
One more derivation of the Lorentz transformation

Jean-Marc Lévy-Leblond
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After a criticism of the emphasis put on the invariance of the speed of light in standard de-
rivations of the Lorentz transformation, another approach to special relativity is proposed.
It consists of an elementary version of general group-theoretical arguments on the structure
of space-time, and makes only use of simple mathematical techniques. The principle of re-
lativity is first stated in general terms, leading to the idea of equivalent frames of reference
connected through “inertial” transformations obeying a group law. The theory of relativity
then is constructed by constraining the transformations through four successive hypotheses :
homogeneity of space-time, isotropy of space-time, group structure, causality condition. Only
the Lorentz transformations and their degenerate Galilean limit obey these constraints. The
role and significance of each one of the hypotheses is stressed by exhibiting and discussing
counterexamples, that is, transformations obeying all but one of these hypotheses.

INTRODUCTION

A great many derivations of the Lorentz transforma-
tion have already been given, and the subject, because of
its pedagogical importance, still receives continuous at-
tention, particularly in this Journal1. Most of these ana-
lyses, following the original one by Einstein2, rely on the
invariance of the speed of light c as a central hypothe-
sis. That such an hypothesis, firmly based on experimen-
tal grounds, has had a crucial historical role cannot be
denied. The chronological building order of a physical
theory, however, rarely coincides with its logical struc-
ture. This is the point of view from which I intend to
criticize the overemphasized role of the speed of light in
the foundations of the special relativity, and to propose
an approach to these foundations that dispenses with the
hypothesis of the invariance of c. By establishing special
relativity on a property of the speed of light, one seems
to link this theory to a restricted class of natural pheno-
mena, namely, electromagnetic radiations. However, the
lesson to be drawn from more than half a century is that
the special relativity up to now seems to rule all classes of
natural phenomena, whether they depend on electroma-
gnetic, weak, strong, or even gravitational3 interactions.
This theory does not derive from the use of electroma-
gnetic signals for synchronizing clocks, for example, as
an ultrapositivistic reading of Einstein’s paper2 might
lead one to believe ; quite the contrary, it is the validity
of the theory which constrains electromagnetic signals
to have their specific propagation properties. We believe
that special relativity at the present time stands as a uni-
versal theory discribing the structure of a common space-
time arena in which all fundamental processes take place.
All the laws of physics are constrained by special relati-
vity acting as a sort of “super law4,” and electromagnetic
interactions here have no privilege other than a historical
and anthropocentric one. Relativity theory, in fact, is but
the statement that all laws of physics are invariant un-
der the Poincaré group (inhomogeneous Lorentz group).
The requirement of invariance, when applied to a clas-
sification of the possible fundamental particles5, permits
but does not require the existence of zero-mass objects6.

The evidence of the nonzero mass of the photon would
not, as such, shake in any way the validity of the special
relalivity. It would, however, nullify all its derivations
which are based on the invariance of the photon velo-
city7. Fortunately, it may be shown, starting from a few
general hypotheses on the properties of space-time, that
very little freedom is allowed for the choice of a relati-
vity group, and that the Poincaré group (or the Galilean
group, its singular limit) is an almost unique solution to
the problem8. These analyses make use of more or less
elaborate group-theoretical tools, too abstract and gene-
ral for didactic purposes9. This is why I believe it useful
to offer here a simple version of the argument, relying
only on rather elementary calculus. The discussion will
be restricted to the one-dimentional (in space) case.

PRINCIPLE OF RELATIVITY : INERTIAL

FRAMES AND TRANSFORMATIONS

I will take as a starting point the statement of the prin-
ciple of relativity in a very general form : there exists an
infinite continuous class of reference frames in space-time
which are physically equivalent. In other words, the laws
of physics take on the same form when referred to any
one of these frames, and no physical effects can distin-
guish between them. This does not mean, of course, that
physical quantities have the same value in every such
reference frame : only the relations between them are in-
variant. The abstract principle of relativity thus a priori
is open to many realizations as concrete theories of re-

