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ONE-PARAMETER INVERSE SEMIGROUPS

BY
CARL EBERHART AND JOHN SELDEN

Abstract. This is the second in a projected series of three papers, the aim of
which is the complete description of the closure of any one-parameter inverse semi-
group in a locally compact topological inverse semigroup. In it we characterize all
one-parameter inverse semigroups. In order to accomplish this, we construct the free
one-parameter inverse semigroups and then describe their congruences.

0. Let G be a subgroup of the multiplicative group of positive real numbers and
let P denote the subsemigroup of G consisting of all x € G with x= 1. Denote by %,
the class of all inverse semigroups H for which there is.a homomorphism f: P — H
such that f(P) generates H (no proper inverse subsemigroup of H contains f(P)).
We shall call such semigroups H one-parameter inverse semigroups and denote by
& =\Jp %r the class of all one-parameter inverse semigroups.

The class € contains well-known semigroups. For example, each homomorphic
image of a subgroup of R, the positive real numbers, is a member of ¥. Also the
bicyclic semigroup B is a member of %, as is seen by noting that B is generated by a
copy of the nonnegative integers. Indeed, if H is any elementary inverse semigroup,
then H! is generated by a homomorphic image of the nonnegative integers, and so
is a one-parameter inverse semigroup.

The main purpose of this paper is to describe all one-parameter inverse semi-
groups. In the process of doing this, we shall construct what we term the free one-
parameter inverse semigroups Fp, one for each subgroup G of R and its associated
semigroup P. The semigroup Fp is the only inverse semigroup (up to isomorphism)
generated by a subsemigroup isomorphic with P which has the property that each
homomorphism f: P— S, an inverse semigroup, extends uniquely to a homo-
morphism f: Fp — S. In particular, every H € %, is a homomorphic image of Fp.
We thus adopt the point of view that by describing Fp and the lattice of congruences
of Fp for arbitrary P, we will have described all one-parameter inverse semigroups.

We shall assume a certain familiarity with the algebraic theory of semigroups,
particularly inverse semigroups. (See Clifford and Preston [1].)

The existence and uniqueness of F, is a consequence of a theorem due to
McAlister [3, Theorem 33]. We were greatly aided in the actual description of Fp
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by two results of Gluskin on elementary inverse semigroups [2, p. 24]. For the
description of the congruences on Fp, the results of Reilly and Scheiblich in [4]
proved useful.

Although this paper is primarily algebraic in nature, there is a natural topology
on F;p with respect to which Fj is a topological inverse semigroup. This fact, to-
gether with several other comments of a topological nature, are included in remarks
throughout the paper.

1. The free inverse semigroup on a set X. In this section we shall review some
theory which has already been obtained by McAlister in {3].

If S'is an inverse semigroup generated by a subset X, then we say that S is freely
generated by X provided each function from X into an inverse semigroup extends
to a homomorphism on S. One shows easily, using the fact that homomorphisms
on inverse semigroups take inverses to inverses, that if S is freely generated by X,
then each function from X into an inverse semigroup T extends to a unique homo-
morphism from S into T.

1.1. THEOREM. For any nonvoid X there is one and only one inverse semigroup
(up to isomorphism) Iy freely generated by X.

Although it is not our intention to investigate them here, we remark that many
interesting questions arise concerning the structure of Iy and its lattice of con-
gruences. For example, it is not difficult to show that the smallest group congruence
on I has the free group on X as its quotient semigroup.

Now let P be a fixed semigroup. Consider the class of pairs (f, ) where S'is an
inverse semigroup and f'is a homomorphism from P into S so that f(P) generates
S. Define two pairs (f, S) and (g, T) to be equivalent provided there is an isomor-
phism ¢: S 2™, T so that ¢f=g. This is easily seen to be an equivalence relation
on pairs. We call a pair (f, S) a free pair provided given any pair (g, T) there is a
homomorphism ¢: S — T such that ¢f=g. It follows from the fact that two homo-
morphisms on an inverse semigroup which agree on a generating set are identical,
that the homomorphism ¢ above is unique.

The next theorem establishes the existence and uniqueness of a free pair (f, S).

1.2. THEOREM. There is an inverse semigroup S and a homomorphism f: P — S
such that (f, S) is a free pair. Furthermore any two free pairs are equivalent. The
homomorphism f is 1-1 if and only if P is embeddable in an inverse semigroup.

