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One hundred years of Drosophila cancer research: no longer
in solitude
Santiago Nahuel Villegas

ABSTRACT
When Mary Stark first described the presence of tumours in the fruit
fly Drosophila melanogaster in 1918, would she ever have imagined
that flies would become an invaluable organism for modelling and
understanding oncogenesis? And if so, would she have expected it to
take 100 years for this model to be fully accredited? This Special
Article summarises the efforts and achievements of Drosophilists to
establish the fly as a valid model in cancer research through different
scientific periods.
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Origins
At the beginning of the 20th century, the entomologist Charles
W. Woodworth projected the use of Drosophila melanogaster
as a genetic model organism (Sturtevant, 1959). Some years later,
Thomas Hunt Morgan isolated a fly strain bearing a mutation that
changed the eye colour from red towhite; in doing so, he established
the link between genes, chromosomes and phenotypes (Morgan,
1910). From there, the concept of gene inheritance started to
materialise by the contributions of Morgan’s most renowned
students, all well accredited in science history. Alfred Henry
Sturtevant suggested that genes must be arranged in a linear order
and built the first genetic map (Morgan et al., 1920; Sturtevant,
1913), Calvin Bridges established that chromosomes must be the
carriers of genes (Bridges, 1916b), and Hermann Joseph Muller
demonstrated the association between gene mutation rate and X-ray
exposure (Muller, 1928). But, in the shadows of these prominent
men, a woman was using flies to address a different question: do
chromosomes carry the cause of cancer? She was a member of
Morgan’s famous Fly Room and the only woman that moved with
him from Columbia to Caltech in 1928. Her name, Mary Bertha
Stark, may have been forgotten, but her legacy is not.

Context
In the words of Charles Mayo, one of the most influential cancer
experts at the time, ‘cancer continues to be one of the greatest of
modern scourges’ (Mayo, 1918), a view perfectly applicable today.
Cancer cells were described as lawless entities without self-control,

and it was already clear to early oncologists that the single cells
travelling through the lymphatic system or into the circulation
caused metastasis.

Theories abounded about the causes of cancer. Some of them
certainly bold, such as Carpenter MacCarty’s proposal that ‘waiting’
or ‘immature’ cells in adult organisms are at the origin of cancer
(MacCarty, 1918), a concept intimately linked to cancer stem cells.
This idea ledMayo to suggest that cancer can originate from irritation
or trauma that demands continued cell repair (Mayo, 1918).

At the time, researchers had recently rediscovered Mendelian
laws, and the part chromosomes played in inheritance was a matter
of discussion in academic circles. The role of chromosomes in
tumourigenesis was speculated about very early on by David
Hansemann (Hansemann, 1890), but it was Theodor Boveri who
strengthened this idea. From his observation that a balanced number
and structure of chromosomes is essential for the normal
development of organisms (Boveri, 1902), he hypothesised that
the origin of cancer could be a consequence of a chromosome
imbalance that causes the cells to divide uncontrollably, thus linking
the origin of cancer cells to a genetic abnormality (Boveri, 1914).
These observations were also supported by Walter Sutton’s studies
in the USA. Boveri studied mitosis in sea urchins and Ascaris eggs,
and cleverly extrapolated his observations to infer the genetic basis
of malignancy; yet he seldom studied cancerous tissues. These ideas
were highly speculative, and the experimental demonstration of the
theory of heredity was provided by Morgan’s studies in Drosophila
(Morgan et al., 1915), while Stark’s work provided the experimental
support for the theory of cancer as a disease of the chromosomes
(Stark, 1918). Fatefully, Stark’s description of fly tumours did
not show an abnormal distribution of chromosomes as Boveri’s
hypothesis predicted. Instead, she observed that ‘the growth in
question is caused by a sex-linked Mendelian gene that is inherited
strictly’, leading Morgan and Bridges to reinterpret Boveri’s view
and to propose that the cause of cancer may be found in ‘a recurrent
somatic mutation of some gene’, unleashing the idea that cancer
could be a result of somatic mosaicism (Morgan and Bridges, 1919).

