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One or Two Frequencies? The Empirical Mode
Decomposition Answers

Gabriel Rilling and Patrick Flandrin, Fellow, IEEE

Abstract—This paper investigates how the empirical mode de-
composition (EMD), a fully data-driven technique recently intro-
duced for decomposing any oscillatory waveform into zero-mean
components, behaves in the case of a composite two-tones signal.
Essentially two regimes are shown to exist, depending on whether
the amplitude ratio of the tones is greater or smaller than unity, and
the corresponding resolution properties of the EMD turn out to be
in good agreement with intuition and physical interpretation. A re-
fined analysis is provided for quantifying the observed behaviors
and theoretical claims are supported by numerical experiments.
The analysis is then extended to a nonlinear model where the same
two regimes are shown to exist and the resolution properties of the
EMD are assessed.

Index Terms—Empirical mode decomposition (EMD), resolu-
tion, spectral analysis, time frequency.

1. INTRODUCTION

NE standard issue in spectrum analysis is resolution,
Oi.e., the capability of distinguishing between (more or
less closely spaced) neighboring spectral components. At first
sight, this question might appear as unambiguous, but a second
thought suggests that it is the case only if some prior assumption
on—or modeling of—the signal under consideration is given.
Indeed, if it is known that the signal «(¢) to be analyzed actually
consists of two tones of, say, equal amplitudes! with frequen-
cies fi and fo, one can write z(t) = cos 2w fit + cos 27 fot
and address the question of detecting and estimating f; and fo.
However, from a mathematical point of view, one can equally
write x(t) = 2cosw(f1 — fa)t cosm(f1 + fa2)t, with an
underlying interpretation in terms of a single tone modulated
in amplitude rather than of a superposition of two unimodular
tones. As it is well known, such an interpretation is especially
relevant when f; ~ fo, a prominent example being given by the
“beat effect” (see Fig. 1). In this respect, since, at some point,
close tones are no longer perceived as such by the human ear
but are rather considered as a whole, one can wonder whether
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'We restrict this Introduction to such an oversimplified case because situ-
ations with unequal amplitudes are computationally more complicated, while
their interpretation remains essentially unchanged (see Fig. 1). For the same
sake of simplicity in the discussion, phase differences are also ignored.
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Fig. 1. Beat effect—In each column, signals in the bottom row are obtained as
the superposition of the waveforms plotted in the top and middle rows. When
the frequencies of the two superimposed tones are sufficiently far apart (left
column), the two-tones interpretation is meaningful whereas, when they get
closer (right column), an interpretation in terms of a single tone modulated in
amplitude is clearly favored.

a decomposition into tones is a good answer if the aim is to
get a representation matched to physics (and/or perception)
rather than to mathematics. More generally, if only z(t) is
given, there might be no a priori reason to prefer one of the two
representations, the effective choice being in some sense driven
by the way the signal is processed.

This question is addressed in this paper within the fresh per-
spective offered by the empirical mode decomposition (EMD)
[1], [2], a relatively recent technique whose purpose is to
adaptively decompose any signal into oscillatory contributions.
Since the EMD is fully data driven, not model-based and only
defined as the output of an iterative algorithm (see Section II),
it is an open question to know what kind of separation can
(or cannot) be achieved for two-tones composite signals when
using the method. It is worth emphasizing that resolving closely
spaced components is not the ultimate goal here and that poor
resolution performance can indeed be accommodated provided
that the decomposition is suitably matched to some physically
meaningful interpretation. As for earlier publications [3], [4],
the aim of the present study is primarily to contribute, within
a well-controlled framework, to a better understanding of the
possibilities and limitations offered by the EMD.

The paper is organized as follows. In Section II, the basics of
the EMD are recalled. After having detailed the two-tones signal
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model and the performance measure used for quantifying the
resolution capabilities of the EMD, Section III presents key fea-
tures of results obtained by numerical simulations. Section IV
then offers a theoretical analysis aimed at justifying the reported
results, based on a careful study of extrema properties and inter-
polation schemes. Finally, an extension of the obtained results
to simple nonlinear waveforms is proposed in Section V.

II. EMPIRICAL MODE DECOMPOSITION

In a nutshell, the EMD rationale can be summarized by the
motto “signal = fast oscillations superimposed to slow oscilla-
tions,” with iteration on the slow oscillations considered as a
new signal. While this shares much with the wavelet philosophy,
the important difference is that “fast” and “slow” components
are not defined through some prescribed filtering operation but
according to an algorithm that is overall rather close to an adap-
tive filtering operation. More precisely, the algorithm, referred
to as the sifting process [1], iterates a nonlinear elementary oper-
ator S on the signal until some stopping criterion is met. Given
a signal z(t), the sifting operator S is defined by the following
procedure.

1. Identify all extrema of x(t).

2. Interpolate (using a cubic spline) between minima (respec-
tively, maxima), ending up with some “envelope” e (#)
(respectively, €max(1)).

3. Compute the mean m(t) = (emin(t) + emax(t))/2.

4. Subtract from the signal to obtain S[z](t) = x(t) — m(t).

If the stopping criterion is met after n iterations, the “fast”
and “slow” components are defined, respectively, as d; [z](¢) =
S"[z](t) and mq[z](t) = «(t) — di[z](t). By construction,
d1[x](¢) is an oscillatory signal that in the EMD jargon is re-
ferred to as an “intrinsic mode function” (IMF) [1]. While an
IMF is primarily defined as the output of EMD, a more us-
able definition is “a function whose local maxima are all pos-
itive, whose local minima are all negative, and whose envelopes
(as defined in the sifting operator) are symmetrical with re-
spect to the zero line.” However, as argued in [5], only signals
with constant envelopes fit the definition rigorously and conse-
quently, the latter is generally considered in a loose sense. Con-
cerning the “slow” component 771 [#](%), on the other hand, all
we know is that it locally oscillates more slowly than dj [2](%).
We can then apply the same decomposition to it, leading to
m1[x](t) = ma[z](t) + da[z](t) and, recursively applying this
on the my[z](t), we get a representation of (t) of the form

o(t) = m[z](t) + > di[z](t) (1)

with the decomposition ending when there are not enough ex-
trema in m g [z](¢) to define meaningful envelopes. The output
of the EMD is thus a priori some sort of adaptive multiresolu-
tion decomposition [3]. In order to better assess the potential of
the method (for which open source Matlab/C codes are avail-
able?), its behavior is illustrated in Fig. 2 on a synthetic signal.
The results show that the EMD may be very efficient at naturally
decomposing signals that are a burden to handle with usual

