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One-Parameter Families of Optimization Problems: 
Equality Constraints 

H .  T H .  J O N G E N ,  L2 P. J O N K E R ,  ~ A N D  F. T W I L T  1 

Communicated by A. V. Fiacco 

Abstract. In this paper, we introduce generalized critical points and 
discuss their relationship with other concepts of critical points [resp., 
stationary points]. Generalized critical points play an important role in 
parametric optimization. Under generic regularity conditions, we study 
the set of generalized critical points, in particular, the change of the 
Morse index. We focus our attention on problems with equality con- 
straints only and provide an indication of how the present theory can 
be extended to problems with inequality constraints as well. 
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I. Introduction 

Let Ck(~ ~, ~), k _> 1 or k = ~ ,  denote the space of real-valued, k-times 
continuously differentiable functions defined on the n-dimensional 
Euclidean space E n, n-> 1. Given finite index sets I, J, a differentiabte 
optimization problem P has the following standard formulation: 

(P):  minimizef,  subjectto M[h,g],  (1) 

where f h~, gj ~ C2(~ n, ~), i ~ I, j C J, and 

M[ h, g]= {x cR"l  hi(x)=O, g](x)>-O, i ~ I, j c J}. (2) 

The function f is the objective function, hi are the equality constraints, gj 
are the inequality constraints, and the set M[h, g] is the feasible region. 
The activity map J 0 : N " "  ~ ( J ) ,  ~ ( J )  being the power set of J, is defined by 

x~--~{j c Jlg~(x) =0}. 
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Thus, the set Jo(x) corresponds to the set of those inequality constraints 
which are active at x. For ~b~ C2(~",R), we denote by Dd?(x) [resp., 
O2(b(x)] the row vector of the first partial derivatives [resp., the symmetric 
n x n-matrix of  the second partial derivatives o f f ] ,  evaluated at x. 

Definition 1.1. A point ~ ~ R" is called a generalized critical point 
(g.c. point) for P or fMEh.g], if )7 6 M[h, g] and if the set {Dr Dhi, Dgj, i 
I , j  e Jo()7)}lx=~ is linearly dependent. 

The concept of a g.c. point encompasses, in a certain sense, every 
notion of stationary, critical, etc., points for P. Moreover, it turns out to be 
the right concept when dealing with parametric optimization problems. 

Let )7 be a g.c. point for P. Then, there exist reals A, Ai, t.9, i ~ I , j  c Jo(x), 
not all vanishing, such that 

A D f = E  )t,Dh, + E fxjDgjlx=~. (3) 
i e l  j~Yo(~) 

Of course, (A, A~,/xj ) in (3) are unique--up to a common multiple--if  and 
only if dim span{Dr Dhi, Dgj, i ~ I , j  ~ Jo()7)}lx=~ equals IIt+ tJo(~)l, where 
t" I stands for the cardinality. If  (A, A~,/xj) in (3) can be chosen such that 
A > O, i.tj >- O,j c Jo(g) [resp., A -> 0,/xj -> 0 , j  ~ Jo()7)], then ff is usually called 
a Kuhn-Tucker  point [resp., a point of  Fritz John type]. In both cases, 
local optimality criteria up to second order are welt known (Refs. 1 and 
2). In particular, a local minimum for P must be a point of  Fritz John type. 
However, a local minimum g for P need not to be a Kuhn-Tucker  point, 
unless some kind of a constraint qualification (of first order) at )7 is assumed. 
The simplest constraint qualification is to require the linear independence 
of  the set {Dhi, Dgj, ic I , j~ Jo()7)}lx=~. In the latter case it is easily shown 
that M[h, g], locally around ~, is C2-ditteomorphic with a neighborhood 
of the origin in H p x R q, where 

p = IJo()7)l, q = n - t I [ - p ,  

and 

U p ={(Xl . . . . .  xp)~NPlx,>-O, i= 1 , . . . ,p} .  

This means that we may replace the set M[h, g], locally around )7, by the 
"linear set"  H p x N q, by means of a C2-coordinate transformation. 

Definition 1.2. The set M:= M[h, g] is called regular at )7, ~ M, if 
{Dhi, Dgj, i6 I,j~Jo()7)}lx=~ is a linearly independent set. A generalized 
critical point ~ is called a critical point (for P or for fM)  if M is regular 
at)7. 
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If ~ is a critical point for P, then A, hi, ~: in (3) are unique if we put 
h = 1. In case J = Q, the concept of a critical point coincides with the 
concept of a critical point for differentiable functions on differentiable 
manifolds (see Ref. 3). Let A be a real symmetric n × n matrix, L a linear 
subspace of ~n, and V a matrix whose columns (R" vectors) form a basis 
for L. As a consequence of Sylvester's theorem (Ref. 4), the number of 
negative [resp., zero, positive] eigenvalues of VTAV is independent of the 
choice of the matrix V. By AlL we mean VrAV for some matrix V as above. 