lativity. A theory of relativity tells us how to relate two
expressions of the same physical quantity as referred to
two of these equivalent frames ; such a theory may then
be expressed exactly by the “transformation formulas”
connecting different equivalent frames. A theory of re-
lativity then restricts the possible forms of the physical
laws which relate various physical quantities in one cho-
sen frame ; it requires the same relationship to hold in
a different frame through the use of the transformation
formulas. Because of well-known physical considerations,
I find it convenient to call “inertial frames” and “inertial
transformations” the equivalent reference frames and the
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transformations connecting them. Indeed, the very exis-
tence of such equivalent reference frames corresponds to
the validity of the principle of inertia, namely, that a
physical object has no absolute state of motion or rest ;
for instance, a free body (with no “forces” acting on it)
is caracterized by an “inertial motion” which is not enti-
rely determined, since it depends on “initial conditions”,
that is also to say, on the reference frame considered.

It is natural enough, when trying to establish the na-
ture of inertial transformations, to consider the trans-
formation formulas for specific physical quantities, na-
mely, the spatiotemporal coordinates (x, t) of an arbi-
trary event in an inertial frame. Now, since we have as-
sumed the existence of an infinite continuous class of iner-
tial frames, the relationship between two of them depends
upon a certain number of parameters {a1, a2, ..., aN}, the
values of which caracterize any special inertial transfor-
mation. Denoting by (x′, t′) the coordinates of the same
event in another inertial frame, we write the inertial
transformation connecting these two sets of coordinates
in the general form

x′ = f(x, t; a1, ..., aN ),

t′ = g(x, t; a1, ..., aN ).
(1)

We now appeal to the existence of two special classes of
inertial transformations, namely space and time transla-
tions, to single out two of the parameters {a} and the
associated inertial transformations. Indeed, the transfor-
mations

x′ = x+ ξ,

t′ = t+ τ,
(2)

amounting to a simple displacement in space and time,
are supposed to leave the laws of physics invariant ; the
space and time origins may be chosen arbitrarily. Using
this freedom, we restrict our attention from now on to
the class of inertial frames with common space-time ori-
gins. In so doing, we dispose of two of our parameters
{a1, a2, ..., aN}—precisely the ones which we called ξ and
τ in (2). We are left with n = N − 2 parameters and
transformation formulas :

x′ = F (x, t; a1, ..., an),

t′ = G(x, t; a1, ..., an),
(3)

such that x′ = 0, t′ = 0 if x = 0, t = 0 ; that is to say,

0 = F (0, 0; a1, ..., an),

0 = G(0, 0; a1, ..., an).
(4)

We may now look upon (3) as giving the transforma-
tion formulas for the spatiotemporal interval between
the events with coordinates (x, t) and the event located
at the (common) origin in space and time of the inertial
frame. Let us inquire whether such an interval, with coor-
dinates (x, t), may have coordinates (x′, t′) in an another
inertial frame ; this is tantamount to asking for the exis-
tence of a set of parameters {a1, a2, ..., aN} such as (3)
holds good. In other words, we consider (3) for given (x, t)
and (x′, t′) as a set of two equations in the n unknowns
{a1, a2, ..., aN}. It is clear that, if n > 2, these equations
will, in general, have solutions ; an interval between two
physical events might then have arbitrary coordinates in
a suitably chosen inertial frame, which runs contrary to

simple physical knowledge. The arbitrariness of the time
coordinate in particular would seem to preclude any sen-
sible notion of causality. On the other hand, if n = 0,
there would be no other inertial transformations than
space and time translations, and thus no proper theory
of relativity. From this argument we may conclude that
n = 1 ; that is, the inertial transformation between iner-
tial frames with a common origin depends on only one
parameter, and may be written

x′ = F (x, t; a),

t′ = G(x, t; a),
(5)

under the condition corresponding to (4) :

0 = F (0, 0; a),

0 = G(0, 0; a).
(6)

