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x(n) = v(n) + m(n)

ﬁ mixture voice music
o — .
No spatial information
T
Cannot use ICA
x(n) is observed —

Need for another a priori

Aim: estimate the voice contribution v(n) knowledge
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Source Modeling -

Short Time Fourier Transformation

z(n) = v(n) + m(n) (STET) > | X:(f) = Va(f) + M (f)

In the (STFT) domain the sources (voice and music) are  Ephraim 92 [1]
modeled by Gaussian Mixture Models (GMMs) Benaroya 03 [2]

Probability Density Functions (PDFs) of voice and music short time spectra V; and )/, :

p(Vi) = T wyiN (Vii 0,5, ) p(Mp) = L wp ;N (My; 0, Sy )
Local Power i J

Spectral Density —
(PSD)

|
Ty = |
|
Voice GMM NMM l‘w-M Music GMM
Ay = {wvia 2y z} Am = ILJ e G 1
3 3 A M M h“'nﬁ-v\_u\ L =g msJJj
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Model Learning -

The models are learned on training sources
> Using the Maximum Likelthood (ML) criterion

In practice the Expectation - Maximization (EM)
Dempster et al 77 [3] algorithm is applied

_________________________________________
~
/’ ~

/" Mixture T =v+m
e ovee | 5
1 training sources ' GMM | | estimated sources :
: X A : \ 4 E
T o e ) YOS BTN WP T |
T —> . ; > —> v 1
: learning | ! :
: ! | Source !
| : | ' | estimation |
M —> . T K : > —> m
| learning \ Music ;
‘\ : : / GMM : o !
. Offline GMM Learning v . Online Source Estimation ( )
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Source Estimation N

Voice GMM Music GMM

Mintimum Mean Square “IHM”M
estimator: M

Adaptive Wiener filter:

N o2 ,(f)
— Playt =1, qmt = J| X, A, Am Lok Xt

Vi(f) 21:2?: (vt = s Gt = 3| X, Ao, X )J»f,-,;(f)'l'ff?n.,j(f) t(f)

— A J

Y Y
State probability Wiener filter

02 ey () - : -
PN v,i*(t) ::I Best Wiener filter
Vi ~ X

() og{i_*(é)(f) + U?%:,,j*(t)(f) () approximation

(i*(), 5*(£)) = arg Max P (vt =4, Gt = 3| X, Ao, Am)
..) ?

U, i A T2
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How does it work? N

Voice
. . ) Factorial GMM GMM
Muwxture = Volce + Music ) ||| Fll | I Estimated Voice
LT S T PN TR
A e ol LA |
] Loy [ Y [ M

Music

HH

v

o2(f) Vi
i

WWWV ‘(Unrestricted)

Wiener filter

France Telecom Distribution of this document is subject to France Telecom’s authorization
Research & Development D8 - 24/10/2005

v




Outline s Ll

Introduction
GMM - Based One Microphone Source Separation

Model Adaptation

» Why do we need to Adapt Models?

> How to Adapt?

> Voice Model Filter Adaptation

> Filter — Adapted General Voice Model Learning

Experimentations and Results
Conclusions and Further Work

(Unrestricted)

France Telecom Distribution of this document is subject to France Telecom’s authorization
Research & Development D9 - 24/10/2005



Model Adaptation

e IRISA &

Why do we need to Adapt Models?

What should be used as training sources?

Unrealistic use M- e Nos
L + : » GMM learning
Benaroya 03 [2] WW %
L — GMM learning —
the performance HHWWH -
(s satisfactory s " estimation
We cannot describe all music and w We need to
voice variability by some PSDs adapt models

Realistic use | Voice GMM learning

*
AL

M | Music » GMM learning

Adapted models HWM

A 4 A 4

poor performance =

.| Sources
P> estimation (Unrestricted)
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How to Adapt? -

voice U AW Hmee-

mixture T WMWMW

Vocal parts

Vocal / non-uocal
segmentation N

Vocal parts on-vocal parts
[ Voice | / \ z(n) = m(n) [Musig_
L TR R RN

* .
Ay R Am Music GMM
General Adapted learning
voice GMM l music GMM
* . (Unrestricted)
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Volice Model Filter Adaptation -

General voice GMM Adapted voice GMM

J . . . .

