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Abstract. This is the second in a projected series of three papers, the aim of
which is the complete description of the closure of any one-parameter inverse semi-
group in a locally compact topological inverse semigroup. In it we characterize all
one-parameter inverse semigroups. In order to accomplish this, we construct the free
one-parameter inverse semigroups and then describe their congruences.

0. Let G be a subgroup of the multiplicative group of positive real numbers and
let P denote the subsemigroup of G consisting of all x e G with x è 1 • Denote by ^
the class of all inverse semigroups //for which there is a homomorphism/: P -> H
such that f(P) generates H (no proper inverse subsemigroup of H contains/(/>)).
We shall call such semigroups H one-parameter inverse semigroups and denote by
eë = \JpcifP the class of all one-parameter inverse semigroups.

The class # contains well-known semigroups. For example, each homomorphic
image of a subgroup of R, the positive real numbers, is a member of if. Also the
bicyclic semigroup B is a member of (€, as is seen by noting that B is generated by a
copy of the nonnegative integers. Indeed, if//is any elementary inverse semigroup,
then H1 is generated by a homomorphic image of the nonnegative integers, and so
is a one-parameter inverse semigroup.

The main purpose of this paper is to describe all one-parameter inverse semi-
groups. In the process of doing this, we shall construct what we term the free one-
parameter inverse semigroups FP, one for each subgroup G of R and its associated
semigroup P. The semigroup FP is the only inverse semigroup (up to isomorphism)
generated by a subsemigroup isomorphic with P which has the property that each
homomorphism f: P -> S, an inverse semigroup, extends uniquely to a homo-
morphism/: />-> S. In particular, every He ftp is a homomorphic image of/>.
We thus adopt the point of view that by describing FP and the lattice of congruences
of Fp for arbitrary P, we will have described all one-parameter inverse semigroups.

We shall assume a certain familiarity with the algebraic theory of semigroups,
particularly inverse semigroups. (See Clifford and Preston [1].)

The existence and uniqueness of FP is a consequence of a theorem due to
McAlister [3, Theorem 33]. We were greatly aided in the actual description of FP
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54 CARL EBERHART AND JOHN SELDEN [June

by two results of Gluskin on elementary inverse semigroups [2, p. 24]. For the
description of the congruences on FP, the results of Reilly and Scheiblich in [4]
proved useful.

Although this paper is primarily algebraic in nature, there is a natural topology
on FP with respect to which FP is a topological inverse semigroup. This fact, to-
gether with several other comments of a topological nature, are included in remarks
throughout the paper.

1. The free inverse semigroup on a set X. In this section we shall review some
theory which has already been obtained by McAlister in [3].

If S is an inverse semigroup generated by a subset X, then we say that S is freely
generated by X provided each function from X into an inverse semigroup extends
to a homomorphism on S. One shows easily, using the fact that homomorphisms
on inverse semigroups take inverses to inverses, that if S is freely generated by X,
then each function from Xinto an inverse semigroup T extends to a unique homo-
morphism from S into T.

1.1. Theorem. For any nonvoid X there is one and only one inverse semigroup
(up to isomorphism) Ix freely generated by X.

Although it is not our intention to investigate them here, we remark that many
interesting questions arise concerning the structure of Ix and its lattice of con-
gruences. For example, it is not difficult to show that the smallest group congruence
on Ix has the free group on X as its quotient semigroup.

Now let P be a fixed semigroup. Consider the class of pairs (/, S) where S is an
inverse semigroup and/is a homomorphism from P into S so Ihalf(P) generates
S. Define two pairs (/, S) and (g, T) to be equivalent provided there is an isomor-
phism <j>: S ont° > Tso that <f>f=g. This is easily seen to be an equivalence relation
on pairs. We call a pair (/ S) a free pair provided given any pair (g, T) there is a
homomorphism <f>: S ^ Tsuch that >/>/=g. It follows from the fact that two homo-
morphisms on an inverse semigroup which agree on a generating set are identical,
that the homomorphism (f> above is unique.

The next theorem establishes the existence and uniqueness of a free pair (/ S).