2[Online] Available: http://perso.ens-lyon.fr/patrick.flandrin/emd.html
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Fig. 2. Synthetic three-component example—The signal in the top row is de-
composed by the EMD, resulting in the three IMFs listed below and six others
that are not displayed since they are almost zero (they contain less than 0.3%
of the total energy). The time-frequency analysis of the signal (top left of the
four bottom diagrams) reveals three time-frequency signatures that overlap in
both time and frequency, thus forbidding the components to be separated by
any nonadaptive filtering technique. The time-frequency signatures of the first
three IMFs extracted by EMD evidence that these modes efficiently capture the
three-component structure of the analyzed signal. (All time-frequency represen-
tations are reassigned spectrograms.)

methods based on Fourier or wavelet transform and often neces-
sitate ad hoc solutions. The method proved useful in a variety
of applications as diverse as climate variability [6], biomedical
engineering [7], or blind-source separation [8].

From a physical point of view, an IMF is a zero-mean oscil-
latory waveform, not necessarily made of sinusoidal functions
and possibly modulated in both amplitude and frequency. Going
back to the simple example sketched in Fig. 1, the zero-mean
criterion makes of the composite signal in the right column a
reasonable candidate for being already an admissible IMF, with
no need for any further decomposition. This agrees with the
beat effect interpretation and contrasts with the situation in the
left column, where two zero-mean contributions are clearly vis-
ible, making of their identification a meaningful objective. It
appears therefore that the EMD might be effective in the sep-
aration problem, as it has been formulated, and it is the purpose
of this paper to switch from intuition and experimental facts to
well-supported claims.

III. EXPERIMENTS

In order to understand how the EMD decomposes a multi-
component signal into monocomponent ones, one can first re-
mark that, because of the recursive nature of the algorithm, we
only have to understand how the first IMF is extracted from
the original signal. We will here adopt this perspective, with
two-tones signals (in the spirit of Fig. 1) used for the tests.
This will allow for analytically tractable analyses and offer an
in-depth elaboration on the preliminary findings reported in [9].



RILLING AND FLANDRIN: ONE OR TWO FREQUENCIES? THE EMPIRICAL MODE DECOMPOSITION ANSWERS 87

A. Signal Model

As far as simulations are concerned, signals are discrete-time
in nature and, in the situation we are interested in here, the most
general form for a discrete-time two tones signal is

z[n] = a1 cos(2w fin+p1)+as cos(2m fan+gs), n € Z.
We will, however, not use such a form with six parameters, since
only three are needed without loss of generality. Concerning
first the amplitudes ¢; and as, it is obvious that the behavior
of the EMD only depends on their ratio a = as /ai. A similar
simplification applies as well to the two frequency and phase
parameters {f1, f2} and {1, @2} insofar as both frequencies
are much smaller than the sampling frequency f,. As reported
in [9]-[11], sampling effects may turn the analysis much more
complicated when the frequencies of the sinusoids get close to
the Nyquist frequency (f1, fo2 = 0.25f;). Therefore, we will
only address the case where f1, fo < f5, allowing us to con-
sider that we work with continuous-time signals. In that case,
the covariance of the EMD with respect to time shifts and dila-
tions makes its behavior only sensitive to the relative parameters
25 /f1and ¢ £ v, — 1, thus leading to the simpler con-
tinuous-time model:

xz(t;a, f) = cos2nt + acos(2nft + ), teR. (2)
As we can moreover restrain ourselves to the case f €]0, 1], the
cos 27t term will be referred to in the following as the higher
frequency component (HF) and the a cos(27 ft+ ¢) term as the
lower frequency component (LF).

B. Performance Measure

Given the above model, the questions of interest are 1) “When
does the EMD retrieve the two individual tones?” 2) “When does
it consider the signal as a single component?” and 3) “When
does it do something else?”

In order to address the first question, we can consider the
quantity

A\ (t;a, f) — cos2 fH
‘ 1t a, f) —cos2m Loy

lacos(2m ft + )| 12 (1)

>

&M (a, £, 9) 3)

where dgn) (t;a, f) 2 (S™x(-; a, £))(t) stands for the first IMF
extracted from x(i; a, f) with exactly » sifting iterations and
| - |[z2(z) stands for the Euclidean norm on functions defined
over [0, T]. When the two components are correctly separated,
the fine to coarse nature of the decomposition ensures that the
first IMF necessarily matches the HF component cos 27¢. Pro-
vided this, the second IMF is bound to match the LF compo-
nent because the first slow oscillations residual from which the
second IMF is extracted already is the LF component. There-
fore, a zero value of (3) indicates a perfect separation of the two
components. Finally, the denominator is chosen so that the cri-
terion has a value close to 1 when the two components are badly
separated.

log e

Fig. 3. Performance measure of separation for two-tones signals—A 3-D ver-
sion of the averaged criterion (3) with n. = 10 sifting iterations is plotted in
the top diagram. Its 2-D projection onto the («, f)-plane of amplitude and fre-
quency ratios is plotted in the bottom diagram, with the critical curves predicted
by theory superimposed as dashed (af = 1), dashed—dotted (af? = 1) and
dotted (af sin (37 f/2) = 1) lines. The black thick line stands for the contour

(. £.9)) =05
.