In case fis 1-1 we identify P with f(P) and call S the inverse semigroup freely
generated by the subsemigroup P and denote S by Fp. Note that F is characterized
by the property that any homomorphism from P into an inverse semigroup extends
to a unique homomorphism on Fp. In particular, any inverse semigroup generated
by a homomorphic image of P is isomorphic with a quotient semigroup of Fp.
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2. The free one-parameter inverse semigroups Fr. Let G be a fixed subgroup
of R and let P={xe G | x21}, P,=P\{1}. In this section we shall describe fully
the structure of the semigroups Fr and Fjp, freely generated by the subsemigroups P
and P, respectively.

First we construct a homomorphic image By of Fr which is a generalization of
the bicyclic semigroup B. This construction is similar to the one found on p. 107
of Vol. 2 of [1]. Let Br=P x P with the following operation:

(x, ¥)z, w) = (xz]y A z,yw|y A 2)
where y Az=min {y, z}. It is easily checked that the product of two elements of

Bp is an element of Bp. In fact we have the following consequence of Theorems
8.43 and 8.44 of Vol. 2 of [1]:

2.1. THEOREM. B; is a bisimple inverse semigroup which is generated by Py x 1.

2.2. THEOREM. The real number 1 is the identity for Fp. Furthermore Fy  does
not have an identity and in fact is isomorphic with Fp\{1}. Thus Fp is obtained from
Fy, by adjoining an identity.

Proof. Since 1 is the identity of P and P generates Fp, 1 is the identity of Fp.
Let S denote the inverse subsemigroup of Fp generated by P,, and let f be a homo-
morphism from P, into an inverse semigroup 7. We assume T has an identity e,
for otherwise we could adjoin it. Then f extends to a homomorphism g: P — T by
defining g(1)=e. Now g extends to a homomorphism g: F, — T, and g|S is
clearly the sought extension of f to S. Thus S is freely generated by Py; that is,
S'=Fp,. Now suppose S has an identity i. Then there exist x;, X3, . . ., X, in Py such
that i=x{ix§z- - -x}» where j,€{l, —1}fork=1,2,...,n Thus xiix{1=x{ix{’1-i
=i and hence, for some x € Py, i=xx~! or i=x"'x. Suppose that i=xx~*. Let
f: Py — Pyx 1= B, be given by f(t)=(¢, 1). Then f extends to a homomorphism
f: 8§ — Bp. Further f(S)= B, since P, x | generates By. Hence f(i) is an identity for
B, and so f(i)=(1, 1). But f(i)=Ff(xx~Y)=Ff(x)f(x)"*=(x, 1)(1, x)=(x, x) and
x# 1. From this contradiction we conclude that S=F,  does not have an identity.
In particular 1 ¢ S. Suppose x € Fp\{1}. Then there exist elements x;, Xz, ..., Xy
of P so that x=x{1xfz- - -xJ» where j, €{l, —1} fork=1, 2, ..., n. In fact we may
assume that x, € P, for k=1, 2, ..., n (this is true for at least one value of k since
x#1). Thus x € S and we have shown that S= Fp\{1}. This completes the proof of
this theorem.

An elementary inverse semigroup is defined to be an inverse semigroup generated
by a single element. An elementary inverse semigroup may or may not be a one-
parameter inverse semigroup depending on whether it has an identity; however we
do have the following corollary.

2.3. COROLLARY. Suppose the given subgroup G of R is cyclic. Then Fp, is an
elementary inverse semigroup with the property that every elementary inverse semi-
group is a homomorphic image of Fp,.
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Proof. This follows from 2.2 together with the fact that a homomorphism on the
positive integers is determined by its value at 1.

2.4. LEMMA. If x<y then
(@) xy~t=(p/x)"yy~1,
() ylx=yly(y/x)7Y,

(iif) yx~t'=(y/x)xx"?,

@iv) x~y=x"1x(y/x).

Proof. To see (i), note that

xy~t = x((y[x)x)7t = xx"Hp[x)7t = xx"Hy[x) T /3Ny [x)7
= /X))y [x)xx"Hy[x)"t = (p[x)yy~
Part (ii) is proved similarly and (iii) and (iv) are trivial.
The next result is, in a sense, an analogue of a theorem of Gluskin [2, Lemma

1.2] and follows immediately from the above lemma.

2.5. LEMMA. Let x, y, z € P. Then the elements xy~'z and x~*yz~* of Fp can also be
written as follows:

0 xy~lz = xz[y ify £xz
= (y/x)" 'z ifx=2y<sz
= x(y/z)™* ifz <y 2x,
= /)"yl ifx,z <.
(i) x~lyz™t = (xz[y)~* ify £xz
= x"Y(y/z) ifz2y=sx,
= (y/x)z7* ifx<y=<z,

=y '/ ifxz 2y
(iii) There exist a, b, ¢ in P such that b=a, c and x~'yz " *=ab™'c.