Another argument leading to the same result is the follo-
wing. Consider a moving object with equation of motion
x = ϕ(t) in the first inertial frame and going through
the space-time origin, suitably chosen so that ϕ(0) = 0.
Its motion as considered in the second frame, obtained
through the inertial transformation (3), will be of the
form x′ = ϕ′(t′; a1, ..., aN ), with 0 = ϕ′(0; a1, ..., an) be-
cause of (4). Its speed, acceleration, and higher deriva-
tives of its position with respect to time are obtained
by differentiating ϕ′. They will depend upon the speed,
acceleration, etc., of the object at the origin in the first
inertial frame and upon the n parameters {a1, ..., an}.
Conversely, for a given motion in a given frame, parame-
ters {a1, ..., an} could be chosen in such a way as to find
another frame where the object would have arbitrarily
preassigned values of its speed, acceleration, and higher
time derivatives of its position, up to the nth order. We
know from simple physical experience that speed, indeed,
is only relative and can be varied from one inertial frame
to the other ; this is the empirical basis of the principle
of relativity. We know, though, that the same is not true
for acceleration, which is associated with physical effects
differentiating various frames. It follows that n = 1.

I am now going to derive a precise functional form for
the inertial transformations (5) by relying on a succes-
sion of simple and general physical assumptions. Let me
state already that the crux of the matter will be the re-
quirement of a group structure for the set of all inertial
transformations.

HYPOTHESIS 1 : HOMOGENEITY OF

SPACE-TIME AND LINEARITY OF INER-

TIAL TRANSFORMATIONS

We assume first that space-time is homogeneous, in
that it has “everywhere and every time” the same pro-
perties. More precisely, the transformation properties of
a spatiotemporal interval (∆x,∆t) depend only on that
interval and not on the location of its end points (in the
considered reference frame). In other words, the trans-
formed interval (∆x′,∆t′) obtained through an inertial
transformation (5) is independent of these end points.
Looking at an infinitesimal interval (dx, dt), for which

dx′ =
∂F

∂x
dx+

∂F

∂t
dt,

dt′ =
∂G

∂x
dx +

∂G

∂t
dt,

(7)
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this requirement is seen to mean that the coefficients of
dx and dt in (7) must be independent of x and t, so that
F and G are linear functions of x and t. We thus write

x′ = H(a)x−K(a)t, (8a)

t′ = L(a)t−M(a)x, (8b)

where the minus sign has been introduced for future
convenience. Use has been made of the condition on the
coincidence of origins to write a homogeneous transfor-
mation, following (6).

The linearity of inertial transformations has an impor-
tant physical consequence. Let us call inertial motions

those motions which are obtained from rest by an iner-
tial transformation ; an object has an inertial motion in
some reference frame if it is at rest in another equiva-
lent frame. Inertial motions then are caracterized by the
same parameter as inertial transformations. Their gene-
ral equation of motion, according to (8a), is

H(a)x−K(a)t = Cst. (9)

Inertial motions thus are uniform motions with a velo-
city v = K(a)/H(a), except in the pathological situa-
tion where K identically vanishes10. This suggest using
the parameter v, with the meaning of velocity, instead of
the previously undefined parameter a. With an adequate
change of notation, our general transformation formulas
may be rewritten

x′ = γ(v)(x− vt),

t′ = γ(v)[λ(v)t − µ(v)x],
(10)

depending on three unknown functions γ, λ, µ.

Counterexample 1

It is worthwhile emphasizing the stringency of our Hy-
pothesis 1. The homogeneity of space-time, especially as
it concerns time, does not hold in every conceivable phy-
sical theory. Evolutionary models of the universe do not
have a homogeneous time, their inertial transformations,
if they exist, are not linear, and their inertial motions are
not uniform. Such is the case for the de Sitter space-time
or its “nonrelativistic” approximation8 ; the transforma-
tion formulas of the last one read

x′ = x− vT sinh(t/T ),

t′ = t,
(11)

Where T is some cosmological time scale (in an oscilla-
ting model, a “sin” would replace the “sinh” of this ever
expanding universe). These transformations, it is to be
stressed, satify all the other hypotheses to be made in
the following, as can be checked easily.

In abstract group-theoretical terms, the preceding re-
marks are related to the connection between the group
of inertial transformations and the group of space-time
translations whithin the full relativity group of the
theory. Only when the translation group is an invariant
subgroup of the full relativity group (which is the case
for the Galilean and Poincaré group but not for the de
Sitter one) does linearity of the inertial tansformations
hold true.