First wave: dark bodies
Mary Stark based her studies on the original observation by Bridges
of the lethal(1)7 strain, the larvae of which developed intense black
spots in their body and died at pre-adult stages (Bridges, 1916a).
Stark identified these dark bodies as ‘cellular growths somewhat
resembling the tumors of vertebrates’ (Stark, 1918). In this
pioneering work, Stark presented an exhaustive description of the
tumours in larvae, analysing their size, number and timing of
appearance. She tried to prolong animal survival by surgically
removing the black masses, and by exposing them to X-rays. She
also performed tumour transfers to healthy larvae, using small
needles, to examine whether the cancer cells can spread and cause
host death. These experiments were inconclusive, owing to the
high lethality of the surgery itself (she used small pieces of charcoalReceived 25 January 2019; Accepted 12 March 2019
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as a control), but they represent the first attempt at tumour
transplantation in Drosophila. In complementary experiments,
Stark dissolved the tumours and injected the suspension into
healthy animals. She identified that the cells in the tumour
suspension were responsible for the death of the fly, as flies that
received the control solution survived.
A year later, Stark continued describing flies with cancer, now

expanding these studies to non-lethal (benign) tumours (Stark,
1919a) and exploring whetherDrosophila has bona fide metastases,
presenting shreds of evidence that both true and ‘artificial’
metastases may co-exist (Stark, 1919b). Based on her
observations that the smallest tumours are often lodged within the
dorsal aorta, she speculated that ‘cells from the primary tumor have
been carried by the blood into the dorsal aorta, where they develop
into secondary tumors or metastases’. However, she also observed
that large and irregularly shaped primary tumours could be broken
and separated into small pieces by pressing them in the body cavity.
Once separated, these masses would keep growing, thus producing
artificial metastases (Stark, 1919b).
Only a handful of articles investigating tumours in flies were

published over the next 50 years, including a few follow-up studies
by Stark (Stark, 1935, 1937; Stark and Bridges, 1926). However, a
notorious exception derived from the interest of Fernandus Payne,
one of the first Drosophilists and Morgan’s close collaborator. He
had been observing a similar phenotype for years in some fly strains,
but never put a name to it until Stark’s compelling articles. He
handed these flies, which exhibited black masses, to Ira T. Wilson
for further investigation, who thus described the existence of other
tumour-bearing fly lines (Wilson, 1924). Importantly, using
classical genetics, Wilson found that at least three factors (now
referred to as genes) need to be present in the same fly to generate a
tumour, providing early evidence of oncogene cooperation. The
description of new hereditary tumours in Drosophila made it clear
that flies can develop cancer and that it was not an isolated
observation made by Stark.
During the 1940s and 1950s, a few articles aimed to understand

the cancer problem using flies (for example, Ardashnikov, 1941;
Demerec, 1947a,b; Fabian and Matoltsy, 1946; Gardner and Woolf,
1949; Hartung, 1948; Russell, 1942). Of particular interest is the
work of Elisabeth Russell, who expanded the view on the origin of
these tumours by suggesting that environmental cues, and not just
genetic features, are involved (Russell, 1940). This concept was
supported by studies addressing the effect of population density
(Hammond, 1938, 1939), temperature shifts (Hartung, 1947) and
diet (Friedman et al., 1951) on tumour penetrance. Berta Scharrer
and Margaret Lochhead thoroughly reviewed the insights on cancer
provided by studies in insects, emphasizing that they should be used
as an alternative approach to the study of tumourigenesis. In the
same article, the authors exposed their frustration as studies using
invertebrates tended to be naively neglected by the scientific
community (Scharrer and Lochhead, 1950).

Second wave: tumour suppressors
In the 1950s, Elizabeth Gateff saw her purpose of following an
academic career vanishing after she was declared an enemy of
Bulgaria and banned from pursuing higher education, which she
later obtained in Germany. Next, she moved to the USA where she
joined Howard Schneiderman’s group to pursue a PhD studying
development and genetics using Drosophila, and became a legend
by discovering the first tumour suppressor gene.
Like Stark 50 years earlier, Gateff started working with a

