
J
H
E
P
0
4
(
2
0
1
5
)
1
7
8

Published for SISSA by Springer

Received: March 19, 2015

Accepted: April 8, 2015

Published: April 30, 2015

One loop partition function of three-dimensional flat

gravity
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1 Introduction

Three-dimensional gravity has emerged as an important testing ground for our ideas about

quantum gravity. Following earlier work [1, 2], it was shown that at one loop the partition

function of AdS3 gravity is a character of the Virasoro algebra [3] (see [4] for an improved

derivation and generalizations). This is in line with the analysis of the asymptotic symmetry

group of AdS3 gravity by Brown and Henneaux [5], and is a direct check of the fact that,

at the quantum mechanical level, the bulk gravity states organize into representations of

the conformal group. In this note we point out that a similar one-loop computation in

the technically simpler case of flat gravity reproduces the vacuum character of the BMS3
group. The latter is the symmetry group of asymptotically flat gravity at null infinity [6, 7],

whose characters have been recently worked out in [8] (see also [9, 10] for details on BMS3
representations).

2 The set-up

We wish to study the gravitational partition function

Z[β, θ] =

∫
Dg e−

1
~
SE , SE = − 1

16πG

∫
d3x

√
gR+B. (2.1)

Here SE is the Euclidean Einstein action (with no cosmological constant), B is an appro-

priate boundary term and β, θ are the inverse temperature and angular potential. The

parameters β, θ determine a quotient R3/Z of flat Euclidean space, representing “thermal

spinning R
3”:

ds2 = dx21 + dx22 + dx23 = dy2 + dρ2 + ρ2dϕ2,

(y, ϕ) ∼ γ(y, ϕ) = (y + β, ϕ+ θ)
(2.2)

where Z is the discrete group generated by the identification γ.

We wish to compute Z[β, θ] in a perturbative expansion around the background (2.2).

The partition function (2.1) can be expanded as

~ lnZ[β, θ] = −S(0) + ~S(1) + ~
2S(2) + . . . (2.3)
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where S(0) is the classical action and S(i) an i−loop correction. We will focus on S(0) and

S(1).

There are several ways to compute S(0) from the classical action, including boundary

terms. The most direct is to use the Hamiltonian form of the action. In this case, the

surface term at infinity is, by definition, determined by the surface charges times their

chemical potentials [12, 13]. For flat space, this is the only contribution and the on-shell

action is automatically finite. Note however that the overall normalization of the charges is

not fixed. In other words, requiring a well defined variational principe and a finite on-shell

action for a class of spacetimes does not fix the ambiguity that consists in adding a finite

combination of the quantities that are held fixed in the variational principle. An additional

criterion is needed to lift this ambiguity.

In order to make the classical part of the partition function invariant under the analog

of modular S-transformations in the flat case [14, 15]

β → 4π2β

θ2
, θ → −4π2

θ
, (2.4)

the charges have to be normalised with respect to the null orbifold [16], ds2 = −2dudr +

r2dφ2. This puts mass and angular momentum of flat space at M = − 1
8G , J = 0 [7], and

the tree-level Euclidean action for flat space is

S(0) = − β

8G
, (2.5)

a result originally derived along slightly different lines in [17]. For cosmological solu-

tions [19–22] with metric

ds2 = 8GMdu2 − 2dudr + 8GJdudφ+ r2dφ2

and M > 0, the Euclidean action takes the value

S(0) = − π2β

2Gθ2
,

which can be obtained from the flat space result (2.5) through the transformation (2.4).

One can then use the fact that three-dimensional gravity has no local degrees of freedom

to understand the nature of the quantum corrections S(i) to this classical action, follow-

ing [2]. One might naively think that — as there are no local degrees of freedom to run in

loops — all loop corrections must vanish. This is not quite the case, however, since there

may not be complete cancellation between the graviton loops and the ghost loops which

arise from gauge fixing. In theories with topological degrees of freedom, such as Chern-

Simons theory, this is typically the case. Given the similarities between three-dimensional

gravity and Chern-Simons theory we therefore expect that the S(i) may be non-trivial.

