular dystrophy 
(BMD), while mutations which completely inactivate the gene 
product produce Duchenne muscular dystrophy (DMD).

Loss of function vs. gain of function 
The RET gene codes for a tyrosine kinase receptor. Loss of 
function mutations in RET that lead to nonfunctional product 

or lower expression of RET give rise to Hirschprung disease. 
Gain of function mutations at the same locus that produce 
constitutively activated receptors lead to MEN Type 2. Similarly, 
loss of function mutations at FGFR1 locus cause an autosomal 
dominant form of Kallman syndrome characterized by anosmia 
and hypogonadotropic hypogonadism, while gain of function 
mutations at the same site lead to a form of craniosynostosis 
(Pfeiffer syndrome).[20,21]

II. One gene, one mutation, many phenotypes
The phenomenon of allelic heterogeneity is not unexpected, 
as the gene product may get differentially changed by the 
different mutations and so the phenotypes. More surprising 
is the fact that individuals with similar genetic lesions can 
have significantly different clinical manifestations. This is well 
observed in autosomal dominant disorders, where �pleiotropy�, 
�variable expressivity� and �reduced penetrance� have been 
classically described. Pleiotropy is the condition whereby a 
single gene mutation has multiple consequences in numerous 
tissues. Even in the same family, two individuals carrying the 
same mutant genes may have different disease manifestations. 
Expressivity is defined as the severity of the phenotype. When 
the severity of disease differs in people with same genotype, 
the phenotype is said to have variable expressivity. Penetrance 
is the proportion of persons with a particular genotype 
who manifest the disease. The reduced penetrance leads to 
�skipping of generation�. Neurofibromatosis Type 1(NF1) is 
characterized by extreme clinical variability, not only between 
unrelated individuals and among affected individuals within 
a single family but even within a single individual with NF1 
at different times in life. The mutation in the NF1 gene can 
produce different lesions in different tissues such as café-au-lait 
spots, neurofibroma, iris hamartoma, skeletal abnormalities or 
mental retardation (pleiotropy). Each of these pleiotropic effects 
can have varying severity among the affected family members 
(variable expressivity). The mechanisms underlying such clinical 
variations are often unclear. It is supposed to be the result of the 
modifying effects of other genes, as well as due to interaction 
with environmental factors. Some of the known mechanisms 
responsible for variable manifestations of a single gene lesion 
have been discussed briefly in the subsequent sections.

Mosaicism (gene dosage effect)
Mosaicism is the existence of two cell lines with different 
genetic constitution that have been derived from a single 
zygote. It arises as a result of occurrence of new mutation 
during development. The stage at which the mutation occurs 

Table 1: Selected examples of allelic heterogeneity
Disease Gene Disease

Hurler syndrome  IDUA Scheie syndrome
Charcot-marie-tooth neuropathy PMP22 Hereditary neuropathy with pressure palsy
Hyperkalemic periodic paralysis SCN4A Paramyotonia congenita
Creutzfeldt- Jacob disease  PRNP Familial fatal insomnia
Pseudohypoparathyroidism IA GNAS1 Albright hereditary osteodystrophy
Kennedy disease AR Androgen insensitivity
Cystic fibrosis CFTR Congenital bilateral absence of vas deferens
Duchenne muscular dystrophy DMD Becker muscular dystrophy
Hirschprung disease  RET Multiple endocrine neoplasia Type 2

Prasun, et al.: Genotype-phenotype correlation
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determines the proportion of cells bearing the lesion. It is an 
important cause of phenotypic heterogeneity among individuals 
who carry the same genetic lesion.[22] The phenotypic severity 
is determined by the proportion of cells carrying the mutation. 
This is best exemplified in mitochondrial disorders. There are 
thousands of mitochondrial DNA (mtDNA) molecules in a cell. 
When a mutation occurs in the mtDNA, it is at first present in 
only one of the mtDNA molecules. At cell division, the mtDNA 
molecules replicate and sort randomly among the daughter 
cells. Each daughter cell may receive very different proportions 
of mitochondria carrying normal and mutant mtDNA. 
The phenotype will depend upon three factors: the relative 
abundance of mutant mtDNA (heteroplasmy), the tissue 
distribution of the mutant mtDNAs and the vulnerability of 
each tissue to impaired oxidative metabolism (threshold effect). 
Thus, reduced penetrance, variable expression and pleiotropy 
are typical features of kindred with mitochondrial disorders. 
For example, a deletion of 4977 bp of mtDNA is commonly 
encountered in Kearns-Sayre syndrome (characterized by the 
triad of pigmentary retinopathy, external ophthalmoplegia and 
onset before the age of 20 years). The same deletion has also 
been identified in cases of Pearson syndrome (sideroblastic 
anemia, exocrine pancreatic dysfunction) and progressive 
external ophthalmoplegia. The different phenotypes from the 
same deletion are due to tissue distribution of the defect. If the 
defect is present in mitochondria of all tissues, the phenotype 
is Kearns-Sayre syndrome. In Pearson syndrome, the defect 
is localized mainly to the hematopoietic tissue, while the 
defect is confined to the skeletal tissues in progressive external 
ophthalmoplegia.[23,24]