mutation isolated by Bridges: the Iethal(2) giant larvae [l(2)gl or

lgl], a gene mapped in 1944 (Bridges and Brehme, 1944) and
cloned in 1985 (Mechler et al., 1985). In a series of studies, mostly
with Schneiderman, Gateff described that lgl mutations result in
tumours with a genuine malignant phenotype (Gateff and
Schneiderman, 1967, 1969, 1974). They found that lgl mutant
larvae developed malignant tumours in the brain and in the epithelia
of the imaginal discs, which were invasive and lethal, but only in
homozygous mutant larvae; thus, lgl behaved as a tumour
suppressor gene. Gateff perfected a serial in vivo transplantation
technique in adult flies developed by Ernst Hadorn (Hadorn, 1966),
and employed it to demonstrate that cells from lgl tumours can be
transferred from one animal to another an indefinite number of
times, resulting in metastasis (Gateff and Schneiderman, 1967,
1969, 1974). This technique has been recently revived (Caussinus
and Gonzalez, 2005; Pagliarini and Xu, 2003; Rossi and Gonzalez,
2015) and is becoming a standard method by which to analyse
metastatic potential in adult flies.

Back in Germany, Gateff continued describing new tumour
suppressors in flies (Gateff, 1982). She was an enthusiastic
ambassador of fly models for cancer research for both genetic and
epigenetic studies (Gateff, 1978a), at a time when epigenetics was
an embryonic concept. In 1978, Gateff wrote an influential article
on the merits of using Drosophila for cancer studies (Gateff,
1978b), probably inspiring new generations of Drosophilists. Her
work propelled a new series of studies in flies, and, although the
wave was not overtly surfed, these waters started being navigated. It
coincided with a period of significant advances in Drosophila
investigations that, while having no explicit intentions to translate
the results to biomedicine, provided key insights into the role of
genes in tumourigenesis. These stunning times, when science was
mainly curiosity driven, instead of tilted towards applicability,
produced crucial knowledge owing to the use of model organisms
that later proved to be crucial to understanding several human
diseases (Duronio et al., 2017).

Outstanding work on developmental compartments (García-
Bellido et al., 1973) and cell competition (Morata and Ripoll, 1975),
a phenomenon that occurs when cells that are less fit than their
neighbours are eliminated via short-range cell–cell interaction,
made remarkable contributions to cancer research by providing
essential information on the mechanisms of growth control and the
genes involved. These findings also opened up the possibilities of
clonal analysis as a crucial discovery tool (Crick and Lawrence,
1975). For example, it was later demonstrated that cancer cells
overexpressing Myc fuel tumour growth by eliminating the
surrounding healthy cells (de la Cova et al., 2004; Moreno and
Basler, 2004), whereas Myc mutant cells (Johnston et al., 1999) or
cancer cells bearing mutations in polarity genes are outcompeted by
their wild-type neighbours, resulting in tumour suppression
(Brumby and Richardson, 2003). Groundbreaking studies on
genes controlling the body plan (Lewis, 1978; Nüsslein-Volhard
and Wieschaus, 1980), together with the development of
sophisticated genetic tools exclusive to flies (Rubin and
Spradling, 1982; Spradling and Rubin, 1982), led to a period
throughout the 1980s and 1990s when Drosophila dominated the
field of developmental biology. The synergy between molecular
cloning and entirely novel tools, such as the UAS/Gal4 (Brand and
Perrimon, 1993) and FLP-FRT (Golic and Lindquist, 1989; Xu and
Rubin, 1993) systems, enabled the engineering of cancer tissues
formed by wild-type and oncogenic mutant clones. This new ‘fly
power’ enabled researchers to weigh the consequences of gene
manipulation, and led to crucial discoveries in developmental
signalling cascades that backed the understanding of the biology
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behind tumourigenesis. For instance, generation of genetic mosaics
using the FLP-FRT system led to the discovery and characterization
of key components of the Hippo pathway (Justice et al., 1995; Xu
et al., 1995), which later proved to be of utmost relevance in cancer
(Harvey and Tapon, 2007).
Our knowledge of tumour suppressor genes was further expanded

by large-scale mutagenesis screenings involving the mobilization of
P elements (Torok et al., 1993;Watson et al., 1991), and, by 1994, at
least 50 tumour suppressor genes had been identified in flies
(Watson et al., 1994).
Near the end of the 20th century, the fact that flies could develop

