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One-loop amplitudes of O(N) open superstring with emission of massiv~ bosons are studied . 

. Divergences appearing at ,1=0 (A: the overall Teichmiiller parameter) are shown to be canceled if N 

=32 just as in the massless case. We explicitly evaluate the two-point on-shell amplitudes for all the 

levels of bosons lying on the leading (m2 =21, J = 1+1, m: mass J: spin I: level number of an excited 

state) and the next-to-leading (m2 =21, J = l) Regge trajectories and observe that they are nonvanish­

ing even at N=32. This implies that 0(32) open superstring one-loop amplitudes with massive 

bosons generally suffer from external-line divergences. Further the obtained expressions of on-shell 

self-energies (mass shifts 8m2
( l) seem to have nontrivial dependences on I (being not proportional to 

I), although mass degeneracies remain. This strongly suggests "that the Regge trajectories form a set 

of parallel polygonal lines at one-loop level so that the mass shifts cannot be absorbed by the shift 

of the slope parameter. The divergences would have to be cured by the vertex operator renormaliza­

tions at every excited level. 

§ 1. Introduction 

The finiteness issue is a matter of great importance for superstring theory_ In a 

recent perturbation approach, attentions are largely shifted to the analysis of multi­

loop amplitudes.!) It may be too premature to say, however, that we have already 

acquired the complete understanding of one-loop physics in string theory_ A study of 

one-loop amplitudes is still an important task for the deep understanding of the 

quantum.effect of string theory_ 

In previous one-loop analyses interest has been mostly focused on amplitudes 

with only massless external particles.2
) For example, one-loop amplitudes A(M) 

with any number M of external massless bosons for type-I superstring are found to be 

finite if the theory posseses O(N=2DI2 =32) internal gauge symmetry (D is the space­

time dimension=10)3),4) under an appropriate regularization.5
) In particular, for M 

S;; 3, amplitudes vanish irrespective of the gauge group that is, mass or coupling constant 

undergoes no radiative correction (nonrenormalization theorem).6) The divergence 

in a massless amplitude occurs at the boundary of integration region of the overall 

Teichmtiller parameter (A for the open and r for the closed string) and it is interpreted 

as the divergence which appears when the hole of an annulus or a Mobius strip (or a 

torus for closed string) surface shrinks to the vacuum. 

However, as discussed by Weinberg,7) there can be another type.of divergences 

which may occur at the boundaries of integration regions of M -1 relative 

Teichmtillerparameters Vi, namely ,divergences which appear when the positions of M -1 

vertex operators are close together. These divergences are proportional to the 

two-point amplitude evaluated on mass shell, therefore to the mass shift of the 

external particle. Weinberg argued that these external-line divergences first appear 

*) Fellow of the Japan Society for the Promotion of Science. 
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190 H. Yamamoto 

for the tachyon amplitudes in a bosonic string and that they can be absorbed into the 

wavefunction renormalization of vertex operators consistent with the one-loop unitar­

ity. In superstring theory, since the massless two-point amplitude vanishes after the 

sum over spin structure,S) such a proble.m does not occur for massless amplitudes.6
) 

However, once we consider the amplitudes involving massive particles, the problem of 

external-line divergences seems to be unavoidable even in superstring theory, unless 

the higher-loop two-point amplitudes miraculously vanish due to the supersymmetry. 

But we know of no complete calculation demonstrating the (non-)existence of the 

mass shifts of massive particles in superstring theory9) or their dependence on the 

particle species, if any. What we can say at best is that they can exist since there is 

no plausible reason to expect otherwise such as chirality or gauge symmetry for the 

massless particle cases. 

It is one of the purposes of this paper to exemplify the existence of such mass 

shifts of massive particles and whether massive one-loop amplitudes are finite or not. 

The mass shifts require a renormalization procedure for removing the divergences in 

any loop diagrams.7
) Moreover, the detailed renormalization procedure would 

depend on the properties of the mass shifts, such as their dependence on mass, spin, 

etc. 

After all, in order to establish the one-loop finiteness for the massive amplitudes, 

two conditions must be satisfied. First, the divergence appearing at the boundary of 

the overall Teichmliller parameter region must be absent also in massive amplitudes 

if the gauge group or regularization are so chosen as massless amplitudes could be 

finite.2)-5) Second, two-point amplitudes must vanish for avoiding external-line diver­

gences.7
) In addition to these, meromorphicity of the amplitude, which means the 

absence of unitarity violating logarithmic terms (non-leading divergences), must be 

verified. IO) 

For simplicity, we consider here the parity'even part of type-I superstring am­

plitudes including only open strings, in which only manifolds of annulus and Mobius 

topologies appear as one-loop diagrams. The calculation is based on covariant 

operator formalism with the help of the old technique due to Clavelli and Shapiro.3
),1l) 

In § 2, following a standard procedure of superconformal field theory/2) vertex 

operators describing the emissions of all bosons lying on the leading and the next-to­

leading Regge trajectories are constructed as the superconformal primary fields with 

unit conformal weight. In § 3; using the trace reduction technique of Clavelli­

Shapiro/I) we formulate the parity-conserving M-point one-loop amplitudes involving 

massive external bosons in the Lorentz covariant operator formalism. Section 4 is 

devoted to the proof of meromorphicity and finiteness at A=O of massive one-loop 

amplitudes, which is a massive extension of Ref. 3). In § 5, two-point amplitudes of 

massive bosons lying on all the levels of the two trajectories are explicitly evaluated. 