Another striking example of phenotypic diversity arising from 
mosaicism is the androgen insensitivity syndrome (AIS). 
Androgen insensitivity syndrome is the major cause of male 
pseudohermaphroditism. It is an X-linked disorder caused 
by mutations in androgen receptor (AR) gene. Androgen 
insensitivity syndrome can be subdivided into three highly 
variable phenotypes: complete AIS, when the affected persons 
have female external genitalia; partial AIS, when the genitalia 
are ambiguous; and mild AIS, when the affected individuals 
have normal male external genitalia. In a number of cases, 
identical mutations have resulted in significantly different 
phenotypes. This is due to somatic mosaicism.[25-28] The co-
expression of wild allele shifts the AIS subtype to a higher 
degree of virilization than expected from the mutant allele 
alone.

Modifier genes
A modifier gene is defined as an inherited genetic variation 
that affects the phenotypic expression of another gene. It can 
affect the pleiotropy, penetrance or expressivity of the disease. 
Depending upon the nature of modifying effect, modifier genes 
might cause more severe phenotypes, less severe phenotypes, 
novel phenotypes or wild-type (normal) phenotypes.[29]

Modifiers causing less severe (reduced) phenotype
Beta thalassemia
The severity of anemia in beta thalassemia reflects the degree 
of globin chain imbalance. The excess of alpha globin chain 

precipitates in red cell precursors leading to ineffective 
erythropoiesis. This imbalance can be genetically modified by 
two factors�variation in amount of gamma globin response 
and alpha globin chain production.[30,31] The beta thalassemia 
patients who co-inherit alpha globin gene deletions will have 
less redundant alpha globin chains and tend to have less severe 
phenotype. Similarly, increased synthesis of gamma globin chain 
will reduce the disease severity by increasing HbF level. The 
gamma globin response is also genetically determined. The 
C→T polymorphism at position -158 of the gamma globin 
gene is associated with enhanced HbF response. There are 
many other loci that are not linked to the beta globin gene but 
modify HbF response. Linkage studies have mapped these loci 
to three regions of the genome�chromosome 6q23, 8q11 and 
Xp22.[32-34]

Sickle cell anemia
HbF is the best understood genetic modifier of sickle cell 
anemia. HbF inhibits polymerization of HbS. Increasing 
levels of HbF progressively ameliorate the disease. The HbF 
response is genetically determined as discussed under the 
�beta thalassemia� section. Similarly, the coinheritance of 
deletion of alpha globin genes modifies the phenotype of 
sickle cell disease. Alpha globin gene deletions cause reduced 
intracellular concentration of HbS leading to reduction in 
rigidity of red cells and consequently longer erythrocyte lifespan, 
raised hematocrit and blood viscosity. Clinically, these changes 
produce beneficial and harmful effects. They seem to protect 
against stroke but predispose to more frequent painful episodes 
and osteonecrosis.[8,35-38]

Spinal muscular atrophy (SMA)
Spinal muscular atrophy is a recessive neuromuscular disorder 
caused by homologous loss of SMN1 gene function. There are 
four types of SMA according to the age of onset and disease 
severity. Type 1 patients show onset within six months after birth 
and usually die before two years of age. Type 4 is characterized 
by age of onset > 30 years and only very mild signs of muscle 
weakness.

SMN2 is a nearly identical copy of SMN1. SMN2 produces 
transcripts lacking exon 7. About 10% of SMN2 transcripts 
are correctly spliced and encode a protein identical to SMN1. 
The severity of SMA has been found to be influenced by the 
number of SMN2 copies.[39] Increasing number of SMN2 copy 
reduces severity of disease. About 10% of Type 1 patients carry 
two copies, 82% of Type 2 SMA patients have three SMN2 
copies, whereas Type 3 patients have minimum three to four 
SMN2 copies.