Proof. Parts (i) and (ii) follow immediately from Lemma 2.4. Using (ii) we can
write x~*yz~! as ab~c if we choose a, b and c¢ as follows: if y<x, z let a=1,
b=xz/y,c=1;ifzSy<x,leta=1,b=x,c=y/z;ifxSyLz,leta=y[x,b=2z,c=1;
andifx,z<y,leta=y/x,b=y,c=y/z. Ineach case b= a, ¢, and a, b and carein P.

2.6. THEOREM. Fp=PP~'P=P~'PP~* and Fp ,=PP;'P=P~'P,P "1,

Proof. It is an immediate consequence of 2.5(i) that PP ~*P<P ~'PP -1, Hence
P-PP-'=(PP-'P)~tc(P~'PP~Y)~'=PP~*P and so PP-'P=P~*PP~1. Note
also that (PP~'P)?=(PP ‘P)(PP-P)cP(P-PP-Y)P=P(PP-'P)P<PP~'P.
Hence PP ~'P is an inverse subsemigroup of Fp. Since P< PP ~'P, we obtain Fp
=PP~'P. Now suppose u € Fp,=Fp\{1}. Then there exist x, y, z€ P such that
u=x"1yz~!. Now it follows from 2.5(iii) that there exist g, b, c € P with b= a, c so
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that u=x"'yz-*=ab~'c. However, at least one of a, b, ¢ is not 1, and so b#1.
This says that ¥ € PPy P. On the other hand, choose xy~!z in PPy 'P. Suppose
I=xy~1z. Note that y#1. If x=z=1, then y ~!=1. So y=1 which is a contradic-
tion. Thus, either x#1 or z# 1. Without loss of generality, suppose x# 1. Now if
z=1, then 1 =xy~*! € Fp, which is a contradiction. So z#!. Thus none of x, y, or z
is 1. Therefore 1=xy~'ze Fp, another contradiction. Thus xy~'z#1; ie.,
xy~'ze Fp,. Hence PPy P=Fp,.

2.7. THEOREM. Each element of Fp can be written in one and only one way in the
Jorm xy~1z where x, y, z € P with x, z<y. Refer to this as the canonical representa-
tion of elements of Fp. Then if u, v € Fp with canonical representations u=xy~'z and
v=rs~t, then uv has as its canonical representation

uv = (xzrfy A zr)(yzrs/(y A zr)(zr A $))"zrt/zr A 5).

Proof. Let ue Fp. Then by 2.6 there are elements, a, b, c€ P such that u
=a~'bc~. Now using 2.5(iii) we can write u=xy~ 1z where x, z< y. To show that
the representation is unique, we make use of the semigroup B, defined earlier. Let
/, g: P— B be the homomorphisms given by f(x)=(x, 1) and g(x)=(1, x). Let
Jfand g be the extensions of fand g respectively to F». Now suppose that u € Fp has
two representations xy~ !z and rs~'t where x,z<y and r, t<s. Then f(xy~1z)
=f)f(y) H(2)=(x, D1, y)z, )=(x,y/z) and similarly f(rs~'t)=(r, s/t),
gxy z)=(y[x,z)=g(rs"t)=(s/r, t). Hence r=x, s=y and z=t and thus the
representation is unique.

To establish the rule for multiplication, let u, v € F» with representations (not
necessarily canonical) u=xy~'z and v=rs~*¢. It then follows from 3.4(ii) that

uv = x(ysfzr)~ 't ifzr £ s, y,
= xy~1(zrt/s) ifs <zr £y,
= (xzr/y)s~t ify <zr <,

= (xzr[y)zr)~Yzrt/s) ifs,y < zr.

Now since y A zr £ xzr and zr A s < zrt it follows that xzr /(¥ A zr), zrt [(zr A 5), and
yzrt|((y A zr)(zr A s)) are all in P. It is a simple matter to check using the four cases
above that in fact,

uv = (xzrly A zr)[yzrs/(y A zr)(zr A $)]"Yzrt/zr A ).

Further, if xy~z and rs~!f are canonical; i.e. if x, z<y and r, £ < s then it is easily
checked that xzr/y Azr, zrt/zr AsZyzrs [(y Azr)(zr As) and so the representation
for the product above is canonical. This completes the proof.

2.8. COROLLARY. The elements of Fp = Fp\{1} consist precisely of those elements
of Fp whose canonical representation xy~'z is such that y+#1.