Summary and discussion are given in § 6. 

§ 2. Vertex operators 

A vertex operator V(z) for superstring should be constructed as a superconfor­

mal primary field with unit conformal weight, that is, the state limz~o[ V(z)lo>] should 
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One-Loop Mass Shifts in 0(32) Open Superstring Theory 191 

be a physical state satisfying the super Virasoro conditions.12
) This condition for 

V(z) is characterized by operator product expansions (O.P.E) with the super stress 
• 

energy tensor: 

1 
= --[ w· ax + e(ax· ax -w· aw)] 

2 

1 
=,[J(z)+ eT(z) , (2·1) 

where the superfield j("(z, e)=x"(z)+ eW"(z) and the supercovariant derivative D 

= ae + eaz are introduced. The vertex operator is also a superfield: 

(2·2) 

In components the required conditions are 

1 

T(z) Vb(W)~ ( 2 )2 Vb(w)+-. -l-aw Vb(w) , 
. z-w z-w . 

(2·3) 

(2·4) 

The remaining O.P.E's of Vf(w) with T(z) and J(z) are automatically satisfied when 

Eqs. (2·3) and (2·4) are satisfied. It is not difficult to see this in modes considering 

that the mode operators of T(z) and J(z) satisfy the superconformal algebra. Vb(z) 

and Vf(z) should have the conformal weights 1/2 and 1 respectively. 

The two series of solutions for (2·3) and (2·4) are given in superfields by 

y • Dx-"ax-V1 ax-V2 ik.X( e)· ... t 
~"VIV2. e z, ., , e c. (2·5) 

J 

J =[ +'"" 

3 
J J 

2 1 ____ + 
1 J J 
1 1 I 

~ ---, ---~--,...., 
;/ ",,"" I I I 

/ ,": J J 

o 2 4 6 

Fig.1. The leading and the next-to-leading Regge 

trajectories in open superstring. 

and 

(z, e):, ... , etc. , (2·6) 

where : : denotes the normal ordering. 

These vertex operators describe the emis­

sions of bosons lying on the leading (j = I 

+ 1) and the next-to-Ieading (j = l) tra­

jectories respectively (Fig. 1), where J is 
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192 H. Yamamoto 

the spin of the particle and I is the level number of an excited state «mass)2=m2 

= - k2 =2l). In components (Vb: the lower component), solutions are 

1. the leading trajectory (m2=21,] = I + 1, I ?:O) l,u II.!! 1 .. ·1 VII 

with 

and 

,uI 

2. the next-to-leading trajectory (m2= 21,] = I, I?: 1) ,uz 

,u3 

with 

(2·8) 

(2·10) 

where e ik
•
X is to be taken as :e ik

•
X

:. The polarization tensors are transverse an:d 

traceless with respect to any indices. This makes it possible to change the operator 

ordering freely in Vb or V f . It is this point that is required when formulating 

one-loop amplitudes clearly in the method·of Clavelli-Shapiro (§ 3). The polarization 

tensors have (anti)symmetries correspondig to the Young diagrams. For example, in 

VSI,l)(z), ?; is first symmetrized in ,uI, VI, "', VI-I and then anti-symmetrized in ,uI, ,u2 

and ,u3. The normalizations of the vertex operators are determined by imposing 

<blb)=<flf)=<oIO)=l, (2·11) 

where Ib)=limz~o[Vb(z)IO)J and If)=limz~o[Vf(z)IO)], Since we see from Eq. (2·4) 

that z-3!2Vf ={J_I/2, Vb} where Jr(r: half integer) is the mode operator of J(z) in the 

Neveu-Schwarz sector, i.e., J(z)= "'i}"rz-7r, the first equality is automatically satisfied 

for the vertex operators (2·7) and (2·9). Further, the hermiticity condition is 

imposed on the part of the vertex operator except for e ik
•
X

• But even in these 

conditions, the coefficients of vertex operators are still ambiguous up to a factor ± 1. 

This factor, however, does not affect the later results for the finiteness problem or the 

values of mass shifts. Although, in principle, the normalization must be determined 

by the requirement of unitarity at each loop order which we would not concern here, 

our way of determining the normalization is sufficient for demonstrating the existence 

of mass shifts and for investigating their qualitative properties, such as their depen­

dence on spin and mass of the particle. We also suppress the explicit dependences on 

the coupling parameter and on the slope parameter a'. 