1.2. Theorem. There is an inverse semigroup S and a homomorphism f: P -> S1
such that (f, S) is a free pair. Furthermore any two free pairs are equivalent. The
homomorphism f is 1-1 if and only if P is embeddable in an inverse semigroup.

In case/is 1-1 we identify P Wiihf(P) and call S the inverse semigroup freely
generated by the subsemigroup P and denote S by FP. Note that FP is characterized
by the property that any homomorphism from P into an inverse semigroup extends
to a unique homomorphism on FP. In particular, any inverse semigroup generated
by a homomorphic image of P is isomorphic with a quotient semigroup of FP.
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2. The free one-parameter inverse semigroups FP. Let G be a fixed subgroup
of R and let P={x e G | x^ 1}, P0 = P\{1}. In this section we shall describe fully
the structure of the semigroups FP and FPo freely generated by the subsemigroups P
and P0 respectively.

First we construct a homomorphic image BP of FP which is a generalization of
the bicyclic semigroup B. This construction is similar to the one found on p. 107
of Vol. 2 of [1]. Let BP = PxP with the following operation:

(x, y)iz, w) = ixz/y A z, yw/y A z)

where y Az = min {y, z}. It is easily checked that the product of two elements of
BP is an element of BP. In fact we have the following consequence of Theorems
8.43 and 8.44 of Vol. 2 of [1]:

2.1. Theorem. Bp is a bisimple inverse semigroup which is generated by P0 x 1.

2.2. Theorem. The real number 1 is the identity for FP. Furthermore FPa does
not have an identity and in fact is isomorphic with FP\{1}. Thus FP is obtained from
FPo by adjoining an identity.

Proof. Since 1 is the identity of P and P generates />, 1 is the identity of FP.
Let S denote the inverse subsemigroup of FP generated by P0, and let/be a homo-
morphism from P0 into an inverse semigroup T. We assume T has an identity e,
for otherwise we could adjoin it. Then/extends to a homomorphism g: P->T by
defining g{l) = e. Now g extends to a homomorphism g:FP^-T, and g\S is
clearly the sought extension off to S. Thus S is freely generated by P0; that is,
S=Fp0. Now suppose S has an identity i. Then there exist xu x2,...,xn in P0 such
that i—x{xx¡^- ■ -xi" where jk e{l, — 1} for k=l, 2,..., n. Thus x{x-xl'x.=x[-xxllx.-i
= i and hence, for some xeP0, i = xx~l or i = x~1x. Suppose that z = xx_1. Let

/: P0 -*■ P0 x 1 ̂ Bp be given by/(i) = (/, 1). Then/extends to a homomorphism
/: S^ Bp. Further f(S) = BP since P0 x 1 generates BP. Hence/(*') is an identity for
BP and so/(0=0,1). But/(f)=/(xx-1)=/(x)/(x)-1 = (x, 1)(1, x) = (x, x) and
x# 1. From this contradiction we conclude that S=FPo does not have an identity.
In particular 1 ̂  S. Suppose x e /*"p\{1}. Then there exist elements xlt x2,..., xn
of P so that x = x[x-xfr- ■ -xl« where jk e{l, - 1} for k= 1, 2,..., n. In fact we may
assume that xkeP0fork=l,2,...,n (this is true for at least one value of k since
x# 1). Thus x e S and we have shown that 5=/rP\{l}. This completes the proof of
this theorem.

An elementary inverse semigroup is defined to be an inverse semigroup generated
by a single element. An elementary inverse semigroup may or may not be a one-
parameter inverse semigroup depending on whether it has an identity; however we
do have the following corollary.

2.3. Corollary. Suppose the given subgroup G of R is cyclic. Then FPo is an
elementary inverse semigroup with the property that every elementary inverse semi-
group is a homomorphic image of FPq.
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Proof. This follows from 2.2 together with the fact that a homomorphism on the
positive integers is determined by its value at 1.

2.4. Lemma. Ifx^ythen
(i)   Xy-l = (yfXyiyy-l¡

(ii) v"1x=y-1y(y/x)-1,
(iii) yx~1 = (y/x)xx~1,
(iv) x~1y = x~1x(y/x).

Proof. To see (i), note that

xy-1 = x((y/x)x)~1 = xx'^yfx)-1 = xx~\y ¡xY^y ¡x)(y ¡x)-1

= (yfx)-1(y/x)xx-\y/x)^ = (y/x)"^"1.