Proof., Let u < F;  and let xy~!z be its canonical representation. If y=1 then
x=z=1 and so u=1. Hence y 1. Conversely, if xy~1z € F, with x, z<y+#1, then
xy~lze PPg'P=Fp, by 2.6. Q.E.D.
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Using 2.7 and 2.8 we immediately obtain the following parametrization theorem
for Fp and Fp,.

2.9. CorOLLARY. Let Tp={(x,¥,2) | x, y, z € P with x, z < y}. Define an operation
on Tp by

G, p, 2)(r, s, t) = (xzr|y A zr,yzrs[(y A zr)(zr A s), zrt/zr A s).

Then the map ¢: Fp — Ty defined by ¢(u)=(x, y, z) for u € Fp with canonical repre-
sentation u=xy "'z is an isomorphism from Fp onto Tp. Further if Tp,=Tp\{(1, 1, 1)},
then ¢|Fp, is an isomorphism from Fp onto T,

2.10. REMARK. If T, is given the subspace topology from the product space
P x Px P, where P is given the subspace topology from R with the usual topology,
then it is easily seen that the multiplication and inversion on T are continuous;
that is, Tr is a topological inverse semigroup. This follows from the fact that
multiplication and inversion on R and the A operation on P are all continuous
operations. Hence there is a natural topology on Fp making Fp into a topological
inverse semigroup. Indeed, F; is freely generated by P even in the topological sense;
that is, any continuous homomorphism from P into a topological inverse semigroup
S extends to a unique continuous homomorphism from Fj into S.

The idempotent structure of Fp is determined next.

2.11. LEMMA. Let ue Fp with canonical representation u=xy 'z. Then the
canonical representation of u=* is (y[z2)y~(y/x).

Proof. Note y/z, y/xeP. Also note u =z 'yx~!. Hence by 2.5(ii) u~?
=(y/2)y~(y/x).

For xe P, let e,=xx""* and f,=x"'x, and let E={e, | xe P}, F={f, | x € P}.
Note E, F< E,, the set of idempotents of Fp.

2.12. THEOREM. Let u € Fp with canonical representation xy~‘z. Then uc Ep if
and only if y=xz. Furthermore, each element of E can be written in one and only one
way in the form e, f, for some x, z € P. Thus Ey is the direct sum of the two subsemi-
lattices E and F. Also e, f,Ze,f, if and only if uSx and v=y.

Proof. Suppose u € E, and xy~'z is the canonical representation of ». Then by
29, u=u"*=(y/z)y~*(y/x). Hence (y/z)=x, that is, y=xz. On the other hand, if
y=zx then xy~lz=(xx"1)(z"'z)=e.f, € Ep. Hence to establish the last statement
we need only show the uniqueness of the representation. So suppose x, z,r, 1 € P
with xx~1z - 'z=e,f,=e,f,=rr 1t ~'t. Then, using the homomorphisms f and g
of 2,7 we see that f(xx 1z~ 1z)=f(x)f(x) "/ (2) " f(2)=(x, 1)1, x)(1, 2)(z, 1) =(x, x)
=f(rr=2tt ~Y)=(r, r) and similarly g(xx =1z~ 12)=(z, z)=g(rr ¢t ~*t)=(¢, t). Hence
x=r and z=t. The last assertion follows easily upon noting that e e, =e,y,. 2.13
follows immediately from 2.12 and the fact that Fp = Fp\{1}.
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2.13. COROLLARY. The idempotents of Fp  are precisely those elements of Fp
which can be written (uniquely) in the form e, f, where {x, z} N\ Py#@.

Next we determine Green’s relations (confer with [1]) on Fp.

2.14. THEOREM. Let u,ve Fp with canonical representations u=xy~'z and
v=rs~ 1. Then
) uZv ifandonly if x=r and y=s,
(i) u L v ifandonly if y=s and z=1t,
(iii) u# v ifand only if x=r, y=5 and z=1,
(iv) u2v ifandonlyif y=s.

Proof. (i) We know u Z v if and only if uu~*=vv~1. But

uu~t = (xy'2)(y/2)y~(y[x)) = xy~(y/x)
and similarly vo~'=rs~!(s/t). Hence by 2.7 uu~ =opv~! if and only if x=r and
y=Ss.

(i) Analogous to (i).

(iii)) Follows immediately from (i) and (ii).