In practical calculations, we will go in (F2) formalism for the Neveu-Schwarz 

sectorI3l and (R1) formalism for the Ramond sector/4l i.e., we use Vf(upper 
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One-Loop Mass Shifts in 0(32) Open Superstring Theory 193 

component) instead of Vb. They are related to each other through Z-3/2 Vf(z) = {]-1/2, 

Vb(z)} (Neveu-Schwarz) and Z-1/2Vf(Z)={Fo, Vb(z)} (Ramond) where Fo is the usual 

Dirac-Ramond operator. Using the conventional dimensionless fields pl'(z) = izJzXI', 

HI'(z) = - iZ1!2 7Jf"1'(z) and ir(z) = zJzHI' , corresponding Vf'S for (2'7) and (2·9) are 

expressed as follows (the Neveu-Schwarz sector): 

V({l,l+l)(Z) = Z3/2{]_1!2, V(~l,l+I><Z)} 

(2·12) 

.z-l-I [ [I', 1'2 1'31 v,... Vl-' 
j ( ) SI"1'21'3V''''Vl-' H H P P P 3! [-I! . 

(2,13) 

where - means here that the field under this symbol is omitted and the indices in the 

bracket [ ] are to be antisymmetrized. These are the vertex operators for the 

Neveu-Schwarz sector with unit conformal weight which are used in (F2) formalism. 

For the Ramond sector, we get the same expressions except for the replacement HI'(z) 

~ rl'(z)/i./2, which are used in (Rl) formalism. 

§ 3. Formulation of one-loop amplitudes 

We formulate here one-loop amplitudes in a compact form which gives the 

starting point to investigate the meromorphicity or the divergences at)=O (§ 4) and 

to perform the explicit computation of the mass shifts (§ 5). Parity-~onserving M­

point annulus (planar) one-loop amplitudes with arbitraly external bosons lying on 

the leading and the next-to-leading Regge trajectories are defined in an operator 

formalism as follows: 

= ~ f dclJ Tr[ wLoNS+Logh-1!2(1 + G) D; VNs(ki, Pi) - WLOR+LoghD; VR(ki, Pi)] , 

(3'1) 

where the notations are usual ones: 

1 1 
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194 H Yamamoto 

00 

:;: b-r·br 
G=(_y=I/2 , (3'2) 

Po=l, 

f -M-
Il p

i-l dpi l PM
-

1 dw , dw-I1 - -. 
i=1 0 Pi 0 W 

Here LONS+ Lo
gh and Ll+ Lo

gh are the zero modes of energy-momentum tensor includ­

ing the ghost part for the Neveu-Schwarz and Ramond sectors, respectively. Vf is 

the vertex operator with k 2= - m2= -2[ constructed in § 2, namely, V&I,I+1)(Z) (2'12) 

or V&I,n(Z) (2'13). Using the trace-reduction technique due to Clavelli and Shapiro/I) 

Eq. (3'1) and the corresponding one for Mobius strip (nonorientable) diagram can 

be transformed into the following forms: 

(3'3) 

AN(M)= - ~ fdw[w~ -w in non-zero modes], . (3'4) 

where 

. _ -1/2 00 (1 + W n
-(1/2) )D-2 

FNS(W)-W 111 1-wn , (3'5) 

(3·6) 

(3'7) 

with 

n _ an r-n 
d (w)-l + n-J +a , 

-w 
(3'8) 

the plus and minus signs referring, respectively, to the fermionic and bosonic oscil­

lators which have, 1=-1/2 (0) and -E in the Neveu-Schwarz (Ramond) sector. 

Here we use the zero-mode prescriptions:ll) 

qJl.= k(aOJl.'+aOJl.) , (3'9) 

We take the limit E~O after the trace evaluation. 

N ow, in contrast to the massless case, the general massive case needs some more 

careful treatments of TN~ and TRM. Originally, a vertex operator is defined in the 

form: 

(3'10) 

where: : denotes the normal ordering with respect to an(n=l=O) or br. However, in TJ!, 

or TR
M

, it is modified to 
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One-Loop Mass Shifts in 0(32) Open Superstring Theory 195 

(3'11) 

where: : means the "normal" ordering with respect to dn(w) and ([n(w) (n,*O) which 

is not the normal ordering with respect to the duplicated oscillators am or b,r as seen 

in Eq. (3'8). Hence some extra terms may appear in general when putting it back to 

the usual normal ordering. For the vertex operators construCted in § 2, due to their 

superconformal properties, Eq. (3·11) can be rewritten as 

(3'12) 

where: : cannot be replaced by : : because of the massiveness (k2,*O). Carefully 

treating, we get 

:eik.X(p, d, d):=exp[k
2
(2€2inw + l~: + ~Jn(l-wn)+O(€))J 

x :eik.X(p, d, d): . 

