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Abstract: The 1-loop partition function of the handlebody solutions in the AdS3 gravity

have been derived some years ago using the heat kernel techniques and the method of

images. In the semiclassical limit, such partition function should correspond to the order

O(c0) part in the partition function of dual conformal field theory(CFT) on the boundary

Riemann surface. The higher genus partition function could be computed by the multi-

point functions in the Riemann sphere via sewing prescription. In the large central charge

limit, the CFT is effectively free in the sense that to the leading order of c the multi-point

function is further simplified to be a summation over the products of two-point functions

of single-particle states. Correspondingly in the bulk, the graviton is freely propagating

without interaction. Furthermore the product of the two-point functions may define the

links, each of which is in one-to-one correspondence with the conjugacy class of the Schot-

tky group of the Riemann surface. Moreover, the value of a link is determined by the

multiplier of the element in the conjugacy class. This allows us to reproduce exactly the

gravitational 1-loop partition function. The proof can be generalized to the higher spin

gravity and its dual CFT.
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1 Introduction

The AdS3 gravity, whose action includes a negative cosmological constant besides the

Einstein-Hilbert term, provides a new angle to understand the AdS/CFT correspon-

dence [1]. It looks trivial as there is no local bulk degree of freedom, but it actually

has global degrees of freedom. As shown in [2] , under appropriate boundary conditions

the asymptotic symmetry of the AdS3 spacetime in the theory is generated by two copies

of Virasoro algebra with the central charge

c =
3l

2G
, (1.1)

where l is the AdS radius and G is the three-dimensional gravitational coupling constant.

This suggests that there are boundary degrees of freedom which may describe the physics

in the bulk. The AdS3/CFT2 correspondence states that the quantum gravity in AdS3 is

dual to a two-dimensional(2D) CFT with the central charge (1.1). In this correspondence,

the BTZ black hole [3, 4] is dual to the highly excited states in CFT, and its macroscopic

Bekenstein-Hawking entropy could be counted by the degeneracy of the excited states

and therefore has a microscopic interpretation [5]. Moreover, the AdS3 gravity could be

topological in nature. It was found in [6] that its action in the first order formulation could

be written in terms of the Chern-Simons action. This raised the proposal that the AdS3

gravity could be equivalent to a Chern-Simons theory with a gauge group SL(2, C) [7, 8].

The Chern-Simons formulation of the AdS3 gravity has been generalized to include the
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higher spin fields [9, 10] and led to the correspondence between the higher spin AdS3

gravity and 2D CFT with W symmetry [11, 12].

Even though a precise definition of AdS3 quantum gravity has not been well-

established, its semiclassical limit is well-understood. In the AdS3 gravity, all classical

solutions are locally maximal symmetric and could be obtained as the quotients of the

global AdS3 by the subgroup of the isometry group SL(2, C) [4]. Consequently the path

integral of the AdS3 gravity could be well defined in principle. In the semiclassical regime,

the partition function should include the contributions from all the saddle points. Among

all semi-classical solutions, the handlebody solutions have been best understood. This

class of solutions could be obtained as the quotients of the AdS3 spacetime by the Schot-

tky group. At the asymptotic boundary, the configuration is a Riemann surface, which

could be uniformized by the Schottky group. It was shown in [13] that the regularized

semi-classical action of the handlebody solution could be described by a Liouville type

action, the so-called Zograf-Takhtajan(ZT) action [14].1 Furthermore, the 1-loop partition

function of the handlebody solutions has been conjectured to be [17]

logZ|1-loop = −
∑
γ

∞∑
m=2

log |1− qmγ |, (1.2)

where γ is the primitive conjugacy class of the Schottky group and q
− 1

2
γ is the larger

eigenvalue of γ. This relation has been obtained by the direct computation in the gravity

by using the heat kernel techniques and the method of images [18].

On the dual CFT side, the semiclassical gravity corresponds to the large central charge

limit. Despite of many efforts (see for example [8]), the explicit construction of the CFT

is not clear yet. It is expected to have a sparse light spectrum in the large c limit [19, 20].

To the leading order of c in the partition function, the light spectrum dominate the contri-

bution, while the heavy operators only contribute nonperturbatively as e−c. The vacuum

module plays a special role. It is universal for all CFT, includes the stress tensor and its

descendants. In the AdS3/CFT2 correspondence, the stress tensor is dual to the massless

graviton in the bulk. In fact, it was shown in [21] that the genus-1 partition function

is 1-loop exact and the contribution comes purely from the vacuum module. The recent

study on the Rényi and entanglement entropy revives the AdS3/CFT2 correspondence.

The multi-interval Rényi entropy of a 2D CFT is determined by the partition function on

a higher genus Riemann surface resulted from the replica trick. For the CFT dual to the

AdS3 gravity, the CFT partition function should be equal to the partition function of corre-

sponding gravitational configuration ending on the Riemann surface at the AdS boundary.

In the large c limit, the leading contribution of the Rényi entropy, which is dominated by

the vacuum module [19], is equal to the ZT action [22]. This leads to the proof of the Ryu-

Takayanagi formula for the holographic entanglement entropy [23, 24]. More interestingly,

from the study on the Rényi entropy of double intervals with a small cross-ratio and the

single interval on a torus [25–34], it turns out that the holographic computation is even

correct at 1-loop level. It is found that the c0 order contribution to the Rényi entropy from

1For the study on the semiclassical action of other hyperbolic solutions see [15, 16].
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the vacuum module is dual to the 1-loop graviton partition function (1.2) of corresponding

gravitational configuration. More generically, one may find the following picture. For a

handlebody instanton whose boundary is a higher genus Riemann surface, the partition

function of the instanton including the quantum corrections should be exactly the same as

the partition function of the Riemann surface in the dual CFT in the large c limit. In this

paper, we try to prove that the 1-loop partition function (1.2) for any handlebody solution

agrees exactly with the c0 order of the partition function from the vacuum module of dual

CFT in the large c limit.

To prove the 1-loop partition function (1.2) for any handlebody solution, we need to

compute the partition function of a higher genus Riemann surface in CFT. Here we use

the gluing prescription to compute the higher genus partition function [17, 35–37]. Every

compact Riemann surface could be described by the Schottky uniformization. For a genus

g Riemann surface, the Schottky uniformization allows us to identify g pairs of noninter-

secting circles in the Riemann sphere. In CFT language, the identification is equivalent to

cut open a handle and insert a complete set of states there. On the Riemann sphere, this

means that one has to insert pairs of the vertex operators at the fixed points in the pairwise

circles. As a result, the partition function of a genus-g Riemann surface is the summation

of 2g-point functions on the Riemann sphere. As there is a uniformization map from the

Riemann surface to the Riemann sphere, the resulting conformal anomaly is proportional to

the central charge, therefore the linear c contribution in the partition function is captured

purely by the ZT action. The sub-leading contribution is encoded in the 2g-point functions

Zg |z=
∑

m1,m2,...mg

〈 L1Ō(1)
m1
O(1)
m1

L2Ō(2)
m2
O(2)
m2

. . .
LgŌ(g)

mg O
(g)
mg〉, (1.3)

where m1,m2, . . .mg denote the summation of all of the states on the circles C1, C2, . . . Cg

and C ′1, C
′
2, . . . C

′
g, Li denotes the Schottky generator identifying Ci and C ′i, and O

(i)
mi ,
LiŌ

(i)
mi

are the vertex operators corresponding to the same state but being inserted at the different

fixed points of the generator Li. As we are interested in the next-leading contribution in

the large c limit, the computation of 2g-point functions is very much simplified.