Definition 1.3. Let ~ be a critical point for P. Then, we may write (3) 
as follows: 

Df= • hiDhi+ 2 tzjOg:lx=~. (4) 
i c I  j~Jo('2) 

The critical point ~ is said to be nondegenerate, if conditions ND1, ND2 
below hold: 

(ND1): /~j ~ 0, j  ~ Jo(~); (5) 

(ND2): D2L(~)IT is nonsingular, (6) 

where L(x) is the Lagrange function 

L(x) = f ( x ) -  ~ hih,(x)-  • Ixjgj(x) (7) 
iEI j~Jo(.~) 

and 

T = {~ ~ Rn I Dhi~ = Dgj~ = O, i ~ l, j c Jo(X)}lx= ~ . (8) 

Definition 1.4. Let g be a nondegenerate critical point for P. The linear 
index (coindex) LI(LCI) at ~ is defined to be the number of those /zj in 
(5) which are negative (positive). The quadratic index (coindex) QI(QCI) 
at ff denotes the number of negative (positive) eigenvalues of D2L(~)lr in 
(6). 

Obviously, a nondegenerate critical point £ for P is a local minimum 
(maximum) for flMth, g] if and only if LI + QI = 0 (LCI + QCI = 0). If  J = ~ ,  

the concept of quadratic index coincides with the Morse index (Ref. 3). If 
LI = 0, the quadratic index is equal to the s-index in the terminology of 
Kojima (Ref. 5). Moreover, if LI = 0 [resp., LCI = 0], the nondegenerate 
critical point is a (+) critical point [resp., ( - )  critical point] in the sense 
of Braess (Ref. 6). Note that nondegenerate critical points are isolated. 

Definition 1.5. The set M := M[h, g] is called regular if it is regular 
at every point x ~ M. The problem P (or fM)  is said to be regular if M is 
regular and all critical points for fM are nondegenerate. 
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For a detailed study on global aspects of regular optimization problems, 
such as the study of lower level sets, relations between critical points, etc., 
we refer to Ref. 7. 

We endow Ck(R",R), for an r<-k, with the strong (or Whitney) 
C~-topology (Ref. 8), the C~-topology for a finite product of copies of 
Ck(~ ", R) being the induced product topology. 

Theorem 1.1. Let I, J be fixed finite index sets, and let n --- 1. Put 

= {(f, h,, i ~ I, gj, j c J) ~ C2(R ", R) ~+ixl+lxl IfMt~,g~ is regular}. 

Then, :T is C~-open and dense in C2(~ ", R) l+l~l+lJI. 

The proof of the open part of Theorem 1.1 is straightforward. The 
dense part within the class of C°~-functions is basically proved by means 
of Sard's theorem (Ref. 8). Since C~(R ", ~) is C~-dense in Ck(~ n, ~) for 
all r_< k (Ref. 8), the dense part in Theorem 1.1 follows. We emphasize 
that the statement of Theorem 1.1 contains both an approximation aspect 
and a stability aspect. For a detailed discussion on the latter subject, we 
refer to Ref. 9. Note that M[ h, g] is always empty if ( f, hi, i ~ I, gj , j  ~ J) ~ 
and IZl > n. 

After the above preliminaries, we pass on to optimization problems 
which depend on a real parameter, say t. Let f, hi, gj, i~ / ,  j 6 J, be 
C2-functions of n + 1 variables, the last variable being denoted by t. Every 
t defines an optimization problem P(t): 

[P(t)]:  minimize f ( . ,  t), subject to M(t) ,  

where M( t) = M [ h ( . ,  t), g ( . ,  t)]. (9) 

For a special fixed value of t, say ~, it is not unreasonable to assume, 
in view of Theorem 1.1, that P(t') is regular. However, as t varies in R, for 
certain values of t the problem P(t)  need not to be regular. In fact, the 
following types of degeneracy may occur: 

(a) M(t )  fails to be regular at some point 2; 
(b) the point ~ is a critical point for P(t) ,  but condition ND1 or 

ND2 fails to hold [cf. (5), (6)]. 

In this paper we restrict ourselves basically to problems with equality 
constraints only, i.e., J = Q. In particular, we study some aspects of the set 
of g.c. points for P(t)  as t varies. Although the assumption J = • seems to 
be very restrictive, the results in case J = O form a basic tool for the 
investigation of the general case J # Q. We will return to this point in the 
last section. 
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2. Statement of the Theorems 

In this section, we deal with optimization problems with equality 
constraints only, and the notations will be appropriately adapted. 

Let n, m be fixed integers with n_>l and O<-m<n. Let fo, f , , . .  °,fro 
be elements of C3(N "+~, R), (x, t)~-~f(x, t), x~R", teN. We put 

M ={(x, t) 6N"+'lf(x, t) =0, i= 1, . . . ,  m} 

and 

M ( t ) : { x ~ R " l ( x ,  t)~ M}. 

For each fixed t, fo( ' ,  t) stands for the objective function, whereas M(t) is 
the feasible region, determined by the equality constraints f ( . ,  t), i=  
1 , . . . ,  m. Together, they define the optimization problem P(t) according 
to (9). In the following, we use partial derivatives up to third order. 
Therefore, we assumed all f to be of the class C 3. We exclude the case that 
M(t) is a discrete set for all t. This is the reason for taking m less than n. 

As an abbreviation, we put 

F :  ( fo , f~ , . . .  ,fro) v, 

Coker(x, t ) = { a  ER"+IIa T DxF(x  , t )=0},  

Ker(x, t )={~eR"lD,~(x,  t )8=0 ,  i=  1 , . . . ,  m}. 

Here, Dx stands for partial derivative with respect to x. 