The perturbative contributions S(i) can in principle be obtained by quantizing a clas-

sical phase space, which in the present case is the space of metrics which are smoothly

connected to the classical solution (2.2), modulo an appropriate group of diffeomorphisms.

We must impose boundary conditions on the metric at asymptotic infinity, following [6, 7],
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which require that we only include metrics with finite values of the BMS charges. Only

those diffeomorphisms which vanish sufficiently quickly at asymptotic infinity — in the

sense that they do not change the values of these charges — are regarded as gauge transfor-

mations. One can then obtain the classical phase space by applying to the metric (2.2) the

diffeomorphisms which do not vanish sufficiently quickly at infinity. Since there are no local

degrees of freedom, the entire phase space of solutions which are continuously connected

to (2.2) is constructed by this group of non-trivial diffeomorphisms. More precisely, since

the transformation law of asymptotically flat metrics under BMS3 is given by the coadjoint

representation, the perturbative contributions S(i) are obtained by quantizing the coadjoint

orbit of flat space under the asymptotic symmetry group. The resulting Hilbert space will

naturally be a representation of BMS3, and the partition function a character of BMS3.

We therefore expect that the perturbative partition function should be given by the

vacuum BMS3 character described in [8]. This result is one loop exact: S(1) 6= 0, but

S(i) = 0 for all i ≥ 2. The one-loop exactness of the perturbative gravity partition function

was already observed in AdS3 gravity [2].

The above argument, while appealing, has the structure of the BMS group built

in from the beginning. It would be preferable to verify this expectation from a direct

gravitational computation, as this would give a check of the BMS structure of flat space

gravity at the quantum level. We will now describe the direct computation of S(1), leaving

higher loop corrections for future work.

3 Evaluation of the determinants

We follow closely [3], to which we refer for more details. The one-loop contribution to the

partition function is given by

S(1) = −1

2
ln det∆(2) + ln det∆(1) − 1

2
ln det∆(0). (3.1)

Here ∆(2),∆(1),∆(0) are the kinetic operators which arise in the linearized expansion of

general relativity around the flat background metric (2.2), including ghosts. They are

the Laplacian operators for a massless, traceless symmetric tensor, a vector, and a scalar,

respectively (see also e.g. [11]).

The determinants are evaluated using the heat kernel approach, which is straightfor-

ward in flat space. The heat kernels K, Kµµ′ and Kµν,µ′ν′ are defined to be solutions to

the differential equations

(∆(0) −m2 − ∂t)K(t;x, x′) = 0,

(∆(1) −m2 − ∂t)Kµµ′(t;x, x′) = 0,

(∆(2) −m2 − ∂t)Kµν,µ′ν′(t;x, x
′) = 0,

– 3 –
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with boundary conditions at t = 0:

K(0;x, x′) = δ(3)(x− x′),

Kµν′(0;x, x
′) = δ(3)(x− x′)δµµ′ ,

Kµν,µ′ν′(0;x, x
′) =

1

2

(
δµµ′δνν′ + δµν′δνµ′ − 2

3
δµνδµ′ν′

)
δ(3)(x− x′).

We have introduced a mass parameter m, so that these heat kernels encode the spectra of

the massive kinetic operators ∆(i) −m2. Defining the world function

σ =
1

2
|x− x′|2

the heat kernels are

K(t;x, x′) =
1

(4πt)
3
2

e−m2t− σ
2t ,

Kµµ′(t;x, x′) = −K(t;x, x′)∂µ∂µ′σ,

Kµν,µ′ν′(t;x, x
′) =

1

2
K(t;x, x′)

(
∂µ∂µ′σ∂ν∂ν′σ + ∂µ∂ν′σ∂ν∂µ′σ − 2

3
δµνδµ′ν′

)
.