HYPOTHESIS 2 : ISOTROPY OF SPACE

Let us go back to the general form (10) of our inertial
transformations. We assume that space is nondirectional,
so that both orientations of the space axis are physically
equivalent. Suppose that (x, t) and (x′, t′) are two sets of
coordinates of a given event related by an inertial trans-
formation (10) with parameter v. If the direction of the
space axis is arbitrary, (−x, t) and (−x′, t′) qualify as well
for equivalent coordinates of the same event, and must
also be related by an inertial transformation of the gene-
ral form (10) but depend on some parameter u, unknown
for the time being. In other words,

−x′ = γ(u)(−x− ut),

t′ = γ(u)[λ(u)t+ µ(u)x].
(12)

By comparing (12) with (10), we obtain

γ(u) = γ(v), (13a)

uγ(u) = −vγ(v), (13b)

λ(u)γ(u) = λ(v)γ(v), (13c)

−µ(u)γ(u) = µ(v)γ(v). (13d)

From (13a) and (13b), we see first that

u = −v. (14)

Such a natural result, expressing the relative velocity of
the “reversed” reference frames as the opposite of the
relative velocity of the initial frames, might have been
taken for granted. It is satisfying, however, to derive it
from first principles. The remaining relations in (13) now
express parity properties of our unknown functions γ, λ,
µ :

γ(−v) = γ(v), (15a)

λ(−v) = λ(v), (15b)

µ(−v) = −µ(v). (15c)

It is simple matter to check that exactly the same results
could have been obtained by imposing upon our trans-
formation formulas a similar requirement of symmetry
under a reversal of the time axis. Alternately, this sym-
metry may be taken now as a consequence of the spatial
one11.

Counterexamples 2

The role of Hypothesis 2 is best illustrated by drop-
ping it. A simple example of inertial transformations res-
pecting the homogeneity of space-time (so that they are
linear) and forming a transformation group (which will
be our next requirement) is the following one :

x′ = exp(σv)(x − vt),

t′ = exp(σv)t,
(16)

for some constant σ. These transformations approximate
the usual Galilean transformation for v ≪ σ−1. Ano-
ther example of linear group of transformations not sa-
tisfaying Hypothesis 2 is given by

x′ =
x− vt

1 + ρv
,

t′ =
t− ρ2vx

1 + ρv
,

(17)
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where ρ is some characteristic constant. It is an amu-
sing exercice to check the group property to be required
in the following and to find the composition law for the
velocities12.

The importance of space and/or time inversion pro-
perties should not come as a surprise. Indeed, space in-
version in a one-dimensional space plays the important
role of rotations in two or more dimensions. It expresses
the isotropy of space, that is, the physical equivalence of
all possible orientations, here reduced to a number of 2.
It is perhaps appropriate to remember that such a hy-
pothesis was already made in the first derivation of the
Lorentz transformations formulas by Einstein2.

HYPOTHESIS 3 : THE GROUP LAW

The physical equivalence of the inertial frames implies
a group structure for the set of all inertial transforma-
tions (10). This requires the following conditions to be
met :

(a) Identity transformation. There must exist some
parameter v such that x′ = x and t′ = t. This is clearly
v = 0, and requires

γ(0) = 1, (18a)

λ(0) = 1, (18b)

µ(0) = 0. (18c)

Observe that (18c) is already implemented by (15c).
(b) Inverse transformation. If (x′, t′) derives from

(x, t) through the transformation (10) parametrized by
v, the inverse transformation, from (x′, t′) to (x, t), must
be of the same functional form (10), with a different pa-
rameter w ; that is to say,

x = γ(w)(x′ − wt′),

t = γ(w)[λ(w)t′ − µ(w)x′].
(19)

Inverting (10), we also obtain

x =
1

γ(v)

(

1−
vµ(v)

λ(v)

)

−1 (

x′ +
v

λ(v)
t′
)

,

t =
1

γ(v)

(

1−
vµ(v)

λ(v)

)

−1 (

1

λ(v)
t′ +

µ(v)

λ(v)
x′

)

.