Part (ii) is proved similarly and (iii) and (iv) are trivial.
The next result is, in a sense, an analogue of a theorem of Gluskin [2, Lemma

1.2] and follows immediately from the above lemma.

2.5. Lemma. Let x,y, zeP. Then the elements xy~1z andx~1yz~1 of 'FP can also be
written as follows:

(i) xy~1z = xz/y if y ^ x, z,

= (y/x)'1z ifxúyú z,

= x(yfz)-1 ifz^y^ x,
= (ylx)-1y(y/z)-1   ifx,z%y.

(ii) x-1yz~1 = (xzfy)'1 ify<,x,z,

= x~\yfz) ifzSyú x,
= (y/x)z~1 ifxúyá z,

= (y/x)y-1(y/z)  ifx, z ^ y.

(iii) There exist a, b, c in P such that b^a,c and x~1yz~1 = ab~1c.

Proof. Parts (i) and (ii) follow immediately from Lemma 2.4. Using (ii) we can
write x~1yz~1 as ab~1c if we choose a, b and c as follows: if y áx, z let a=l,
b = xzfy, c=l;if z^y^x, leta=l,/> = x, c=y/z; if x^yáz, leta=y/x, b = z, c=l;
and ifx, z^y, let a=y/x, b=y, c=y/z. In each case b^a, c, and a, band careinP.

2.6. Theorem. FP=PP-1P=P~1PP-1 andFPo=PPô1P=P-1PQP~1-

Proof. It is an immediate consequence of 2.5(i) that PP^P^p-ipp-1. Hence
p-ipp-i = rpp-ipyi^rp-ipp-iyi=pp-ip and so pp-ip = p-ipp-i   Note
also that (PP-1P)2 = (PP-1P)(PP-1P)<=P(P-1PP-1)P=P(PP~1P)P'^PP'1P-
Hence PP~1P is an inverse subsemigroup of FP. Since P<^PP~1P, we obtain FP
=PP~1P. Now suppose tieFp0 = FP\{l}. Then there exist x,y, zeP such that
w = x_1yz_1. Now it follows from 2.5(iii) that there exist a,b,ceP with b^a, c so
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that u = x~1yz~1 = ab'1c. However, at least one of a, b, c is not 1, and so 6#1.
This says that uePP0~1P. On the other hand, choose xy~1z in PPö1?. Suppose
1 = xy ~ 1z. Note that y¥=l. If x = z = 1, then y ~x = 1. So y = 1 which is a contradic-
tion. Thus, either x#l or z^l. Without loss of generality, suppose x^l. Now if
z= 1, then 1 =xy~1 e FPo, which is a contradiction. So z^l. Thus none of x, y, or z
is 1. Therefore l=xy~1ze FPo, another contradiction. Thus xy_1z^l; i.e.,
xy~1z e FPo. Hence PPô1P = FPo.

2.7. Theorem. Each element of FP can be written in one and only one way in the
form xy~1z where x,y,z e P with x, z¿y. Refer to this as the canonical representa-
tion of elements of FP. Then ifu, v e FP with canonical representations u = xy~1z and
v = rs~1t, then uv has as its canonical representation

uv = ixzrfy A zr)iyzrs/iy A zr)(zr A s))~\zrtfzr A s).

Proof. Let ue FP. Then by 2.6 there are elements, a, b, ce P such that u
= a~1bc~1. Now using 2.5(iii) we can write u = xy~xz where x, z^y. To show that
the representation is unique, we make use of the semigroup BP defined earlier. Let
/ g: P -> Bp be the homomorphisms given by/(x) = (x, 1) and g(x) = (l,x). Let
/and g be the extensions of/and g respectively to FP. Now suppose that ue FP has
two representations xy~1z and rs'xt where x,z\\\y and r,f¿s. Then/(xy_1z)
=fix)fiyyxfiz) = ix, l)il,y)iz,l) = (x,y/z) and similarly f\rs^t) = {r, s/t),
g(xy~1z) = iy/x, z)=girs~1t) = isjr, t). Hence r = x, s=y and z = t and thus the
representation is unique.