C. Results

Fig. 3 summarizes experimental results obtained for

<c§10) (a, f, <p)> , the averaged value over ¢ of c(ln)(a7 I o),
withn = 10 sifti(ilg iterations.3 Examining this figure evidences

two rather well-separated domains with contrasting behaviors,
depending on whether the amplitude ratio is greater or smaller
than unity. While it seems rather natural that, for a given am-
plitude ratio, the EMD resolves the two frequencies only when
the frequency ratio is below some cutoff, a less usual feature,
coming from the highly nonlinear nature of the EMD, is that
the cutoff frequency also depends on the amplitude ratio, in a
nonsymmetrical way. What turns out is that this dependence
essentially applies when the amplitude of the HF component
gets smaller than that of the LF one, and vanishes in the op-
posite case. Moreover, there is a critical cutoff frequency ratio

3The corresponding standard deviation is not shown because it is generally
very small, except in some very specific cases involving frequency synchro-
nizations. The number of ten iterations is arbitrary, but its order of magnitude is
guided by common practice [2].
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(f- &~ 0.67 in the present case) above which it is impossible to
separate the two components, whatever the amplitude ratio.

Those findings will be given a theoretical justification in
Section IV. In particular, we will show in Section IV-B-1)-b)
that the behavior of the EMD is very close to that of a linear
filter when the amplitude ratio tends to zero and remains close
as long as ¢ < 1. The transfer function of this equivalent filter
will be analytically characterized, and it will be shown that
its cutoff frequency only depends on the number of sifting
iterations.

IV. THEORY

A. About Extrema

Extrema play a crucial role in the EMD algorithm, and it is
important to discuss precisely what can be known about their
locations and/or distributions. There are two asymptotic cases
where we know exactly the locations of extrema: if the ampli-
tude of one of the components is infinitely larger than that of
the other one (¢« — 0 or & — o0), then the locations of the
extrema in the sum signal are exactly those of the extrema in
the larger component. When the amplitude ratio is finite, lo-
cating precisely the extrema becomes tricky, but in almost all
situations, we can still obtain the average number of extrema
per unit length (or extrema rate) r.(a, f). This information will
in fact serve as a basis for a theory that, while only asymptot-
ically exact, adequately accounts for the behavior of the EMD
for almost all frequency and amplitude ratios.

Proposition 1: If af < 1, re(a, f) = 2, i.e., the extrema
rate is exactly the same as that of the HF component, whereas,
ifaf? > 1,7.(a, f) = 2f, i.e., itis exactly that of the LF one.

In order to prove those claims (illustrated in Fig. 4), the first
step is to show that the sign of the second derivative of the two-
tones signal at its extrema is actually the same as that of the
second derivative of the HF component if af < 1 and that of
the LF component if o f2 > 1. To this end, let us assume that
x(t;a, f) admits an extremum at ¢ = #o:

Ocx(t; a, f)le=t, x sin 2wty + afsin(2w fto +¢) = 0. (4)

The second derivative of «(t; a, f) is

O2x(t; a, f) o< cos 2rt + af? cos(2m ft + ) (5)
and what we want to justify is that

laf? cos(2m fto + @)| <|cos2mty|if af < 1,
laf? cos(2m fto + @)| > | cos 2mto| if af® > 1.

Squaring the above equations and replacing cos? 27ty in both
of them by its value from (4), we obtain

a®ficos®(2m fto+ ) +a’ fEsin®(2r fto+ ) <lifaf < 1,
a® f* cos® (2w fto+ @) +a’ f2sin?(2n fto+ ) > 1ifaf® > 1

which hold true since a?f* < a’f? < lifaf < 1 and
1 < a’f* < a®>f? if af?> > 1. Given this result, there can
only be one extremum between two successive zero-crossings
of the second derivative of the HF (respectively, LF) component
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(a)

(b)

Fig. 4. Locations of the extrema in the two-tones signal—In each graph are
plotted the derivative of the HF component and the opposite of the derivative
of the LF component so that each crossing corresponds to an extremum in the
composite signal. (a) @ f < 1: as the amplitude of the derivative of the HF com-
ponent is greater than that of the LF component, there is exactly one crossing be-
tween two successive extrema of the HF component; (b) af > 1and af? < 1:
no regular distribution of the crossings can be guaranteed; and (¢) af2 > 1: as
the maximum slope of the derivative of the LF component is greater than that
of the HF component, there is exactly one crossing between two successive ex-
trema of the LF component.

if af < 1 (respectively, af% > 1) because its type (maximum
or minimum) is determined by the sign of the second derivative
of the HF (respectively, LF) component. Thus, there can only
be one extremum per half-period of the HF (respectively, LF)
component, hence the extrema rates and the conclusion of the
proof.

Indeed, it seems rather natural that the EMD can only extract a
component if it “sees’ extrema that are related to it. Therefore, it
seems unlikely to recover the HF component in the a 2 > 1 area
as the signals extrema are more related to the LF component.
On the other hand, recovering the HF component in the af < 1
area seems feasible a priori. As extracting the highest frequency
component into the first IMF is what we intuitively expect the
EMD will do, we can think of the af < 1 area as a “normal”
case while the af? > 1 area can be viewed as “abnormal.”
We will see in the following that quite strange behaviors can
indeed be observed in that area. However, the existence of such
an “abnormal” domain is far from a complete drawback as it
allows in particular to preserve nonlinear periodic waveforms
as single IMFs instead of scattering their harmonics over several
ones.

The two curves, af = 1 and af? = 1, have been superim-
posed to the diagram Fig. 3 in order to visualize the link be-
tween them and the behavior of the EMD. It appears indeed that
the af2 = 1 curve tightly delimits the upper side of the transi-
tion area in the right side of the figure. On the other hand, the
af = 1 curve delimiting the lower side is not as tight as soon as
f < 1/3. Arefinement resulting in a closer theoretical boundary
when f < 1/3 will be proposed in Section IV-C.