(20)

By identifying (20) with (19) we derive the following
equations linking the unknown w to v while at the same
time constraining the functions γ, λ, µ :

w = −v/λ(v), (21a)

λ(w) = 1/λ(v), (21b)

µ(w) = −µ(v)/λ(v) (21c)

γ(w) = [1/γ(v)][1− vµ(v)/λ(v)]−1. (21d)

Let us restrict our attention to the first two equations
(21a) and (21b). They result in a functional equation for
λ,

λ[−v/λ(v)] = 1/λ(v). (22)

In order to make more acceptable the apparent oddity of
the functional equation (22), let us define the associated
function :

ζ(v)
df
= v/λ(v). (23)

The condition (22) now reads

ζ[−ζ(v)] = −v (24)

or

ζ−1(−v) = −ζ(v). (25)

But the curves of ζ(v) and ζ−1(v), when plotted on the
same Cartesian graph, are symmetric with respect to the
line ζ = v. Condition (25) then requires the graph of ζ(v)
to be symmetrical with respect to the line ζ = −v. On
the other hand, since λ(0) = 1 [see (18b)], according to
(23), one has

dζ

dv

∣

∣

∣

∣

v=0

= 1. (26)

Any ζ such that its graph is symmetrical with respect
to the line ζ = −v and is tangent at the origin to the
line ζ = v will give rise to λ(v) = v/ζ(v), which obeys
(22). As the simplest example, the reader may check that
λ(v) = 1− kv is a solution for any real number k.

However, the consequence (15b) of Hypothesis 2,
which requires λ to be an even function, drastically re-
duces this arbitrariness. With it taken into account, the
functional equation in λ reads

λ[v/λ(v)] = 1/λ(v). (27)

Or using the associated function ζ (23),

ζ[ζ(v)] = v; (28)

that is,

ζ−1(v) = ζ(v). (29)

The graph of ζ(v) now has to be symmetrical with res-
pect to the line ζ = v. Because of (18b), on the other
hand, it must also obey (26) ; that is, it must be tan-
gent at the origin to this same line. Hence, in view of the
continuity of λ and ζ13, the graph of ζ(v) must in fact
be identical to the line ζ = v, so that ζ(v) = v. We may
conclude that

λ(v) = 1. (30)

Going back to (21a), it results that the parameter of the
transformation (19) inverse to (10) is, naturally enough,
given by

w = −v, (31)

but this has been proven and not assumed. Finally, (21d)
with (15a) yields a relationship between the two remai-
ning functions γ and µ :

[γ(v)]2[1− vµ(v)] = 1. (32)

(c) Composition law. Let us now perform in succession
two transformations of the form (10), taking into account
our previous result (30) :

x1 = γ(v1)(x − v1t),

t1 = γ(v1)[t− µ(v1)x],
(33)

x2 = γ(v2)(x1 − v2t1),

t2 = γ(v2)[t1 − µ(v2)x1].
(34)
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The resulting transformation,

x2 = γ(v1)γ(v2)[1 + µ(v1)v2]

(

x−
v1 + v2

1 + µ(v1)v2
t

)

,

(35a)

t2 = γ(v1)γ(v2)[1 + v1µ(v2)]

(

t−
v1 + v2

1 + v1µ(v2)
x

)

,

(35b)

is to be identified with a general transformation of the
form (10), depending on a new parameter V (a function
of v1 and v2) :

x2 = γ(V )[x− V t]

t2 = γ(V )[t− µ(V )x].
(36)

By identification of the factor γ(V ) in (35a) and (35b),
we obtain the condition

µ(v1)v2 = v1µ(v2). (37)

Hence,

µ(v) = αv, (38)

for some constant α. According to (32), the last unknown
function finally is

γ(v) = (1− αv2)−1/2, (39)

where the sign of the square root has been chosen in
accordance with (18a). Also, “the law of addition of ve-
locities” directly derives from (35) and (36) :

V = (v1 + v2)/(1 + αv1v2). (40)

It is clear that the following three different cases now
arise, depending on the sign of the constant α or on its
vanishing.

