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One-loop amplitudes of O(N) open superstring with emission of massive bosons are studied.
. Divergences appearing at A=0 (A: the overall Teichmiiller parameter) are shown to be canceled if N
=32 just as in the massless case. We explicitly evaluate the two-point on-shell amplitudes for all the
levels of bosons lying on the leading (m?=21, J=1[+1, m: mass J: spin /: level number of an excited
state) and the next-to-leading (#?=21{, J=1) Regge trajectories and observe that they are nonvanish-
ing even at N=32. This implies that O(32) open superstring one-loop amplitudes with massive
bosons generally suffer from external-line divergences. Further the obtained expressions of on-shell
self-energies (mass shifts 6#*(/)) seem to have nontrivial dependences on / (being not proportional to
[), although mass degeneracies remain. This strongly suggeststhat the Regge trajectories form a set
_ of parallel polygonal lines at one-loop level so that the mass shifts cannot be absorbed by the shift
of the slope parameter. The divergences would have to be cured by the vertex operator renormaliza-
tions at every excited level.

§’ 1. Introduction

The finiteness issue is a matter of great importance for superstring theory. Ina
recent perturbation approach, attentions are largely shifted to the analysis of multi-
loop amplitudes.” It may be too premature to say, however, that we have already
acquired the complete understanding of one-loop physics in string theory. A study of
one-loop amplitudes is still an important task for the deep understanding of the
" quantum.effect of string theory.

In previous one-loop analyses interest has been mostly focused on amphtudes
with only massless external particles.? For example, one-loop amplitudes A(M)
with any number M of external massless bosons for type-I superstring are found to be
finite if the theory posseses O(N =2P"2=32) internal gauge symmetry (D is the space-
time dimension=10)""* under an appropriate regularization.® In particular, for ¥
<3, amplitudes vanish irrespective of the gauge group that is, mass or coupling constant

undergoes no radiative correction (nonrenormalization theorem).® The divergence

in a massless amplitude occurs at the boundary of integration region of the overall
Teichmiiller parameter (A for the open and r for the closed string) and it is interpreted
as the divergence which appears when the hole of an annulus or a Mabius strip (or a
torus for closed string) surface shrinks to the vacuum.

However, as discussed by Weinberg,” there can be another type.of divergences
which may occur at the boundaries of integration regions of M—1 relative
Teichmiiller parameters v;,namely,divergenceswhich appear whenthepositionsof 4 —1
vertex operators are close together. These divergences are proportional to the
two-point amplitude evaluated on.mass shell, therefore to the mass shift of the
~ external particle. Weinberg argued that these external-line dlvergences first appear
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190 H. Yamamoto

for the tachyon amplitudes in a bosonic string and that they can be absorbed into the
wavefunction renormalization of vertex operators consistent with the one-loop unitar-
ity. In superstring theory, since the massless two-point amplitude vanishes after the
sum over spin structure,” such a problem does not occur for massless amplitudes.”
However, once we consider the amplitudes involving massive particles, the problem of
external-line divergences seems to be unavoidable even in superstring theory, unless
the higher-loop two-point amplitudes miraculously vanish due to the supersymmetry.
But we know of no complete calculation demonstrating the (non-)existence of the
mass shifts of massive particles in superstring theory” or their dependence on the
particle species, if any. What we can say at best is that they can exist since there is
no plausible reason to expect otherwise such as chirality or gauge symmetry for the
massless particle cases.

It is one of the purposes of this paper to exemplify the existence of such mass
shifts of massive particles and whether massive one-loop amplitudes are finite or not.
The mass shifts require a renormalization procedure for removing the divergences in
any loop diagrams.” Moreover, the detailed renormalization procedure would
depend on the properties of the mass shifts, such as their dependence on mass, spin,
etc. : '

After all, in order to establish the one-loop finiteness for the massive amplitudes,
two conditions must be satisfied. First, the divergence appearing at the boundary of
the overall Teichmiiller parameter region must be absent also in massive amplitudes
if the gauge group or regularization are so chosen as massless amplitudes could be
finite.?~® Second, two-point amplitudes must vanish for avoiding external-line diver-
gences.” In addition to these, meromorphicity of the amplitude, which means the
absence of unitarity violating logarithmic terms (non-leading divergences), must be
verified.'” '

For simplicity, we consider here the parity-even part of type-I superstring am-
plitudes including only open strings, in which only manifolds of annulus and Mgébius
topologies appear as one-loop diagrams. The calculation is based on covariant
operator formalism with the help of the old technique due to Clavelli and Shapiro.®'"

In § 2, following a standard procedure of superconformal field theory,'? vertex
operators describing the emissions of all bosons lying on the leading and the next-to-
leading Regge trajectories are constructed as the superconformal primary fields with
unit conformal weight. In §3, using the trace reduction technique of Clavelli-
Shapiro,"” we formulate the parity-conserving M-point one-loop amplitudes involving
massive external bosons in the Lorentz covariant operator formalism. Section 4 is
devoted to the proof of meromorphicity and finiteness at A=0 of massive one-loop
amplitudes, which is a massive extension of Ref. 3). In § 5, two-point amplitudes of
massive bosons lying on all the levels of the two trajectories are explicitly evaluated.
Summary and discussion are given in § 6.