One essential fact is that the CFT in the large c limit becomes effectively free, which

means that the multi-point function is dominated by the product of two-point functions of

single-particle states. First of all, a general state in the vacuum module could be of the form∏
m=2

L̂rm−m|0〉, (1.4)

where L̂−m’s are the normalized Virasoro generators, rm’s are non-negative integers. In the

large c limit, different states are orthogonal to each other, and all of the states constitute

a complete set. Every state L̂−m|0〉 is a one-particle state as it could be constructed

as (L−1)m−2|T 〉, where |T 〉 = L̂−2|0〉. From the state-operator correspondence, the

corresponding vertex operator of L̂−m|0〉 is of a form Vm ∼ ∂m−2T , which is dual to

a single graviton in the gravity side. The particle number of a general state (1.4) is

r =
∑
rm. For a particle-r state, the normalized vertex operator is just the normal
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ordered product of single-particle operators

Ô =:
r∏
j=1

Vmj : . (1.5)

Secondly, the leading contribution in the 2g-point functions on the Riemann sphere

is of order O(c0), so that a 2g-point function is dominated by the products of the

two-point functions between the single-particle operators. Moreover the products of

two-point functions may define various links. By using SL(2, C) transformations and

the reduced completeness condition,2 the value of a link is captured by the correlator

of two single-particle vertex operators being related by an element in the Schottky

group. Consequently the value of the link is only determined by the multiplier of the

element. More interestingly, it turns out that every oriented link is actually in one-to-one

correspondence with the conjugacy class of the Schottky group. This paves the way

to prove the 1-loop partition function (1.2) for any handlebody solution by taking into

account all possible combination of the products of two-point functions in Zg.

In the next section, after briefly reviewing the Schottky uniformization, we discuss how

to compute the partition function of a CFT on a higher genus Riemann surface. In section

3, we prove the relation (1.2) for any handlebody solution for pure AdS3 gravity. We discuss

the states in the vacuum module of the CFT in the large c limit and the corresponding

vertex operators. As a warm up, we reconsider the genus-1 partition function. Then we

move to the higher genus partition function. In section 4, we generalize our study to the

CFT with W symmetry. We end with the conclusion and discussion.

2 Schottky uniformization and the partition function

In 3D AdS gravity, all the classical solutions could be obtained as the quotient of the global

AdS3 spacetime by a subgroup of the isometry group SL(2, C). In this work, we focus on

the handlebody solutions whose asymptotic boundaries are compact Riemann surface. For

the handlebody solutions, the subgroup is actually a Schottky group. In general, for a

handlebody solution, the boundary Riemann surface is of higher genus.

From AdS/CFT correspondence, the partition function of AdS3 quantum gravity

should correspond to the partition function of higher genus Riemann surface in the dual

CFT. In the large central charge limit, the semiclassical gravitational action is captured

by the leading c terms in the CFT partition function. In the large c CFT, the leading

contribution is determined by the conformal anomaly and the Schottky uniformization.

For the next-leading contribution, it could be read from the summation of the multi-point

functions on the Riemann sphere via the sewing prescription.

In this section, we first give a brief review on Schottky uniformization, mainly basing

on the work [13]. Then we discuss how to compute a higher genus partition function using

the sewing prescription.

2The condition will be defined in (3.21).
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2.1 Schottky uniformization

Every compact Riemann surface can be described by a Schottky uniformization. For a

genus-g Riemann surface M, it can be represented by the quotient M = Ω/Γ, where

Ω is the full complex plane plus the point of infinity with the fixed points of Γ being

removed, and Γ is the Schottky group freely generated by g loxodromic SL(2, C) elements

Li. Ω is called the region of discontinuity of Γ. Moreover, it is convenient to introduce the

fundamental region to describe the Schottky group. A fundamental region D is a subset of

Ω, such that the interior points in D are not Γ equivalent to each other. One may choose

2g non-intersecting circles C1, C2, . . . Cg and C
′
1, C

′
2, . . . C

′
g in the Riemann sphere such that

all circles lie to the exterior of each other. The loxodromic element Li(L−1
i ) maps Ci to

C ′i such that the outer(inner) part of Ci is mapped to the inner(outer) part of C
′
i . Then

the fundamental region is the part of the Riemann sphere exterior to all the circles, and its

quotient is a compact Riemann surface of genus g. Each element Li is an SL(2, C) matrix

, and it is represented by the action

Li(z)− ai
Li(z)− ri

= pi
z − ai
z − ri

. (2.1)

where ai and ri are respectively the attracting and repelling fixed points, 0 < |pi| < 1 is the

multiplier. The eigenvalues of the matrix Li are
√
pi and

√
p−1
i . Therefore each generator

Li is completely characterized by the fixed points ai, ri and the multiplier pi. Among 3g

complex parameters ai, bi and pi, i = 1, · · · , g, one can fix three of them by using Mobius

transformation. The Schottky group satisfying the above conditions are called a normalized

and marked Schottky group. The remaining 3g − 3 parameters parametrize the Schottky

space of genus g.

One may define the map

γai,ri(z) =
riz + ai
z + 1

(2.2)

such that γai,ri(0) = ai, γai,ri(∞) = ri. It maps the standard unit circle centered at the

origin to the circle Ci. With γp(z) ≡ pz, a Schottky generator Li in (2.1) is just

Li = γai,riγpiγ
−1
ai,ri . (2.3)

Actually every Schottky generator could be constructed in this way.

The uniformization map from the region of discontinuity to the Riemann surface could

be determined by the help of a second order differential equation

ψ
′′
(u) +

1

2
RS(u)ψ(u) = 0, (2.4)

where RS(u) is the projective connection on a marked Riemann surface and ψ could be

taken as a multi-valued differential on M of order −1/2. The ratio of two independent

solutions ψ1 and ψ2 of the Fuchsian equation (2.4)

z =
ψ1(u)

ψ2(u)
(2.5)
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gives the map. By imposing appropriate monodromy condition on the cycles of the funda-

mental group of the Riemann surface, one can find the generators of the Schottky group.

For a general higher genus Riemann surface, this is a very difficult problem. However, for

the Riemann surface resulted from the replica trick in computing the Rényi entropy, the

problem has been solved explicitly in a perturbative way in the double-interval case [22, 26]

and single interval on a torus case [26, 33].

2.2 Partition function on higher genus Riemann surface

We would like to compute the partition function of a large c CFT on a higher genus

Riemann surface. It turns out that the leading c contribution is captured by the Zograf-

Takhtajan(ZT) action. On any compact Riemann surface of genus greater than 1, there

is a so-called Poincaré metric, which is a unique complete metric of constant negative

curvature −1

dŝ2 =
dtdt̄

(Im(t))2
. (2.6)

Such a metric is related to the flat metric on the complex plane by a conformal transfor-

mation

dŝ2 = e2φs(z,z̄)dzdz̄ (2.7)

where φs is a real field on the Riemann sphere. The constant curvature condition requires

that the field satisfy the Liouville equation

∂z∂z̄φs =
1

2
e2φs . (2.8)

This equation is the Euler-Lagrange equation of the ZT action defined on the fundamental

region in the Schottky uniformization [14]

SZT [φs] = − c

24π

∫ ∫
D

i

2
dz ∧ dz̄

(
4∂zφs∂z̄φs +

1

2
e2φs

)
+ boundary terms. (2.9)

This action is a Liouville action with boundary terms. The action evaluated on the solu-

tion of the Liouville equation gives exactly the regulated AdS3 gravitational action of the

corresponding gravitational configuration. Actually this relation helps us to fix the overall

factor in the above action. Moreover the ZT action captures the conformal anomaly and

depends only on the choice of the metric in a fixed conformal class [13]. Under the confor-

mal transformation, the partition function on the Riemann surface is related to the one on

the Riemann sphere via

Z |u= e−SZTZ |z . (2.10)

It is remarkable that the ZT action captures the whole leading contribution in the partition

function in the large c limit.