(i) α < 0. We may write α = −κ−2, where κ has the
dimensions of a velocity. The transformation law reads

x′ =
x− vt

(1 + v2/κ2)−1/2
,

t′ =
t+ vx/κ2

(1 + v2/κ2)−1/2
.

(41)

Observe that values of the velocity v are allowed in the
whole real range. The law of addition of velocities is

V =
v1 + v2

1− v1v2/κ2
. (42)

(ii) α = 0. The corresponding formulas are

x′ = x− vt, (43)

t′ = t, (Galilean)

and

V = v1 + v2. (44)

(iii) α > 0. We thus write α = c−2, where c is a
constant with the dimensions of a velocity, and we have

x′ =
x− vt

(1 − v2/c2)1/2
, (45)

t′ =
t− vx/c2

(1− v2/c2)1/2
, (Lorentz)

and

V =
v1 + v2

1 + v1v2/c2
. (46)

Velocities here (as parameters of the Lorentz transforma-
tion14) are restricted to lie within the range −c 6 v 6 c.
Clearly, as in case (i), the numerical value of α depends
on the initial choice of units for space and time coordi-
nates, so that physically, there is but one situation here.
Before examining these three cases in the light of our last
physical hypothesis, it may be worthwhile to mention the
following.

Counterexamples 3

It is easy to exhibit transformation formulas with a
“reasonable” look satisfaying, for instance, all previous
hypotheses but not having the group property ; any two
of them, under composition, do not yield to a transfor-
mation belonging to the family. Such would be the trans-
formations

x′ = x− vt,

t′ = t− vx/c2.
(47)

Also, the set of transformations

x′ = (1 + 1

2
v2/c2)x− vt,

t′ = (1 + 1

2
v2/c2)t− vx/c2,

(48)

is a mathematically consistent expansion of the Lorentz
formulas (45) to first order in c2 and has been proposed
as a “new” relativity group15 ; unfortunately, it is not a
group.

HYPOTHESIS 4 : CAUSALITY

Except in the singular case (ii) above, the time inter-
val between two events depends on the reference frame,
since it changes under the transformation (41) or (45).
Now, in order to maintain some order in the universe,
we would like to require the existence of at least a class
of spatiotemporal events such that the sign of the time
interval, that is, the nature of a possible causal relation-
ship, is not changed under inertial transformations.

This requirement is obviously met by the Galilean
transformations (43) for all time intervals. It is met also
in the Lorentz case (iii) for those intervals such that
|∆x/∆t| 6 c (“time-like”) because of the limited range
of values available for v. However, case (i) does not agree
with our hypothesis, so that it becomes the following.

Counterexample 416

Indeed, since

∆t′ =
∆t+ v∆x/κ2

(1 + v2/κ2)1/2
(49)

for any given (∆t,∆x), one may always find a v, within
the unlimited available range, such that ∆t′ has a sign
opposite to that of ∆t, which thereby forbids the very
existence of a causal relationship. Another paradoxical
feature of case (i) appears when we compose two positive
velocities, for instance v1 = 2κ and v2 = κ, which result
in a velocity V = −3κ,..., in the opposite direction17 !
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CONCLUSION

Our four general hypotheses thus suffice to single out
the Lorentz transformations and their degenerate Gali-
lean limit as the only possible inertial transformations.
The Lorentz case is caracterized by a parameter with the
dimensions of a velocity which is a universal constant
associated with the very structure of space-time. A fur-
ther analysis of the possible objects moving in such a
space-time shows that this constant turns out to be the
(invariant) velocity of zero-mass objects.

Note added in proof : This work was already submit-
ted for publication when a closely related investigation
by A. R. Lee and T. M. Kalotas appeared in this journal
[Am. J. Phys. 43, 434 (1975)]. These authors also point
out the very early roots of such considerations, going
back to several papers more than sixty years old, and

long forgotten or neglected. To the historical references
they give, the following one may be added : L. A. Pars,
Philos. Mag. 43, 249 (1921). Despite the similarity of
the present paper with the article by Lee and Kalotas,
the somewhat greater generality of its assumptions, as
well as its offering counterexamples, may still justify its
publication.
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