(iv) Suppose u Z v. Then there is an element w of F with « Z w and w % v. Let
ab~'c be the canonical representation of w. Then by (i) y=5b and by (ii) b=s.
Hence y=s. On the other hand, if y=slet w=xy . Thenu Zwby (i)and w L v
by (ii). Hence # 2 v. This completes the proof of 2.12,

From 2.14 we get that there is a P-class D, for each element y of D: D,
={xy~'z| x, z € P with x, z<y}. Note also that E, N D,={e,f, | xz=y}. Hence
the -class D, can be pictured as in Figure 1.

-1
y yy z yy l=eyfl=e>’

- exfy/x

xy~lz with %, z<y

u=
Lu = the L-class of u
R

2 = the R-class of u

FIGURE 1
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It may be helpful to visualize Fp as in Figure 2.

F

FIGURE 2

Note that the idempotents of Fp lie in a plane which cuts Fy into two pieces.
Next we determine the ideal structure of Fp. For y € R, let
I, ={J{D;|t 2 yand te P}
and let
I =U{D,|t>yand teP}
2.15. THEOREM. For each y € P, I, and I, are ideals of Fp. Conversely, if I is an
ideal of Fp, then there is an element y 2 1 of R such that I=1I, or I=I,. Consequently
the ideals of Fp are totally ordered with respect to set inclusion.

Proof. The fact that I, and I, are ideals of F; follows readily from the rule for
multiplication expressed in 2.7. On the other hand, if I is an ideal of Fp, then let y
denote the greatest lower bound of the set of all # € P such that D, N I#@. Itis not
difficult to show that if D, N I# g, then Dy <[ for all t, € P, and hence I=1, if
D,nI#zorlI=I)if D,NnI=g. Q.E.D.

2.16. Remark. If we give Fp the natural topology described in 2.10 then the
closed ideals are the ones which can be written in the form I,.

3. The lattice of congruences on F,. In this section as in the last, G is an
arbitrary subgroup of R, the multiplicative group of positive reals, and
P={x e G| xz 1}. We shall describe here the structure of the lattice of congruences
on the free one-parameter inverse semigroup Fp, and hence obtain a description
of every one-parameter inverse semigroup.

The set A(S) of congruences on a semigroup S is well known to be a complete
lattice with respect to the operations

cAp=onp and oV p= m{3EA(S)|UpoC o}.
The largest (resp. smallest) congruence on S, which is S2=8xS (resp. AS?
={(x, x) | x € §}), is denoted by 1 (resp. 0). The 6 relation on A(S), first defined
and studied on regular semigroups S by Reilly and Scheiblich [4] provides a useful
aid in visualizing A(S). The relation is defined by o € p if and only if ¢ N E2=
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p N E?, where E is the set of idempotents on S. It is shown in [4] that if S'is an in-
verse semigroup, then 8 is a lattice congruence on A(S). The 6-class of 1 is the set of
group congruences on S; the 6-class of Qs the set of idempotent-separating congru-
ences; in general, each f-class is a complete lattice of commuting congruences on S.

A congruence w on E, the idempotents of an inverse semigroup S, is normal
provided whenever ¢ w f, then xex~! w xfx~! for all xe€S. The normal con-
gruences on E are precisely those congruences w on E such that w=0 N E2 for
some o € A(S). In fact one sees that A(S)/0 is isomorphic with the lattice of normal
congruences on E, under the map induced by the map from A(S) to the normal
congruences on E given by o - o N EZ,

As a first step in describing A(F3), we shall determine the normal congruences on
Ep, the set of idempotents of Fp. Recall 2.12, which says that E; is the direct sum
of E={xx~!'|xeP}and F={x"'x| xeP}.

3.1. LeMMA. Let x,y, teP. Then

. - exfur Ht=y

(1) texf;/t 1= {ex Y l_fy < t = extfyly/\ta
x =

. - ey Ht=x

(i1) t 1exfyt = {; Y ifx <t = €xunt v
ty =

Proof. This follows from the rule for multiplication expressed in 2.7.

Let 4 and B denote the relations on Ep defined by e, f, A e.f; if and only if x=r
and e,f, Be,f; if and only if y=s. These are clearly congruence relations on Ep.
Furthermore, it is also clear that Av B=EZ and A A B=AE3. Let I be an ideal of
Fp, and let JA=(ANT?) VU AEE, IB=(BNI?) U AEZ, and IEE=(EEZnI?
U AFEZ. We see immediately that 74, IB, and IEZ are all congruences on Ep also.