The partition function on a higher genus Riemann surface can be computed using

gluing prescription, following Segal’s approach to conformal field theory [35]. As nicely

reviewed in the appendix C of [36], the partition function is defined to be the summation

– 6 –
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of 2g-point functions on the Riemann sphere

Zg =
∑

φi,ψi∈H

g∏
i=1

G−1
φiψi
〈
g∏
i=1

φi[Ci]ψi[C
′
i]〉D, (2.11)

where D is the fundamental region with boundary ∂D = ∪i(Ci ∪ C ′i). Here φi, ψi are the

states in the Hilbert space H, and φi[Ci] denote the states associated with the boundary

circle Ci. The circle Ci could be related to the standard circle around the origin by a Mobius

transformation (2.2): Ci = γai,riC. To simplify the notation, we will write γai,ri = γi. Due

to the state-operator correspondence, the states on the circle Ci is created by the vertex

operator at γi(0). More precisely, there is a correspondence

φi[Ci]→ V (U(γi)p
L0
i φi, ai), (2.12)

where the operator U is

U(γ) = γ′(0)L0e
L1

γ′′(0)
2γ′(0) . (2.13)

Moreover, the state on the circle C ′i corresponds to the vertex operator

ψi[C
′
i]→ V (U(γiγ̂)ψi, ri) (2.14)

where γ̂ ≡ 1/z maps the origin to the infinity. In (2.11), Gφψ is the metric on the space of

the states

Gφψ = lim
z→∞
〈V (z2L0ezL1ψ, z)V (φ, 0)〉. (2.15)

With the vertex operators, the partition function (2.11) is changed to the summation over

2g-point functions of the vertex operators inserted at 2g fixed points

Zg =
∑

φi,ψi∈H

g∏
i=1

G−1
φiψi
〈
g∏
i=1

V (U(γi)p
L0
i φi, ai)V (U(γiγ̂)ψi, ri)〉, (2.16)

The relation (2.11) could be understood in the following way: one can insert a complete

set of states in the Hilbert space at each pair of the circles Ci and C ′i, which are related by

the Schottky generator Li, and compute all the possible 2g-point functions of corresponding

vertex operators on the Riemann sphere. One may apply this relation to compute the

partition function of any CFT on a higher genus Riemann surface. The computation could

be simplified if one can choose a complete set of orthogonal state basis, in which case the

metric on the space of the states becomes trivial

〈Ōm′ | Om〉 = lim
z→∞
〈V (z2L0ezL1Om′ , z)V (Om, 0)〉 = δmm′ . (2.17)

Let us reconsider the genus-1 partition function in a CFT. In this case, the partition

function is decomposed into two-point functions

Z1 =
∑
φ,ψ∈H

G−1
φψ〈V (U(γ1)pL0

1 φ, a1)V (U(γ1γ̂)ψ, r1)〉. (2.18)

– 7 –
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As the two-point function is conformal invariant, we may apply a SL(2, C) transformation

γ−1
1 to the two-point functions and get

Z1 = lim
z→∞

∑
φ,ψ∈H

G−1
φψ〈V (pL0

1 φ, 0)V (U(γ̂)ψ, z)〉 = TrH(pL0
1 ), (2.19)

which is the standard result for the thermal partition function of a CFT. In the computa-

tion, the transformation brings the circles C1 and C ′1 to the boundary circles of the annulus

around the origin with the radius being p1 and the unit respectively. Now the Schottky

generator is simply the diagonal matrix, and p1 is the modular parameter of the torus

formed from the annulus by identifying two boundary circles.

More generally we may consider the two-point function of the vertex operators inserted

at the fixed points in two circles which are related by an element L of the Schottky group.

As every such element could be put in the form of (2.1), the two-point function is simply

〈LV̄ V 〉 = lim
z→∞
〈V (U(γ̂)φ, z)V (pL0φ, 0)〉 = ph, (2.20)

where V is the vertex operator corresponding to the state φ with conformal weight h, and

p is the multiplier of the element L. Here we use the notation that the operator V denote

the operator inserted at the fixed point of one circle and LV̄ is the one in the other circle.

Both operators correspond to the same state, with V generating the ket state and LV̄

generating the bra state.

In the following, as every Schottky generator is characterized by the fixed points and

the multiplier, there is no need to write them explicitly. Formally, the partition function

could be written as

Zg |z=
∑

m1,m2,...mg

〈 L1Ō(1)
m1
O(1)
m1

L2Ō(2)
m2
O(2)
m2

. . .
LgŌ(g)

mg O
(g)
mg〉, (2.21)

where m1,m2, . . .mg denote the summation of all of the states on the circles C1, C2, . . . Cg
and C ′1, C

′
2, . . . C

′
g.

3 Pure AdS3 gravity

The partition function on a higher genus Riemann surface (2.11) could be decomposed into

a summation of 2g-point correlation functions on Riemann sphere. This is workable for

any CFT. It certainly depends on the the spectrum and the OPE of the CFT. Here we are

interested in the large central charge limit of the CFT dual to the AdS3 quantum gravity.

In this case, the dual CFT has a sparse light spectrum [19, 20], and only the vacuum

module contributes to the partition function perturbatively, and other heavy modules give

non-perturbative contribution as O(e−c).3 Therefore we focus on the large central charge

limit of the vacuum module. It turns out that the theory becomes essentially free, and the

3Since the vacuum module contribution is universal, our discussion is independent of the explicit con-

struction of the CFT, and the results hold for other candidate conformal field theory dual to the AdS3

gravity as well.
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interaction is suppressed in the limit [38, 39]. After a detailed study of the states in the

vacuum module, we compute the genus-1 partition function as a warm up and reproduce

the thermal partition function computed in other ways. Next we turn to the computation

of the partition function on a higher genus Riemann surface, and find the perfect agreement

with (1.2) as well.

3.1 Vacuum module in the large c limit

The vacuum module can be generated by the Virasoro generators acting on the vacuum

| 0〉. The holomorphic sector of the Virasoro algebra is

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n, (3.1)

which has a non-homogenous term of order c. The anti-holomorphic sector has the same

structure. In the following discussion, we focus on the holographic sector. As the vacuum

is invariant under SL(2, C) conformal symmetry, so it is annihilated by the generators

L±1, L0. The vacuum module are built on the states

. . . Lrn−n . . . L
r3
−3L

r2
−2 | 0〉, (3.2)

where only finite number of ri’s are non-zero, and their conformal dimensions are

h =

∞∑
j=2

jrj , (3.3)

in which there is only finite number of non-zero terms in the summation. A general state

in the module is the linear combination of these states. We note that the states in (3.2)

are not orthogonal to each other.

In the large c limit, the states in the vacuum module could be re-organized more nicely.

Under this limit, we can renormalize the operators

L̂m = | 12

cm(m2 − 1)
|
1
2Lm for |m| ≥ 2. (3.4)

The commutation relations for the renormalized operators are

[L̂m, L̂n] = δm+n +O

(
1

c
1
2

)
[L0, L̂m] = mL̂m

[L1, L̂m] = −sgn(m)|m− 1|
1
2 |m+ 2|

1
2 L̂m+1

[L−1, L̂m] = −sgn(m)|m+ 1|
1
2 |m− 2|

1
2 L̂m−1. (3.5)

In these relations, we have absorbed all of the large c factors into the normalizations of

the generators. From the relations, we can read two remarkable facts if we only care about

the leading c effects. The first is that the operators L̂m and L̂−m for a fixed m constitute

a pair of creation and annihilation operators such that they may build a subspace of the

Hilbert space like

L̂rm−m|0〉, with m ∈ N,m ≥ 2 and rm ∈ N . (3.6)

– 9 –
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Note that the states in different subspace are orthogonal to each other. The other fact is

that the state L̂−m|0〉 could be constructed by acting L−1 repeatedly for m − 2 times on

the quasiprimary state L̂−2|0〉 = |T 〉

L̂−m|0〉 ∼ (L−1)m−2L̂−2|0〉 = (L−1)m−2|T 〉. (3.7)

A general state in the vacuum module could be of the form

∞∏
m=2

L̂rm−m | 0〉, (3.8)

with only finite number of rm’s being non-zero. Now different states are orthogonal to each

other to order c0. The normalization for the state is

〈0 |
∞∏
m=2

L̂rmm

∞∏
m=2

L̂rm−m | 0〉 =

∞∏
m=2

rm! +O

(
1

c

)
. (3.9)

We may define the “particle number” for such a state to be r =
∑
rm. The physical reason

behind this definition is that each single-particle state L̂−m|0〉 corresponds to a graviton.

By contour integral the corresponding operator for the state (3.2) is

Or2,r3,...rn... =: . . .