§ 2. Vertex operators

A vertex operator V(z) for superstring should be constructed as a superconfor-
mal primary field with unit conformal weight, that is, the state lim.-o[ ¥ (2)|0>] should
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One-Loop Mass Shifts in 0(32) Open Superstring Theory 191

be a physical state satisfying the super Virasoro conditions.'? This condition for

V() is characterized by operator product expansions (O.P.E) with the super stress
energy tensor:

W(Z, 6)2 —%DX#DZX#
:_%[w-am 6(3X - 0X —W-a¥)]

—+T(2)+0T (), R

where the superfield X*(z, 8)=X*"(z)+ 60%¥*(z) and the supercovariant derivative D )

=go-+ G0, are introduced. The vertex operator is also a superfield:

V(z, 8)=V*(2)+ V(). 2-2)
In components the required conditions are
1
T() V2 (w)~ =gy VA W)+ 5258,V (W), @
by L 1rF )
TRV (w)~—2V"(w). (2:4)

The remaining O.P.E’s of V/(w) with T(z) and J(z) are automatically satisfied when
Eqgs. (2:3) and (2-4) are satisfied. It is not difficult to see this in modes considering
that the mode operators of 7(z) and J(z) satisfy the superconformal algebra. V°(z)
and V”(z) should have the conformal weights 1/2 and 1 respectively.

The two series of solutions for (2-3) and (2-4) are given in superfields by

¢ DX*e™*(z, 0):, Eu: DX*0Xe™ % (2, 6):,
Cavive: DX*0X 10X 2™ % (2, 0):, -, etc. : _ (2-5)

and

Curpans: DX DX*2 DX 0% * (2, 6’)‘: ,

Curnansv: DX DX*2DX*0X"e™* *(2,0):,

Cupananive: DX**DX**DX*0X"0X " 2e™ %
(2, 0):, -+, etc., (2-6)

where : : denotes the normal ordering.
_ These vertex operators describe the emis-
m=21 sions of bosons lying on the leading (J=/

Fig. 1. The leading and the next-to-leading Regge +1) ?‘nd the néxt-to-le'f).dlng =0 tr?'.
trajectories in open superstring. jectories respectively (Fig. 1), where J is
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192 H. Yamamoto

the spin of the particle and / is the level number of an excited state ((mass)*=m’
=—Fk?=2]). In components (V?: the lower component), solutions are

1. the leading trajectory (m*>=2[,J=1+1, [=0) ‘

Vésian(2) =Zﬁc X 9X e () @-7)
with |

FGop= g P =0, Gt =1, (2-8)
and

) J251 Vl I IVl—li
2. the next-to-leading trajectory (m*=21,J=1, [21) | 1|

ﬂ
b ___ i 1 i
V(zu)(z)—ngmqu grgrgrgxX i gX o™ X () (2-9)
with
BPCo =80 =0,  Lurpopors--ve §H1H2HV1 V=] | (2-10)
where ¢*'* is to be taken as :e®**:.. The polarization tensors are transverse and

traceless with respect to any indices. This makes it possible to change the operator
ordering freely in ¥ or V7. It is this point that is required when formulating
one-loop amplitudes clearly in the method of Clavelli-Shapiro (§ 3). The polarization
tensors have (anti)symmetries correspondig to the Young diagrams. For example, in
V8i1(2), ¢ is first symmetrized in s, v, =+, vi-1 and then anti-symmetrized in 4, 1
and ps. The normalizations of the vertex operators are determined by imposing

Kbb>=L{f>=K00>=1, (2-11)

where |6>=1imz-o[ V?(2)|0>] and |/>=limz-o[ V/(2)|0>].  Since we see from Eq. (2-4)
that 272V’ ={J_1,2, V°} where J-(#: half integer) is the mode operator of J(z) in the
Neveu-Schwarz sector, i.e., J(z)=2>1;2""J,, the first equality is automatically satisfied
for the vertex operators (2:7) and (2-9). Further, the hermiticity condition is
imposed on the part of the vertex operator except for ¢**. But even in these
conditions, the coefficients of vertex operators are still ambiguous up to a factor =1.
This factor, however, does not affect the later results for the finiteness problem or the
values of mass shifts. Although, in principle, the normalization must be determined
by the requirement of unitarity at each loop order which we would not concern here,
our way of determining the normalization is sufficient for demonstrating the existence
of mass shifts and for investigating their qualitative properties, such as their depen-
dence on spin and mass of the particle. We also suppress the explicit dependences on
the coupling parameter and on the slope parameter «'.

In practical calculations, we will go in (F2) formalism for the Neveu-Schwarz
sector™ and (R1) formalism for the Ramond sector,”” ie, we use V’(upper
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One-Loop Mass Shifts in O(32) Open Supersm’ng Theory 193

component) instead of V?. They are related to each other through z*2V7(2)={] 1z,
V*(2)} (Neveu-Schwarz) and 272V’ (z)={F, V*(2)} (Ramond) where F% is the usual
Dirac-Ramond operator. Using the conventional dimensionless fields P*“(z)=129.X*,

H*(z)=—12"*¥*(z) and H*(2)=208.H*, corresponding V”’s for (2-:7) and (2-9) are
- expressed as follows (the Neveu-Schwarz sector): ‘

Véii1(2)=2*{J-112, V&1,141(2)}

——Z-_—l-i “DV1,., PVt 3 TViIFepYL, . DVi, ., DV

+k-HH"PY'--- P¥]e™*(2) , - (2-12)
V,o(2)=2" {112, Vi&1,(2)}

Z—l——l

T BIG-!

