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Abstract

We compute one loop radiative corrections to the physical neutralino masses in the MSSM

considering the dominant top-stop contributions. We present a numerical renormalization

group analysis of the feasibility of the radiative gauge symmetry breaking parametrized by the

standard soft supersymmetry breaking terms. Although the above computed e�ects can be in

principle large for extreme values of the Yukawa couplings, they do not in general exceed a

few per cent for most of the parameter space. Therefore tree level constraints imposed on the

gluino mass m~g and on the superpotential parameter � by LEP1 and CDF experiments, are

not upset by the heavy top-stop sector.
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Supersymmetry seems to be the only framework which allows uni�cation of the three
gauge coupling constants at a common energy scale, while at the same time respects
their low energy values as well as the lower bounds on proton decay [1; 2; 3]. More-
over, softly broken supersymmetry (resulting possibly from an underlying superstring
framework), could lead to SU(2)L � U(1)Y gauge symmetry breaking through radiative

corrections, for a certain range of values of the parameters [4; 5; 6; 7]. Thus, the elegant
ideas of supersymmetry, gauge coupling uni�cation and radiative symmetry breaking
could be realized within the same framework. The Minimal Supersymmetric Standard
Model (MSSM) incorporates all of the above. It has recently attracted a lot of atten-
tion and it has been the subject of a numerous analyses based on the renormalization
group [8; 9; 10; 11; 12]. It has also recently become evident that, due to the largeness
of the top quark mass, the one loop contributions to the Higgs potential and to the
Higgs physical masses could be important [13; 14; 15; 16; 17]. Then it is possible that the
sparticle masses could also acquire non negligible radiative corrections from the top-stop
contributions. Since the neutralino sector is, in general, the lightest sector of the theory
(accommodating the LSP), with a possible exception of a Higgs, it seems to be a good
place to search for substantial radiative corrections.

In the present paper we perform a one loop calculation of the neutralino physical
masses in the context of the MSSM. Only the dominant top-stop contributions are taken
into account. We also perform a renormalization group analysis of the model to determine
the range of parameters that leads to radiative electroweak breaking with the correct
value of MZ. Our numerical analysis follows that of refs[8, 12]. As inputs we consider
the parameters A0, m0 and m1=2, which parametrize the soft supersymmetry breaking
terms, tan �(MZ) = v2=v1 (the ratio of the two Higgs �eld v.e.v.'s) and the running top
quark mass mt(MZ) at the scale MZ . The parameters B(MZ) and �(MZ), which set
the size of the mixing of the Higgs scalars and Higgsinos, can be derived by minimizing
the Higgs potential. The value of the parameter �, which is essential for the neutralino
masses, is sensitive to radiative e�ects and thus the one loop e�ective potential should
be used in the minimization procedure.

LEP1 and Tevatron CDF experiments put constraints on the parameter space
(m1=2; �), or equivalently (m~g; �), where m~g is the gluino mass. In these analyses the
e�ects of the radiative corrections to the neutralino masses and especially to the LSP
~Z1, produced e.g. in Z ! ~Z1

~Z1; have been ignored. The possible existense of a region in
the parameter space where the top-stop radiative corrections become important, means
that the experimental bounds should be reconsidered taking into account those e�ects.
On the other hand, if these radiative e�ects are small the tree level bounds on m1=2 and

� can be trusted [18; 19].
The superpotential of the MSSM is [20; 21]

W = (hUQ̂
iĤj

2Û
c + hDQ̂

iĤj
1D̂

c + fLL̂
iĤj

1Ê
c + �Ĥ i

1Ĥ
j
2)�ij; �12 = +1; (1)

where Q̂, D̂c, Û c, L̂, Êc, Ĥ1 and Ĥ2 stand for the (3; 2; 1=6), (�3; 1; 1=3), (�3; 1;�2=3),
(1; 2;�1=2), (1; 1; 1), (1; 2;�1=2) and (1; 2; 1=2) matter chiral super�elds. Colour and
family indices are suppressed. The only dimensionful parameter is �. Our analysis will
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be independent of the exact dynamical origin of this parameter [22; 23] as long as it has
the right order of magnitude (O(MW )).