Definition 2.1. A point (x, t )cR "+1 is called a generalized critical 
point (g.c. point) for F if (x, t) c M and rank DxF(x, t) <- rn. By £(F) ,  we 
denote the set of all g.c. points for F. 

Note that (x, t )c  R,+I is a g.c. point for F if and only if x is a g.c. 
point for fo( ' ,  t)lM(O in the sense of Definition 1.1. Given h e R "+1, 

a = (ao,  a ~ , . . . ,  am) r 

we adjoin to F the following generalized Lagrange function 

~(x,  t, A)= ZrF(x, t). (10) 

Let (~, t-) be a g.c. point for F, with 

dim Coker(& t-) = 1. 

Let 

= (~o, L , - . . ,  i ~ )  m 

be a generator of Coker(~, t-') and consider the following three special types. 
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Type 1. ~.o#0; r a n k A = n - m ;  characteristic number: a. 
Specification of A, a:  Let V be an n x (n - m)-matrix whose columns 

form a basis for Ker(~, t-) and put 

A = AoVTD2x~VI(x , t ,a)=(~j ,X) ,  

where D ~  stands for the Hessian of ~ with respect to x. Define a to be 
the number of  negative eigenvalues of A. 

Type 2. h o e 0 ;  r a n k A = n - m - 1 ;  / 3¢0 ;  characteristic numbers: a, 
sign(/3). 

Specification of A, a , /3:  The definition of A and a is the same as in 
Type 1. Choose w e R n-m, w # 0, such that Aw = 0, and put v = Vw, with V 
as in Type 1. Define 

F0 = ( f l , . . .  ,fro) T. 

Put 

Fo(D,,FoDxFo) (v D,~Fov), = v  ( D , ~ v ) v - 3 v  Dx~D, ,  v -1 v 2 3 1  T 3 T 2 T 

where 

v T ( D ~ v ) v  = ~ (O3/Oxi Ox~ OXk~.)ViVjVk, 
i,j, k = 1 

vrO2xeov=(vrO2xflV ' T 2 r . . . ,  v D xfmv ) , 

DxFo being the m x n matrix with O/Ox~Fo as ith column, and where all 
partial derivatives are evaluated at (2, ?, X) [resp., (& [)]. Put 

/32 = Vt(  U~.f£v ) - ( D T Fo)( D~ FoD~ Fo)-~ V~ F o D ~ v ,  

where Dt = O/Ot and all partial derivatives are evaluated at (& ?, h) [resp., 
(:~, t-)]. Finally, put 

/3 =/31/32. 

Type 3. h = 0; B nonsingular; 6 # 0; characteristic numbers: % sign(a). 
Specification of  B, 3/, 6: Let W be an n x ( n - m + l )  matrix whose 

columns form a basis for Ker(& t-), and put 

B = Dt~WTD2x~gW, 

evaluated at ()7, ?, [ ) .  The number y is defined to be the number of positive 
eigenvalues of  B and 

6 = wrB- lw,  

T T where w = W D~fo, evaluated at (~, f). 
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Note that the numbers a, sign(/3), % sign(g) in the above types are 
independent from the incidental choice of the generator ~ of Coker(E, ~ ,j, 
of V, etc. Therefore, we call them characteristic numbers. In the following 
definition, we identify C3(E "+~, R "~+~) with C3(E "+~, R)"+L 

Definition 2.2. An FEC3(Rn+I,N re+l) is said to be regular if the 
following two properties hold for every (x, t)~ E(F):  

(i) dimCoker(x,  t) = 1; 
(ii) (x, t) is either of  Type 1, Type 2, or Type 3. 

The set ~ is defined to be the set consisting of all regular F. 

Theorem 2.1. (Genericity). ~ is C~-open and dense in C3(R "+1, R"+I). 

Theorem 2.2. (Manifold). Let F ~ if, and let E(F)  be nonempty. Then, 
E(F)  is a one-dimensional C2-submanifold of R "+1. All critical points of 
4~lz(v~ are nondegenerate, where qS(x, t):= t. Moreover, a point (x, t)~ E(F) 
is a critical point for 4~t~v) if and only if (x, t) is of Type 2 or Type 3. 

Let F be an element of  ~. If  (x, t) e Z (F)  is of  Type 1, then, locally 
around x, M(t) is a C3-manifold and x is a nondegenerate critical point 
for fo( ' ,  t)l~(n. Moreover, the quadratic index (Morse index) at x for 
fo( ' ,  t)tM(o equals the characteristic number o~. If  (x, t) c ~£(F) is of Type 2 
or Type 3, it is easily seen from Theorem 2.2 that Z (F)  can be locally 

It a2= or+! ~2 = ~r4-I 

type 2, signj3=.l-1 type 2, sign~ - - - -1  

- - -~Rr i  

Crl= F -1  eel= F 
~r2= n - m - - y + 1  c~2= n--m-y 

type 3, sign~;=-P1 t~/pe 3, sign~ =z-- 1 

Fig. 1. 
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approximated by a parabola. In fact, this parabola is the second-order 
approximation of the orthogonal projection of E(F) to the osculating plane 
of E(F) at (x, t). 