-1, ~
+ gHmeH#zH#aPm .. pyi.. pyem

gﬂlﬂzl‘ﬁul"‘ul—l [H[#lH#zP#a]PUl. . .PVl—l

+k,HH#lH#zH#st,,_Puz—l]ez’k-x ) (2,13)

where ~ means here that the field under this symbol is omitted and the indices in the
bracket [ ] are to be antisymmetrized. These are the vertex operators for the
Neveu-Schwarz sector with unit conformal weight which are used in (F2) formalism.
For the Ramond sector, we get the same expressions except for the replacement H*(z)
- I"(2)/i/2, which are used in (R1) formalism.

§3. Formulation of one-loop amplitudes

We formulate here one-loop amplitudes in a compact form which gives the
starting point to investigate the meromorphicity or the divergences at. A=0 (§ 4) and
to perform the explicit computation of the mass shifts (§ 5). Parity-conserving M-
point annulus (planar) one-loop amplitudes with arbitraly external bosons lying on
the leading and the next-to-leading Regge trajectories are defined in an operator

“formalism as follows:

APM) =T+ G Vaslls, Dvs— I Vi, 1))

— 1 LoNS+Lodh—1/2, M LoR+Lo9% d
—7 dw Tr[w (1+ G)z=1_[1 VNs(ki, pi)— w*-° ° 1;[1 VR(kz’, .Oi)] y
' (3-1)
where the notations are usual ones:

1 1
r= LT L

220z 1snBny 91 uo 1senb Aq 80£SS81/681/1/6 L/oPE/d1d/Woo"dno"dIWLBpEeoe//:SdRY WOl pepeojumoq



194 H. Yamamoto

z by by ‘
G=(—)" ) V(ki, 0)=0/" Vi (ks 04) (3-2)
00=1, Qi=T1X2*"Xi, W=I1Z2 Tm ,
Jao="TT [ e [
O: Jo w

Here L™+ Lo™ and Lo*+ Lo"* are the zero modes of energy-momentum tensor includ-
ing the ghost part for the Neveu-Schwarz and Ramond sectors, respectively V7 is
the vertex operator with 2= —m?=—2/ constructed in § 2, namely, V&, .1 (2) (2-12)
or Véiuun(z) (2-13). Using the trace-reduction technique due to Clavelli and Shapiro,'”
Eq. (3-1) and the corresponding one for Mobius strip (nonorientable) diagram can
be transformed into the following forms:

AP(M )=gf dwl Frs(w) T o, w) +(w - we*™) — Fx(w) Tx"(0, w)] , 3 -.3)

AY(M)= —%/da)[wﬁ —w in non-zero modes] , -(3-4)

where

: - | n—(1/2)\ D2 w n\D-2
Fas(w)=w 211 (Hw—n) , FR(w)___z(DIZ)—l}-:II( }t wn > ’ (3:5)

=\ 1—w w
Tis(o, ) =(— elnlul) 0|1 Vis(os, d(w), dw)0) (3-6)
Te(o, w)=(— elnlwl)"’%OIl,lIf[1 Ve(o:, d(w); d(w)|0> (37
with , |
AWy =g ta ™, Aw)=a (38)

the plus and minus signs referring, respectively, to the fermionic and bosonic oscil-
lators which have, I=—1/2 (0) and —e& in the Neveu-Schwarz (Ramond) sector.
Here we use the zero-mode prescriptions:'”

1 Oput Op ®_ 5 Opt 0
= a*' +a"), =ive/2(a® +a*). (3-9
@( ) =ive/2 (. )
We take the limit €~ 0 after the trace evaluation.
Now, in contrast to the massless case, the general massive case needs some more
careful treatments of T3 and 7%". Originally, a vertex operator is defined in the
form:

Vas(o, @™, b7)=:Vas(0)e™*(p) :, (3-10)

where : : denotes the normal ordering with respect to a"(z+0) or 4". However, in TNs
or T%", it is modified to
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One-Loop Mass Shifts in 0(32) Open Superstving Theory 195

Vas(o, d(w), J(w))=2 Vas(o, d(w), d(w))e™ * (o, d(w), d(w)):, (3-11)

where ¢ ¢ means the “normal” ordering with respect to d*(w) and d*(w) (n+0) which
is not the normal ordering with respect to the duplicated oscillators a’* or 5" as seen
in Eq. (3-8). Hence some extra terms may appear in general when putting it back to
the usual normal ordering. For the vertex operators constructed in § 2, due to their
superconformal properties, Eq. (3:11) can be rewritten as

VNS(JO) d; d_)=:eik-X(p’ d: @2 VNS(AO) d’ d—) ’ . (3'12)

where ¢ : cannot be replaced by : : because of the massiveness (£°+0). Carefully
treating, we get

e®*X(p,d, d): —exp[k2< 57w +1n_w_|_ Eln(l w")—l—O(e))]
X:e®*X(o,d, d):. - (3-13)
“In T3 all of the factors e *(p;, d, \J): can be pulled to the left since
[P*(ps, d, @), X*(0s, d, D= 1"{Glos, w)+ Glow, w}=0, (3-14)

where G(p;:) is the correlation function of P* and X” defined in the Appendix (p,,
=p;/p:). Then we have

T¥=(—eln|wl|)~ exp[(Z‘.k 2)( 5w T o4 lnw + ZIn(l w )>+ O(e)]

M . M ‘
X<i1:[_13 e™*(p,,d, d): LII Wns(os, d, d)> . (3-15)
Using the relations

M s M . . V )
L:e™*(ps, d, d):=1expl— kb X*(ps, d, d)X* (05, d, d))]