To establish the rule for multiplication, let u,ve FP with representations (not
necessarily canonical) u = xy~1z and v = rs^1t. It then follows from 3.4(h) that

uv = xiysfzr)~xt if zr ¿¡ s, y,

= xy~1izrt/s) if s :£ zr ^ y,

= ixzr/y)s~1t if y ú zr -¿ s,

= ixzrIy)izr)~\zrt¡s) ifs,y ^ zr.

NowsincejzAzz-^xzrand zz-Ai ^zr? it follows that xzr/iy A zr), zrt/izr As), and
yzrt¡((y A zr)izr A s)) are all in P. It is a simple matter to check using the four cases
above that in fact,

uv = ixzrfy A zr)[yzrs\iy A zr\zr A s)]~\zrtfzr A s).

Further, if xy~1z and rs~xt are canonical; i.e. if x, zSy and r, t^s then it is easily
checked that xzr/yAzr, zrt/zr As^yzrs/(yAzr)izr As) and so the representation
for the product above is canonical. This completes the proof.

2.8. Corollary. The elements of FP¡J = FP\{1} consist precisely of those elements
of FP whose canonical representation xy~1z is such that j# 1.

Proof. Let u e FPo and let xy~xz be its canonical representation. If y=l then
x = z= 1 and so u= 1. Hencey^\. Conversely, if xj_1ze FP with x, z^j# 1, then
xy~1zePPö1P = Fp0, by 2.6.    Q.E.D.
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Using 2.7 and 2.8 we immediately obtain the following parametrization theorem
for FP and FPu.

2.9. Corollary. Let TP = {(x,y, z) | x, y, z e P with x,zS.y). Define an operation
on TP by

(x, y, z)(r, s, t) = (xzrfy A zr,yzrsf(y A zr)(zr A s),zrtfzr A s).

Then the map ^: />-> Tr defined by <f>(u) = (x, y, z)for ue FP with canonical repre-
sentation u = xy~xz is an isomorphism from FP onto TP. Further ifTPo = TP\{(l, 1, 1)},
then 4>\Fp0 is an isomorphism from FPo onto TPo.

2.10. Remark. If TP is given the subspace topology from the product space
PxPxP, where P is given the subspace topology from R with the usual topology,
then it is easily seen that the multiplication and inversion on TP are continuous;
that is, 77» is a topological inverse semigroup. This follows from the fact that
multiplication and inversion on R and the A operation on P are all continuous
operations. Hence there is a natural topology on FP making FP into a topological
inverse semigroup. Indeed, FP is freely generated by P even in the topological sense;
that is, any continuous homomorphism from P into a topological inverse semigroup
S extends to a unique continuous homomorphism from FP into S.

The idempotent structure of FP is determined next.

2.11. Lemma. Lei ueFP with canonical representation u = xy~1z. Then the
canonical representation ofu'1 is (y/z)y~1(y/x).

Proof. Note yfz, yfxeP. Also note u~1 = z~1yx~1. Hence by 2.5(ii) u~x
= (y/z)y-\y/x).

For xeP, let ex = xx~1 and/c = x"1x, and let E—{ex \ xeP}, F={fx \ xeP}.
Note E, F^Ep, the set of idempotents of FP.

2.12. Theorem. Let ueFP with canonical representation xy~1z. Then ueEP if
and only if y = xz. Furthermore, each element of E can be written in one and only one
way in the form exfxfor some x, z e P. Thus EP is the direct sum of the two subsemi-
lattices E and F. Also exfy ^ eufv if and only ifu^x and t> á y.

Proof. Suppose ue EP and xy_1z is the canonical representation of u. Then by
2.9, u = u~1=(yfz)y1(y/x). Hence (y/z) = x, that is, y = xz. On the other hand, if
y = zx then xy"1z = (xx"1)(z"1z) = exfze EP. Hence to establish the last statement
we need only show the uniqueness of the representation. So suppose x,z,r,t eP
with xx~1z~1z = exfz = erft = rr~1t~1t. Then, using the homomorphisms / and g
of 2.1 we see that/(xx-1z-1z)=/(x)/(x)-1/(z)"1/(z) = (x, 1)(1, x)(l, z)(z, l) = (x, x)
=f(rr'1tt'1) = (r, r) and similarly g(xx~1z~1z) = (z, z) = g(rr~1t~1t) = (t, t). Hence
x = r and z = t. The last assertion follows easily upon noting that exeu = exvu. 2.13
follows immediately from 2.12 and the fact that FPo = FP\{l}.
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2.13. Corollary. The idempotents of FPo are precisely those elements of FP
which can be written {uniquely) in the form exfz where {x, z) C\ />o#0.