In TN1tf. all of the factors :eik"X(Pi, d, d): can be pulled to the left since 

[pt'(Pi, d, d), XJJ(Pi, d, d)]=-r/'JJ{G(Pii, W)+G(Pii, w)}=O, 

(3'13) 

(3'14) 

where G(Pii) is the correlation function of pt' and X JJ defined in the Appendix (PH 

=Pi/pJ Then we have 

Using the relations 

with 

M M 

1I: eiki,X(Pi, d, d):= Hexp[ -k/k/<XJl(Pi, d, d)XJJ(Pi, d, d»] 
:=1 Z<J 

M 

x:II eik'.X(Pi, d, d): 
i=l 

<XJl(Pi, d, d)XJJ(pi, d, d» 

=7JJl
JJ
[ - €2l~w -lnI/J(pii, w)_l~; -2~Jil(1-wn)+0(€)J, 

"'(x w)= -27rie i1Cv2,r 81(vlr) 
'f' , 8{(Olr) , 

lnw· 
r= 27ri ' 

(3'15) 

(3'16) 

(3'17) 

(3'18) 

(3'19) 

and pulling the annihilation parts of the generalized plane-wave factors to the right, 

we obtain 
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196 H. Yamamoto 

(3-20) 

where 

(3-21) 

with 

M 

= L}, ik/G(PJi, w) . 
j=1 

(3-22) 

Here we have also utilized the relation: 

( -clnlwl)-Dexp[(~k?+2~ki-kJ) 

x (2 2i + ln
24

w + ~ln(l- wn)+ o(c))+ ?}..ki-kJln¢(PJi' w)] 
c nw n=1 Z<J 

(3-23) 

A similqrexpression is obtained for TRM, where VR(Pi, d, d)= VNs(HP(Pi, d, d) 

~ rp(pi, d, d)/iJ2). Inserting them into Eqs. (3-3) and (3-4) and taking also account 

of the relation: 

FR( w) = FNS( w ) + FNS( we21l:i) , 

we finally get for the whole amplitudes: 

where 

AP(M)=~8(D)(L},ki) fdct.l( ~rDI2g¢(PJi' W)k,.k j 

x {FNS(w)[U:S(p, w)- URM(p, w)]+(W~W21l:i)}, 

AN(M)= - ~ 8(D)(L},ki) fdw( n-D!2g ¢N(PJi' W)k,-k j 

x [w ~ - w in non-zero modes] , 

M '" 
U:S(p, w)=<11 VNS(Pi, d, d», 

i=l 

( I 
1) 81 v r+-

,1. ( )- 2 . i1l:v 2 /r 2 
'I' N X, W = - 7rze ,( I 1 ) . 

81 0 r+T 

(3-24) 

(3-25) 

(3-26) 

(3-27) 

(3-28) 

(3-29) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/7

9
/1

/1
8
9
/1

8
5
5
3
0
8
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



One-Loop Mass Shifts in 0(32) Open Superstring Theory 197 

§ 4_ Meromorphicity and finiteness at A=O(w=l) 

In this section we study the behavior of the w-integrand in the amplitudes (3-25) 

and (3-26). Owing to the high inverse power of lnw(=2n"ir), w-integral converges 

near w=O, that is, amplitudes are infrared finite. So what we are concerned with is 

their behavior near w=l (ultraviolet limit). As in the massless case,3) we carry out 

the J aco bi -transformation: 

W"=W
d/4

, 

(annulus) 

(Mobius) (4-1) 

by which the singular behavior near w=l is transformed to the one near w'=O. The 

transformation properties in each part of the amplitudes are listed as follows: 

measure 

where 

(annulus) 

(Mobius) 

. 11 d "1 IM
-

1 

dul' = (27r )M-I( - i)M+l wU;, II B(vft.1 - vt)dvt . 
o 0 i=1 

plane-wave factor 

where 

if;(Pji, w)=r¢(PJi' w'), 

if;N(pji, w)=2r¢(p'J;, - w"), 

¢(p', w')= -27riB1(vl r')/B{(OIr') 

and PJi=P//P/. Therefore 

(annulus) 

(Mobius) 

(annulus) 

(Mobius) 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

(4-6) 

(4-7) 

(4-8) 

(4-9) 

where we note that the weight factor (1/2)~~lkl is just equal to the sum of the 

conformal weights of :eiki'X(z):, which vanishes in a massless case.3) 

partition function 

The transformation property of partition functions for various spin structures is 
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198 H. Yamamoto 

just the same as the one for the pure massless case which is listed in Ref. 3) by Clavelli. 

We do not mention here again. 

UtIs (or UR
M

) 

UM, the vaccum expectation value of the product of primary fields, can be rewritten 

through Wick expansion as the product of two. point correlation functions of elemen­

tary conformal fields. Hence the transformation properties of the UM'S are deter­

mined by those of the two-point correlation functions which are listed in the Appen­

dix. For Uffs(p, w), for instance, the correlation function of each field is simply 

related by the replacements 

Pp(p, d(w), d(w))-+ ,-IPp(p', d(w'), d(w')) , 

Hp(p, d(w), d(w))-+ ,-1/2Hp(p', d(w'), d(w')) , 

Hp(p, d(w), d(w))-+ ,-3/2Hp(p', d(w'), d(w')) , (4·10) 

where P is defined in the Appendix. The weight of. the Jacobi transformation of any 

two-point correlation function is just equal to the sum of the conformal weight of each 

field. Therefore, using Wick expansion, we obtain 

(4·11) 

with 

M ;;a 

Offs(p', w')=<II VNS(P/, d(w'), d(w'» , 
i=l 

(4·12) 

where each PI' in VNS has been replaced by pI', to form VNS. Similary we have 

TT M( )_ (1/2)'i:P:l k,LMrTM(p' w'e21fi) 
UR p, W -, UNS, , 

(4·13) 