M -
X Igelkl.x(pi, d,d): (3-16)

with

(X*ps, d, )X*(ps, d, A

=77“”[— o= Ing(os, w) — 222 S\ (1 - w")+ O(s)] , 3-17)
Y L iMU2IT 5 . . .
Pz, w)=—2mie™* —_ﬁi'((z(j)ll?) , | (3-18)
1225 ) = lzn;; ‘, 6’ (U|T)— 6’1(0[1’) k (3-19)

and pulling the anmhllatlon parts of the generalized plane- wave factors to the right,
we obtain
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196 H. Yamamoto

—D/2 M =
T=(%) " 6k TLdom, w) <[] Taslion d, AP, (3-20)
where
Vislos, d, O)=Vas(p1, d, A)(P*~ P*=P*+ B*) , (3-21)
with V

B*(ps, w) zk ”(P“(p,, d, aT)Xu(pJ, d,dy

M
= le'kjﬂG(pji, w) . (3'22)
=
Here Wé have also utilized the relation:

(—eln| W|)_Dexp[(§1ki2+ 2;‘._1&' - k)

1 lnw
<2521nw +

+Z}ln(1 w”)+0(e))+ 2 ki kilng (0, w)]
ﬂ’<§>_0/25(n’(gki)ﬂj¢(0ﬁ, w) R (3-23)
A similar expression is obtained for T¥", where Vi(o:, d, d)= Vas(H"(p:, d, d)

-I"*(p:, d, d)[iy2). Inserting them into Eqgs. (3-3) and (3+4) and taking also account
of the relation: ' '

FR(w)=FNS(W)+FNs(we2ﬁ) s (3'24)

we ﬁnally get for the whole amplitudes:
—DJ2
AP(M) (D)(zk )fdw< ) 1;'[.¢(.0ji, 'W)ki'kj
X {Fas ) U0, w)— Us (0, )]+ (= w?)}, © (3-25)

aon=—Lsory | do( %) T gnos, )

X[w—- —w in non-zero modes] , (3-26)
where
M =
Ud(p, w)5<i=1_11 Vas(p:, d, 67)> , (3-27)
M = R
Ux" (o, w)5<11;11 Velos, d, d)>, (3-28)

1
: Inve[T 491<’I)| T+7)
1

on(x, w)=—2mie W . (3-29)
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Omne-Loop Mass Shifts in O(32) Open Superstring Theory 197

§$4. Meromorphicity and finiteness at A=0(w=1)

In this section we study the behavior of the w-integrand in the amplitudes (3-25)
and (3:26). Owing to the high inverse power of Inw(=2xir), w-integral converges
near w=0, that is, amplitudes are infrared finite. So what we are concemed with is
their behavior near w=1 (ultraviolet hmlt) As in the massless case,® we carry out

"the Jacobi-transformation:

2T __ e4n2/1nw 2V eZn:z'lnpillnw

(annulus)

=?™, (Mobius) (4-1)

w=qg’=e , o=e

/1/4 r” r1/2

w'=w 0" = p:

_ by which the singular behavior near w=1 is transformed to the one near w'=0. The
transformation properties in each part of the amplitudes are listed as follows:

mweasure
do=1""do’, (aﬁnulus)
=20)" " dw” (Mobius) (4-2)
where
1 4, r1M—1
d(l),z(zﬂ')M_l(_Z-)MH[; Ci)—w/'/(; 11;11 (9(Ui+1_ Ui)d)/i , (4'3)
da)”z(zﬂ)m—l(_i)Mﬂ/(; dw” H O(wla—vidv® . (4-4)

plane-wave factor
#os, w)=1¢ (0%, w'), (annulus) (4-5)
w05, w)=2t9 (0%, —w"),  (Mobius) (4-6)
where
§(o', w)=—27mih(v|z’) /6 (0] ")

_ 1—2¢*"cos2nv+q*" .
2isinzy H =gy , (4-7)

and pj:=p; lo;/. Therefore

iIstﬁ(pﬁ, w)* k= z'“”zml'k"”g G (0%, w)e? (annulus) (4-8)
L gn(os, w)=(2r) "= ik 18 ¢ (0%, —w")**,  (Mobius) (4-9)

where we note that the weight factor (1/2)2%.%2 is just equal to the sum of the
conformal weights of :e”*"*(z2):, which vanishes in a massless case.”

partition function ' _

The transformation property of partition functions for various spin structures is
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198 H. Yamamoto

just the same as the one for the pure massless case which is listed in Ref. 3) by Clavelli.
We do not mention here again.
U (or U ,

U™, the vaccum expectation value of the product of primary fields, can be rewritten
through Wick expansion as the product of two point correlation functions of elemen-
tary conformal fields. Hence the transformation properties of the U"’s are deter-
mined by those of the two-point correlation functions which are listed in the Appen-
dix.  For U#(p, w), for instance, the correlation function of each field is simply
related by the replacements '

P*(o, d(w), d(w))-1'P*(o’, d(w"), d(w")),
H*(p, d(w), d(w))~ ™ "2H (o', d(w"), d(w"),
H*(p, d(w), d(w))-*2H*(¢’, d(w’), d(w")), ' (4-10)

where P is defined in the Appendix. The weight of.the Jacobi transformation of any
two-point correlation function is just equal to the sum of the conformal weight of each
field. Therefore, using Wick expansion, we obtain

U]\%(p, w)= z_(l/Z)::fi, k;2_MU£§(p/’ w/) o (4.11)
with

—~ M= _ ’