Next we determine Green's relations (confer with [1]) on FP.

2.14. Theorem. Let u,veFP with canonical representations u = xy~xz and
v = rs~1t. Then

(i)uS$v if and only if x = r and y = s,
(ii) u ££ v if and only if y = s and z = t,

(iii) u£Pv if and only if x = r, y = s and z = t,
(iv) u Si v if and only ify = s.

Proof, (i) We know ufflv if and only if uu~1 = vv~1. But

uu-1 = ixy-1z)((y/z)y-1iy/x)) = xy-\y/x)

and similarly vv'1 = rs'1isjt). Hence by 2.7 uu~1 = vv'1 if and only if x = r and
y = s.

(ii) Analogous to (i).
(iii) Follows immediately from (i) and (ii).
(iv) Suppose u S v. Then there is an element w of F with u ¿% w and w ¿if v. Let

ab~1c be the canonical representation of w. Then by (i) y = b and by (ii) b = s.
Hence y = s. On the other hand, if y = s let w = xy~1t. Then u 0t w by (i) and w S£ v
by (ii). Hence u 3> v. This completes the proof of 2.12.

From 2.14 we get that there is a ^-class Dy for each element y of D: Dy
= {xy~1z \ x, z eP with x, z^y}. Note also that EP n Dy = {exfz \ xz=y}. Hence
the ^-class Dy can be pictured as in Figure 1.

£PnDy

/y=e,/y = y"V

yy_, = % fi = e,

-i

e* fy/x

u = xy~lz with x, z < y

L   = the £-class of u
u

B = the !R-class of u

Figure 1
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It may be helpful to visualize FP as in Figure 2.

Figure 2

Note that the idempotents of FP lie in a plane which cuts FP into two pieces.
Next we determine the ideal structure of FP. For y e R, let

Iy = U{Dt\t^ymdteP}
and let

I°y = \J{Dt\t> y and teP}.
2.15. Theorem. For each y e P, Iy and Iy are ideals of FP. Conversely, if I is an

ideal of FP, then there is an element y 3:1 of R such that I=Iy or I=Iy. Consequently
the ideals of FP are totally ordered with respect to set inclusion.

Proof. The fact that Iy and Iy are ideals of FP follows readily from the rule for
multiplication expressed in 2.7. On the other hand, if/is an ideal of FP, then let y
denote the greatest lower bound of the set of all t eP such that Dt n 1^ 0. It is not
difficult to show that if Dt n /y 0, then Dttl<=I for all tx e P, and hence /=/„ if
Dynl^0 or 1=1° if Dyn 1=0.   Q.E.D.

2.16. Remark. If we give FP the natural topology described in 2.10 then the
closed ideals are the ones which can be written in the form Iy.

3. The lattice of congruences on FP. In this section as in the last, G is an
arbitrary subgroup of R, the multiplicative group of positive reals, and
P={x e G I xïï 1}. We shall describe here the structure of the lattice of congruences
on the free one-parameter inverse semigroup FP, and hence obtain a description
of every one-parameter inverse semigroup.

The set A(S) of congruences on a semigroup S is well known to be a complete
lattice with respect to the operations

o A p = a O p   and   a v p = H (s 6 A(S) I u p a <= 8}.
The largest (resp. smallest) congruence on S, which is S2 = SxS (resp.  AS2
= {(x, x) I x e S}), is denoted by 1 (resp. 0). The 6 relation on A(S), first defined
and studied on regular semigroups S by Reilly and Scheiblich [4] provides a useful
aid in visualizing A(S). The relation is defined by a 8 p if and only if o n E2 =
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P n E2, where E is the set of idempotents on S. It is shown in [4] that if S is an in-
verse semigroup, then 6 is a lattice congruence on A(S). The ö-class of 1 is the set of
group congruences on S; the 0-class of 0 is the set of idempotent-separating congru-
ences; in general, each ö-class is a complete lattice of commuting congruences on S.