(
1

(n− 2)!
∂(n−2)T (z)

)rn
. . . (∂T (z))r3T (z)r2 :, (3.10)

which is a product of the stress tensors and their partial derivatives. It is clear that the

“particle number” of this operator is the number of the stress tensors r =

∞∑
j=2

rj . The two-

point function of Or2,r3,...rn... is of order cr in the large c limit, which means the operator

should be normalized with 1
cr/2

. In the following discussion, the single-particle state is of

particular importance. For a single-particle state L̂−m|0〉, its corresponding vertex operator

is of the following forms at the origin and the infinity respectively

Vm =

(
12

cm(m2 − 1)

) 1
2 1

(m− 2)!
∂m−2T (z) |z=0,

V̄m =

(
12

cm(m2 − 1)

) 1
2 1

(m− 2)!
(−z2∂z)

m−2(z4T (z)) |z→∞ for m ≥ 2. (3.11)

At the origin, the normalized vertex operator for the particle-r state (3.2) reads

Ô =:

( r∏
j=1

Vmj

)
: (3.12)

In other words, the vertex operator of a multi-particle state is just the normal ordered

product of the vertex operators for the single-particle states. The important point is that

this fact is even true for the states on the circle not around the origin. Under a conformal

transformation, the form of the operator get complicated due to the existence of the partial
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derivatives. According to (2.12), under a conformal transformation γi (2.2), the vertex

operator at the origin is changed to the one at the fixed point ai

V (φi, 0)→ V (U(γi)φi, ai), (3.13)

which could be of a complicated form if φi is a multi-particle state. Taking

φi = L−m1L−m2 · · ·L−mr |0〉, mi ≥ 2, (3.14)

we find that

U(γi)L−m1L−m2 · · ·L−mr |0〉 = U(γi)L−m1U
−1(γi)U(γi)L−m2U

−1(γi) · · ·U(γi)L−mr |0〉
(3.15)

Actually the operators U(γi)L−m1 and U(γi)L−m1U
−1(γi) differs only the terms propor-

tional to L0 and L±1

U(γi)L−m1 = U(γi)L−m1U
−1(γi) + terms involving L0 and L±1. (3.16)

As the states induced by the terms involving L0 and L±1 are subdominant in the large

central charge limit, we may just take

U(γi)L−m1L−m2 · · ·L−mr |0〉 ∼ (U(γi)L−m1)(U(γi)L−m2) · · · (U(γi)L−mr)|0〉. (3.17)

In terms of the vertex operators, we have the operator at the fixed point ai being of the form

V (U(γi)φi, ai) =:
r∏
j

V (U(γi)L−mr |0〉, ai) :, (3.18)

up to a normalization. In other words, the vertex operator at ai could still be written as

the normal ordered product of the vertex operators corresponding to single-particle states.

In the large c limit, the states constructed above are not only normalized and orthog-

onal to each other, but also constitute a complete set. Therefore, we may insert such a

complete set of states at the pairwise circles in the Riemann sphere to compute the partition

function. In other words, we have the relation

I = | 0〉〈0 | +
∞∑

m1=2

L̂−m1 | 0〉〈0 | L̂m1 +
1

2!

∞∑
m1=2

∞∑
m2=2

L̂−m1L̂−m2 | 0〉〈0 | L̂m2L̂m1 + . . .

=
∞∑
r=0

1

r!

∑
{mj}

( r∏
j=1

L̂−mj

)
| 0〉〈0 |

( r∏
j=1

L̂mj

)
+O

(
1

c

)
, (3.19)

where the summation over mj is from 2 to the infinity, and r is the “particle number” for the

inserting state. Here we list the states with the fewest particle numbers in the above relation

r = 0 | 0〉〈0 |

r = 1
∞∑

m1=2

L̂−m1 | 0〉〈0 | L̂m1
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r = 2
∑

2≤m1<m2<∞
L̂−m1L̂−m2 | 0〉〈0 | L̂m2L̂m1

1

2

∞∑
m1=2

L2
−m1
| 0〉〈0 | L2

m1

. . . (3.20)

For a fixed r the state can be written as
∏
L̂
rj
−j | 0〉, with

∑
rj = r, where there is only

finite number of rj ’s being non-zero. The partition number for the decomposition of r into

{rj} is r!∏
rj !

, that means the state
∏
L̂
rj
−j | 0〉 will appear r!∏

rj !
times in the summation

in (3.20). This cancels the the factor 1
r! in (3.19). The remaining factor is just 1/

∏
rj !,

which could be cancelled by the normalization of the state.

The completeness condition could be written in terms of the vertex operators as

I =

∞∑
r=0

1

r!

∑
{mj}

:

( r∏
j=1

Vmj

)
:| 0〉〈0 |:

( r∏
j=1

V̄mj

)
: +O

(
1

c1/2

)
, (3.21)

where :: denotes the normal ordering. Note that the above complete set of state basis is

inserted at the standard unit circle around the origin. Actually on this circle, a ket state

|A〉 corresponds to the vertex operator VA inserted at the origin, and a bra state < A|
corresponds to the vertex operator V (U(γ̂)A) inserted at the infinity.

Obviously, one is free to insert the completeness condition at another circle in the

Riemann sphere. For example, consider the circle related to the standard circle by

the map (2.2), the ket state |A〉 on the circle should created by the vertex operator

V (U(γi)A, ai) inserted at the point ai, while the bra state < A| on the circle should cre-

ated by the vertex operator V (U(γiγ̂)A, ri) inserted at ri. Inserting an identity operator

in the correlation function corresponds to inserting pairs of the vertex operators at ai and

ri respectively and summing over all the contribution of the possible vertex operators, i.e.

〈V1V2 · · ·Vn〉 =
∑
m

〈V1V (U(γi)φm, ai)〉〈V (U(γiγ̂)φm, ri)V2 · · ·Vn〉. (3.22)

In particular, if we insert a complete basis in a two-point function, we have

〈V1(z1)V2(z2)〉 =
∑
m

〈V1(z1)V (U(γi)φm, ai)〉〈V (U(γiγ̂)φm, ri)V2(z2)〉. (3.23)

If the operators V1, V2 correspond to the single-particle states, then among the correlators

〈V1(z1)V (U(γi)φm, ai)〉, the two-point functions between two single-particle states domi-

nate in the large central charge limit so that we have

〈V1(z1)V2(z2)〉 =

∞∑
m=2

〈V1(z1)V (U(γi)L−m|0〉, ai)〉〈V (U(γiγ̂)L−m|0〉, ri)V2(z2)〉 (3.24)

This relation will play the key role in the following discussion. Note that the relation is true

for any SL(2, C) transformation, not only the one in the form (2.2). The above relation

could be written schematically as

〈V1(z1)V2(z2)〉 =
∞∑
m=2

〈V1(z1)LVm〉〈LV̄mV2(z2)〉 (3.25)
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where L is an SL(2, C) element, LVm is the vertex operator corresponding to the single

particle ket state L̂−m|0〉, and
L
V̄m corresponds to the bra state. It should be kept in

mind that this relation is only true for the vertex operators V1, V2 corresponding to the

single-particle states. The relation (3.25) is called the reduced completeness condition.

As we shown before, the genus-g partition function could be computed by the 2g-

point functions on the Riemann sphere. In the large central charge limit, these correlation

functions are at most of order O(c0) [37]. The order O(c0) terms correspond to the 1-

loop partition function in the gravity. This could be seen from the operator product

expansion(OPE) of the stress tensor:

T (z1)T (z2) ∼ c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂T (z2)

z1 − z2
+ normal order, (3.26)

and the Ward identity

〈
n∏
j=1

T (zj)〉 =
n∑
k=2

c/2

(z1 − zk)4
〈
∏

2≤j≤n
j 6=k

T (zj)〉+
2

(z1 − zk)2
〈
∏

2≤j≤n
T (zj)〉

+
1

z1 − zk
∂zk〈

∏
2≤j≤n

T (zj)〉. (3.27)

It is easy to see that the correlation function involving 2n stress tensors is at most of

order O(cn), and the correlation with 2n + 1 stress tensors is at most of order O(cn). So

the correlation function of the normalized vertex operators in the Riemann sphere is at

most of order c0. More importantly, from the OPE (3.26) we see that only the two-point

function of the stress tensors is of order O(c) and the three-point function is of order 1.