Finally, in order to better support the theory exposed in
Section IV-B, some control can be added to the extrema lo-
cations. Indeed, if we take into account that the crossings in
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Fig. 4(a) can only occur in the shaded band, then it results
that each crossing is distant from a zero-crossing of the HF
component by at most 1/(27) sin™*(af). In terms of extrema,
this exactly means that, when af < 1, each extremum is
distant from an extremum of the HF component by at most
1/(2r)sin"*(af). Likewise, when af? > 1, each extremum
can be shown to be distant from an extremum of the LF
component by at most 1/(27f)sin™*(1/af). In both cases,
these statements give some quantitative control on the extrema
locations supporting the idea that these are close to those of one
of the two components as soon as a f gets sufficiently smaller
than 1 or alternatively a f2 sufficiently larger than 1.

B. Model for the EMD When the Extrema Are Equally Spaced

Based on the above statements regarding extrema, the model
proposed here relies on the only assumption that extrema are lo-
cated at the exact same places as those of one of the two compo-
nents (the HF one when af < 1 or the LF one when af? > 1).

1) Caseaf < 1:

a) Derivation of the Model: The model assumes that
maxima are located at integer time instants k,k € Z while
minima are located at half-integer ones k& + 1/2,k € Z. The
extrema being equally spaced, the set of maxima (or minima)
can be seen as a specific sampling of the initial signal at the
frequency of the HF component, which is 1 in our simplified
model. In the Fourier domain, the Dirac combs associated with
the maxima and minima samplings are

Max (V) = > 6(v — k)

Mmin(v) = Y _(—1)F8(v — k). (6)

keZ

where the (—1)* term comes from the time shift between the
two samplings. Convolving these with the signal in the Fourier
domain, we obtain the Fourier representations of the maxima/
minima sets (respectively, S ax and Sy, ):

Smax/ min(’/) - (lllmax/ min ¥ j:) (V)'

If we then use an interpolation scheme that, when the in-
terpolation points (usually referred to as “knots”) are equally
spaced can be expressed in terms of digital filtering (e.g.,
Shannon, splines, etc.) with frequency response I(v) for unit
spaced knots, the envelopes (emax(t) and emin(t)) have the
Fourier representations

émax / min(’/) = I(V) (IIImax/ min * '/i) (V>
This implies that

érnin (V) + émax (V)
2

= I(v) (IMlean * &) (v)

where Il mean(v) = >, 7 6(v—2k), the two interleaved sam-
plings being replaced by another one with double frequency. It
is worth noticing that the samplings (6) introduce aliasing as

soon as the signal contains frequencies above the corresponding
Nyquist frequency 0.5 (such effects have been first reported in
[12]) but, in the present case, the cancellation of the odd in-
dexes in the Dirac combs cancels the aliasing effects provided
the spectrum of the signal is zero outside of [—1, 1]. While this
last condition is obviously met in the case of the two-tones signal
when af < 1, it will not be the case in the following when
af? > 1, and furthermore when we will consider nonlinear
waveforms.

Finally, we end up with a Fourier representation of the first
iteration of the sifting operator given by

(S8z)(v) = &#(v) — I(v) (WLean * &) (). (7)

As our only assumption was about the locations of extrema, this
representation (or a properly dilated one) holds as soon as the
extrema locations are nearly equally spaced.

b) Expressions of the IMFs: The signal (2) initially con-
tains four Fourier components at 1, —1, f, —f with coeffi-
cients c+; = 1/2, and ey = aeTi® /2. After one iteration
of the sifting operator, the latter ones become cg = 1/2 and
cg} = (1—1I(f))ae**¥ /2, while some new Fourier components
appear at 2k + f, k € 7%, because of the extrema sampling. For-
tunately, the associated coefficients copt 5 = —I(2k =+ f Yaeti®
are generally very small as /(1) is typically close to zero when
|v| > 1. Therefore, those aliased components can generally be
neglected, thus implying that the model (7) can be well approxi-
mated by a simple linear filter with frequency response 1 —7(v).
As I(v) typically stays in the range [0, 1] for usual interpola-
tion schemes, the signal after one iteration is then close to a
two-tones signal (2), with the same frequency ratio f, a smaller
amplitude ratio o) < @ and the same phase. Thus, the condi-
tion af < 1 is even better satisfied after one iteration, and so
the model (7) still holds for all the possible following sifting it-
erations. This allows us to finally express the first IMF obtained
after n iterations in the linear approximation as

di" (t;a, f) = (S"x(a, £))(1)
=cos2nt + (1 — I(f))" acos(2m ft + @) (8)
and, consequently, the second (and last) IMF as

9 (ta, f) =x(tia, f) — d{ (ta, f)

=(1—=(1=1I(f)")acos(2w ft + ).
In the case of cubic spline interpolation, which is by far the
most commonly used for the EMD, it follows from [13] that the
frequency response for unit spaced knots /(1) is given by

sinr\* 3
2+ cos27v

=) = ( TV
Combining this with (8) finally yields a theoretical model for
the left side (af < 1) of Fig. 3, which is compared to simu-
lations for different numbers of iterations and amplitude ratios
in Fig. 5. According to these results, both the model and the
simulations point out that the EMD performs as a linear filter
(high-pass for the first IMF, low-pass for the second one) whose
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Fig. 5. Equivalent filter model for the EMD—Experimental results for
<cg”>(a, f.e) (solid line curves) are compared to theoretical predictions

when a = 10—2w(dashed curve) and @ = 1 (dashed—dotted curve), forn =1,
3, and 10 sifting iterations. In the small box are plotted the exact value of the
cutoff frequency (solid line curve) and its approximation (9) (dashed curve), as
a function of the number of sifting iterations.