Theorem 2.3. (Quadratic Index). Let F c  if, and denote by E~(F) the 
subset of E(F)  consisting of all points of Type 1. Then, the quadratic index 
is constant on each connected component of Ea(F). Moreover, passing on 
E(F) a point of Type 2 or Type 3, the quadratic index changes as indicated 
in Fig. 1. 

3. Proof of  the Theorems 

We adopt the notations of Section 2. In particular, (~:~n+l._>~ will 
always stand for the projection (x, t ) ~  t. We firstly clarify the theorems in 
two special cases. These two special cases will provide, together with an 
analysis in local coordinates, the tools for proving the theorems. 

Case 1. m =0. In this case, we have F =f0 and E(F) reduces to the 
set {(x, t) ~ En+' I DxF(x, t) = 0}. By ~i we denote the set of all real symmetric 
n × n matrices of rank i. Then, ~i is a smooth submanifold of R ½n~n+l~ of 
codimension ½(n - i)(n - i+ 1) (see Ref. 10). Consider the manifolds 

~ = R n  XRx{O}x Mi, i=0 ,  1 , . . . ,  n, 

where {0} C ~n and the manifold 

~/v = {(x, t, DxF, D~F)I(x ,  t) ~ R"+I}. 

Here, D] F stands for the matrix (02/Oxi OxjF(x, t)), viewed at as an element 
of R ~"("+~). Put 

p = 2 n + ½ n ( n + l ) + l .  

Then, ~ i ,  ~tv are submanifolds of R p. We say that F satisfies Condition (*) 
if 

~ v  • ~ i ,  i=0 ,  1 , . . . ,  n, 

where ~ stands for transversal intersection (cf. Ref. 8). Suppose that F 
satisfies Condition (*). Then, in particular, 0 c R" is a regular value (Ref. 8) 
for the C2-map (x, t ) ~ D ~ F ( x ,  t). Consequently, the closed set E(F) is a 
one-dimensional C2-submanifold of R "+~. Furthermore, 

~ v c ~ = Q ,  for i--< n--2. 

In fact, note that the inequality i -< n - 2 implies that 

codim ~ -> n + 3 
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(codimension in ~v). Consequently, in case D~ F(& t') is singular at (:7, ~ 
E(F),  exactly one eigenvalue of D2x F(:7, t-) vanishes. Now, suppose that 
(:7, t-)~ E(F)  and det(D 2 F(:7, t-))= 0. From the fact that :gF ?g ~n-1,  it is 
not difficult to see that det(D 2 F) changes sign if we pass (:7, t-) along £(F) .  
Moreover, a short but tedious calculation shows that (07, ?) is a nondegener- 
ate critical point for qSix(F ) and that the second derivative of ~bl~(p) in local 
coordinates of £ (F )  at (& t-) is equal to 

-Ixv-C(D 3 Fv)vD,(DxFv), (11) 

where v is a unit eigenvector belonging to the vanishing eigenvalue of D 2 F 
and/~ some positive scalar. We put 

3t = vr(U 3 Fv)v, 3: = D,(DxFv), B = 31/32. (12) 

In particular, if 3 > 0 [resp.,/3 < 0], then (:7, t-) is a local maximum [resp., 
local minimum] for qSl~(F ). Note that this is in accordance with Fig. 1. 
Finally, we put 

~-= { F c  C3(N "+1, R)[ F satisfies Condition (*)}. 

From the above discussion the validity of Theorems 2.2 and 2.3 for the 
family o~ follows at once. Next, we establish that ~ is C3,-open and dense 
in C3(R "+1, R), thereby showing that Theorem 2.1 is valid as well. The open 
part is easily shown with a continuity argument, taking into account that 

n - 2  the set [_J~=o .;4~ is ctosed. Since C°°(N "+1, ~) is C3-dense in C3(R "÷1, R) 
(see Ref. 8), for the dense part it sutfices to show that ~'c~ C°°(R~+I, R) is 
C3-dense in ~ ,+1 C~(N.41, C (R ,R). So, let F ~  ~). By means of local 
perturbations of F with polynomials up to degree two, we may achieve [by 
application of Sard's theorem (Ref. 8) with respect to the coefficients of 
the perturbation polynomials] that F satisfies Condition (*) locally. The 
globalization of this local result is carried out by means of a local-+ global 
construction, as is usually done in differential topology. 

Case 2. m = 1 and at (2, t-') the following assumptions hold: 

(a) f~ =0,  D~fl=0,  2 D~flD~fl nonsingular; 
(b) 2 -1 T D,,fo(D,f~Dxf~) Dxfo#O. 

In this case, we investigate the set £ ( F )  in a neighborhood of (& t-'). 
Assumption (b) implies, in particular, that D~OCo(:7, ~') # 0. Now, a moment 
of reflection shows that, locally around (& t-), the set £ ( F )  can be described 
as the projection onto the first n + t coordinates of the solution set of the 
following system of n + 1 equations in the n + 2 variables (x, t, h): 

hD~fo+ -c _ D x f 1 - 0 ,  (13a) 

f~ =0. (13b) 
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The Jacobian matrix of  the system (13), with respect to (x, t, h), at (2, f, 0) 
has the following form: 

2 I T I T 
r • PAf-' - L ~ ~-/-°-l (14) 
L o I D,A I ,o ..! 

From Assumption (a) and the fact that Dffo # 0, it follows from (14) that 
the solution set of (13), say At, can be parametrized (implicit function 
theorem) by h, but also by some of the x-coordinates. In particular, At is, 
locally around (2, [, 0), a one-dimensional submanifold of •.+2 of class C 2. 
The tangent space 3- of  At at (2, [, 0) is generated by the vector (~7-, 7, v) v, 
where 

( - D ~ f o D x f ~ ,  0, 1). (15) ( ~ m  T~, / " ) =  2 1 

To see this, note that (~-r, % v) is a solution of  the following linear system 
[cf. (14)]: 

O~fl~ + rlD, D~ft  + vD~j;  = O, (16a) 

~TO,fi = 0. (16b) 

Since D,fi # O, we obtain ~7 = 0, and hence 
2 1 T ~=-, ,O~ Dxfo. 