3.2. THEOREM. Each of the above congruences on Ep is normal. As a set of normal
congruences, they form a lattice with the structure as indicated in the diagram below:

(1, J ideals of Fp withJ<I)

/ Ei\
A [Eg B
14 e IB
\ AN/

JA /JB
\\\ i /,

AE}

FIGURE 3
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Proof. If I is an ideal of Fp and « is a normal congruence on Ep, then
Iw=(w N I%) U AE} is clearly a normal congruence on Ep, since it is the inter-
section of the two normal congruences w and (/2 N EZ) U AEZ. Hence the only
assertion requiring proof is that 4 and B are normal. To see this, let u=ab~c e F;
and note that by 3.1

e, fyt ™' = €acxipncxS oy acycantouicaon
From this we see that 4 and B are normal. Q.E.D.

3.3. LEMMA. Suppose w is a normal corigruence on Ep, and suppose Xy, Yo, 1o € P
with to# 1. Let I denote the ideal I...,,=\J {D, | tZ xoyo} of Fp. Then

(D) if exyfyg @ €xofyptey then IAS w,

(i) if exofyy @ €xgty Sy then IBS w.

Proof. (i) Suppose x, y, t € P with xy = x,y,. We wish to show that e,.f, w e, fy;.
Note that e..f, =xf,,x~ ! and e, f,,=xf,,.x !; hence the result follows if f,, w fyy.
To see this, first note that f, , =xX5 €x frox, @ Xo "€x,fuoteXo =Srovotor HENCE
Sxovato =10 Srxouolo @ 15 Yxguatoto =/rouot2> aANA SO [y, @ froyd- Inductively, we have
that f. y, @ fixeyei for each positive integer n. Now choose n so large that x, o}
2 xyt= xy. Then since w is a congruence on Ejp,

fxu = fxu 'fxoyo ‘”fxy 'fxoyot3 = fxouot3

and

f xyt = f xyt f Xo¥o ‘”f xyt f xovots — f x0¥oto*

Hence f,, o f,,: and the proof of (i) is complete. The proof of (ii) is analogous.

3.4. THEOREM. Let w be a nonzero normal congruence on Ep. Then there is an
ideal I of Fp such that o is one of the congruences IA, IB, or IEZ. Consequently the
lattice shown in 3.2 is the lattice of all normal congruences on Ep.

Proof. Since w# AFEZ, there exist x, y,r,s€P with xsr or y#s such that
exfy we.f;. Suppose x#r; say x<r. Then since e,fyvs=erfv(fovs) @ & fi(fyvs)
=e,f,vss We have by 3.3 that I, ,,BSw. Similarly, if y<s, then [, ,ASw. In
any event, at least one of the sets L={te P : [A<w} and R={TeP: [BSw}is
nonvoid.

Suppose R=g and L#@. Let I;=\J{l,:teLl} and note that .4
=J{lid: tel}cw. So let e.f, we,f,; x=r, otherwise R#@. Assume y<s.
Then (e, fy, e.f) € I.,A. But by 3.3, I, A< w so xy € L; hence I,,A= I, A. Therefore
w=1I;A. By an analogous argument we conclude that if L=, then R#d, so IzB
= where Ip=\J{I; : t € R}.

If neither L nor R is void, then we claim L=R and w=I E%. To see that L=R,
let e L. Choose any 1, € R. Then (e,f1, e.f,,) € hdSw as t € L; also (e,f,, en,fi,)
e, BSw and (ey, i, e, /1) € LA S w. S0 (€)1, ey, f1) € w. By 3.3 we conclude that
IilBSw;ie. te R. Thus LS R. Similarly R€L. So L=R.
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Note that [;Ecw since JASw and I;BSw, and I, A v I, B=1, EZ. Now suppose
e fywef,. If x=r and y=s, then (e.f,, e f)e AER<T E3. Without loss of
generality assume x#r, say x>r. If y=s, then (e, f,, e.f,) € w, so I,,BSw. Thus
I,BS I EZ 50 (e.fy, e:fs)=(exfs, e.f,) € ILEZ. Similarly for the case x <r. A similar
argument shows if x=r and y#s, then (e.f,,e.f)elLEE. Now if xsr and
y#s, wlo.g. assume x>r. Then e,f, we,f,, and hence e, f; w e f;. By 3.3, this
implies I, yandSw and I ,BSw, so I(yAs)A and I,B<I EZ Therefore,
e flLE®e, f(I.ERe.f,, sO (erfy, e.fs) € [LEE, and w< [l EZ This completes the
proof.

Now that we have determined the lattice of normal congruences on E, (and hence
the lattice A(F;)/8), we concentrate on determining each f-class of A(F3). If w is
a normal congruence on Ep then the f-class belonging to w is the set of all con-
gruences o € A(Fp) such that o N Ef=w.