(4·14) 

(4·15) 

(4·16) 

(4·17) 

The six spin structures are related to each other. The weight of the transfomation 

M -(1/2)~~lki2 equals the sum of conformal weights of the constituent conformal 

fields making up UM. Collecting Eqs. (4·2), (4·8), (4·9), (4·11) and (4·13)~(4·17), we 

get the net effect of this transformation on the whole amplitudes (3·25) and (3·26): 

(4·18) 

I 
! 
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One-Loop Mass Shifts in 0(32) Open Superstring Theory 199 

(4·19) 

where the functional form of F is given by 

[lM-I M -

F().) =)0 }l 8(vi+l - V;)dVi g if; (Vji, ).)k,.k
j 

x {FNs().)[Dffs(v, ).)- DRM(v, )')]+()'~Ae2lti)}, (4·20) 

in which), stands for either w' or - w". As seen above the r dependence in each 

amplitude is completely canceled for 'an arbitrary set of external bosons, which is the 

reflection of the fact that the vertex operator is so constructed as to have a conformal 

weight 1. 

Thus the integrand of each amplitude is meromorphic in w'(w"). Further, as 

F().) is not singular at ),=0, the integrand has only a simple-pole singularity at the 

origin. The divergence coming from this singularity is of the same type as the one 

observed in a massless amplitude.2
)-S) This divergence can be canceled for N=32 by 

combining the two amplitudes (4·18) and (4·19) into a principal-value integral. 

Namely, defining w'=). and w"=-). we obtain for N=2D/2 

=_z_( -271-)M-12D/2PP _II F().) , 'M+2 11 d'l 
2 -I ). 

(4·21) 

where PP denotes the principal-part prescription.2
) 

Needless to say, this proof of finiteness at w'(w")=O crucially depends on the 

identification of variables (4 ·1) in the two different parts of the amplitudes. This is 

the same situation as already seen in a massless case.S
) So the ambiguity on finiteness 

at ). = 0 remains also in the massive case. But, to be stressed here is the existence of 

a regularization prescription applicable for amplitudes involving arbitrary external 

bosons. It is easy to check that the situation can also be realized by a Pauli-Villars 

regularization method S) by assuming the cancelled propagator argument at one-loop 

level, where a mass ratio between regulators in the two parts of the amplitudes 

become crucial for finiteness. Finally we note that the discussion given above holds' 

for more general external bosons as long as the corresponding vertex operators allow 

a rewriting (3·1l)~(3·12). 

§ 5. Evaluation of two-point amplitudes 

The divergence we have considered in the previous section is the one occurring at 

the boundary of the integration region of the overall Teichmilller parameter (=).). It 

has been found that such a divergence can be canceled between the annulus and 

Mobius strip amplitudes based on a certain regularization procedure. As referred to 

in the Introduction, however, there can exist another type of divergence related to the 

insertion of an on-shell propagator occurring at the boundary of the relative Teich­

milller parameters( = v;). . This divergence is therefore proportional to the on-shell 

two-point amplitudes, i.e., to the mass shift of external particles. 
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200 H. Yamamoto 

In this section we try to explicitly evaluate the on-shell two-point amplitudes by 

using vertex operators constructed in § 2. We start again from Eqs. (3·25) and (3·26). 

What we have to calculate first is 

where 

UJS(21,J)(p, w)=CVJ§I,J)(Pl, d, d) VJ§I,J)(P2, d, d», (] = I + 1, I, I ~1) (5·1) 

- HPk· HFv, . . F V,} , 

VJ§I,I)= VJ§I,l)(PP-> FP) 

1-1 • _ '" _ _ _ 

(5·2) 

+ 2:,HViHP'HP2HPspv, .. pVi .. PVl-1+k.HHP'HP2HPspv, .. P V'_'}. 
j=1 

(5·3) 

N ow let us evaluate UJ~21,I+l) first. It is sufficient to consider only the parts which 

include fermion correlations since only a difference Uffs- URM contributes to the 

amplitude (space-time supersymmetry). Hence we calculate 

U2(21,l+I)( )_ 1 yl y2 
NS p, W -!f;,pv, .. v,;'P(f,··(f, 

where HP(j)=;=.HP(pj). We have dropped the terms consisting -only of boson correla­

tions. Noting that kl = - kzC'= k), we find after Wick expaflsion of fermionic vacuum 

expectation values that the second and third terms vanish because of the transver­

sality of the polarization tensor: kPt·· p .. =0. The fermionic part of the fourth term 

is proportional to kl· k2x2(21) and does not vanish in itself where x(ji)( == X(Pji» 

I~ 

I 

. ! 
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(XO(Pji» is a Neveu-Schwarz (Ramond) two-point correlation function (Appendix). 

But, in the amplitude, from the sum over spin structure, its contribution vanishes as 

in a massless two-point amplitude due to the vanishing identity for theta functions. 