tumours displaying the full range of human cancer features was
accredited (St John and Xu, 1997). The knowledge derived from
basic Drosophila research was, little by little, conveying invaluable
information about the genes and proteins relevant to human cancers.
Research on the cell cycle (Edgar and Lehner, 1996; Milán et al.,
1996), cell death (Karim and Rubin, 1998; Milán et al., 1997) and
epithelial cell–cell interactions (Bilder et al., 2000), together with
in-depth studies on the molecular mechanisms of specific tumour
suppressors (Ohshiro et al., 2000; Peng et al., 2000), provided a
more complete understanding of the different aspects of tumour
formation. The last (and definitive?) wave was ready and waiting.

Third wave: oncogenic mechanisms, drug screens
and avatars
The decodification of the fly and human genomes (Adams et al.,
2000; Lander et al., 2001) exposed, beyond expectations, an
astounding evolutionary conservation of most cellular pathways
implicated in development and tumourigenesis.
As the new century dawned, the first report of a fly genetic model

of tumour invasion and metastasis (Pagliarini and Xu, 2003),
followed by seminal work – now with a clear intention of using
Drosophila as a model organism for cancer research – firmly

positioned flies on the map of cancer models. Consequently, these
studies made singular advances in the understanding of
tumourigenesis, such as the identification of the part played by
cell polarity deficiencies (Brumby and Richardson, 2003; Grifoni
et al., 2004; Igaki et al., 2006), oncogenic cell signalling (Read
et al., 2004), the role of neural stem cells and asymmetric cell
division in brain tumours (Caussinus and Gonzalez, 2005), the non-
cell-autonomous tissue overgrowth driven by dysfunction in
endocytic components (Moberg et al., 2005; Vaccari and Bilder,
2005) and tumour growth regulation by epigenetic silencing (Ferres-
Marco et al., 2006). More recently, many more cancer mechanisms
have been identified with work in flies, such as the role of stress
signalling in cooperative oncogenesis (Wu et al., 2010), the pro-
tumorigenic action of chromosomal instability (Dekanty et al.,
2012), mitochondrial dysfunction (Ohsawa et al., 2012), cytokinesis
failure and tetraploidy in epithelial tissues (Eichenlaub et al., 2016),
and the identification of tumour-expressed systemic hormones
involved in cancer-associated cachexia (Figueroa-Clarevega and
Bilder, 2015; Kwon et al., 2015). The demonstration that drugs can
efficiently block a tumour phenotype in flies (Vidal et al., 2005)
opened the gate to in vivo screening platforms for anti-cancer drug
discovery (Gladstone and Su, 2011; Gonzalez, 2013). The advent
of genome-wide UAS-RNAi libraries and the expansion of
the fly genetic toolkit boosted research into specific oncogenic
mechanisms. As a foremost example of the power of Drosophila in
biomedical research, flies are currently being engineered to carry the
mutations of specific cancer patients, known as avatar flies, and are
used to define specific anti-cancer drug cocktails, in an approach
that holds tremendous potential for personalised medicine (Kasai
and Cagan, 2010; Sonoshita and Cagan, 2017).

The effort of many scientists established and confirmed the validity
ofDrosophila in cancer research (Fig. 1). This Special Article intends
to pay tribute to all of them, and in particular toMary Stark.Her work
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Fig. 1. Timeline showing the key milestones and laboratories in the history of Drosophila cancer research. From the initial studies of Mary Stark
(first wave), through the breakthrough research of Elizabeth Gateff (second wave) and the developmental studies crucial to understanding tumour biology,
and finally to the revival of the fly model for cancer studies at the beginning of the new century (third wave). The scheme includes a few groups that have made
key recent contributions to the field (bottom right), as representative of the many laboratories that currently use Drosophila to address the cancer problem.
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provided the foundation for using flies as a model to address the
cancer problem and has ushered in a century of unparalleled
discoveries in the field. We do not know much about her, only that
she was there. She resembles the girl from Gabriel Garcia Marquez’s
One Hundred Years of Solitude, who ‘had that rare virtue of never
existing completely except for that opportune moment’.
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