U0, u)')5<11;[1 Vas(od, d(w’), d(w’)>, (4-12)

where each P* in I7N5 has been replaced by P* to form IZS. Similary we have

Uit o, we?™) = g DA MM o 4) (4-13)
U (o, w)= 2% M T¥(p', w'e™) (4-14)
U o, — w)=(27) Vst~ (o" — " ™), (4-15)
U, — we?™)=(20) @2 M TR(o", —w"), (4-16)
Us"(0, —w)=(2 r)‘”z’zﬁ"“z"”U#M(p”, —w"). S (4-17)

The six spin structures are related to each other. The weight of the transfomation
M—(1/2)2% k2 equals the sum of conformal weights of the constituent conformal
- fields making up U™. Collecting Eqgs. (4:2), (4-8), (4+9), (4-11) and (4-13)~(4-17), we
get the net effect of this transformation on the whole amplitudes (3-25) and (3-26):

P M (D) ;_M+1-Dj2—(1/2) 54 ki2+Di2-1+(U2) 2K kP~ M
AF(M)= 5 0P (k) |dw't

xIL (o5, w)H{(Fas(w) T, w)— Ue(o", w)]+(w' - w'e*™)

“M+2 1 ’
=N (—ampt (S [ LY F(w), S @
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One-Loop Mass Shifts in 0(32) Open Superstm'hg Theory 199

Dj2 ;M 1 V4
EE (~2m e (S [ (), (4-19)

ANM)=
where the functional form of F is given by
1M1 . Mo
F(/szo 1H=1 O(vir1— Vz')dVizl:Ij ¢ (v, A**

X {Fas(A 0w, A)— Ox*(v, D1+~ 26>}, (4-20)

in which A stands for either w” or —w”. As seen above the r dependence in each
amplitude is completely canceled for an arbitrary set of external bosons, which is the
reflection of the fact that the vertex operator is so constructed as to have a conformal
weight 1.

Thus the integrand of each amplitude is meromorphic in w’(w”). Further, as
F(A) is not singular at A=0, the integrand has only a simple-pole singularity at the
origin. The divergence coming from this singularity is of the same type as the one
observed in a massless amplitude.”?~® This divergence can be canceled for N=32 by
combining the two amplitudes (4-18) and (4:19) into a principal-value integral.
Namely, defining w’=A and w”=—2 we obtain for N=2""2

AM)=AP(M)+ A¥(M)
P gmyegopp [ gy, (4-2)

where PP denotes the principal-part prescription.?

Needless to say, this proof of finiteness at w(w”)=0 crucially depends on-the
identification of variables (4-1) in the two different parts of the amplitudes. This is
the same situation as already seen in a massless case.® So the ambiguity on finiteness
at A=0 remains also in the massive case. But, to be stressed here is the existence of
a regularization prescription applicable for amplitudes involving arbitrary external
bosons. It is easy to check that the situation can also be realized by a Pauli-Villars
regularization method ® by assuming the cancelled propagator argument at one-loop

. level, where a mass ratio between regulators in the two parts of the amplitudes
become crucial for finiteness. Finally we note that the discussion given above holds’

for more general external bosons as long as the corresponding vertex operators allow
a rewriting (3-11)-(3-12).

§5. Evaluation of two-point amplitudes

The divergence we have considered in the previous section is the one occurring at
the boundary of the integration region of the overall Teichmiiller parameter (=21). It
has been found that such a divergence can be canceled between the annulus and
Mbbius strip amplitudes based on a certain regularization procedure. As referred to
in the Introduction, however, there can exist another type of divergence related to the
insertion of an on-shell propagator occurring at the boundary of the relative Teich-
miiller parameters(=v;). This divergence is therefore proportional to the on-shell
two-point amplitudes, i.e., to the mass shift of external particles.
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In this section we try to explicitly evaluate the on-shell two-point amplitudes by
using vertex operators constructed in § 2. We start again from Egs. (3-25) and (3-26).
What we have to calculate first is

U0, w)=< Vi (o1, d, D) V" ps, d, D)>, (J=1+1,1,121) (5-1)

where

IZ%MH): ‘[71\%1,1+1)[P#_)p'ﬂ]
1 pepyi, , Dvi__ IT# 3 Tvs Pyi. . P, . Pu
_—mgﬂy,..w{P PY“—H*2XH"P"--P¥:-P

—H*k-HP"'-- ¥} | | (5-2)
Vg0 = Vg-0(Pems P7)

:ﬁ_l)'—gﬂlﬂzﬂam“Ut—l{H[#lH#ZP#a]P'UI .- ﬁw'l

[ ~ = ~ ~ -~
+ ZIHUJ'HI-‘IH#ZHIISPVI s PV Prsty B TET A E R E R P PUH} ]

(5-3)
Now let us evaluate UR¢"“*V first. It is sufficient to consider only the parts which
include fermion correlations since only a difference U¥%— Ux” contributes to the
amplitude (space-time supersymmetry). Hence we calculate

1
U£§Zl'l+l)<p, w)=7r§}wl~~ul§%m c- 0L

L = ~ >] 3]
X({Hﬂngyijl' . pys. .PW(l)—l—Hﬂkl'HPUl‘ Pm(l)}

X{HP B H OB - PO - B P+ Hohy HP- - Po(2)}>

1

—ﬁé‘}m- ~m§.%0‘1”0’l
x{ .ZZI< H*H()HH Q)P+ - P* - P(1) P+ - P - P(2)>

+ S CHH ) H ko HXP - B+ Po(1) P Po(2))

+ S H b HOH HO@QPY - Pr(1) P B - Po(2)