The essential point is that the heat kernels obey linear differential equations, so given

the heat kernels in flat space one can readily obtain the heat kernel in a quotient of flat

space using the method of images. For thermal spinning R
3 we have

KR3/Z(t, x, x) =
∑

n∈Z

K(t, σ(x, γnx)).

The Euclidean distance between a point and its n-th image under γ is

σ(x, γnx) =
1

2
n2β2 + 2 sin2

(
nθ

2

)
ρ2

so that

KR
3/Z(t, x, x) = K(t;x, x) +

2e−m2t

(4πt)3/2

∞∑

n=1

e−sin2(nθ
2 )

ρ2

t
−

n2β2

4t .

We can now extract the determinants of the operators ∆(i) −m2 by integrating these

heat kernels:

− ln det
(
∆(0) −m2

)
=

∫
∞

0

dt

t

∫ β

0
dy

∫ 2π

0
dϕ

∫
∞

0
ρdρ KR3/Z(t, x, x),

=
m3

6π
Vol(R3/Z) + 2

∞∑

n=1

∫
∞

0
dt (2πβ)

e−m2t

(4πt)3/2
e−

n2β2

4t

2 sin2
(
nθ
2

) ,

=
m3

6π
Vol(R3/Z) +

∞∑

n=1

2e−nβm

n|1− einθ|2
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Defining ĝ µν′ = gµρ∂ρ(γ
nx)ν

′

and using ĝ µν′∂µ∂ν′σ = −1− 2 cos(nθ),

− ln det
(
∆(1) −m2

)
=

∫
∞

0

dt

t

∑

n∈Z

∫
d3x

√
g ĝ µν′Kµν′(t, σ(x, γ

nx))

=
m3

2π
Vol(R3/Z) +

∞∑

n=1

2e−nβm[1 + 2 cos(nθ)]

n|1− einθ|2 .

Using now ĝ µµ′

ĝ νν′∂µ∂ν′σ∂ν∂µ′σ = 1 + 2 cos(2nθ),

− ln det
(
∆(2) −m2

)
=

∫
∞

0

dt

t

∑

n∈Z

∫
d3x

√
g ĝ µµ′

ĝ νν′Kµν,µ′ν′(t, σ(x, γ
nx))

=
5m3

6π
Vol(R3/Z) +

∞∑

n=1

2e−nβm[1 + 2 cos(nθ) + 2 cos(2nθ)]

n|1− einθ|2 .

Putting everything together according to (3.1), the one-loop correction to the classical

Euclidean action is

S(1) =
∞∑

n=1

2e−nβm[cos(2nθ)− cos(nθ)]

n|1− einθ|2
m=0−→

∞∑

n=1

1

n

(
e2inθ

1− einθ
+

e−2inθ

1− e−inθ

)
.

The two divergent sums can be made convergent by replacing θ by θ + iǫ in the first sum,

and by θ − iǫ in the second one.1 Defining q = ei(θ+iǫ) gives

S(1) =

∞∑

n=1

1

n

(
q2n

1− qn
+

q̄2n

1− q̄n

)
,

or equivalently,

eS
(1)

=
∞∏

k=2

1

|1− qk|2 .

From (2.3) we can then read off the 1-loop partition function around flat space:

Z[β, θ] = e−
1
~
S(0)+S(1)+O(~) = e

β
8G~

∞∏

k=2

1

|1− qk|2 (1 +O(~)) .

This expression matches the vacuum BMS3 character, as computed in [8], for a Euclidean

time translation by β and central charge c2 = 3/G. It can also be obtained as the flat limit

of the one-loop partition function in AdS3 [3].
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1This analytic continuation is quite natural considering the fact that angular potentials which are real

in Lorentzian signature become imaginary in Euclidean signature. The partition function Z[β, θ] is most

naturally viewed as a function of complex angular potential.
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