This implies (15). Consider the special height function O(x, t, A) = t. Then, 
(~, ?, 0) is a critical point for qbl~, and the corresponding Lagrange para- 
meters a l , . . . ,  an, a,+l satisfy the following system of linear equations: 

• r n ~ f l  0 a ,  
= ID, D ~ I  . (17) 

1_ D J o  +1 

0 

From (17), we see that 

O / i = -  • • = ten = 0 ,  

since D~fi is nonsingular. Consequently, 

a,,,+l = (Dd~l) -i. 

The associated Lagrange function becomes t -  a,+~fi(x, t). The restriction 
of the Hessian of this Lagrange function to the tangent space 3- of At at 
(2, ?, 0) becomes (noting that the Lagrange function does not depend on )t): 

Oxfi- )(-a,,+~ Oxfi)(-OxfoD~ffa ) ( -Dxfo  2 1 2 2 , r 

D 2 -1Dr • = -D~fo(D,A ~A) xfo =. -6 .  (18) 
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Note that 6 in (18) does not vanish in view of Assumption (b). In particular, 
if 6 > 0 [resp., 6 < 0], then (~, r, 0) is a local maximum [resp., local minimum] 
for c)l~. From the fact that d~ can be parametrized by some x-coordinate, 
it is easily seen that Y.(F) is, locally around (~7, t-), a C2-submanifold of 
~,+1 and that (~, t-) is a nondegenerate critical point for ~blz~(v ) . Moreover, 
the second derivative of 4~I~(F) in local coordinates of Z(F)  is a positive 
multiple of  ( - 8 )  in (18). Compare this with the orientation of the parabolas 
(Type 3) in Fig. 1. 

We proceed with a discussion of the case 6 > 0. Then, for ~, ?<  T and 
T-~ ~, there are exactly two solutions (x, ~, A) of (13) in a neighborhood of 
(~, f, 0), say (~1, 7, ~1), (yz, ?, ~2). Since a generator for the tangent space 3- 
of dd at ()~, ?, 0) has some nonvanishing x-component and a nonvanishing 
A-component [cf. (15)], we see that Y~¢ ~2 (and ~)7) and that ~1, ~2 are 
both nonvanishing and of opposite sign. The points Y~, i = 1, 2, are critical 
points for fo(-,  ~ restricted to the set {x[f~(x,  t")=0} with - 1 / ]  ~ as corre- 
sponding Lagrange parameter [cf. (13)]. In order to compute the corre- 

~ i  sponding Morse index at x ,  we have to determine the number of negative 
eigenvalues of  the following restricted matrix at ()~, ~:  

D 2 + -~ ~[fo 1/h Ofl]lKerD~f~, (19) 

where 

Ker D~f~ = {~: ~ R"] D~fl (~ ~, t')~: = 0}. 

Since I1 '- 1t, I -t-1 are arbitrarily small, and since 

Ker Dxfl = Ker D J o  

in (19), we may equally well determine the number of negative eigenvalues 
of the following restricted matrices: 

± DZ f l ( y~, t-)lK~ Ojo( ~,r) , (20) 

or equivalently of  the following matrices: 

± D J , ( ~ ,  t-)D~A()~, t-)IK~r Djo(~.r), (21) 

provided that the restricted matrices in (20) [resp., (21)] are nonsingular. 
This latter fact, however, follows from the Assumptions (a), (b) and the 
following lemma. 

Lemma 3.1. Let B be a real nonsingular symmetric n x n matrix, 
w c R n, and define 

wt={~°lwT~=0}. 
Let the word index stand for the number of  negative eigenvalues. Then: 

(a) if w V B - l w  ~ O, Biw~ is nonsingular; 
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(b) i f w V B - l w > O ,  index Brw~=index B; 
if  wVB-lw<O,  index BI,~ = i n d e x  B - 1 .  

Proof.  Let 

w T B - I w  ~ 0, 

and let V be an n x (n - 1) matr ix  whose co lumns  span w ~. Put 

w=[BViw]. 
Then,  we have 

l wVB_lw j . (22) 

The matr ix  VTBV is nonsingular .  In fact, suppose  that  

V-rBVa = 0 ,  for  some o reR  "-l .  

Then,  

BVa = 7w, for  some y ~ R. 

Hence,  

Va = yB- lw,  

and thus 

0 = wTVa = ywTB-tw.  