+<H" 1 HQ)H ko H(2)Y<P" 1+ - PY(1) P+ - P2)>),  (5-4)

where H*(j)=H"(p;). We have dropped the terms consisting only of boson correla-
tions. Noting that &= — k:(=k), we find after Wick expansion of fermionic vacuum
expectation values that the second and third terms vanish because of the transver-
sality of the polarization tensor: £2“¢ .. ... =0. The fermionic part of the fourth term
is proportional to ki k:x*(21) and does not vanish in itself where x(Gi)(=x(ps))
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(xo{05:)) is a Neveu-Schwarz (Ramond) two-point correlation function (Appendix).
But, in the amplitude, from the sum over spin structure, its contribution vanishes as
in a massless two-point amplitude due to the vanishing identity for theta functions.
That is, Fus(w)[ Uns(w)— Us(w)]+(w -~ we*™) is proportional to

Fas(w)[221) — 22 @)1+ (w we™)oe 31(—)*1040) 0221 =0, (5-5)

where 0.(j1)= 0.(v;)= 0.(v;;=Inp;/2rilz). Hence we only have to consider the first
term of Eq. (5-4). Using Wick expansion its fermionic part is evaluated as

CH*H (1) HPH2)>=—p*n** 7 %21) + 77 7 (21)x(21) , (5-6)

where 7 (o, w)=0(3/00)x(0, w) and x(p, w)=p(3/00)% (0, w). Next let us evaluate
the bosonic part. Note that B”(p) term included in P¥(p) does not contribute to Uds
or Uz on account of the transversality and momentum conservation &= —#Fs.
Therefore, neglecting these terms and perforrhing Wick expansion, we have

(PYie P P PO PO PO2)
=(P*-- PYi- - PP(1)P%- - P7 - PH(2)>
N\
= = (P (DP2) - PP+ <P1)PH2)>

:(xp)z—l{vu'lo‘l, L IO L pist

+[(1—1)! —1] more terms obtained by permutation}, . ' (5.-7)

where 7% (05, w)=<P*(o:, d, d)P*(0;, d, d)> (Appendix). Recalling that polar-

ization tensor is totally symmetric with respect to all the indices we find that a part
of UAEHD that contributes to the amplitude is given by '

U (o, w)
’

_ S g g g(a1) 720 - DD (5-8)

Similar expressions are obtained for Uz****" where ¥ is replaced by xo. Then

summing over spin structure after multiplication by partition function and using the
‘expressions of partition and correlation functions in terms of theta functions"’
(Appendix) we get through a straightforward but tedious calculation,

Fas(w)[ URE o, w) — U*+(0, w)]+ (w— we™™)
[ o 2 12 124 o -t
g Gl 10 000)| gy Indom, ) | -9

with f(w)=TI5-:(1— w") and 6/ =(8/av)0:(v|7) [and 6:"=(8/3v*)0:(v|7)] (i=1,2, 3, 4).
Here we have used again the following identities:> %= 29a2(0) 0,2 (v)=0 and its first and
second derivatives. Use is also made of

3800 (0) =~ B0 0) e

Let us next evaluate U¢%". As in the previous case, because of the transver-
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sality and space-time supersymmetry, the terms of UZ® that is likely to remain in
the amplitudes are '

-1

.
REHD(p, W)=3—!(Z_T§}‘I#2ﬂsul--vt—l é/?’1”2““"7‘"C"‘“‘{i,JEﬂ

<HUjH'ﬂ1H#2H#s(1)Ho‘sz1H92Hpa(2)><Pu1 .. pw, .PU!—](l)PUl .. ﬁo'i, ,sz_1(2)>

Ry «HH* H"*H*(1) by HH® H** H**(2)>{ P - - P (1) PO - PO(2))) .
‘ (5-11)
The fermion part of the first term, however, is evaluated as

gi‘lﬂzllam Vi1 §%IPZP30_1 . '0'1—1<HﬂIH#ZH#SHW(l)HmHPZHPQHO'}(Z)>
== Linpaua- v, E P 2D £2(21) — 2(21) 4 (21)] (5-12)
" and the sum over spin structure after multiplicatiqn by partition function yields
Frs(w)[x*(21){ %%(21) — x(21) 7 (21)} — 202(21){ 0%(21) — x0(21) Fo(21}

+(w - we™)

=[3(=)* {6221 02221) ~ 0.(21) 0 (21)) — 621 6" (21) + 621 6 (21)]

=0. (5-13)
Here we use the following identities among theta functions v
1 : )
Z ()6 (v)=—6(v), (5-14)
4
Z ()02 (0) 0 (v) == 6:(v) 6%(v) (5-15)
4 . .
‘zgz(_)a+10a3(v) 0. (v)=—63v) 6" (v) . -(5-16)

These and Egs. (5-10) are all derived from Jacobi’s fundamental formula for theta
functions." Thus only the second term of (5-11) contributes to the amplitudes. It is
evaluated as
‘ _kz P10y 1 - .
Uﬁé“’”(ﬁ,\ w)=m§}q~w-1 z [X(Zl)]4[XP(21)]l b

X (—' 8#1[:01 6“2#28#393])(6”10‘1 .t 61/1-10‘1-1 +Perm )

= =208 v T D[P DI : (5-17)

Taking the sum over spin structure we get-

FNS(W){U]%&ZZ’”(p, w)— U420, w)} +(w - we®™)
. l i 2“1 Ve 172 —12 74 az - .
——8”—4§F1..ylflé‘_ w2 (w) 126, (0)[W(ln¢'(pzl, w))} o (5-18)

where we use again the identityv(5-14)T We note that Egs. (5+9) and (5-18) have the
same form except for kinematical factors. Inserting them into Egs. (3-25) and (3-26)
and performing Jacobi transformation, we obtain the whole amplitudes (N =222
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_A(Zl,l+l)<2)=AP(2Z,I+1)(2)+AN(2Z,Z+1)(2)