Modifiers causing more severe (enhanced) phenotype
The severity of anemia in beta thalassemia depends on the 
degree of globin chain imbalance. It is an autosomal recessive 
condition. The heterozygotes for beta thalassemia mutations 
are clinically asymptomatic as the degree of imbalance is 
insignificant. But, the coinheritance of extra alpha globin 
genes (alpha triplication) increases the imbalance. This leads to 
symptomatic disease in heterozygotes, sometimes manifesting 
as �intermedia� phenotype.[40-42]

Prasun, et al.: Genotype-phenotype correlation
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Alternative splicing
Alternative mRNA splicing is another mechanism responsible 
for different expression of similar genotype. Two illustrative 
examples are given below.

(A) Duchenne muscular dystrophy and BMD are caused 
by mutations in the dystrophin gene. Duchenne muscular 
dystrophy is a severe muscle-wasting disease arising from 
defects in the dystrophin gene, typically nonsense or frameshift 
mutations that preclude the synthesis of a functional protein. 
Becker muscular dystrophy generally arises from in-frame 
deletions that allow synthesis of a shorter but still semifunctional 
protein. But, nonsense mutations which should cause DMD 
have been reported in BMD. This is due to alternative mRNA 
splicing� skipping of the affected exon leads to removal of 
the nonsense mutation from the dystrophin mRNA.[43-45] This 
results in production of partially functional dystrophin and 
BMD phenotype.

(B) Cystic fibrosis is an autosomal recessive disorder. The 
genotype delta F508/R117H can lead to either severe phenotype 
of cystic fibrosis leading to respiratory failure or the milder 
phenotype, in which the only manifestation is congenital 
bilateral absence of vas deferens (CBAVD). The CFTR gene 
has two intron 8 variants. One is associated with efficient 
mRNA splicing, while the other causes inefficient splicing. 
The R117H allele is capable of producing partially functional 
protein. The R117H allele associated with efficient splicing leads 
to production of some amount of partially functional protein 
and hence milder phenotype (CBAVD). On the other hand, 
severe phenotype results if the intron 8 variant causes inefficient 
splicing and production of nonfunctional protein.[46-50]

Epigenetic mechanisms
Epigenetics is the study of stable alterations in gene expression 
that arise during development and cell proliferation. Epigenetic 
phenomena modulate when and at what level genes are 
expressed. Thus, the expression of a mutation also depends 
upon the activity state of the locus carrying it; the mere presence 
of a genetic defect may not be enough for clinical expression. 
Genomic imprinting and X-inactivation are examples of 
epigenetic phenomena.

Genomic imprinting 
The expression of a gene depends upon the parent who passed 
on the gene. For example, two different diseases � Prader-Willi 
syndrome and Angelman syndrome � are due to deletion of 
the same part of chromosome 15. When the deletion involves 
the chromosome 15 inherited from the father, the child has 
Prader-Willi syndrome, but when the deletion involves the 
chromosome 15 inherited from the mother, the child has 
Angelman syndrome. This is a striking example of how the 
parental origin of a genetic defect influences the clinical 
phenotype. UBE3A is the gene implicated in Angelman 
syndrome. It is subject to imprinting, being expressed only 
from the maternal allele in the brain.[51-55] A UBE3A mutation 
inherited from the mother will lead to Angelman syndrome, 
while paternal UBE3A mutation will be silent.

X-inactivation 
X inactivation in females is a random process. Female carriers 
of X-linked recessive conditions (e.g. hemophilia, DMD) are 
asymptomatic. But, occasionally they may show mild or even 
full expression of the disease which may approach that of a 
hemizygous male. This is due to nonrandom inactivation of X 
chromosome. By chance, most of the X chromosomes carrying 
the normal allele get inactivated resulting in clinical expression 
of the disease.

Gene and environment
Virtually all human diseases result from the complex interplay 
of genetic susceptibility factors and modifiable environmental 
factors. This is most obvious in the context of common 
illnesses such as diabetes, coronary artery disease or cancer. But, 
environmental factors play a significant role in the expression 
of monogenic disorders too. For example, inherited metabolic 
disorders manifest when there is introduction of the substrate 
for which the metabolism is defective. Similar genetic defects 
may have different phenotypes if the environmental factors 
are not similar.

Conclusions

Knowing a gene mutation is only a step in predicting its 
consequences. The effect of a mutation is determined by 
other genetic and environmental modifiers. Recently, a large 
number of candidate genes have been discovered for common 
disorders like hypertension, diabetes, cancer etc. The genotype-
phenotype correlation[56] is much more complex in these 
disorders where genetic modifiers and environmental factors are 
complexly interwoven. However, the same principles outlined 
for monogenic disorders apply. The prediction of phenotype 
based upon the results of DNA-based tests may be fallacious 
at times. But the judicious use of these results will definitely 
serve in anticipating a complication, selecting an appropriate 
therapeutic regimen and better counseling.
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