Let I be an arbitrary ideal of Fp. In the next three theorems we shall determine
the f-class belonging to IEZ. Let f denote the inclusion map of P into G and let f
denote the extension of f to Fp. Note that f(xy~!z)=xz/y, and that f|I is onto G.

3.5. THEOREM. A congruence o on I is a group congruence if and only if there is a
subgroup N of G such that for each u, v € I (with canonical representations u=xy =1z,
v=rs~ ), uovif and only if xzs/rty € N.

Proof. Let o be a group congruence on 7/, and consider the following diagram:

In order to check that the homomorphism A, exists, we note that if f|I(xy~z)
=f|I(rs~t), then xzs=rty. Hence &(xy~1z)=3&(rs~t). Since f|1 is onto, there is a
unique homomorphism induced which we call 4,. Now let N=Xker 4, and note that
xy~*zors~'tifand onlyif 6(xy~1z)=&(rs~t)if and onlyif h, f(xy ~1z) =h,f(rs~1t)
if and only if A,(xz/y)=h,(rt/s) if and only if xz/y+rt[s=xzs/rty € ker h,=N.

Conversely suppose N is a subgroup of G. Let oy be the relation on I defined by
xy~lz oy rs~1t if and only if xzs/rty € N, where y=x,z and s2r, t and xy~!z,
rs~1te I It is readily checked that oy is a congruence on [ using the fact that N
is a group.

To see that oy is a group congruence we need only show I/oy has only one
idempotent. So let e, f be idempotents in I. Then by 2.10, e=x(xz)~'z and
S=r(rt)~t for some x, z, r, and ¢ in P. Since xz(rt)/rt(xz)=1 € N we have that
e oy f. Thus I/ey is a group.
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3.6. THEOREM. The correspondences o~ ker h, and N — oy described in 3.1
between the lattice of group congruences on I and the lattice of subgroups of G are
mutually inversive lattice isomorphisms.

Proof. Let ¢ be a group congruence on I, and let 8=o0ye s, Now as in 3.5
xy~lzors~'t if and only if xzs/rty € ker h,. But from the definition of 8,
xy~ 'z 8 rs7tif and only if xzs/rty € ker h,. Hence oyer s, =o. On the other hand,
let N be a subgroup of G. Let u, v € I with canonical representations u=xy~1z and
v=rs~1t. Now u oy v if and only if xzs/rty € N. Also using the induced homo-
morphism h,, u oy vif and only if xzs/rty € ker h,,. Hence N=Kker h,,. Hence
the correspondences are mutually inversive functions. To complete the proof we
need only show that the correspondence N — oy is a lattice homomorphism.

Let N and M be subgroups of G. It will suffice to show that N< M if and only
if oySo,. Now it is clear that N= M implies oy <oy, Conversely if oy Soy, let x
be in N with x=y/z such that y,zeP. Then (1,y, 1)oy(l,z 1) implies
(1,y, Doy (,z 1). Thus xe M and N M. This completes the proof of 3.6.

3.7. THEOREM. The 0-class belonging to the normal congruence IEZ is isomorphic
with the lattice of subgroups of G under the correspondence N — oy U AFE.

Proof. Let I' denote the f-class belonging to IEZ, Q the lattice of subgroups of
G, and A the lattice of group congruences on I. By 3.6 the function from Q onto A
taking N to oy is a lattice isomorphism. Hence we only need show that the function
from A to T taking 8 to 8 U AFZis a 1-1 onto lattice isomorphism.

To see that this function is 1-1 and onto, let § U AFE=8"for de Aand p N I?
=p* for peT. Clearly 8’ €' and p* € A. Also one sees without difficulty that
(8’)*=34, for 6 € A. On the other hand if p € T, then to show that (p*)'=p we need
only show that whenever u, v € Fp with usv and u p v then u, v € I. We consider
twocases: (1) Ifu¢ ,vel, thenuu=* ¢ Iand vv~t e I, Alsouu~! pvv~1, However
this is impossible since p N EZ=IEE. (2) If u¢ I, v¢ I, then wu=*, vv=1, u 1u,
v vél; but uutpuvvTl, so uu~l=ovr-?! since pN EE=IF3 Similarly u~'u
=v~1p. However this implies that # and v are 5 related and so by 2.14 we conclude
that u=v, a contradiction. This shows that (p*)'=p. Hence the functions & —> &’
and p — p* are mutually inversive functions; and thus oy — oy U AFZ is 2 1-1
onto function.