cutoff frequency only depends on the frequency of the HF com-
ponent and on the number of sifting iterations. It appears more-
over that the model remains very close to the simulation results
even when o f gets close to 1 (i.e., when the model assumption
of equally spaced extrema clearly becomes questionable), thus
supporting the claim that the EMD acts almost as a linear filter
over the whole range af < 1.

c) Approximation of the Cutoff Frequency: A natural def-
inition for the cutoff frequency fé"‘) (where n stands for the
number of iterations) is the value for which the response of the
EMD equivalent filter is half its maximum, as follows:

(1-1(5))" = 3

There is unfortunately no analytical solution to this equation in
the case of cubic spline interpolation, but a good approximation
is given by the following asymptotic formula:

1
[y2\ W

£ = 1+<—“ > +O<vf<5/4>). 9)
n

As pointed out by this expression, the cutoff frequency is a non-
decreasing function of the number of iterations that furthermore
tends to 1 when n tends to infinity. The increase is, however,
very slow, and therefore the cutoff frequency remains signifi-
cantly lower than 1 for reasonable numbers of iterations: typi-
cally fc(n) < 0.75 when n < 100 (see Fig. 5). Since this cutoff
frequency is related to a notion of relative frequency resolution,
our results agree with the practical observations that suggest a
rather poor value for the latter, typically about 0.5. Moreover,
the enhancement of that resolution when 7 is increased, though
rather weak, is consistent with empirical observations stating
that increasing 7 increases the number of IMFs and smoothes
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Fig. 6. Performance measure of separation for two-tones signals—The aver-
aged value of the criterion (10) is plotted for n = 10 sifting iterations. Only the
af? > 1 area is displayed because the criterion is meaningless otherwise. As

= 0.5.

in Fig. 3, the black thick line stands for the contour <c§m)(‘a, f, up)>
the envelopes variations. Indeed, both features are consistent
with a decrease of each IMF bandwidth, at least locally.4

2) Case af? > 1:

a) Simulations: In the area af 2 > 1, we know from the
simulation results (Fig. 3) that the EMD can never retrieve the
two tone components. Thus, the next question of interest here
is the second one: Does the EMD consider the signal as a single
modulated component or not? If the answer is “yes,” the first
IMF should be the original signal, so that we can address the
question by examining the following distance measure (the
choice for normalization will become clear later):

4 (0. f) = (s 0, )

|| COS 27Tt||L2(T)

L(T)

¢ (a, f,0) & (10)
As can be observed in Fig. 6, the behavior of the EMD when
af? > 1 seems to depend mostly on the frequency ratio. More
precisely, it appears that the value of <c§10) (a, f, g0)> is either
close to one or close to zero depending on whether f is close
to (2k)~* or (2k + 1)~, k € N*. This means that the EMD
effectively considers the signal as a single component when f
is close to (2k + 1)~ but does something else when f is close
to (2k)~1. We will show in Section IV-B-2)-b) that in the latter
case, the aliasing effects resulting from the extrema sampling
actually give birth to a new lower frequency component.

b) The Model: As before, the model assumes that the ex-
trema are equally spaced and therefore the former reasoning ap-
plies. We then end up with a formulation which is basically the
same as in (7), with a few adjustments, as follows:

(Sn)(w) = i(v) — 1 (Z

f
with Ilnean(v) = Y ez 6(v — 2k f)eFe.

) (MM ean * 2) (V) (11)

4However, it has to be noted that, as argued in [5], increasing with no limit the
number of sifting iterations would result in IMFs with no amplitude modulation.
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c) Expressions of the IMFs: If we now apply this model
to the two-tones signal, the four Fourier coefficients ¢4 = 1/2
and c45 = aetie /2 become after one sifting iteration ¢4 =
(1 — I(1/£))/2 and c+f = ae®* /2. As in the former case,
the component that has its extrema close to those of the mul-
ticomponent signal is left unchanged by the sifting operator
while the other one has its amplitude decreased. However, the
decrease is almost nonexistent here because 1/ f > 1 and there-
fore I(1/f) ~ 0. Thus, the four initial Fourier components
are nearly left unchanged after the first iteration. This would
be fine if there were no aliased components as in the first case
but, unfortunately, there are. Indeed, if ky € N is such that
2ks — 1 < 1/f < 2k + 1, there are two aliased frequencies
fa = 2ky f —1 and its negative that both lie in [— f, f] and might
therefore not be removed by the interpolation filter 7(v/ f). Ac-
cording to our model, the first IMF is then

dgl)(t; a,fy=uz(t;a, f)—1 (f—;) cos (2m fut + 2k¢ ) .

As this new component has smaller frequency and amplitude
than the HF component, we can expect the extrema in the IMF
after one iteration to still be near those of the LF component.
The aliased component has therefore little impact and can be
neglected too. According to this model, the IMF obtained after
n iterations is then

dgn)(t; a,f) =xz(t;a, f) — A cos (2m fot + 2kfp)  (12)

with A, =1 — (1= I(f./f))" and, consequently

dS7 (50, f) = An cos (2m ful + 2k 0) .

Unlike the case af < 1, these expressions show that there is no
possible linear filtering equivalent for the EMD when a f2 > 1.

As a matter of fact, the behavior of the EMD is rather odd as
it just creates a new lower frequency component which is added
to the signal to obtain the first IMF, and then compensated in
the second one. Moreover, that new frequency is even more an-
noying when it comes to interpretation as it might be mistaken
for an intrinsic time scale of the signal while its relevance is
rather questionable. Indeed, if the EMD is followed by instanta-
neous frequency/amplitude estimation, as in the Hilbert—-Huang
Transform framework [1], [2], this results in a first IMF with an
instantaneous frequency that oscillates around f while that of
the second IMF is exactly f,. Ultimately, the unfortunate EMD
user might uncover a component at f,, while the frequency of
the corresponding intrinsic oscillation is in fact 1!