That is, FNS( w)[ UNS( w) - UR( w)] + (w ~ we2"i) is proportional to 

where 8a(ji) = 8a(Vji)= 8a(vji=lnpj;j2rcilr). Hence we only have to consider the first 

term of Eq. (5·4). Using Wick expansion its fermionic part is evaluated as 

(5'6) 

where x(p, w)=p(a/ap)x(p, w) and X"(p, w)=p(a/ap)X(p, w). Next let us evaluate 

the bosonic part. Note that BU(p) term included in PU(p) does not contribute to UJs 

or Ui on account of the transversality and momentum conservation k1 = - k2. 

Therefore, neglecting these terms and performing Wick expansion, we have 

. <pu, .. Em .. P Ul(l)P"" . F"" . P"'(2» 

= <pU" . PUj . . PUl(l)P"'· . P"" . P"'(2» 
/'... 

= ~ <PU'(1)P"'(2»' . <PUJ(1)P"'(2»' . <PU'(1)P"'(2» 
Perm 

+ [(i-I)! -1] more terms obtained by permutation} , (5·7) 

where TjfJ.UXP(PJi, w)=<PP(Pi, d, d)PU(pJ, d, d» (Appendix). Recalling that polar­

ization tensor is totally symmetric with respect to all the indices we find that a part 

of UJ~21.l+1) that contributes to the. amplitude is given by 

UJ~21·1+l)(p, w) 

(5·8) 

Similar expressions are obtained for UR2(21,l+1) where X is replaced by Xo. Then 

summing over spin structure after multiplication by partition function and using the 

expressions of partition and correlation functions in terms of theta functions ll
) 

(Appendix) we get through a straightforward but tedious calculation, 

FNS( w)[ UJ~21,I+l)(p, w) - UR2(21,I+l)(p, w)] + (w ~ we2"i) 

_ 1 1 2pU",Ul -1/2 ( )-12 '4()[ a
2 

. « )JI-1 
- 8rc4 SPU"'UlS w f W 81 0 a(lnp21)2 In¢' P21, w (5·9) 

with f(w)=II~=1(1-wn) and 8/=(a/av)8i(vlr) [and 8/,=(a2/av2)8i(vlr)] (i=l, 2, 3, 4). 

Here we have used again the following identities:~~=28a2(0)8a2(iJ)=0 and its first and 

second derivatives. Use is also made of 

(5·10) 

Let us next evaluate UJ~21,l). As in the previous case, because of the transver-
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202 H. Yamamoto 

sality and space-time supersymmetry, the terms of U~~21,l) that is likely to remain in 

the amplitudes are 

1 I-I 

3 r (1-1) r (;111'2I'SII1' . Ill-I (;~IP2PSO"I" O",-I {.~ 
• • z,J-l 

+ <kl • HHI'I HI'2 HI'S(I)k2· HHPIHP2 H Ps(2»<PIII . . PlIl-I(I)PO"I . . PO"l-I(2»} . 

(5·11) 

The fermion part of the first term, however, is evaluated as 

yl y2 <HI'IHI'2Hl'sH' IIj(I)HPIHP2HPsH' 0"'(2» 
~ 1'-11'-2Jl.aVI· olll_l ~ PIP2Pa(51" O'l-l . 

(5'12) 

. and the sum over spin structure after multiplication by partition function yields 

FNS( w )[x2(21){ i 2(21) - X(21) X-(21)} - X02(21){X02(21) - xo(21) X-o(21)}] 

4 

= [~ ( - )a+I{ Oa 2(21)0~2(21) - Oa 3(21) 0a"(21)} - 013(21) 0{'(21) + 01
2(21) 0{2(21)}] 

a=2 

=0. (5'13) 

Here we use the following identities among theta functions 

(5'14) 

(5'15) 

(5'16) 

These and Eqs. (5'10) are all derived from Jacobi's fundamental formula for theta 

functions. IS) Thus only the second term of (5 '11) contributes to the amplitudes. It is 

evaluated as 

U~~21,l)(p, w) 3!(1~21)! (;11··lIl_I(;2PI··Gl-I[x(21)]4[xP(21)]I-1 

X ( 5;1'1 5;1'2 5;l's )( 5;111 .. 5;lIl-1 + ) 
- U [PIU P2U Psl U 0"1 U O",-I perm. 

= -2/(;11' . Ill-I (;2P
!""V

l_I X4(21)[xP(21)]I-1 . 