—@rrNicht PR [ D[ gl V(2 ) 69

‘ wovapn (LA (1 (6 VGO~ 61’2)1—1
SN = 3 2 ]
AN =2 NI py-vir & PP/:1 1 '/0‘ du( 61’(0)) ( 070) -, (5-20)

where 6, 6/, 6" are i(v|z’=InA/2x7) and its first and second derivatives with respect

to v and 6/(0)=8'(v=0). Then one loop mass shifts (one-loop shifts in the position
of the single pole of {£*+m?+II(k%)}™* where IT is the one-loop self-energy) is given
by

om?*(1)=II(F*=—m?)

RSANY pATG)
LIS S s L S

—orniee B o B (SN e

Mass shifts of massive particles do not vanish at least at the integrand level in sharp
contrast with the massless case, although they are finite. Putting /=1 into Eq. (5-21),
we can rewrite on*(1) as

om* (o< [ Bg()—g(~1, , (5-22)
where
o= [ =g ]
= [ sinmy f 1= 2Aeostry L) (523)

It is not so difficult to sée that g(A) >g(—2) for 0<A<1. Hence we can explicitly see

that 6 is really nonvanishing at least for the first excited state.

Furthermore, we find from Eq. (5-21) that 67%(/) has a nontrivial dependence on
the level number [ in addition to a simple / factor in front of the integral (we can
prove that (8.6, — 62 /6:*(0)+1). If Sm*({) were simply proportional to /, it would
mean that Regge trajectory becomes again a straight-line after receiving a one-loop
quantum correction. Then one-loop mass shifts could be interpreted as just a one-
loop shift of the slope parameter. They might be succesfully absorbed into a slope
parameter redefinition: &-iop= afrec+ 8¢ Where afree and S’ are of order O(%°) and
O(h) respectively. However our result Eq. (5-21) shows that such a program cannot

work. Because of the existence of an extra nontrivial / dependence which is purely

a one-loop effect, it is impossible to remove the effect of mass shifts only by the slope
parameter redefinition, although mass degeneracy between particles with different
spins /=/-+1 and / remains in one-loop approximation at all the mass levels.

220z 1snBny g, uo 1senb Aq 80£GG81/681/1/6./21o1e/d)d/Woo dno-oiwapeae)/:sdyy Woly papeo|umod



204 ' H. Yamamoto

§6. Summary and discussion

General vertex operators describing the emissions of bosons lying on the leadlng
and the next-to-leading Regge trajectories are constructed and some properties of
massive one-loop amplitudes for O(32) open superstring theory are investigated with
attention paid especially to the one-loop mass shifts.

First, integrands of massive one-loop amplitudes are generally proved to be
meromorphic in 4, namely, a unitarity violating logarithmic cut is absent. Divergen-
ces at A=0 are canceled if N=32 and an appropriate regularization is chosen; the
principal part prescription® for example. These results are the same as those
obtained in a massless case”~® and are the reflection of the universal fact that the
vertex operators have been constructed as superconformal primary fields with unit
weight and do not depend on a detailed structure of vertex operators.

Next two-point amplitudes for all the bosons lying on the two trajectories are
calculated and the mass shifts formula for them up to a constant factor are obtained.

" Existence of mass shifts itself is not so surprising. In the new formalism by Green
and Schwarz the absence of mass shifts for massiess particles is ensured by .a trace
over the product of a few number of the So’s, the zero mode of space-time fermion in
new formalism. In a massive case, however, there would appear a larger number of
the So’s in a vertex operator, which would not lead to a vanishing trace. Being
correspondent to it, in our covariant approach, the integrand of the two-point' am-
plitude is really not reduced to a vanishing identity for theta function in contrast to
a massless case.” Anyhow, using the factorization,” it is established that any
massive one-loop amplitudes for O(32) open superstring with more than three external
legs are generally divergent although the higher point (M >3) amplitudes are not
checked directly. The divergence would come from the singularity at the boundary
of relative Teichmiiller parameters’ regions.

With use of relations among theta functions we can see that the mass shifts dm?*(/)
turned out to be identical for the first two leading trajectories, in other words, the
mass degeneracy between them remains even at one-loop level for all the excited
levels. For other trajectories, since more fermion fields ¥™* appear in the correspond-
ing vertex operators, we are not readily able to reduce the two-point amplitudes to
compact forms with the help only of the well-known identities for theta functions and
to show whether the mass degeneracy generally holds or not. Hence, though the
existence of the mass degeneracy at loop level might have a general reason, for the
present it seems rather accidental for the first two leading trajectories.

To be noted is the existence of a nontrivial / dependence of dm*(/). In addition
to a simple / factor, / appears in the integrand as an exponent of a certain combina-
tion -of theta functions.” Although we cannot see the / dependence explicitly since
carrying out the 1ntegrat10n is difficult, this fact strongly suggests that dw?*(/) is not
proportional to /.

Here we comment on the 1nﬂuence of the normalization ambiguity in vertex
operators on om*(/). The value of mass shift dm?(/) is really dependent on the
normalization of each vertex operator. We fixed it in a simple way based on a
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normalization of a physical state constructed by acting the vertex operator on
vaccum. Although, properly speaking, the normalization should be determined by
the unitarity, for one-loop calculation only the tree-level unitarity is sufficient. Hence
the modification of the normalization, even if it exists, would be a kinematical one'®
and so would never change the qualitative one-loop results, namely, the existence of
mass shifts, the mass degeneracy between the first two leading trajectories and the
existence of the extra nontrivial / dependence of dm*(/).