Quantitatively, the amplitude A\, of the new frequency
component depends on the ratio f,/f. In a first approxima-
tion, f./f =< fcn) = )\, =~ 1 while, on the other hand,
fulf = fc(" = A, = (. This means that the new component
has either an amplitude close to that of the original at frequency
1 when f is close to (2k)~*, k € N* or an almost zero ampli-
tude when f is close to (2k + 1)~!. Moreover, as the cutoff
frequency fc(n) increases with n, the width of the bands where
An ~ 1 also increases with 7.

[(0)

Fig. 7. Example of a two-tones signal with af = 1 and f < 1/3—As it can
be seen in (a), some extrema of the HF component do not give birth to extrema
in the composite signal (identified as marks on the horizontal line at the bottom
of the diagram) but only to inflexions surrounded by humps. However, since the
lower and upper envelopes (light gray lines) roughly follow the LF trend, their
mean is close to the latter and subtracting it from the composite signal uncovers
the hidden extrema: this is evidenced in (b), which plots the first IMF after one
sifting iteration and the associated distribution of its extrema.

C. Refinements When f < 1/3

1) Extrema May Appear During the Sifting Process: In
Section IV-A, we showed that the two curves af = 1 and
af? = 1 are the boundaries of a transition area for the extrema
density. Among these curves, we also noticed that af = 1
delimits the lower side of the transition area but rather loosely
when f < 1/3. In that area, it appears that even if the extrema
rate is slightly below 2 (af = 1), the EMD acts as if the extrema
were close to those of the HF component. The explanation for
this behavior is in fact that some extrema may appear when
iterating the sifting process. As a matter of fact, a close look at
the two-tones signal when af > 1 and af? < 1 (see Fig. 7)
shows that its extrema rate, which is between those of the two
tones, is not uniform: the extrema are mostly located around
the extrema of the LF component. Besides, the signal also
exhibits strong inflections related to extrema pairs of the HF
component that clearly would yield extrema pairs in the sum
signal if the amplitude ratio was smaller. As the signal exhibits
local minima (respectively, maxima) around what appears to
be the maxima (respectively, minima) of the LF component, its
lower (respectively, upper) envelope and, therefore, their mean
roughly follow the shape of the LF component. Subtracting this
mean from the signal then naturally reveals the extrema that
were hidden as inflections, and it follows that the extrema rate
may increase after one sifting iteration to match the rate of the
HF component, thus allowing us to use the model (7) for the
remaining iterations.

2) Tighter Boundary for the Transition Area: It follows from
Proposition 1 that, for a given f, the number of extrema in the
two-tones signal that lie in between two successive zero-cross-
ings of the LF component is close to 1/ f if ¢ < 1/ f and exactly
lifa>1/f 2 However, the threshold value of @ below which
this number is at least 2 is in fact lower than 1/ 2 and higher
than 1/f if f < 1/3. It is graphically clear that this threshold
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Fig. 8. Limit case situation a = a(f)—Like in Fig. 4, the derivative of the
HF component is plotted together with the opposite of the derivative of the LF
component. If @ < @(f), it is graphically clear that whatever the value of ¢,
there can not be less than three extrema in «(¢; a, f) (big dots) between two
zero-crossings of the LF component (extrema of the derivative in the figure).
Conversely, if a > a(f), it is clearly possible to see only one extremum in the
same range.

log, qa

Fig. 9. Summary of the EMD answers to the two-tones separation
problem—Depending on the frequency ratio f and the amplitude ratio a,
three domains with different behaviors can be distinguished: 1) the two
components are separated and correctly identified, 2) they are considered as a
single waveform, and 3) the EMD does something else.

a(f) follows from a tangency condition in the worst case situ-
ation (see Fig. 8). Although this condition admits no analytical
solution, assuming that the tangency points coincide with the
extrema of the HF components derivative leads to the approxi-

mation
-1
a(f) = <fsin (?))

and, hence, to the improved boundary reported on Fig. 3.

D. Summary

Thanks to the previous analysis, we are finally able to an-
swer the three initial questions of interest. A schematic view of
the EMD answers to the two-tones separation problem is pro-
posed in Fig. 9, where each area is labelled according to one
of the three following possibilities: 1) the two components are
well separated and correctly identified, 2) their sum is left un-
changed and considered as a single waveform, and 3) the EMD
does something else, either halfway between 1) and 2), or with
the possibility of a decomposition in fake oscillations different
from the effective tones.
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V. SOME GENERALIZATIONS BEYOND TONES

The previous analysis showed that it was possible to describe
the behavior of the EMD with a simple analytical model pro-
vided that the extrema were nearly equally spaced. As the model
only requires that last condition to hold, it should also hold if the
waveforms of the two components slightly deviate from a sinu-
soid. As a generalization, we will now consider simple nonlinear
waveforms with two symmetrically interleaved extrema per pe-
riod. Thus, the new signal model in the following is

z(tya, f) = x1(t) + ax2(ft + @)

where z1(t) and z2(t) are two unit-period functions with two
symmetrically interleaved extrema per period, also defined by
their Fourier expansions

zj(t) = Zc]-ypeh””'t.
P

Since our goal is to study the possible separation of the two com-
ponents by the EMD, we will also require that both ; () already
are IMFs so that a perfect separation can a priori be achieved.
Therefore, we will assume that the value of a component at its
maxima is the opposite of its value at its minima.

A. Theory

In this section, we provide two results: we prove in a general
setting the existence of the two asymptotic domains, where ex-
trema are close to those of one of the two components, and we
also derive the first IMF in the case where the extrema of the
HF component are equally spaced. However, we only provide
a model for the “normal” case where the extrema are close to
those of the HF component because it is the only case in which
the EMD may accurately retrieve the two components. On the
other hand, we could show that the behavior of the EMD in the
“abnormal” area is similar to the sinusoidal case as it still adds
new aliased components to the signal to build the first IMF and
then subtracts them in the second one. The difference is just that
there may be more aliased frequencies, one for each harmonic
of the HF component.