Taking the sum over spin structure we get· 

FNS(W){U~~21,l)(p, w)- Ui(21,l)(p, w)}+(w~ we27Ci
) 

(5'17) 

(5'18) 

where we use again the identity (5'14). We note that Eqs. (5'9) and (5'18) have the 

same form except for kinematical factors. Inserting them into Eqs. (3'25) and (3·26) 

and performing Jacobi transformation, we obtain the whole amplitudes (N=2DI2) 
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A (21,1+1)(2)= A P (21,l+1)(2) + A N(21,I+1l(2) 

(5·19) 

where 81, 8{, 8{' are 81(v!r'=lnA/27ri) and its first and second derivatives with respect 

to v and 8{(0) = 8{(v=0). Then one loop mass shifts (one-loop shifts in the position 

of the single pole of {k2+m2+11(k2)}-1 where 11 is the one-loop self-energy) is given 

by 

(5·21) 

Mass shifts of massive particles do not vanish at least at the integrand level in sharp 

contrast with the massless case, although they are finite. Putting 1 = 1 into Eq. (5·21), 

we can rewrite 8m2(1) as 

(5·22) 

where 

-11 [ 81(v!r) J2 
g(A)= 0 dv 7r 81'(0!r) 

(5·23) 

It is not so difficult to see that g(A) > g( - A) for 0 < A < 1. Hence we can explicitly see 

that 8m2 is really nonvanishing at least for the first excited state. 

Furthermore, we find from Eq. (5·21) that 8m2(l) has a nontrivial dependence on 

the level number 1 in addition to a simple 1 factor in front of the integral (we can 

prove that (818{' - 8{2)/81'2(0) =t= 1). If 8m2(l) were simply proportionalto I, it would 

mean that Regge trajectory becomes again a straight-line after receiving a one-loop 

quantum correction. Then one-loop mass shifts could be interpreted as just a one­

loop shift of the slope parameter. They might be succesfully absorbed into a slope 

parameter redefinition: aI-lOOP = atree + 8a' where atree and 8a' are of order 0 (11,0) and 

0(11,) respectively. However our result Eq. (5·21) shows that such a program cannot 

work. Because of the existence of an extra nontrivial 1 dependence which is purely . 

a one-loop effect, it is impossible to remove the effect of mass shifts only by the slope 

parameter redefinition, although mass degeneracy between particles with different 

spins J = 1 + 1 and 1 remains in one-loop approximation at all the mass levels. 
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204 H. Yamamoto 

§ 6. Summary and discussion 

General vertex operators describing the emissions of bosons lying on the leading 

and the next-to-Ieading Regge trajectories are constructed and some properties of 

massive one-loop amplitudes for 0(32) open superstring theory are investigated with 

attention paid especially to the one-loop mass shifts. 

First, integrands of massive one-loop amplitudes are generally proved to be 

meromorphic in A, namely, a unitarity violating logarithmic cut is absent. Divergen­

ces at ,1=0 are canceled if N=32 and an appropriate regularization is chosen; the 

principal part prescription2
) for example. These results are the same as those 

obtained in a massless case2
)-5) and are the reflection of the universal fact that the 

vertex operators have been constructed as superconformal primary fields with unit 

weight and do not depend on a detailed structure of vertex operators. 

Next two-point amplitudes for all the bosons lying on the two trajectories are 

calculated and the mass shifts formula for them up to a constant factor are obtained. 

Existence of mass shifts itself is not so surprising. In the new formalism by Green 

and Schwarz the absence of mass shifts for massiess particles is ensured bya trace 

over the product of a few number of the So's, the zero mode of space-time fermion in 

new formalism. In a massive case, however, there would appear a larger number of 

the So's in a vertex operator, which would not lead to a vanishing trace. Being 

correspondent to it, in our covariant approach, the integrand of the two-point am­

plitude is really not reduced to a vanishing identity for theta function in contrast to 

a massless case.3
) Anyhow, using the factorization,7) it is established that any 

massive one-loop amplitudes for 0(3?) open superstring with more than three external 

legs are generally divergent although the higher point (M23) amplitudes are not 

checked directly. The divergence would come from the singularity at the boundary 

of relative Teichmiiller parameters' regions. 

With use of relations among theta functions we can see that the mass shifts 8m2(l) 

turned out to be identical for the first two leading trajectories, in other words, the 

mass degeneracy between them remains even at one-loop level for all the excited 

levels. For other trajectories, since more fermion fields 7Jf1" appear in the correspond­

ing vertex operators, we are not readily able to reduce the two-point amplitudes to 

compact forms with the help only of the well-known identities for theta functions and 

to show whether the mass degeneracy generally holds or not. Hence, though the 

existence of the mass degeneracy at loop level might have a general reason, for the 

present it seems rather accidental for the first two leading trajectories. 

To be noted is the existence of a nontrivial 1 dependence of Bm2(l). In addition 

to a simple 1 factor, 1 appears in the integrand as an exponent of a certain combina­

tionof theta functions. Although we cannot see the 1 dependence explicitly since 

carrying out the integration is difficult, this fact strongly suggests that 8m2(l) is not 

proportional to l. 

Here we comment on the influence of the normalization ambiguity in vertex 

operators on 8m2(l). The value of mass shift 8m2(l) is really dependent on the 

normalization of each vertex operator. We fixed it in a simple way based on a 
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normalization of a physical state constructed by acting the vertex operator on 

vaccum. Although, properly speaking, the normalization should be determined by 

the unitarity, for one-loop calculation only the tree-level unitarity is sufficient. Hence 

the modification of the normalization, even if it exists, would be a kinematical one
16

) 

and so would never change the qualitative one-loop results, namely, the existence of 

mass shifts, the mass degeneracy between the first two leading trajectories and the 

existence of the extra nontrivial I dependence of 8m
2(t). 