A congruence tu on E, the idempotents of an inverse semigroup S, is normal
provided whenever e co/ then xex'1 to xfx'1 for all xeS. The normal con-
gruences on E are precisely those congruences cd on £ such that a> = o n E2 for
some o e A(S). In fact one sees that A(S)/6 is isomorphic with the lattice of normal
congruences on E, under the map induced by the map from A(S) to the normal
congruences on E given by a -> a n E2.

As a first step in describing A(/>), we shall determine the normal congruences on
EP, the set of idempotents of/>. Recall 2.12, which says that EP is the direct sum
of £,={xx"1 | xe/5}and/r={x-1x| xeP}.

3.1. Lemma. Let x,y, te P. Then

(0

GO t-xexfyt =

xfyll
e¡x

exnfiv
Jty

—  extJylyM,

xixhtjty= ex

iftZy)
if y ̂  A
ift ^ x)
ifx Ú t)

Proof. This follows from the rule for multiplication expressed in 2.7.
Let A and B denote the relations on EP defined by exfy A erfs if and only if x = r

and exfyBerfs if and only if y = s. These are clearly congruence relations on EP.
Furthermore, it is also clear that Av B = E2 and A A B = AEP. Let / be an ideal of
FP, and let IA=iA n I2)u AEï, IB = (B n/2) u A£|, and /£| = (£| n I2)
u A£|. We see immediately that IA, IB, and IEP are all congruences on EP also.

3.2. Theorem. Each of the above congruences on EP is normal. As a set of normal
congruences, they form a lattice with the structure as indicated in the diagram below:

(/, J ideals of FP with /£/)

\ ! /

A£
Figure 3

S.Ep
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Proof. If I is an ideal of FP and m is a normal congruence on EP, then
Iw = (oj n I2) u A£| is clearly a normal congruence on EP, since it is the inter-
section of the two normal congruences w and (I2 n ££) u A£J. Hence the only
assertion requiring proof is that ^4 and B are normal. To see this, let u = ab~lce FP
and note that by 3.1

UexJyU       = eacJi/i,ACj;7(l)j//!zAc)i(aA[i)iz/(yAc)])-

From this we see that A and 2? are normal.    Q.E.D.

3.3. Lemma. Suppose cd is a normal congruence on EP, and suppose x0, y0, t0e P
with /0# 1- Let I denote the ideal IXoyo = (J {A | t = x0yo} of FP. Then

(i) ifexJy0 o> exJyoto, then IA^w,
(ii) ifexJyo o> eXotofya, then IBÇœ.

Proof, (i) Suppose x,y,teP with xy ^x0y0- We wish to show that exfy o¡ exfyl.
Note that exfy = xfxyx~1 and exfyt = xfxylx~1; hence the result follows iffxy o>fxyt-
To see this, first note that fXoy0 = xô1exJyoXo œ xô1exJyotox0=fXoyoto. Hence
fx0y0t0 = tô1fXoy0to *> tö1fXoyototo=fXo»0t20, and sofXoVowfXoyoi2. Inductively, we have
thatfXo!/0 tofXoyoti for each positive integer «. Now choose n so large that x0y0rg
^xyt^xy. Then since u> is a congruence on EP,

f    - f    f f    f — fJxy — Jxy 'Jx0y0 wJxy 'Jx0y4o ~ Jxay0to

and

Jxyt = Jxyt'Jx0yo ("Jxyt 'Jx0yotô = Jx0yoto'

Hence fxy ofxyt and the proof of (i) is complete. The proof of (ii) is analogous.

3.4. Theorem. Let w be a nonzero normal congruence on EP. Then there is an
ideal I of FP such that cd is one of the congruences I A, IB, or IE2. Consequently the
lattice shown in 3.2 is the lattice of all normal congruences on EP.