As a result, we must focus on the two-point functions of the single-particle states in the

large central charge limit. Holographically, this means that we can ignore the interaction of

the gravitons, and have a free theory of the gravitons. Therefore, every 2g-point function

in (2.16) could be decomposed into the product of g two-point functions in various ways.

The task to compute the partition function (2.16) changes to compute all the possible

product of the two-point functions and summing them up. This leads us to prove the

1-loop partition function of a general gravitational configuration.

3.2 Genus-1 partition function

Let us first compute the genus-1 partition function in our framework, as a warm up. In

the large c limit, this case has been studied in [21]

Z1 =

∞∏
m=2

1

1− qm
, (3.28)

where q is the modular parameter of the torus. We are now trying to reproduce this result

in a new way. Even though the derivation looks tedious, the computation is suggestive for

the computation in higher genus cases.
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In the torus case, the Schottky group is generated by only one SL(2, C) element L.

The genus-1 partition function could be read from

Z1 =

∞∑
r=0

1

r!

∑
{mj}

〈:
( r∏
j=1

L
V̄m(r1)

)
: :

( r∏
j=1

Vm(r1)

)
:〉+O

(
1

c

)
, (3.29)

By the OPE (3.26) and the Ward identity (3.27), the expectation value for 2r stress tensors

are at most order cr and the leading c contribution are captured by the products of r two-

point functions, and the partition function is the summation of all the products with

appropriate combinatory factors. For r = 0 term, the contribution from the vacuum is 1.

For r = 1 term

Z(1) =
∞∑
m=2

〈LV̄m(r1)Vm(a1)〉 = TrH1q
L0 =

∞∑
m=2

qm, (3.30)

where we have used the relation (2.19) but now only sum the single particle states H1. For

r > 1 case, the expectation value equals to

1

r!

∞∑
m1=2

∞∑
m2=2

. . .

∞∑
mr=2

〈: LV̄m1(r1)
L
V̄m2(r1) . . .

L
V̄mr (r1) :: Vm1(a1)Vm2(a1) . . . Vmr (a1) :〉 (3.31)

=
1

r!

∞∑
m1=2

∞∑
m2=2

. . .

∞∑
mr=2

∑
{P}

〈LV̄mP1
(r1)Vm1(a1)〉〈LV̄mP2

(r1)Vm2(a1)〉 . . . 〈LV̄mPr
(r1)Vmr (a1)〉+ O(c−1),

where P denote different permutation. There is no two-point function between two V

operators or two V̄ operators at the same fixed point because of normal ordering.

To classify the possible combination of two-point functions in the summation (3.31)

clearly, we define a diagram language. As in figure 1, the dotted vertices denote the fixed

points, where the operators are inserted: the lower ones are the Vm(a1)’s, while the upper

ones are the
L
V̄m(r1)’s. The dashed lines denote the summations over mi’s and the solid

line denotes the correlation between two vertex operators. The dashed and solid lines may

form a closed contour, which will be called as a link. In short, a link is defined by certain

product of two-point function of single-particle operators. The length of the link is defined

to be the number of dashed lines. It is convenient to assign a direction on the dashed line

indicating the flow between V to V̄ . As we will see shortly, the direction from V to V̄

corresponds to a Schottky generator, while the flipped direction corresponds to the inverse

of the generator. The expectation value of a link is∑
{mt}

〈LV̄mt2Vmt1 〉〈
L
V̄mt3Vmt2 〉 . . . 〈

L
V̄mt1Vmts 〉

=

∞∑
mt1=2

∞∑
mt2=2

. . .

∞∑
mts=2

〈LV̄mt2Vmt1 〉〈
L2
V̄mt3

LVmt2 〉 . . . 〈
L
V̄mt1Vmts 〉

=

∞∑
mt1=2

∞∑
mt3=2

. . .

∞∑
mts=2

〈L
2

V̄mt3Vmt1 〉〈
L
V̄mt4Vmt3 〉 . . . 〈

L
V̄mt1Vmts 〉

...

=

∞∑
mt1=2

〈L
s

V̄mt1Vmt1 〉 =

∞∑
m=2

qms (3.32)
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(a) Two two-point functions. (b) Four two-point functions.

Figure 1. The link formed by the product of two two-point functions and four two-point functions.

It corresponds to the conjugacy class L2 and L4. For each cases, the only possible connected link

is the one in the diagram.

where s is the length of the link. Here we have used the fact that the two-point functions are

invariant under conformal transformation and the reduced completeness condition (3.25)

for the two-point function. In the first equality, we used the conformal transformation on

the second two-point function 〈LV̄mt3Vmt2 〉 = 〈L
2

V̄mt3
LVmt2 〉. Then in the second equality,

we used the reduced completeness condition on LVmt2 . The above symbolic derivation could

be made more clear with the explicit expressions of the vertex operators. As L = γ1γqγ
−1
1 ,

Ls = γ1(γq)
sγ−1

1 , and the computation of the two-point functions in the last step is on an

annulus with the modular parameter being qs.

The two-point function of the particle-r vertex operators can be cast into the summa-

tion of the products of r two-point functions of single-particle operators. Each product can

be decomposed into several links, with the contribution of each link being (3.32). Assuming

the r pairs of the operators can be decomposed into a series of links such that

∞∑
s=1

sts = r, (3.33)

where ts is the number of the length-s links. The partition number for this decomposition

is r!∏∞
s=1(s!)ts ts!

. Furthermore for each patch with s pairs of the operators there are (s− 1)!

different ways to build the connected link, so the combinatory factor is r!∏∞
s=1 s

ts ts!
. The

numerator is cancelled by the coefficient 1
r! in the partition function so the overall coefficient

is 1∏∞
s=1 s

ts ts!
, which is remarkably independent of r.

For the partition function (3.29), we just need to sum over all the contributions from

different combinations of the links

Z1 =
∞∏
s=1

∞∑
t=0

1

st
1

t!

( ∞∑
r=2

qsr
)t

= exp
∞∑
r=2

− log(1− qr) =
∞∏
r=2

1

1− qr
. (3.34)
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This is the genus-1 partition function found in [21]. It is actually the one for the holomor-

phic sector, and there is the anti-holomorphic sector which gives the same contribution.

On the other hand, in the gravitational partition function, there is the contribution from

the primitive conjugacy class L−1, which is the same as the one from L.

From our derivation, it seems to be of order O(c0) but it in fact is exact without higher

order 1/c correction. The exactness of the genus-1 partition function could be seen from

the relation (2.19), which shows that the function depends only on the spectrum of the

vacuum module.

3.3 Genus-2

For the genus 2 case, there are two free generators in the Schottky group. In the Riemann

sphere, there are four circles with the fixed points a1, a2 and r1, r2, as shown in figure 2.

The partition function could be written as

Z2 =
∑
m1,m2

〈 L1Ō(1)
m1
O(1)
m1

L2Ō(2)
m2
O(2)
m2
〉 (3.35)

where m1,m2 are over all possible states in the vacuum module. For the multi-particle

states, every operator Omi could be decomposed into the product of the operators corre-

sponding to the single-particle states. To simplify the discussion, let us first consider the

simplest case that four operators in the correlation functions are all single-particle opera-

tors. As in genus-1 case, the four-point correlator could be decomposed into the product

of two two-point functions. However, there are now more possibility for the operators to

combine. For example, the vertex operator at a1 can not only contract with the operator

at r1, but can also contract with the operators at a2 and r2. Without losing generality, we

assume the operators at a1, r1 correspond to the state L̂−m1 |0〉, and the operators at a2, r2

correspond to the state L̂−m2 |0〉. In the first case, when the operator at ai is connected

with the one at ri to form two-point functions as in figure 3a, it is easy to see that the

contribution is simply∑
m1,m2

〈L1 V̄m1(r1)Vm1(a1)〉〈L2 V̄m2(r2)Vm2(a2)〉 =
∑
m1

(q1)m1
∑
m2

(q2)m2 (3.36)

where q1 and q2 are respectively the multipliers in the generators L1 and L2. If we consider

all the states but only allow the operators connect from ai to ri, then finally we get the

product of two genus-1 partition functions Z1(q1)Z1(q2).