The scalar potential involves soft SUSY breaking terms given by

Vsb = m2
H1
jH1j2 +m2

H2
jH2j2

+ m2
Qj ~Qj2 +m2

Ucj ~U cj2 +m2
Dcj ~Dcj2 +m2

Lj~Lj2 +m2
Ecj ~Ecj2

+ (hUAU
~QH2

~U c + hDAD
~QH1

~Dc + hLAL
~LH1

~Ec + h:c:) + (B�H1H2 + h:c:):(2)

We also have the soft breaking Majorana masses for the gauginos

Lsb = �1

2

X
A

MA
��A�A: (3)

Since radiative corrections are expected to be small, whenever the large top quark
Yukawa coupling is not involved, a reasonable approximation is to keep only loops which
involve the top-stop system. In that case the one loop corrections to the scalar potential
are

�V1 =
3

64�2

X
+;�

m4
�

"
ln
m2
�

Q2
� 3

2

#
� 3

32�2
m4
t

"
ln
m2
t

Q2
� 3

2

#
; (4)

where the DR regularization scheme has been used. Taking all �elds to vanish, except
the neutral Higgses, we have

mt � htH
0
2 ; m2

�
� 1

2

"
m2
LL +m2

RR �
��
m2
LL �m2

RR

�2
+ 4m4

LR

�1=2
#
; (5)

where

m2
LL � m2

~t +m2
t +

 
g0

2

12
� g2

4

! �
jH0

2 j2 � jH0
1 j2
�
;

m2
RR � m2

~tc +m2
t �

g0
2

3

�
jH0

2 j2 � jH0
1 j2
�
;

m2
LR � ht

�
H0

2A+ �H0�

1

�
: (6)

All parameters are considered to be running ones, depending on the scale Q appearing
in eq.(4)

Minimization of the scalar potential yields two conditions on the Higgs v.e.v.'s
v2 �< H2 > and v1 �< H1 >

1

M2
Z

2
=

�m2
1 � �m2

2 tan
2 �

(tan2 � � 1)
; (MZ = 91:2GeV ) (7)

sin 2� = � 2B�

�m2
1 + �m2

2

: (8)

1We follow the conventions of J. Ellis and F. Zwirner, Nucl. Phys. B338(1990)317, where B and �
have opposite signs.
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In eqs.(7,8) we have de�ned [12; 24]

�m2
1;2 � m2

1;2 +
@�V

@v21;2
; with m2

1;2 � m2
H1;2

+ �2: (9)

The key features of the radiative symmetry breaking could be seen even with the
tree level potential. This breaking occurs at the scale Qb where the (Q-dependent)
expression m2

1m
2
2� (�B)2 becomes negative. The free parameters of the model should be

chosen in a manner consistent with the observed value of MZ . At another scale Qc < Qb

the expression m2
1 + m2

2 � 2�B becomes negative. This makes the tree level potential
unbounded from below and therefore untrustworthy. The above consideration makes the
choice of the scale Q critical. In contrast, the inclusion of the one loop correction to
the potential makes this choice irrelevant, as long as it is near MZ. The reason is that
the one loop corrected potential is to this order of computation, renormalization (i.e.
Q) independent, up to constant (but Q-dependent) terms which do not appear in the
minimization equations. Therefore, using the one loop corrected potential, we consider
the minimization conditions, eqs(7,8) at Q = MZ. Given a set of values for the input
parameters at some scale MGUT , the validity of eqs(7,8) ensures that the electroweak
breaking occurs with the correct value forMZ . As we have already mentioned above, we
take tan �(MZ) and mt(MZ) as inputs. In that case the parameters B(MZ) and �(MZ)
are derived from the eqs(7,8). The connection between the values of the parameters at
the scale MGUT and those at MZ is carried out by the renormalization group equations.
More details on the numerical procedure followed will be given below.

The neutral gauge-fermion and neutral Higgsino (collectively \neutralino") mass-
matrix is easily seen to be

M =

0
BBBB@

M1 0 g0v1=
p
2 �g0v2=

p
2

0 M2 �gv1=
p
2 gv2=

p
2

g0v1=
p
2 �gv1=

p
2 0 ��

�g0v2=
p
2 gv2=

p
2 �� 0

1
CCCCA (10)

where we have used a  i �
�
~B; ~W3; ~�1; ~�2

�
Weyl basis, with ~�1;2 � i ~H1;2 to make M

real and symmetric. Radiative corrections to the neutralino two point function take the
form �i(p=� _�)aij and �i���bij (p=� _� � p���

_�
� ). Taking into account only the dominant

top-stop contributions (Fig.1) we obtain the following expressions

a ~B ~W =
1

2

s
3

5

(�1�2)1=2

4�

�
�+ cos

2 �+ �� sin
2 �
�

=
�
�1

15�2

�1=2

a ~W ~W

a ~B~�2
= �3

s
3

10

(�1�t)1=2

4�
cos � sin�(�+ � ��)

= �
s
3�1

5�2
a ~W ~�2
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a~�2 ~�2 =
3

2

�t

4�
(�+ + ��)

a ~B ~B =
8

15

�
�1

�t

�
a~�2 ~�2 �

�
15�1

�2

�1=2

a ~B ~W (11)

and

b ~B ~B =
4

5

�1

4�
mt cos� sin �(L+ � L�)

= � 2

15

�1

�t
b~�2 ~�2 =

2p
15

�
�1

�2

�1=2

b ~B ~W

b ~B~�2
=

s
3

10

(�1�t)1=2

4�
mt

h
4(L+ + L�)� 5(L+ cos

2 �+ L� sin
2 �)

i

b ~W ~�2
= � 3p

2

(�2�t)1=2

4�
mt

h
L+ cos

2 �+ L� sin
2 �
i

(12)

Note that aij = aji and bij = bji. Entries which are not shown vanish. In the above
formulae �1;2 are the gauge couplings, �t � h2t=(4�), � is the angle diagonalizing the
stop matrix given by

cos2 � =
m2

+ �m2
~tc �m2

t � 2
3 sin

2 �WM
2
Z cos 2�

m2
+ �m2

�

;

and

�� = Re

Z 1

0
dxx ln

"
p2

Q2
x2 +

m2
�
�m2

t � p2

Q2
x+

m2
t

Q2

#
;

L� = Re

Z 1

0
dx ln

"
p2

Q2
x2 +

m2
�
�m2

t � p2

Q2
x+

m2
t

Q2

#
:

Finally m� are the physical stop masses and mt is the running top mass. They can be
read o� from eqs(5,6) by putting H1 and H2 on their v.e.v.'s. We have evaluated them
at the scale Q appearing in the integrals � and L. The choice of Q is not critical, since
physical masses, that is poles of the propagators, should be scale-independent, up to this
order of approximation. In our numerical analysis we have chosen this scale to be the
heaviest of the thresholds involved which is either the gluino mass m~g or the mass of the
~dcL squark, depending on the values of the inputs m1=2 and m0. We have numerically
checked that our results remain independent of the scale, as far as it lies between MZ

and the heaviest threshold.
The chirality ipping part of the one loop propagator is found to be

i���

�
(M+ b+ aM+Ma)

�
p2 �M2 �D(p2)

��1
�
ij

;

with
D(p2) =Mb+ bM+MaM+M2a:
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Then, physical masses are determined by the poles of the propagator or equivalently

det
�
p2 �M2 �D(p2)

�
= 0: (13)

This is also the position of the poles of the chirality conserving part. Eq(13) can be
solved perturbatively giving corrections �m2

n to the n
th neutralino mass squared m2

n

�m2
n = 2

X
i;j

RniRnj

h
m2
naij +mnbij

i
: (14)

In eq(14) the matrix R diagonalizes the tree level neutralino mass matrix, RMR> =
diagonal while aij and bij are evaluated for p2 = m2

n. Although it su�ces to know the
parameters enteringM and the stop mass matrix at the scale Q for the determination
of the corrections given by eq(14), a systematic renormalization group analysis that
is consistent with the radiative breaking scenario and takes into account all existing
experimental and theoretical constraints has to be performed.

The corrections under discussion, if one neglects the aforementioned constraints, can
be as large as 10% or even more in some special cases. In order to understand qualita-
tively how this may arise, consider a simpli�ed picture in which the tree level stop mass
matrix is given by