This implies  that  3' = 0. But then, Va = 0, and consequent ly  a = 0. This 
implies the nonsingular i ty  of  VTBV, and hence Sta tement  (a) o f  L e m m a  
3.1. F rom the b lock  structure in (22), we now conclude tha t  W is nonsingular .  
Hence,  in view of  Sylvester 's  t heorem (Ref. 4), we have  

index WmB -1 W =  index B -1. 

Obviously,  

index B - i  = index B 

and  

index VTBV = index Biw~. 

Now,  Sta tement  (b) o f  L e m m a  3.1 follows by taking the b lock structure 
(22) into account .  [] 

Now,  we put  

B = D,fl(~ , t--) D~fl(.~ , t-), w = DTxJo(~, t"), 
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and let 3' be the number  of  positive eigenvalues of B. Thus, 

index B = n - 3'. 

Since we still assume 6 > 0, we have 

wVB-lw > 0 

[cf. (18)]. From Lemma 3.1, it follows that 

index Biw~ = index B = n - 3,. 

For the matrix ( - B )  we have 

i n d e x ( - B )  = 3, 

and 

wr(-B)-lw<O. 

Again from Lemma 3.1 it follows that 

index(-BiwO = i n d e x ( - B )  - 1 = 3' - 1. 

From this discussion, it follows that the Morse index at yi equals n - 3 ,  
[resp., 3' - 1]. This is in accordance with Fig. 1 [Type 3, sign(6) = +1, m = 1]. 
The calculation for the case ~ < 0 is analogous and will be omitted. 

In order to exploit the foregoing two special cases within a local 
coordinate analysis, we need two more lemmas. 

Put 

M[fa, . . .  ,fro] = {(x, t) E~n+llfi(x, t ) = 0 ,  i =  1 , . . . ,  m}. 

I f  the functions f~ , . . . , fm are fixed, then we write M instead of 
M[f~, . . .  ,fro]. The subset ~* of C3(R "+1, R m) is defined as follows: 

~* = { ( f l , . . .  , f , , )  r e  C3(R "+', R'~)[ 

~blM~S~,....Smj is regular in the sense of Definition 1.5}. 

Lemma 3.2. ~* is C~-open and dense in C3(R "+1, R ' ) .  

In Ref. 11 (Lemma 1.1), it is shown that ~* is C2-0pen and dense in 
C°°(R "+I ,R") .  However, the same arguments can be used in order to 
establish Lemma 3.2, taking into account that C~(R "+~, Rm) is C3-dense 
in C3(R "+1, R") .  

Next, we put 

o ~e* = C 3 ( ~  n+l, ~ )  x ~:g. 

Then, ~ *  is C3-0pen  and dense in C3(R "+~, ~,,+1). The set ~" in Definition 
2.2 will actually become a subset of if*. The proof  of  the next lemma is 
easy and will be omitted. 
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Lemma 3.3. Let F e  o%* and (~, t--) ~ M. Then: 

(a) if (£, t-) is not a critical point for q~IM, {D~/~, i = 1 , . . . ,  m} is a 
linearly independent set; 

(b) if (~, t-) is a critical point for 4~IM, 

dim span{D~f, i = 1 , . . . ,  m} = m - l ;  

furthermore, there exist unique reals al, i = 1, . . . ,  m, such that 

a i D ~ = O ,  ~ a i D ~ =  1, (23a) 
i=1 i=1 

D ~ ( ~  a ~  1 nonsingular. (23b) 
i=1 / I Ker(~2, ~) 

Let F ~ ~'*, and let (~, t-) c M be a critical point for 4~LM- Then, (£, t-) 
belongs to E(F),  and we may assume without loss of generality that 
{ D x f l , . . . ,  D~/'m_l} is a linearly independent set [cf. Lemma 3.3(b)]. This 
implies that a,, in (23) does not vanish. Choose ¢,,, ~:,,+l, • • . ,  ¢, c R" such 
that "r v { D x f ~ , . . . ,  Dxfm-1, ¢ , , , . . . ,  ~,} forms a basis for R , and define the 
C3-map Q as follows: 

Q(x, t)= (fl(x, t), . . . , f , ,- t(x,  t), ¢ ~ ( x -  £), . . . , ~V~(x- £), t - t -)  v. 
(24) 

T h e n ,  

O(~, t-) = 0, 

and DQ(:~, t-) nonsingular. Hence, Q is a local coordinate transformation. 
By (y, u) we denote the new coordinates. Note that Q maps t-hyperplanes 
to u-hyperplanes and that Q preserves the orientation of the t-axis. In the 
(y, u)-coordinates, the set M is locally represented by the following set: 

{(y, u) l a,~,, o Q-~(y, u) = O, yl . . . . .  y,,_~ = 0}. (25) 

A short calculation shows that 

(O/Oy,)a,~fm ° Q-a(0) = o, i=  rn, m + 1 , . . . ,  n, (26) 

[(02/oy, Oyj)a,~fm°Q ()]~,j . . . .  +1 . . . . . .  = W T D  2 ~ t-) W, (27) 
i 

where W is a suitably chosen n x ( n -  m + 1) matrix whose columns span 
Ker(£, t-), 

( o / o u ) a j ,  oO-'(O)= D , [  ~= atf(:~, t-)I, (28) 

(O/Oym,..., O/Oy,)fo ° Q-~(0) = Dxfo(£, t-) W, (29) 

where W coincides with the matrix W in (27). 