On the other hand, we are allowed to connect the operators at a1 to the one at a2 or

r2. Let us first consider the case that the operator at a1 connect to the one at r2 as in

figure 3b, then the contribution could be∑
m1,m2

〈L2 V̄m2(r2)Vm1(a1)〉〈L1 V̄m1(r1)Vm2(a2)〉

=
∑
m1,m2

〈L1L2 V̄m2
L1Vm1〉〈

L1 V̄m1Vm2〉
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Figure 2. The circles correspond to the genus-2 Riemann surface.

=
∑
m2

〈L1L2 V̄m2Vm2〉

=
∑
m

(q12)m (3.37)

where q12 is the multiplier of the SL(2, C) element L1L2. Here we have used the com-

pleteness condition (3.25) and the fact that the two-point function is conformal invariant.

Certainly we may make conformal transformation on the second two-point function and

use the completeness condition on Vm2 , and find∑
m1,m2

〈L2 V̄m2(r2)Vm1(a1)〉〈L1 V̄m1(r1)Vm2(a2)〉 =
∑
m1

〈L2L1 V̄m1Vm1〉 =
∑
m

(q21)m, (3.38)

where q21 is the multiplier of the element L2L1. However, note that the element L2L1 is in

the same primitive conjugacy class as L1L2, and have the same multiplier so that q12 = q21.

For the contraction that the operator at a1 connect to the one at a2 as in figure 4a,

the contribution is∑
m1,m2

〈L2 V̄m2(r2)
L1 V̄m1(r1)〉〈Vm1(a1)Vm2(a2)〉 =

∑
m2

〈L2 V̄ L1m2
Vm2〉 =

∑
m

(q1̄2)m (3.39)

where q1̄2 is the multiplier of the element L−1
1 L2. Note that the element L−1

1 L2 belongs to

a different conjugacy class from L1L2. However, it could also give∑
m1,m2

〈L2 V̄m2(r2)
L1 V̄m1(r1)〉〈Vm1(a1)Vm2(a2)〉 =

∑
m1

〈L1 V̄ L2m1
Vm1〉 =

∑
m

(q2̄1)m (3.40)

where q2̄1 is the multiplier of the element L−1
2 L1. Now there appears another conjugacy

class L−1
2 L1 which is the inverse of the class L−1

1 L2. Fortunately, as the multipliers of an

element and its inverse are the same, both ways lead to the same answer.
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(a) The link corresponds to

L1 and L2.

(b) The link corresponds to

L1L2.

Figure 3. In the diagram, the same type of vertices means that the operators are in the fixed

points of the pairwise circles in the Schottky uniformization. The two-point function between the

operators on the same type of vertices just give the simplest link. The one between the operators

on different types of vertices may lead to more complicated links.

(a) The link corresponds to

L1L−1
2 .

(b) The link corresponds to

L2L−1
1 .

Figure 4. Two links with opposite orientations. The corresponding conjugacy classes are inverse

to each other.
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It is easy to understand the conjugacy class from the diagram with directions on the

dashed lines. In the first case that ai connect with ri, the dashed lines and the solid lines

starting and ending at the same points form two links, each of which corresponds to the

primitive element Li, see figure 3a. In the second case that a1 (a2) connect to r2 (r1), the

arrows along the dashed lines in the link point to the same direction, this correspond to

the conjugate element L1L2 , see figure 3b. In the last case that ai and bi form a square,

the directions on two dashed lines are opposite, suggesting the corresponding element is

L1L−1
2 or L2L−1

1 , depending on which vertex we start from, see figure 4a and 4b. Note

that from the diagram, if the orientation of the link gets inverted, then the corresponding

conjugacy class is inverse to the original one. For example, if we change the orientation in

figure 3b, we find the conjugacy class L−1
1 L

−1
2 . In figure 3a and figure 3b, the reversing

of the orientation would not happen, as there is only one kind of orientation no matter

where the starting point of the link is. However, in figure 4a and 4b, there could be two

opposite orientations depending on the starting point. This is the reason why we get two

different relations (3.39) and (3.40). The difference depends on which two-point function

appears in the last step, the one between V̄m1 and Vm1 , or the one between V̄m2 and Vm2 . In

other words, the computation of the correlation function cannot distinguish the difference

between two conjugacy elements which are inverse to each other. Nevertheless, the different

ways in computing lead to the same result.

If the operators correspond to the multi-particle states, then the situation becomes

complicated. Now we are allowed to form link not only between the operators at a1 and

r1, but also between the operators at a1 and a2 or r2 at the same time. The different ways

of forming the loop lead to different conjugate class. In the next subsection, we will have

a systematic discussion for higher genus case.

3.4 Higher genus

In a general higher genus case, we can compute the partition function by inserting the states

in the vacuum module at each circle. This leads to compute the 2g-point functions in (2.21).

The states inserting at the different circles include the states with various particle numbers.

We assume that the particle number of the states at Ci to be ri, then the corresponding

contribution to the partition function is

Zr1,r2,...rg =

r1∏
t1=1

( ∞∑
m1,t1

=2

) r2∏
t2=1

( ∞∑
m2,t2

=2

)
. . .

rg∏
tg=1

( ∞∑
mg,tg=2

)
〈 1

r1!

(
:

r1∏
t1=1

L1 V̄ (1)
m1,t1

:

)(
:

r1∏
t1=1

V (1)
m1,t1

:

)

· 1

r2!

(
:

r2∏
t2=1

L2 V̄ (2)
m2,t2

:

)(
:

r2∏
t2=1

V (2)
m2,t2

:

)
. . .

1

rg!

(
:

rg∏
tg=1

Lg V̄ (g)
g,mtg

:

)(
:

rg∏
tg=1

V (g)
g,mtg

:

)
〉. (3.41)

Here we take the notation that in V
(i)
mi,ti

the i labels the circle, ti denotes the particle index

and every mi,ti takes value from 2 to ∞.

As shown in the genus-2 case, the operators inserted at the fixed point in the circle Ci
are free to contract with the operators in other circles, including C ′i. It is convenient to use

the diagrammatic language introduced above to characterize all the possible contractions.

A general contraction between the operators can form a closed link by the dashed lines and
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(a) The link corresponds to L2
1L−1

2 L3. (b) The link corresponds to L−1
3 L2L−2

1 .

Figure 5. More complicated links with three generators.

solid lines. The linking number is the number of the dashed lines, labelled by the circles

and its related Schottky generators. We may use the symbol to characterize a link as

l̂ = (jr11 j
r2
2 . . . jrss ), (3.42)

where jrkk means that there are |rk| pairs of operators inside the circles Ck and C ′k appearing

continually in the correlator such that it contributes a linking number |rk|. The value of rk
could be positive or negative, up to the flow is from V to V̄ or vice versa. Note that in a

link, the flow should be continuous. For example, in the genus-1 case, the link between two

single particle state is just a link (11), while the one formed by the particle-k states is (1k).

In the genus-2 case, the link in figure 3a is just (11)(21), the one in figure 3b is (1121), while

the one in figure 4a is (112−1) and the one in figure 4b is (1−121). One subtle point is that

for one link diagram, there could be two different orientation, like the ones in figure 5a and

figure 5b, with the corresponding conjugacy classes being inverse to each other. In more

general case, the operators in one pair of circles may appear in different positions of a link,

and it is forbidden to permute their positions if there are other operators between them.

Namely, there could be a link of the form

(1k12k21k32k4), (3.43)

which is different from the link (1k1+k32k2+k4).

More importantly, an oriented link is in one-to-one correspondence with the conjugacy

class of the Schottky group. The element corresponding to the link (3.42) is

Lr1j1L
r2
j2
· · · Lrsjs . (3.44)

Note that an oriented link has a cyclic symmetry, as there is freedom to start labelling

a link from any point on the link. Remarkably, the different elements corresponding to

the different labels are conjugate to each other. Recall that in a free generated group, the
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group elements could be formed from the generators and their inverses. If we take the

generators and their inverses as the alphabets, we can construct “words” with the letters.