Thus, in a strong possibility, we are led to a conclusion that at one-loop level
Regge trajectories form parallel polygonal lines instead of straight-lines at least for
the first two leading trajectories. The mass shifts cannot be interpreted as the shift
of the value of the single parameter «’. Then, as Weinberg discussed in the case of

tachyon one-loop amplitudes in the closed bosonic string,” we would have to devise a -

renormalization procedure for vertex operators at every mass level in the superstring
theory. Although it is still obscure whether there exists a freedom in a field theory
of strings, the properties of mass shifts studied here, such as their dependence on mass
and spin, may then be important for such a renormalization.

Anyhow further investigations are required to confirm the perturbative consisten-
cy of superstring theory.

After completion of this work we received the paper, Ref. 17), where the three

point massive (two massless and one massive scalar) amplitude of type-Il closed '

superstring in a light-cone gauge is constructed by factorizing the four massless
graviton amplitudes. There the singularity in the limit |z1—2:/=¢&—0 (2 and 2 are
the positions of masless vertex operators) is explicitly observed.
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Appendix

We present here the various two-point correlation functions of elementary confor-
mal fields and their properties under Jacobi transformation (4-1).

Bosonic two-point correlation functions
The correlation function of X*(p, d, d) is given by Eq. (3:17). Differentiating it with
respect to Inp;:;, we get '

<P(os, d, d)X(05,d, d)>=—5"G(ps, w)

— 1 Inps , = (iji)n_(w.oz'j)n} .
“ [2 Inw +r§1 1—w” : ’ (A-1)
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for |p;]<1, where

Gz, w)=—iz—Ind(z, w), (A-2):
N w
G(x™, w)=—G(x, w)=— G(;, w) _ (A-3)
and |
KP“(ps, d, d)P*(0;, d, d)>=1""2" (051, w)
Y Y " (sz) +(w0u) .
=" dlnp;: Glos, w)=n" [ Inw +nzl 1—w" ] (A-4)
for || <1.

Fermionic two-point correlation functions
Two point correlation functions of fermions in the Neveu-Schwarz and the Ramond
sectors are given by

KH*ps, d, d)H (s, d, d)>=0""2(0:, w)= ”#,ngﬁ)l_‘i%ﬂ loal <1

] (2% ‘92(0| )€4(0| )93( JZI )
22 T T Vil T (A'5)

61(UJ1|T)

and

_ 1 v v v (pn) +(wtoij)n
<F“(pz,d d)I'(os, d, d)>=1"xpsi;, w)= 7/“[ HZJI———Hwn Lphm

.t l 7™ ‘93(0‘T)04(0|T)‘92(7)11|T)
27

Hl(vjzl ) -0 (A.6)

where v;;=Inp,:;/277 and the vacuum expectation value in (A-6) is defined to include
a normalized trace over y matrices, ie., <f(7*)>=2""2Trf(y*). We also use the
- relations obtained by differentiating them with respect to Inp;;. For example,

<H#(‘0i, d; d_)Hu(pj, d} d_)>=77ﬂll alapx(p.ﬂy w)E”#UX.(pJ'i) w)

/zu 62(0) 64(0)[93 (Ujl) (91('0.71) 63(011)61 (UJZ)] (A.7)
471' 6, (Uﬂ) ) ’
and
. . N 2
<H"(ps, d, d)H"(ps, d, d)=— v””mx(pﬁ, w)
_ 28777:;’ 6:(0)6:(0) G(G" 00— 6" 0:)— 26/ (65 6,— 8:6)) (A-8)

o ’

where 6,=0i(v;;) and 6 and 8" are its first and second derivatives, respectively.
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Jacobi transformation
The transformation property of the plane wave factors are given by Egs. (4+5) and

(4-6). G(ps, w) and x"(ps, w) are transformed as
7" G(ps, w)=n"7"'G(0%, w)

=<13ﬂ(p,-', dw), dw)X*(of, dw’), d(w’), (A+9)
; P(pll, w) 77 P(p.n, w)
=<Pps, dw"), d(w)P*(o/, d(w), d(w », (A-10)
Whére

Gz, w)=—1 8ln Ind(z, w), (A-11)
77 (x, w)—za Gz, w), (A-12)
Xup,d, d)= J§—6(a#°* E+a#°p€)+2 J—(dﬂ " +dd"e"), (A-13)
P/A(P, d, 67) X#(P, d, @ - (A'14)

Similar relations hold for Mobius part, i.e.,
Glos, —w)=Q20) " G(o%, —w"), ‘ (A-15)
2505, —w)=Q20) 27" (o, —w") . : (A-16)
The transformation law of fermion correlation functions is given in Ref. 3) as

x(p, w)=1t"x(0", w'),

27

x(o, wer™)=1"" 30", w'),

xolo, w)=1""x(0", w'e*™),

7 2TE

x(p, —w)=Q0) " x(0”, —w"e*™),

x(p, —we?™)=27) ' x(0", —w
xo(o, —w)=27) " xol0”, —w"). » (A-17)

These homogenuity properties in six spin structures are maintained also for the first

and second derivatives of such fermion correlation function. Only the “order”® of .

homogenuity changes as the weight of the conformal field changes. For example we
have ,

% (05, w)= T_'Z?Z (0, w') ,
¥ (05, w)y=12 ¥ (0%, w') . (A-18)
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