JOTA: VOL. 48, NO. 1, JANUARY 1986 155 

Put 

w = W T D ~ f o ( ~ ,  t-). 

From Lemma 3.3(b) it follows that B is nonsingular. By means of a local 
perturbation offo in a neighborhood of (~, t-) with a suitable linear function, 
we can achieve that w V B - l w  • O. Note that such a perturbation can be done 
simultaneously at all critical points of q51M, since the critical points of ~blM, 
being nondegenerate, are isolated. 

Concerning the above analysis in local coordinates, we see that we are 
in the situation of Case 2, with space dimension n - r n  + 1 instead of n. 
Moreover, the sketched perturbation argument implies the following lemma. 

Lemma 3.4. Define ~** as follows: 

~ * * =  {F ~ o~*[every critical point (x, t) for (alMtf~,...,fmj satisfies 

Coker(x, t) = 1 and (x, t) is of Type 3 forE(F)}.  

Then, o ~** is C3-open and dense in C3(~ n+l, ~m+l). 

Now, suppose that F ~ Y:** and that ()~, t-) ~ M is not a critical point 
for ~btM. Since f f**C ~*,  it follows from Lemma 3.3(a) that {D~/~, i =  
1 , . . . ,  m} is a linearly independent set. Choose vectors ~:m+l,..., ~:n ~ R" 
such that {DV~f~ 7- , . . . ,  Dx f , , ,  ~m+l , . . . ,  ~}  forms a basis for ~ , and define 
the C3-map Q as follows: 

Q(x, t )=  ( f , (x ,  t ) , . . .  ,fro(x, t), v ~ :m+, (x -~ ) , . . . ,  ~:~(x-~),  t -  t-) v. 
(30) 

Then, Q(ff, t-) = 0, DQ()~, t-) nonsingular, and hence Q is a local coordinate 
transformation. By (y, u) we denote the new coordinates. Note that, again, 
Q maps t-hyperplanes to u-hyperplanes and that Q preserves the orientation 
of the t-axis. In the (y, u)-coordinates, the set M is locally represented by 
the equations 

Yl . . . . .  ym =0.  (31) 

Put 37 = (Y,,+I, •. •, y , )  and 

f0(fi, U) =f0 ° Q--I(o, y, U). (32) 

By means of  (32) we have reduced our analysis, locally, to Case 1, with 
space dimension n - m instead of n. From the discussion in Case 1, we see 
that we can approximate jTo arbitrarily well, locally, in the C3-sense such 
that the approximating function satisfies, again locally, Condition (*) as 
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introduced in Case 1. But then, it is easily seen that we can extend this 
approximation to a local approximation offo  itself in the original coordin- 
ates. This implies immediately the following lemma. 

Lemma 3.5. Define o ~ as follows: 

o~ = {F c ~'** I at every point ($, f) c M, with (~, t--) not a critical point 
for ~blM, the function fo in (32), according to local coordinates of 
the form (30), satisfies Condition (*) as introduced in Case 1}. 

Then, ~ is C3-open and dense in C3(R "+1, W~+t). 

In fact, the family ~ in Lemma 3.5 is precisely the family ~ as 
introduced in Definition 2.2. 

As a matter of fact, the remaining part of the proof  of the theorems 
basically consists of the clarification of the formulas for /3~, 132 in the 
specification of Type 2 (Section 2). More specifically, we have to determine 
the numbers/31,/32 in (12) with F := fo in terms o f the functions fo, f l ,  • • •, fro. 

The assumptions on 37o are: 

D;fo(O) = 0, rank D~37o(0) = n - m - 1. (33) 

Let w be a nonvanishing (n - m)-vector such that 

D}fo(O)w=O. (34) 

From (33), it follows that there are unique numbers 31, • • . ,  am such that 

D,~fo+ ~. aiDer = 01(~d). (35) 
i = 1  

Put 

L(x, t)=fo(x, t)+ ~ a~(x, t). (36) 
i = 1  

Firstly, we calculate the following number [cf. (12)]: 

wV(D}f(O)w)w. (37) 

A moment of reflection shows that the number in (37) equals 

d3/dy3L o O-'(O, yw, 0)1~= o. (38) 

As an abbreviation, we denote by x(y)  the vector consisting of  the first n 
components of  Q-~(0, yw, 0). So, we have to determine the number 
d3/dT3L(x(T), t-)~v=0. Let ( . , .  } denote the standard inner product. Then, 

(d/dy)L(x(y), t-) =(D~ L, 2), 
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where 2 [resp., 5/, 2] stands for the first [resp., second, third] derivative of 
x(~,). 

Furthermore, 

(d2/ dy2)L(.x(y), t--) =(D~ L2, 2)+(DV~ L, Y); 

hence, 

(d3/dy3)L(x(y), t-')l,= o = ((D3L2)2, 2)+ 3(D2x Lx, 2)+(D~L, E)I,= o. 
(39) 

Note that D~L(Y~, t-) vanishes [of. (35), (36)], and hence the last term on 
the right in (39) vanishes. A simple calculation shows that 

D}jTo(O) = VTDZ~L(X, t-)V, 2(0)= Vw, (40) 

where V is a suitably chosen n x ( n - m )  matrix whose columns span 
Ker(g, t-). A combination of (34) and (40) shows that 

Vr D~L(X, t-) Vw = O, 

and hence 

VV D~L(X, t-)2(O) = O. 