Proposition 2: Let x1(t) and z2(t) be two periodic and at
least two-times continuously differentiable functions. If each
function z;(t) has the property that for some positive (7, ),
|0gz:(t)| < m = |02x;(t)] > €5 then the locations of the
extrema of x(¢; a, f) = x1(£) + axa(ft + @) are those of 1 ()
when |a| — 0 and those of z2(ft + ¢) when |a| — oo. More-
over, there are two positive numbers A and B such that for all
(f, ) € [0,1] x R, the extrema rate of z(¢; a, f) is the same as
that of z:1 () when |af| < A and the same as that of z:2(ft+ ¢)
when |af?| > B

The proof is given in the Appendix. Assuming that the propo-
sition holds, the model (7) should be valid when ¢ — 0 and
hopefully remain acceptable over the “normal” domain, if the
HF component x4 (t) has equally spaced extrema. The deriva-
tion of the IMFs is then very similar to the sinusoidal case,

SFor nonpathological functions, this only means that the derivative and
second-derivative cannot be zero at the same time.
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with additional aliasing effects. First we can show that the first
IMF always contains the HF component. If we assume x4 (¢)
has maxima at integer time instants and minima at half-integer
ones, the Dirac combs associated to samplings are exactly the
same as in Section IV-B-1) and thus®

(8371 14 [

ri(v) —
(( L12P>Z§V—21L
_I_

(Z 1 2p+1) Z §(v —2n+ 1)>
nez
=z1(v) — 6(v) Z c12p = T1(v)

p

since z1(t) is an IMF with maximum value 21(0) = >°  c1,
and minimum value 21(0.5) = 3 (—1)Pc1 ;. Hence, the HF
component is left unchanged by the sifting operator.

If we now focus on the LF component, each Fourier coeffi-
cient at frequency pf can give birth to a set of aliased frequen-
cies at 2k + pf, among which only one is in the range [—1, 1]
where the interpolation filter is non-negligible. If &, ¢ is the in-
teger such that 2k, ; + pf € [—1,1], then

(Sw2)(v) =i(v) = 1(v) (Z C2pb(v —pf = 2kp7f)> ;

P

(v ZCZP pf+2kp f) (v—pf - 2kp,f)-

Thus, after one sifting iteration, the signal contains the HF
component, some harmonics of the LF component and possibly
aliased frequencies. Since the possible aliased components have
smaller amplitudes than the original harmonics, we can expect
that the extrema in the signal after one sifting iteration are still
close to those of the HF component. Given this, the model (7)
should still be valid for the following sifting iterations thus
allowing to finally express the first IMF after n iterations:

d§n) (t) — x(t) _ Z )\I()’n«)627pe2i7r(pf+2kp_f)t
p

where ASY = 1 — (1 — I(pf + 2k, 7))". We do not express
the second IMF here since z(t) — dln) (t) is not necessarily an
IMF like it was in the sinusoidal case. In the following, the two
components will be considered correctly separated iff d;(¢) =
r (t) .

From the expression of the first IMF, we can already predict
when the EMD will be able to accurately separate the two com-
ponents: all the harmonics of the LF component must have a
frequency lower than fc(n). Indeed, this implies that all %, ¢ are
zero and /\1(,”‘) ~ 1 which means that the first IMF is z(¢) minus
the LF component, and is therefore the HF component. On the
other hand, there is often no domain where the composite signal

SWe write here that Sx(t) = Sx1(t) + aSas(ft + ) which, in theory,
would truly hold if the extrema sampling was the same for both components.

log,qa log; qu

Fig. 10. Performance measure of separation for nonlinear signals with two
equally spaced extrema per period—Averaged value of the criterion (13) as
a function of the amplitude and frequency ratios for ten sifting iterations: (a)
x1(t) = s1(t), x2(t) = s2(t); (b) 21 (t) = s2(¢), 22 (t) = s1(¢). The black

thick lines stand for the contour lines cﬁlm(u, f.p))y =05
i

is considered a single IMF because of the possible aliased com-
ponents.

B. Examples

For the sake of simplicity, the example signals used in this
paper only have two Fourier components, fundamental and
second or third harmonic, but the proposed model remains valid
for more complicated signals. The two nonlinear waveforms
that will be used in the following are

s1(t) = cos(2x
s2(t) = cos(2m

t) + 0.15 cos(67t)
t) — 0.15 cos(4nt) + 0.15

where the last constant ensures that s (%) is already an IMF. The
criterion

00 -0l
laza(ft+©)||l2 1)

is plotted in Fig. 10 as a function of the amplitude and frequency
ratios with x1(t) = $1(¢) and x2(t) = so(¢) in Fig. 10(a) and
conversely in Fig. 10(b).

As can be seen in both figures, as soon as the amplitude ratio
is small or large enough, the behavior of (13) depends almost
only on the frequency ratio. A more thorough study would show
that this in fact coincides with areas where the extrema rate is the
same as one of the two components. Compared to the sinusoidal
case, we also notice that the transition area between these two
domains is much wider. The reason for this is in fact that the
width of the transition area in the sinusoidal case is a minimum
width.

If we now focus on the behavior of the decomposition in the
“normal” area, we can observe the same global behavior as in
the sinusoidal case, but it also appears that the value of the crite-
rion significantly departs from zero for much smaller frequency
ratios. This is, in fact, caused by the harmonics in the LF com-
ponent that are incorrectly assigned to the first IMF as soon

(”(

fop) = (13)
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as their frequency is higher than the cutoff frequency. Thus,
the smooth step around f ~ 0.32 in Fig. 10(a) corresponds to
the second harmonic of LF that is assigned to the first IMF as
soon as 2f > fc(,lo) ~ 0.65. Similarly the smooth step around
f =~ 0.22 in Fig. 10(b) corresponds to the third harmonic of
LF crossing the cutoff frequency. Aliased frequencies may also
be present in that figure as soon as 3f > 1. In fact these cor-
respond to the barely visible smooth step around f =~ 0.45 in
Fig. 10(b) because this also means that 2 — 3f ~ f§1°>. A sim-
ilar smooth step should be observable too in Fig. 10(a) around
f=065(2-2f~ 510)) but it is hidden by the big step cor-
responding to the fundamental.