Proof. Since <o^AE$, there exist x, y, r, seP with x^r or y =£s such that
exfy">erfs. Suppose x^r; say x<r. Then since exfyvs = exfy(fyvs) o> erfs(fyvs)
— erfyvs, we have by 3.3 that Ixisvy)B^oj. Similarly, if y<s, then I{xvr)yA^oj. In
any event, at least one of the sets L = {teP : ItAZu)} and R = {TeP : ItBSo/} is
nonvoid.

Suppose R = 0 and L + 0. Let IL = \J {It : t e L} and note that ILA
= {J{ItA : íeijcíu. So let exfya>erfs; x = r, otherwise R¥=0. Assume y<s.
Then (exfy, erfs) e IxyA. But by 3.3, IxyA çai so xy e L; hence IxyA £ILA. Therefore
w = ILA. By an analogous argument we conclude that if L = 0, then R^0, so IRB
= w where IR = (J{It : te R}.

If neither L nor R is void, then we claim L = R and to = ILEp. To see that L = R,
let / e L. Choose any t0 e R. Then (etfx, etfh) e ItA £co as / e L; also (et/0, ettofto)
e ItoBçw and (e1!o/0, eaJx) e J74 £«>. So (ejj, ettJx) e cd. By 3.3 we conclude that
4ßCto;i.e. (ei. ThusLsÄ. Similarly ÄsL. SoL = Ä.
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Note that ILEP^w since ILA Çcu and IRBç=a>, and ILA v ILB = ILEP. Now suppose
exfyoierfs. If x = r and >, = 5, then iexfy,erfs)ek.Efc]LE$. Without loss of
generality assume x#r, say x>r. If y = s, then iexfy, erfy) e u>, so IryB^w. Thus
IryB^ILE$, so (e*/, erf) = iexfy, erfy) e ILE%. Similarly for the case x<r. A similar
argument shows if x = r and y^s, then iexfy,erfs)eILE%. Now if x^r and
>>#.y, w.l.o.g. assume x>r. Then exfymexfs, and hence exfscoerfs. By 3.3, this
implies Ix(yAS)A^w and /rs/3£cu, so /^(jAí)^ and IrsBi=ILE2. Therefore,
exfyihEt)exfJJLEl)erfs, so iexfy,erf)e ILEf, and oz^/L£|. This completes the
proof.

Now that we have determined the lattice of normal congruences on EP (and hence
the lattice A(FP)f6), we concentrate on determining each ö-class of AiFP). If œ is
a normal congruence on EP then the ö-class belonging to a> is the set of all con-
gruences o- e A(FP) such that a n E^ = co.

Let / be an arbitrary ideal of FP. In the next three theorems we shall determine
the ö-class belonging to IE2. Let/denote the inclusion map of P into G and let/
denote the extension off to FP. Note that f(xy ~ 1z) = xz/y, and that f\I is onto G.

3.5. Theorem. ^4 congruence a on I is a group congruence if and only if there is a
subgroup NofG such that for each u,v e I iwith canonical representations u = xy~ 1z,
v = rs~1t), u a v if and only if xzs/rty e N.

Proof. Let a be a group congruence on /, and consider the following diagram :

G.
\

\   ha
f\I hj=s

I/a

In order to check that the homomorphism ha exists, we note that if f\Iixy~1z)
=f\I(rs~1t), then xzs = rty. Hence ö(xy~1z) = ö(rs~1t). Since/|/is onto, there is a
unique homomorphism induced which we call ha. Now let Af=ker ha and note that
xjz"1ZCT/-.s~1z'ifand only if5(xy~1z) = 'j(/.y~1z')ifand only if hafixy'1z) = hafirs~1t)
if and only if haixz/ y ) — hairt /s) if and only if xz/y + rt/s = xzs/rty e ker ha = N.

Conversely suppose A7 is a subgroup of G. Let aN be the relation on / defined by
xy'1z crN rs~xt if and only if xzs/rty e N, where y^x, z and s^r, t and x_y_1z,
rs'1t e /. It is readily checked that aN is a congruence on / using the fact that N
is a group.