If a generator and its inverse appear next to each other in a word, the word could be

simplified by omitting these two letters. A reduced word is the word which cannot be

simplified. Moreover, a word is called cyclically reduced if its first and last letters are not

inverse to each other. Every reduced word is conjugate to a cyclically reduced word, and

a cyclically reduced conjugate of a cyclically reduced word is a cyclic permutation of the

letters in the word. Simply speaking, a cyclically reduced conjugate stand for a conjugacy

class. As in our discussion, the vertex operators have been normal ordered so there is

no contraction in the same vertex operators. This in fact forbids the appearance of the

generators LiL−1
i in a link. Namely, the simplification and the cyclically reduction in the

word have been encoded in the definition of the vertex operators. Therefore one oriented

link corresponds to one conjugacy class. A primitive conjugate element is the one which

cannot be written as the positive power of another element, i.e. L(primary) 6= (L′)n, n ∈ N .

It corresponds to the link which cannot be written as the positive powers of a shorter link.

For example, the link (1k) is not primitive, as (1k) = (1)k.

It is remarkable that the link formed from the product of the two-point function is

generically of two opposite orientations, corresponding to two conjugacy classes inverse to

each other. However, both conjugacy classes have the same multiplier and therefore the

correlation function gets the same value. In the following, we ignore the orientation of the

link, but keep in mind that the conjugacy classes have been doubly counted.

The value of a link is easy to compute. For a link corresponding to a primitive class,

its value is just

Zl̂ =

∞∑
m=2

(ql̂)
m, (3.45)

where ql̂ is the multiplier of the primitive element corresponding to the link. For a non-

primitive link which can be written as l̂ = (l̂(p))
n, its value is

Zl̂ =

∞∑
m=2

(ql̂(p)
)nm, (3.46)

where ql̂(p)
is the multiplier of the primitive element corresponding to the link l̂(p).

A general 2g-point function of multi-particle operators on a Riemann sphere can be

decomposed into the summation of the product of the links. One kind of link can appear

multiple times in the product. The order of the links does not matter, and one can move the

links freely. The important thing is the coefficient for the multiple links. For a diagram with

r1, r2, . . . , rg particles at the circles respectively, the permutation among the particles gives

the same kind of diagram. The permutation at the circle Cj contributes a rj ! factor, which

cancel the coefficient in (3.41). However such permutation has two kinds of degeneracy.

1. If the link l̂ which have the linking number l appears nl times, then when we permute

these links we get the same diagram. There is a nl! degeneracy of over-counting in

this case.
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2. If there is a link which is not primitive, being the s-th power of a primitive link,

then there is a translational symmetry along the primitive element. This symmetry

contributes an order-s degeneracy.

Therefore for a non-primitive link appearing nl times in the product, their contribution is

Znl =

(
1

s

)nl 1

nl!

( ∞∑
m=2

qsm
l̂(p)

)nl
, (3.47)

where ql̂(p)
is the multiplier of the primitive element in the link.

Now we are ready to show the equivalence between the 2g-point function (2.16) on the

Riemann sphere and the 1-loop partition function (1.2). First of all, there is an one-to-one

correspondence between the primitive link and primitive conjugacy class in the Schottky

group. By considering all possible links, there is no missing in counting every primitive

element. Moreover, notice that the 1-loop partition function (1.2) could be expanded

Z1−loop =
∏
γ

Zγ =
∏
γ

( ∞∏
m=2

1

1− qmγ

)
, (3.48)

and the contribution from each primitive element could be expanded further

∞∏
m=2

1

1− qmγ
=

∞∑
t=0

1

t!

∞∏
s=1

1

st

( ∞∑
m=2

qsmγ

)t
. (3.49)

Compared to (3.47), It is obvious that each term in the summation is the contribution of

a kind of link which appear t times. This kind of link could be non-primitive. Therefore,

the 1-loop partition function could be expanded into a summation of the contribution

from all possible links, resulted from the contraction of two-point functions in the 2g-point

function (2.16). This proves that the 1-loop partition function (2.11) is captured exactly

by the 2g-point function (2.16) in the large central charge limit.

In the above discussion, we have been focusing on the holomorphic sector the CFT.

The anti-holomorphic sector should give the same contribution. This requires us to take

the square of the result in the holomorphic sector, and may bring mismatch with the

gravitational 1-loop result. However, the computation in the CFT cannot distinguish

the link with different orientation, though we may set up the one-to-one correspondence

between the oriented links and conjugacy classes. On the other hand, in computing (1.2),

q
−1/2
γ should be the larger values of the element γ so that it is actually the same for both

γ and γ−1. Therefore a more precise relation is

Zg|holomorphic =
∏
γ

(Zγ)
1
2 (3.50)

But the full partition function including both holomorphic and anti-holomophic sector

indeed match with (1.2)

Zg =
∏
γ

|Zγ |. (3.51)
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4 Higher spin

In previous section, we calculate the higher-genus partition function for the theory dual

to pure AdS3 gravity at the order c0 in the large c limit. In this section, we extend the

study to the higher spin AdS3 gravity and its CFT dual. As in the pure AdS3 gravity, one

may rewrite the action of the higher spin AdS3 gravity in terms of two decoupled Chern-

Simons actions with opposite levels. The gauge group could be enlarged from SL(2, R)

to SL(n,R) in order to describe the higher spin fields up to spin n. It was found that

by imposing generalized Brown-Henneaux boundary condition, the asymptotic symmetry

group of higher spin gravity is W symmetry with the central charge c = 3l
2G [11, 12]. This

indicates that the higher spin AdS3 gravity is dual to 2D CFT with W symmetry. Here

we only focus on the semiclassical higher spin AdS3 gravity and study the handlebody

configurations which could be obtained as the quotient of the global AdS3 by a Schottkky

group. In these cases, the bulk configurations are the same as the ones in pure AdS3 gravity,

but the fluctuations around these configurations must include the higher spin ones, besides

the usual spin 2 graviton. The 1-loop partition function now turns out to be

Z1−loop =
∏
s=2

Z1−loop,s =
∏
s=2

∏
γ

( ∞∏
m=s

1

1− qmγ

)
(4.1)

where the contribution from the fluctuation of different spins could be factorized

Z1−loop,s =
∏
γ

( ∞∏
m=s

1

1− qmγ

)
. (4.2)

On the dual side, the conformal field theory has an W symmetry. In the large c limit,

the algebra is simplified to be

[L̂m, L̂n] = δm+n

[Ŵm, Ŵn] = δm+n

[L̂m, Ŵn] = 0, (4.3)

where

L̂m =

(
12

|m(m2 − 1)c|

) 1
2

Lm for |m| ≥ 2

Ŵm =

(
36

| − σm(m2 − 1)(m2 − 4)c|

) 1
2

Wm for |m| ≥ 3. (4.4)

Thus in a CFT with W symmetry one has to consider not only the vacuum module con-

sisting of the states generated by L−m,m ≥ 2, but also the modules generated by the W

primaries and their descendants, in the large c limit. In the module generated by a W

primary, the lowest-weight state is generated by the primary field. For example, in the

CFT withW3 symmetry, the lowest-weight state in the W3 module is the one generated by

the W−3|0〉, and the other states could be obtained by acting L−1 repeatedly on W−3|0〉.
This is very similar to the construction in the vacuum module, where the lowest weight
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state is generated by L−2. Correspondingly, the holomorphic vertex operators in the W3

module are of the forms

W3(z), ∂W3, ∂2W3 · · · . (4.5)

For the CFT with other W symmetries, the discussion is similar. One has to keep in mind

that in the large c limit, the modules generated by different primaries are decoupled. The

completeness condition for the CFT with W3 symmetry now changes to

I = | 0〉〈0 | +
∞∑

m1=2

L̂−m1 | 0〉〈0 | L̂m1 +
1

2!

∞∑
m1=2

∞∑
m2=2

L̂−m1 L̂−m2 | 0〉〈0 | L̂m2 L̂m1 + . . .

+
∞∑

n1=3

Ŵ−n1 | 0〉〈0 | Ŵn1 +
1

2!