VI. CONCLUSION

This study has first considered in detail the way the EMD
behaves in the simple case of a two-tones signal and then ex-
tended the results to a simple nonlinear model. A number of
experimental findings, well supported by a theoretical analysis,
have been reported. This allows for a better understanding of the
method and of its relevance in terms of adequation between the
mathematical decomposition it provides and its physical inter-
pretation. More precisely, one prominent outcome of the study
in the two-tones case is that the EMD allows one to address in
a fully data-driven way the question whether a given signal is
better represented as a sum of two separate, unmodulated tones,
or rather as a single, modulated waveform, with an answer that
turns out to be in good agreement with intuition (and/or percep-
tion).

A limitation of the present study is of course the model on
which it is based, which can be thought of as oversimplified and
unrealistic. However, following from the very local nature of
the EMD we expect that conclusions drawn from the study of
unmodulated tones still apply to slowly-varying AM-FM situa-
tions (see, e.g., Fig. 2).

Another possible extension is related to the model (7), which
is close to a linear filter: a popular situation where such a model
has been proposed is broadband noise, where it has appeared
that the EMD acts as a quasi-dyadic filter bank [4], [14]. Unlike
the two-tones case, however, the equivalent filters for broadband
noise have only been characterized by numerical experiments,
and no theory has been established yet. It is clear however that
the two situations are not disconnected, the spectral width of an
equivalent filter in the stochastic case being closely related to
the ability of distinguishing between neighboring components
in the deterministic case. A more precise approach is of course
necessary, and it is under current investigation.

APPENDIX
PROOF OF PROPOSITION 2

The proof is given only for the case where extrema are close
to those of 21 (¢) since it is almost identical in the other case. The
proof is based on a bijective function associating extrema of the
sum signal to extrema of z1 (), as soon as |a f| is small enough.
Let us first notice that the two functions being periodic and two
times continuously differentiable, their derivatives and second
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derivatives are bounded: |0;x; ()| < M;, and |02x;(t)] < M.
Given these, we define

N ¢ M, M|
| p_ Ml g
MZ’MQ}7 max{ m e (14

A:min{

Let us define the sets {#;} and {t/} as the locations of extrema
in z(t; a, f) and z1(t) respectively. Let us now consider an ex-
tremum of z(t; a, f) at¢;, assuming |af| < A. Since 2'(¢;) = 0,
we can write

|0sz1(t:)] = | — afOrwa(ft; + 9)| < la|fM2 <n.

Let us then define the range I; =]b, ¢[ as the largest open range
containing #; and such that for all ¢ € I;,|0:x1(t)] < 7. The
latter is not empty since d;x1(t) is continuous. Moreover, the
boundaries b and ¢ are finite because x1(t) being periodic and
two times continuously differentiable, there are periodically
locations where its second derivative is zero and therefore
|0¢z1 ()| > n. In addition, the continuity of d;x1(t) allows us
to write |0;x1(b)| = |0:x1(c)| = n because I; is the largest.
Besides, for all t € [;,]|07z1(t)] > ¢ which implies that
0fm1(t) keeps the same sign over I;. Assuming, for instance,
that 92x1(t) > e, then dyw1(t) is nondecreasing over I; and
since |01 (t;)| < 7, the only possible values at the boundaries
of I; are dyz1(b) = —n and d:x1(c) = 0. Hence, there is
an extremum t;- of z1(¢) in I; that can be associated to t;.
Moreover, d2x1(t) being positive over I;, there can only be
one extremum of z1(t) in /;, and it is a minimum. This allows
us to define a function F that associates extrema of x(t; a, f)
to extrema of x1(t) according to the previous procedure. In
addition, there is also a unique extremum of x(¢;a, f) in I;
because for all t € I;, d7x(t;a, f) > ¢ — af>*M} > 0. This
implies that F is injective.

The next step is to prove that F is surjective. Let us now
consider an extremum of x; (#) at #, assuming |af| < A. As
before, we can define the largest range I =], ¢[ containing
t’ and such that for all t € I7,|dsz1(t)| < 7, and if we as-
sume for instance that ¢} is a minimum, then J;z1(b') = —n
and J;z1(c¢’) = 7. Let us show that there is an extremum of
z(t;a, f)in I} if |af| < A. At the boundaries, 0;z(b') = —n +
aforxa(fV/ + ) < 0and Opu () =+ afopaa(fd + ) >0
since |Msa f| < 7. Hence, there is an extremum #; of x(¢; a, f)
inl ]’ and therefore the range 7 ; corresponds to the range /; as de-
fined earlier for extremum ¢; and thus F(¢;) = t;-, which proves
that F is surjective. Since the lengths of the ranges I; are all
smaller than the period of z1(#), the identity between extrema
rates of x(¢; a, f) and 1 (t) follows from the existence of F.

Finally, we can show that F(¢;) —t; — 0 when a — 0. To this
aim, let us introduce g;(u), defined on d;x1 (1) as the inverse of
therestrictionof 9,21 (t) to I;. g; (u) existssince 97 x1 () > ¢ > 0
on I;. Thus, t; — F(t;) = g;(0sw1(t:)) — 9:(Opw1(F ()=
gi(—aforxa(ft; + ¢)) — ¢:(0) which tends to zero whena — 0
since g;(u) iscontinuousand |a fOrx2 (ft;+¢)| < |af|My — 0.
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