Consequently, D~L(Y~, t-)2(O) is orthogonal to Ker(~, t-). We write 

Y(O) = ~+ DV~Fon, 

where ~ e KerOL t-), 7/ a unique m-vector, and 

Fo = ( . f i , . . .  ,fm) T. (41) 

With this notation, (D2xL2, 2) in (39) reduces to (D~L2, D~Fo~I). So, it 
remains to determine r/ in terms of the functions fo, f~,---  ,fro in order to 
obtain an explicit formula for (37). 

From the definition of x(7), we have 

f , (x(z,) ,  0 -  0, i = 1 , . . . ,  m. 

Consequently, 
T (Dx f ,  2) =- O, 

and hence 

(D~f2,2)+(D~f ,  Si)=-O, i = l , . . . , m .  

As an abbreviation, we put 

v = V w ( = ~ ( 0 ) ) .  

Then, we obtain 

D,,FoE(O)=_(vTD~flv,. T 2 T .. ,  v Dx f ,  v)l(~,O. (42) 
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Furthermore, 

DxFoS~(O) = D,,Fo(£ + DV~ Fon) = D,¢FoD~ Forl; 

and hence, using (42) and the fact that DxFo is of full rank, we obtain 

= T --1 T 2 "1 -(D, ,FoDx Fo) (v Dxf ,  v, . .  . , vr D2f,,,v)~,~). (43) 

A combination of  (39), (40), (41), (43) yields the formula for the number 
/31 in the specification of Type 2 in Section 2. 

Finally, we have to determine the following number [cf. (12)]: 

(02/07 Ou)fo(yW, U)lv=u=0. (44) 

A moment of reflection shows that the number in (44) is equal to 

(02/Ou OT)L o Q-'(O, yw, u)lr=,=o. (45) 

In order to compute (45), we firstly note that 

{ (O/O'y)Lo Q-I(O, yw, u )=  DrL,  D Q - '  . (46) 

Consequently, the number in (45) becomes 

{ [!] [i]/( [o]}uo D2LDQ - '  , D Q - '  + DrL,  O/OuDQ -1 (47) 

Note that 

DL = (0, 0, DtL)I(~,~ ). (48) 

Put 

7/(U) = DQ-I(0,  0, u) . 

Then, it is easily seen that the last component of ~/(u) identically vanishes. 
Consequently, the derivative of the last component of'~7(u) vanishes as 
well; and hence, using (48), we see that the right term in (47) vanishes. A 
short calculation shows that 

Io] oo-  o, =[ .=[;], 
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with Vw as in (40). So it remains to calculate 

DQ-a(O) = ~,+1 " 

Then, ~, ~,,+, solve the following linear system: 

Dxf, D,T~ 

~+I 0 

1 

~.~ o 

0 1 I(~,r) 

From (49), we see that ~',+, = 1. Hence, the left term in (47) becomes 

(~, D~Lv) + D,(DxLv). (50) 

Next, we write 

~=~+ T Dx Fo~l, 

where ( ~  Ker(~, t-) and 7/ a unique m-vector. Recall that D~L(~, t-)v is 
orthogonal to Ker07, t-). Consequently, 

(~, DZ~Lv)= (D m Fo~l, D2 Lv). (51) 

Since ~c Ker(£  t-), we have 

DxFo~ = mxFoD~ Forl. 

From (49) we see that 

Dx Fo~ = - D, Fo ; 

and hence, we finally obtain 

_ _  T - - 1  ~7--(DxFoD~Fo) DtFol(~,o. (52) 

A combination of (50)-(52) yields the desired formula for 32 as in the 
specification of Type 2 (Section 2) and this, at last, completes the proof of 
our theorems. [] 

(49) 
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4. Final Remarks 

In this section, we adopt the general notation of Section 1. In Section 
2 and Section 3 we studied in detail the equality constrained case, i.e., 
J = O. The general case, J ~ 0 ,  can be treated as follows. Put 

Jo(x, t ) = { j e J l g j ( x ,  t )=0}.  

In a neighborhood of those feasible points (x, t) at which {D~hi, D~g~, i c 
I , j  ~ Jo(X, t)} is a linearly independent set, the basic tools for extending the 
presented theory are given in Ref. 12. In particular, Ref. 12 contains a 
detailed study of the case where a Lagrange parameter, corresponding to 
an active inequality constraint, vanishes. 

In the case where the gradients (with respect to x) of the  active 
constraints are linearly dependent, it turns out that one has to distinguish 
the following two situations, namely, 

[I[+]Jo(x, t ) [ = n + l  

and 

]II+ ]Jo(X, t)l < n + 1. 

The results in Section 2 can be applied in the latter situation, as a complicated 
generic activity analysis shows. Such an analysis, however, would blow up 
the size of this paper. It will be the subject of a forthcoming paper (Ref. 13). 

Another approach in parametric optimization is presented in the very 
interesting papers of Kojima (Ref. 5) and Kojima and Hirabayashi (Refs. 
14 and 15). In their analysis, they restricted themselves to the study of 
Kuhn-Tucker points with the Mangasarian-Fromowitz constraint 
qualification as the underlying assumption. We believe that their approach 
and ours together will finally result in a good understanding of the topology 
of nonlinear parametric problems. 
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