UUMWWM MMWW Filter - MMW WM Looking for a filter

. e o S— matching the best the

'f'\~x\ l;\/»\\ E M h recording of interest in the

o H* Maximum Likelihood sense
Ao = H*\y

‘tari .  J-— || Aprioriadapted
ML criterion used: H* = arg mHaXp(Xl@\v,)— [ rcic GMM ]

Filter / 171(1) 0 . 0 General
H= ? H(:z) - ? voice
0 0 .. H(F) GMM

This filter adaptation technique makes our modeling invariant to any type
of convolutive distortion (room acoustic effects, some microphone
characteristics etc ...) (Unrestricted)
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Volice Model Filter Adaptation -

ML criterion: H* = arg mg)(p(X|H)\'u: Apn)

The EM algorithm with following latent data is used for
optimization:

0 = {&@a V} Rose et al. 94 [4]

Discrete model

hidden states Volce source

Re-estimation equation:

51DV

HUAD () = %ZZ Pt
t i Tv,i

7 s avioN(D) A
(IVe(f)1©). ' =FE
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Filter — Adapted General Volce Model N

Learning
Separation Learning

: z General
X1 WMM’W*”‘— Hy [« Voice GMM — _
- Hy “MM V1

g 2 ) WUJMMMM
JXQ»HW@HQ: HQW—W Vo
/

4 A ) & ¥,
L 15 Vs
X3 <+ H3 < 7

A

\. J
_ R ¥ — 1R
H= {HT'}T'=1 V= {V”"}r=1
Conventional ML criterion: Filter - adapted ML criterion:
j - 7P > v, H*) = arg max V| Hp )
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Filter — Adapted General Volce Model
Learning

Filter - adapted - —
iteri Ao, HY) = Ve Hr o
ML criterion: (ins EI") =ang roege TInlVr| Hr o)

PROBLEM: it is difficult to solve the M - step

Expectation - Space - Alternating Generalized
Maximization (EM) EM (SAGE) Fessler 94 [5]
H A H A
Filters Pl Filters

B

. v . v (Unrestricted)
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Data Description -

Training database (for general models)
> Singing voice: 34 samples of singing men's voices from popular
—V . . . .
s music (each sample is approximately 1 min. long)

- > Music: 30 samples of popular music free from voice (each sample is
_Music | . .
approximately 1 min. long)

Test database

> § songs
— Voice and music tracks are available separately.
— Thus it ts possible to evaluate the separation performance by comparing
the estimated voice with the original one.

> The test items are manually segmented in vocal and non-vocal parts.

— Although automatic segmentation is also possible.

All the recordings are mono and sampled at 11025 Hz. (Umesmcted)
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Performance Measure -

Signal to Distortion Ratio (SDR) Gribonval et al. 03 [6]

(B,0)°

1B112110]12—(3,0)*

SDR(w,v) = 1010919

Normalized SDR (NSDR), SDR improvement between the
non-processed mixture = and the estimated voice v

NSDR(?,v,z) = SDR(?,v) — SDR(z, v)

estimated voice

(¥
v original voice
L mixture
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Stmulations -

32 - states Voice GMM 32 - states Music GMM | NSDR (dB)

- | | oy learned from 9.09
general S MWMW non-vocal parts

>+4dB

+1dB

filter adapted from
o VoOCal parts + et g = ok learned from

filter — adapt. learning

non-vocal parts

Audio Examples !!!
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Some Audio Examples
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Mixture

Estimated music

i — w v

Estimated voice

¢
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Freguency
=
i
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Conclusions and Further Work —'"'** &

Our proposal is based on :

> Music model learning on the non - vocal parts
> Voice model filter adaptation on the vocal parts
> Filter — adapted general voice model learning

5 dB improvement over state of the art

Further work :

> Automatic vocal / non - vocal segmentation
> Joint segmentation / separation
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Thank you!
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