Thus, in a strong possibility, we are led to a conclusion that at one-loop level 

Regge trajectories form parallel polygonal lines instead of straight-lines at least for 

the first two leading trajectories. The mass shifts cannot be interpreted as the shift 

of the value of the single parameter c/. Then, as Weinberg discussed in the case of 

tachyon one-loop amplitudes in the closed bosonic string,7) we would have to devise a 

renormalization procedure for vertex operators at every mass level in the superstring 

theory. Although it is still obscure whether there exists a freedom in a field theory 

of strings, the properties of mass shifts studied here, such as their dependence on mass 

and spin, may then be important for such a renormalization. 

Anyhow further investigations are required to confirm the perturbative consisten­

cy of superstring theory. 

After completion of this work we received the paper, Ref. 17), where the three 

point massive (two massless and one massive scalar) amplitude of type-II closed· 

superstring in a light-cone gauge is constructed by factorizing the four massless 

graviton amplitudes. There the singularity in the limit IZ1 - z21 = E~ 0 (Z1 and Z2 are 

the positions of masless vertex operators) is explicitly observed. 
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Appendix 

We present here the various two-point correlation functions of elementary confor­

mal fields and their properties under Jacobi transformation (4 -I). 

Bosonic two-point correlation functions 

The correlation function of XJ1.(p, d, d) is given by Eq. (3 -17). Differentiating it with 

respect to lnpji, we get 

<PJ1.(Pi, d, d)XlJ(Pj, d, d»= -r;J1.lJG(pji, w) 

= - ir;J1.lJ[l_lnpji + ~ (PjiY-(u:,PU)n ] 
2 lnw n=1 l-w 

(A-I) 
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206 H. Yamamoto 

for IpJil<l, where 

and 

G(x, w)=-i al~xln¢(x, w), 

G(x-t, w)=-G(x, w)=-G(~, w) 

<P!J.(Pi' d, d)PV(Ph d, d)= TjfJ.VXP(PJi, w) 

=iTjfJ.V_a-G(PJi, w)=TjfJ.v[ __ l_+ ~ n (PJi)n+(~pij)n ] 
alnpJi lnw n=1 1-w 

for IpJiI<1. 
Fermionic two-point correlation functions 

(A-2) . 

(A-3) 

(A-4) 

Two point correlation functions of fermions in the Neveu-Schwarz and the Ramond 

sectors are given by 

(A-5) 

and 

(A-6) 

where vJi=lnPJ;j27ri and the vacuum expectation value in (A-6) is defined to include 

a normalized trace over y matrices, i.e., </(yfJ.)=2-D
'
2Tr/(yfJ.). We also use the 

relations obtained by differentiating them with respect to lnpJi. For example, 

(A-7) 

and 

<il"(Pi, d, d)iJV(PJ, d, d)=-Tj~v a(l:;J;)2X(PJi' w) 

= ~Tj;~ 82(0)8l0) 81(8/' 81- 8{' 83)~~8{(8/ 81- 838{) , (A-8) 

where 81=81(VJi) and 8{ and 81" are its first and second derivatives, respectively. 

,. 
I 
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Jacobi transformation 

The transformation property of the plane wave factors are given by Eqs. (4'5) and 

(4'6). C(Pii, w) and XP(Pii, w) are transformed as 

TjPlJC(Pij, w)=TjPlJr-1G(p'ij, w') 

=<PP(p/, dew'), d(w')XlJ(p/, dew'), dew'»~ , 

=<PP(p/, dew'), d(w')PlJ(p/, dew'), dew'»~ , 

where 

- . J -
C(x, w)=-z Jlnxlnq,(x, w),· 

-pc )_. J C-( ) 
X x, w = z (JInx x, w , 

X-( dd:T'l- 1 (Ot e+ oe)+~ 1 (d-nn+d n '-n) P p, ,J, } = f<} ap p ap P .c..." C P P P P , 
v' 2E n=l v' n 

Similar relations hold for Mobius part, i.e., 

C(pji, - w)=(2r)-lG(PJi, - w"), 

XP(Pii, -w)=(2r)-2fP(PJi, -w"). 

(A'9) 

(A ·10) 

(A·11) 

(A'12) 

(A'13) 

(A'14) 

(A'15) 

(A'16) 

The transformation law of fermion correlation functions is given in Ref. 3) as 

x(p, we21ri)=r-1xo(p', w'), 

Xo(p, w)=r-1x(p', w'e21ri) , 

x(p, -w)=(2r)-lx(p", -w"e21ri) , 

x(p, - we21ri )=(2r)-lx(p", - w") , 

Xo(p, -w)=(2r)-lxo(p", -w"). (A· 17) 

These homogenuity properties in six spin structures are maintained also for the first 

and second derivatives of such fermion correlation function. Only the "order,,18l of 

homogenuity changes as the weight of the conformal field changes. For example we 

have 

X(Pii, w)=r-2X(PJi, w'), 

Hpii, w)=r-3 X(PJi, w'). (A'18) 
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