To see that it is a lattice isomorphism, let 8, 6 € A, Then 8V e=28 0o, since
8og=008. Also § va'=8 o ¢’ according to [4]. So (6 v o) =(800) U AFZ, and
8'vo'=(8 U AFE) o (¢ U AFE). From this it follows that (8v o) =6"ve'; hence
oy — oy U AFE preserves V. Since the inverse of this function clearly preserves
A, we conclude that oy — oy U AF% is a lattice isomorphism.

3.8. COROLLARY. For each subgroup N of G, let o~ denote the relation on Fp
defined by u o" v if and only if u=v, or u,vel and xzs[rty € N, where xy~'z and
rs~1t are the canonical representations of u and v respectively. Then oY is a member
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of the 0-class belonging to IER. Furthermore if M is a subgroup of G then ¢V v o™

=o"™ gnd o N oM =0c""M,

Now we shall determine the 0-class belonging to 4 and IB. It turns out that they
are both degenerate. Let g, h: P— By be the homomorphisms given by g(x)
=(x, 1) and A(x)=(1, x). Let g, h: F, — Bp denote the extensions of g and A, and
let o, B be the congruences on F, determined by g, /4 respectively. Note that
uav(upv)ifand only if x=r and yt=sz (z=¢ and yr=sx) where xy~!z and rs~¢
are the canonical representations of u and v. Let Je=(a«nNI%)U AFE
(IB=(B N %) U AF3). 1t is readily checked that I« (IB) is a congruence on Fp
lying in the 8-class belonging to /4 (IB).

3.9. THEOREM. The O-class belonging to IA (IB) has I (IB) as its only member.

Proof. Let I denote the 6-class belonging to 74, and let p and o denote the largest
and smallest elements of I' respectively. It follows from Theorem 4.2 of [4] that
for u, v € Fp with canonical representations xy~1z and rs~ 1t respectively that u o v
if and only if uu~1 (I4) vv~* and eu=ev for some e € Ep such that e 4 uu=*. To
prove the theorem we need only show that u p v implies u ¢ v. So suppose u p v.
Then u=*pv=! so uu~t povv~t Thus e,f,,=uu"t(IA) vv-'=e,f, and so x=r.
Also e, f.=u"u(IAd) v~ 'v=ef, and so yt=sz. Now let e=e,f;, and note that
eu=ev and e I4 uu~1. Hence u o v, and we conclude that o= p=Ja. The proof that
the 8-class belonging to IB contains only I8 is analogous.

The following corollary sums up the information contained in 3.7 and 3.9. For
an arbitrary ideal I of Fp and an arbitrary congruence o on Fp, let Io denote the
congruence (o N I2) U AFZ on Fp. The top of A(F3), T, is the set of group congru-
ences on Fp together with the two congruences o and 8.

FIGURE 4
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3.10. CorOLLARY. Every nonzero congruence o on Fp can be written uniquely in
the form I8 for some & € T and some ideal I of Fp. Furthermore for ideals I and J of
Foandy and 8 in T, Iy<=Jé if and only if I=J and v< 8.

3.11. Remark. If we consider Fp with the topology described in 2.10, then it is
natural to ask what the closed congruences on Fp are. It is not hard to see that 1, 0,
o and B are closed. Also the group congruence oy is closed if and only if N is cyclic,
and if I is an ideal of F;r and ¢ € T then Io is closed if and only if 7 is closed and ¢
is closed.

Several additional pieces of information can be obtained from the preceding
theorems. We state them below.

3.12. COROLLARY. A(F5) is a nonmodular lattice.

3.13. COROLLARY. All one-parameter inverse semigroups except those of the
form Fp have a kernel (i.e. minimal ideal). In particular, if I is an ideal of Fp then
Fyp/Ia and Fp|IB have a kernel isomorphic with Bp and Fp/loy has a kernel isomorphic
with G/N.

3.14. CorOLLARY. The lattice of congruences on Fp, is isomorphic with the
complement of the top of A(Fp) under the mapping o — o U {(1, 1)}.

REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vols. 1, 2, Math.
Surveys, no. 7, Amer. Math. Soc., Providence, R. 1., 1961, 1967. MR 24 #A2627; MR 36 #1558.

2. L. M. Gluskin, Elementary generalized groups, Mat. Sb. 41 (83) (1957), 23-36. (Russian)
MR 19, 836.

3. D. B. McAlister, A homomorphism theorem for semigroups, J. London Math, Soc. 43
(1968), 355-366. MR 37 #329.

4. N. R. Reilly and H. E. Scheiblich, Congruences on regular semigroups, Pacific J. Math.
23 (1967), 349-360. MR 36 #2725.

UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