M2
~t =

 
m2
L �

� m2
R

!
(15)

with m2
L ' m2

R ' m2
t +m

2
SUSY and � = mt(A+� cot �). The dominant mass renormal-

ization, as can be seen from eq(12), is provided by the ~�2 ~�2 term. Obviously sizezable
corrections can be obtained if b~�2 ~�2 becomes large. The latter is true if we have a
large top mass, large mixing (cos � � sin � = 1=

p
2) and large stop mass spliting (giv-

ing (L+ � L�) � ln(m2
+=m

2
�
) � O(1)). The second condition is always satis�ed since

m2
L � m2

R. The e�ect of the radiative corrections is expected to be enhanced in the
case of light neutralinos (< MW ). If we assume tan � = 1 one of the eigenstates has
mass ��. Thus with j�j < MW we always have a light (< MW ) neutralino state. If in
addition M1;2 >> MW , the condition TrM = M1 +M2 guarantees that a second light
state exists as well. Thus, in this case we obtain two light neutralinos. In Table I we
present a typical example of this situation with the resulting radiative corrections to the
neutralino tree level masses, as they are obtained using eq(14)2, where all wave function
(eq(11)) and mass (eq(12)) renormalization e�ects have been taken into account.

One observes a substantial correction (10%) to the lightest neutralino state. There-
fore, large radiative e�ects to the light neutralinos cannot be excluded a priori. Admit-
tedly this is an oversimpli�ed picture. We know that m2

L 6= m2
R since soft masses m~t and

m~tc are di�erent due to their di�erent dependence on

�t =
Z t0

0
dt

h2t
(4�)2

�
A2 +m2

Q3
+m2

U3
+m2

H2

�
; t0 � ln

m2
GUT

Q2

2We are aware of the fact that such large values of mt are not compatible with tan� = 1 within the
perturbatively regime.
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m2
L � m2

R can only occur provided that m2
0 + 7m2

1=2 >> 2�t, that is when the m0 and

m1=2 dependence of m
2
~t;~tc

overwhelms that of �t. This constraints restrict considerably
the parameter space. Besides, the large mixing condition we have assumed imposes a
further constraint, namelym2

L�m2
R << 2mt(A+� cot �), reducing evenmore the allowed

region. Even if there is a window where these conditions are satis�ed, consistency with
radiative breaking and small value of � (where the radiative e�ects are important) is
not certain. There is a strong correlation of the parameters entering in the radiative
corrections under discussion and therefore they cannot be chosen at will. In order to
see whether such a picture can really emerge, we have therefore to perform a systematic
renormalization group analysis that takes into account all theoretical constraints and
experimental bounds put on physical parameters.

The renormalization group equations (RGE) of the running parameters involved can

be found in the literature and will not be repeated here [5; 20]. As free parameters of
the model we take the soft breaking parameters A0, m0, m1=2 at the uni�cation scale
MGUT (' 1016GeV ) 3 and the values of tan�(MZ) and mt(MZ) as we already mentioned.
This is the same procedure adopted by other authors too. The value of the Yukawa
coupling ht(MZ) can easily be evaluated and the numerical routines for the gauge and
Yukawa couplings provide the value h0 = ht(MGUT ) at the uni�cation scale MGUT . We
shall limit ourselves to the case where the bottom and the tau Yukawa couplings are
small compared to ht. This, of course, excludes large values for tan � (some models
seem to prefer values in the range 3 < tan � < 15 though higher values � 85 cannot
be excluded) [25]. In any case, our numerical results show that accepting nonvanishing
bottom and tau Yukawa couplings produces minor changes in the radiatively corrected
neutralino masses, and therefore we ignore them in the following.

Starting with A0, m0, m1=2 and h0 at MGUT , we run the RGE for all soft masses
and A down to the scale MZ. The values B0 = B(MGUT ) and �0 = �(MGUT ) are
not considered as free parameters, as we have repeatedly remarked, but their values at
MZ can be extracted from the minimization conditions, eq(7,8). Their values at any
other scale can be found by running the RGE for these parameters. Solving eq(7,8) is a
straightforward task, if the radiative corrections to the potential are ignored. However
it is important that these corrections should be included. In that case the determination
of B(MZ) and �(MZ) is not that easy since the dominant top-stop contributions depend
on � through the �eld dependent masses in eq(5,6). Several runs are required to achieve
convergence and get the desired corrected values. It is well known that the values of �
obtained by that way could di�er substantially from their tree level ones in some regions
of the parameter space. As far as the boundary conditions at the uni�cation scaleMGUT

are concerned, various types are possible depending on the underlying theory. The
simplest choice at MGUT , corresponding to uni�cation within the minimal supergravity
context, is

m2
Q = m2

Uc = m2
Dc = m2

Ec = m2
L = m2

H1
= m2

H2
= m2

0:

3Our numerical analysis reveals that the corrections are not sensitive to the precise value of MGUT

as long as it is in the range of 1016GeV. In the rest of our discussion we take MGUT = 1016GeV .
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and
M1 =M2 =M3 = m1=2;

which we shall assume.
Due to an infrared �xed point [26; 27] of the Yukawa coupling, tan�(MZ) is forced to

a minimum value, given the input value mt(MZ). If this value is exceeded, ht becomes
nonperturbatively large as we increase the scale. We shall therefore impose the pertur-
bative requirement h2t=(4�) � O(1) at all scales. The running mass mt and the physical

(pole of the propagator) top quark mass Mt are related by [28]

Mt =
mt(Mt)�

1 + 4�3(Mt)
3�

+ :::
� :

This takes into account the QCD corrections to the top quark propagator. In our nu-
merical studies we have takenMt > 110GeV which is the lower experimental bound put
on Mt.

The choice of the scale Q involved in eq(11,12) through the integrals � and L, is not
important as physical masses should not depend on it. We have numerically checked that
this is the case. In our calculation we have chosen Q to be the largest of the thresholds
encountered as we run from MGUT down to MZ. Following ref[8, 12], we have ignored
the small electroweak breaking e�ects and de�ne the threshold �i, for the particle i, to
be the scale where

m2
i (�

2
i ) = �2

i :

The scale Q turns out to be the heaviest of the gluino and the ~dcL squark mass, depending
on the initial values of m0 and m1=2. The electroweak breaking e�ects do not alter
substantially the value of Q, provided it stays in the TeV range.

In Tables II - V we present sample results for mt(MZ) = 150 and 180GeV and
for various values of m0 and m1=2 such that m0 ' m1=2, m0 > m1=2 and m0 < m1=2.
Cases where A0 = 0 or A0 6= 0 are shown. As far as the values of tan �(MZ) are
concerned we present results for the smallest allowed value and for tan �(Mz) = 10.
These cases give a clear general picture. We have actually scanned a large region of
the parameter space con�rming the above statement. Therefore these results should
be considered as representatives of the general situation. Deliberately and in order to
explore a large region of the parameter space, we have not imposed any constraints on
the trilinear coupling A resulting from the tree level study of the scalar potential. These
constraints, which are imposed to avoid charge and color breaking minima, are known
to be too restrictive and the picture could very well change when loop e�ects are taken
into account [29]. We also do not exclude cases where the light Higgs gets lower than
the ALEPH bound of ' 58GeV [30] or chargino masses lower than 45GeV.

As one can observe, the correction to the neutralino masses are quite small. They are
less than 1% even in cases where light states '40GeV appear in the spectrum. In the
case of a very light '20GeV neutralino, the corrections are slightly enhanced to 2.5%.
The smallnes of these corrections is not a result of a mere destructive interference of
wave function and mass renormalization e�ects. We can switch o� the wave function
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renormalization contribution to the neutralino propagator and no enhancement is ob-
served 4. Such a case is shown in Table III. We have also allowed for a scale Q di�erent
from the heaviest threshold. No signi�cant change, up to this order of approximation,
was observed. The smallness of the radiative corrections under discussion leaves no hope
that the inclusion of the remaining particle contributions to the e�ective potential will
alter the situation. Two simple arguments are in favour of this statement: (i) it is known
that such contributions could not be larger than those of the top-stop system and (ii)
the scale Q could not play any critical rôle since our results do not depend on that scale.

Let us summarize by repeating our main conclusions. We have systematically com-
puted the top-stop one loop corrections to the physical neutralino masses in the MSSM.
The heaviness of the top quark ensures that these corrections are the dominant ones.
Although large corrections, of the order of 10% cannot be excluded, these correction turn
to be very small if the radiative electroweak breaking scenario is adopted. This scenario,
along with the universal boundary conditions imposed at MGUT (making the number of
free parameters small), strongly correlates the running parameters and diminishes the
e�ects of the radiative corrections. In most of the parameter space these corrections
never exceed a few per cent < O(2%� 3%), even in cases where some of the neutralino
masses are low O(20GeV ) and the e�ect would have been expected to be enhanced.
This implies that the relevant parameter space for the phenomenological study of the
neutralino sector is consistently described by the (m~g; �) pair, since these two quantities
are very weakly correlated to the other parameters of the model and especially to the
heavy top quark mass. This natural suppression of the radiative e�ects in the neutralino
sector from the top-stop system, may be wellcome since it shows that LEP and CDF phe-
nomenological studies and constraints imposed on m~g and � are stable against radiative
corrections.
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Table I

mt = 170GeV A0 = 300GeV m0 = 250GeV m1=2 = 800GeV
tan � = 1 � = 700GeV
Stop masses= 393GeV, 169GeV