∞∑
n1=3

∞∑
n2=3

Ŵ−n1Ŵ−n2 | 0〉〈0 | Ŵn2Ŵn1 + . . .

+
1

2!

∞∑
m1=2

∞∑
n2=3

L̂−m1Ŵ−n2 | 0〉〈0 | Ŵn2 L̂m1 + . . .

=

∞∑
r=0

1

r!

 ∑
{mj}{nk}

( r1∏
j=1

L̂−mj

)( r−r1∏
k=1

Ŵ−nk

)
| 0〉〈0 |

( r1∏
j=1

L̂mj

)( r−r1∏
k=1

Ŵnk

)
+ · · ·

+ O

(
1

c

)
,

where the summation over mj is from 2 to the infinity, the summation over nk is from 3

to the infinity, and r1, r − r1 are the “particle numbers” for the inserting states coming

from the vacuum module and W3 module respectively. This completeness condition can be

transformed into the one in terms of the vertex operators.

As in the pure gravity case, if we are interested in the two-point functions, we still have

the completeness relation (3.25) but now the single particle states should include the ones

from the W primaries. Moreover, the states in different Verma modules are orthogonal

to each other so that the two-point function of the vertex operators coming from different

modules are vanishing. As a result, one may consider the contributions of different modules

to the partition function (2.11) separately and finally multiply them together. Taking the

W3 module as an example, we find that the single-particle states in it contribute to the

genus-1 partition function

Z
(1)
W =

∞∑
n=3

〈LW̄n(r1)Wn(a1)〉 = TrH1,W
qL0 =

∞∑
n=3

qn (4.6)

where H1,W means the Hilbert space of the single-particle states in the W3 module. For

the multi-particle states, there are states like

( r1∏
j=1

L̂−mj

)( r−r1∏
k=1

Ŵ−nk

)
| 0〉. A multi-

point function of these states on the Riemann sphere is factorized into the product of

two-point functions, each of them being between the operators from the same module.

With the completeness condition, only the operators from the same module can form link.

Consequently, the final partition function is

Zg = Z(vacuum)
g ZW3

g (4.7)

where

Z(vacuum)
g =

∏
γ

( ∞∏
m=2

1

1− qmγ

)
, ZW3

g =
∏
γ

( ∞∏
n=3

1

1− qnγ

)
(4.8)

Therefore, the partition function Zg is exactly the same as the 1-loop partition func-

tion (4.1) for the higher spin AdS3 gravity.
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5 Conclusion and discussion

In this paper, we discussed the 1-loop partition function in the AdS3/CFT2 correspondence.

We focused on the handlebody solutions in the AdS3 gravity. These solutions end on the

asymptotic boundary as compact Riemann surfaces, which could be described by Schottky

uniformization. The 1-loop partition function (1.2) of these solutions have been computed

by using the heat kernel techniques and the method of images in [18]. But the direct

computation in the dual CFT has so far been missing. We filled this gap and proved the

result (1.2) in the large central charge limit of the CFT in this work.

We used the sewing technique to compute the CFT partition function on the Riemann

surface. In the large c limit, the leading contribution, which is linear in c and corresponds

to the semiclassical action of the gravitational configuration, is captured by the ZT action.

The sub-leading contribution to the partition function is encoded by the 2g-point functions

on the Riemann sphere. These multi-point functions are at most of order c0 under the

large c limit. Actually it is relatively easy to read the leading order terms in these 2g-point

functions. It turns out that at leading order every 2g-point function could be reduced

to the products of the two-point functions of single-particle operators. The products of

two-point functions may define the links. Every oriented link is one-to-one related to a

conjugacy class in the Schottky group. The value of each link could be reduced to one

two-point function, whose value is determined by the multiplier of the conjugacy element

in the Schottky group. By considering all possible ways to contract the operators and form

the links, the result (1.2) has been reproduced. We generalized the study to the higher

spin AdS3 gravity and found agreement as well.

The proof presented in this work relies on the essential fact that the dual CFT in the

large c limit is effectively free. As the two-point function of single-particle states dominates,

the contribution from three-point function is suppressed. As a result, the multi-point

functions on the Riemann sphere is simplified. In the bulk side, the dominance of two-point

function of the single-particle operator is reflected in the fact that the massless graviton

is freely propagating and the interaction among gravitons can be ignored. Certainly, this

should be the case since the 1-loop gravitational partition function is only given by the

functional determinant of the free massless graviton.

It would be interesting to study the higher loop partition function in the AdS3 gravity

from the multi-point functions on the Riemann sphere. The recent study in [37] shows

that the higher order 1/c terms, corresponding to the higher loop corrections, are not

vanishing for higher genus Riemann surface. It would be great to develop a systematic

way to compute such terms in the large c limit. However, this problem is rather difficult

as several approximations we relied on have to be reconsidered carefully. First of all, the

orthogonality of the different states in the vacuum module does not hold at the order

1/c. Secondly, the vertex operators at the fixed points could not be written as the normal

ordered product of single-particle operators. Moreover, besides two-point function, the

three-point function of single-particle state should be taken into account. On the bulk

side, this means that we have to consider the interaction of the gravitons.
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In this work, we mainly discussed the pure AdS3 gravity and its higher spin general-

ization. It is easy to see that the 1-loop partition function in the chiral gravity [40] can

be proved. In this case, we only needs to consider the holomorphic sector of the CFT,

then the result is implied in our discussion. For the topologically massive gravity [41] at

critical point, there could be other consistent asymptotic boundary condition to allow the

logarithmic modes so that the dual CFT is a logarithmic CFT.4 It would be interesting

to check if we can reproduce the 1-loop partition function in this case and its higher spin

generalization [43–47].
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[4] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole,

Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012]

[INSPIRE].

[5] A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009

[hep-th/9712251] [INSPIRE].

[6] A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional

anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

[7] E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311

(1988) 46 [INSPIRE].

[8] E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

4See [42] for complete references on this issue.

– 26 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1007/BF01211590
http://inspirehep.net/search?p=find+J+"Comm.Math.Phys.,104,207"
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://inspirehep.net/search?p=find+EPRINT+hep-th/9204099
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://arxiv.org/abs/gr-qc/9302012
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9302012
http://dx.doi.org/10.1088/1126-6708/1998/02/009
http://arxiv.org/abs/hep-th/9712251
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712251
http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B180,89"
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B311,46"
http://arxiv.org/abs/0706.3359
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3359


J
H
E
P
1
2
(
2
0
1
5
)
1
0
9

[9] M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1),

Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

[10] E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area preserving diffeomorphisms and higher

spin algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].

[11] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of

three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007

[arXiv:1008.4744] [INSPIRE].

[12] M. Henneaux and S.-J. Rey, Nonlinear W∞ as asymptotic symmetry of three-dimensional

higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

[13] K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929

[hep-th/0005106] [INSPIRE].

[14] P.G. Zograf and L.A. Takhtajan, On uniformization of Riemann surfaces and the

Weil-Petersson metric on Teichmüller and Schottky spaces, Math. USSR. Sb. 60 (1988) 297.

[15] L.A. Takhtajan and L.-P. Teo, Liouville action and Weil-Petersson metric on deformation

spaces, global Kleinian reciprocity and holography, Commun. Math. Phys. 239 (2003) 183

[math/0204318] [INSPIRE].

[16] X. Yin, On non-handlebody instantons in 3D gravity, JHEP 09 (2008) 120

[arXiv:0711.2803] [INSPIRE].

[17] X. Yin, Partition functions of three-dimensional pure gravity, Commun. Num. Theor. Phys.

2 (2008) 285 [arXiv:0710.2129] [INSPIRE].

[18] S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08

(2008) 007 [arXiv:0804.1773] [INSPIRE].

[19] T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

[20] T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in

the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

[21] A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP

02 (2010) 029 [arXiv:0712.0155] [INSPIRE].
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[29] E. Perlmutter, Comments on Rényi entropy in AdS3/CFT2, JHEP 05 (2014) 052

[arXiv:1312.5740] [INSPIRE].

[30] B. Chen, F.-Y. Song and J.-J. Zhang, Holographic Rényi entropy in AdS3/LCFT2
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