Neutralino masses:
mi m0

i mi �m0

i (%)
670.70 669.10 1.60 .24
350.82 350.54 0.28 .08
70.00 71.98 -1.98 -2.83
48.47 43.41 5.06 10.44

Table II

m0 = 200GeV, m1=2 = 100GeV, A0 = 0(200)GeV
mt(MZ) = 150GeV, tan �(MZ) = 10

abs. value of � = 96(150)GeV
� > 0 � < 0

Tree level mass Correction (%) Tree level mass Correction (%)
162.67(194.88) +0:06(�0:45) 153.33(184.77) �0:04(�0:44)
115.73(164.78) +0:45(+0:22) 123.10(171.07) +0:37(+0:17)
56.30( 62.71) +0:04(�0:16) 59.56( 70.97) �0:20(�0:40)
23.00( 33.97) �1:60(�1:00) 37.02( 42.10) �0:68(�0:19)

Table III

m0 = 0GeV, m1=2 = 200GeV, A0 = 0GeV
mt(MZ) = 150GeV, tan �(MZ) = 10

abs. value of � = 246GeV
� > 0 � < 0

Tree level mass Correction (%) Tree level mass Correction (%)
285.29 +0:39(�0:11) 151.81 �0:49(�0:26)
254.40 �0:29(�0:40) 258.38 �0:30(�0:38)
142.18 �0:52(�0:27) 275.30 �0:41(�0:11)
81.67 �0:33(�0:20) 86.01 �0:17(�0:05)
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Table IV

m0 = 200GeV, m1=2 = 200GeV, A0 = 0(200)GeV
mt(MZ) = 150GeV, tan�(MZ) = 2:5

abs. value of � = 311(346)GeV
� > 0 � < 0

Tree level mass Correction (%) Tree level mass Correction (%)
347.20(377.03) �0:63(�0:92) 326.00(359.74) �0:47(�0:56)
313.99(348.52) �0:42(�0:52) 319.11(352.40) �0:68(�0:85)
142.38(145.77) �0:44(�0:45) 171.71(172.28) �0:18(�0:16)
79.14( 80.46) �0:44(�0:40) 89.92( 89.80) �0:04(�0:04)

Table V

m0 = 500GeV, m1=2 = 50GeV, A0 = 300(700)GeV
mt(MZ) = 180GeV, tan�(MZ) = 3
abs. value of � = 413(419)GeV

� > 0 � < 0
Tree level mass Correction (%) Tree level mass Correction (%)
429.69(435.28) �2:50(�2:47) 427.14(432.80) �2:16(�2:18)
416.66(422.44) �2:00(�2:00) 417.33(423.09) �2:62(�2:60)
33.75( 33.84) �0:23(�0:22) 49.88( 49.80) +0:17(+0:17)
16.94( 17.04) �2:39(�2:42) 23.65( 23.63) +0:19(+0:18)
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Table Captions

Table I: Tree level (mi) and radiatively corrected (m0

i) neutralino masses (absolute
values are shown) for the inputs values mt, A0, m0, m1=2, tan� and � shown in the table.
The mass corrections % appear in the last column.

Table II: Tree level neutralino masses (absolute values are shown) and the resulting
radiative corrections % for A0 = 0GeV and A0 = 200GeV respectively and for values of
m0, m1=2, mt(MZ) and tan � as shown in the table. The absolute value of �(Q) is also
given (see main text for details).

Table III: Same as in Table II for the no-scale case: A0 = 0GeV and m0 = 0GeV
and for m1=2, mt(MZ) and tan� as shown in the table. The numbers in brackets are the
mass corrections in the absence of wave function renormalization e�ects.

Table IV: Same as in Table II, for di�erent input values for the parameters A0, m0,
m1=2, mt and tan �.

Table V: Same as in Table II, for di�erent input values for the parameters A0, m0,
m1=2, mt and tan �.

Figure Caption

Fig. 1: The dominant one loop top-stop contribution to the neutralino two point
function.
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