To see thiat oN is a group congruence we need only show I/o-N has only one
idempotent. So let e,f be idempotents in /. Then by 2.10, e = x(xz)_1z and
f=r(rt)~1t for some x, z, r, and t in P. Since xz(rt)/rtixz)=l e N we have that
e aNf Thus I/ctn is a group.
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3.6. Theorem. The correspondences a^-ker/za and N^aN described in 3.1
between the lattice of group congruences on I and the lattice of subgroups of G are
mutually inversive lattice isomorphisms.

Proof. Let a be a group congruence on /, and let 8 = ckeTha. Now as in 3.5
xy_1z o- rs~1t if and only if xzsjrty e ker ha. But from the definition of S,
xy'1z 8 rs~1t if and only if xzsfrty e ker ha. Hence o^erha = a. On the other hand,
let N be a subgroup of G. Let u, v e / with canonical representations u = xy~1z and
v = rs~1t. Now u aN v if and only if xzsfrty e N. Also using the induced homo-
morphism h„N, u oN v if and only if xzsfrty e ker harj. Hence A/=ker hC[l. Hence
the correspondences are mutually inversive functions. To complete the proof we
need only show that the correspondence zV^ oN is a lattice homomorphism.

Let N and M be subgroups of G. It will suffice to show that N^M if and only
if o-Nçau. Now it is clear that N^M implies o-N^aM. Conversely if o-N<^aM let x
be in N with x—yfz such that y,zeP. Then (l,y, 1) <jn (1, z, 1) implies
(1, y, 1) oM (1, z, 1). Thus xe M and N^M. This completes the proof of 3.6.

3.7. Theorem. The 6-class belonging to the normal congruence IE2 is isomorphic
with the lattice of subgroups of G under the correspondence N -> o-nkj AF2.

Proof. Let T denote the 0-class belonging to /£|, O the lattice of subgroups of
G, and A the lattice of group congruences on /. By 3.6 the function from Q. onto A
taking N to aN is a lattice isomorphism. Hence we only need show that the function
from A to T taking S to 8 u AFf is a 1-1 onto lattice isomorphism.

To see that this function is 1-1 and onto, let S u AF| = S' for S e A and p n I2
= p* for p e F. Clearly 8' eV and p* e A. Also one sees without difficulty that
(§')* = 8, for 8 e A. On the other hand if p e F, then to show that (p*)' = p we need
only show that whenever u, v e FP with u^v and u p v then u, v e I. We consider
two cases: (1) lfu$I, v e I, then ww"1 <£ /and vv'1 e I. Also uu~x p m'1. However
this is impossible since p n E2 = IE2. (2) If u <£ I, v $ I, then uu'1, vv'1, u_1u,
v^v^I; but uu'1 p vv'1, so uu~1 = vv~1 since p n E2 = IE2. Similarly w_1h
= 7j-1t;. However this implies that u and v are J^ related and so by 2.14 we conclude
that w = r, a contradiction. This shows that (p*)' = p. Hence the functions S -> 8'
and |0-> p* are mutually inversive functions; and thus ctjv—>oäu AF2 is a 1-1
onto function.

To see that it is a lattice isomorphism, let S, ere A. Then Sv<r=S°<x, since
S o o = a o S. Also S'v o' = 8' o a' according to [4]. So (8 v a)' = (8 ° a) u AFJ, and
S'V(j' = (S u AF|)o(CTu AF|). From this it follows that (8 v ct)' = 8' Vît'; hence
°7v _> ctív u AFf preserves V. Since the inverse of this function clearly preserves
A, we conclude that aN -> oN u AF| is a lattice isomorphism.

3.8. Corollary. For each subgroup N of G, let aN denote the relation on FP
defined by u oN v if and only if u = v, or u,ve I and xzsfrty e N, where xy ~ 1z and
rs~1t are the canonical representations of v. and v respectively. Then oN is a member
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of the d-class belonging to IE2. Furthermore if M is a subgroup of G then oN V aA

Now we shall determine the Ö-class belonging to I A and IB. It turns out that they
are both degenerate. Let g,h:P-+BP be the homomorphisms given by gix)
= (x, 1) and h(x)=(l, x). Let g, h: FP-+ BP denote the extensions of g and h, and
let a, ß be the congruences on FP determined by g, h respectively. Note that
u a v(u ß v) if and only if x = r and yt = sz (z = / and yr = sx) where xy~lz and rs'1!
are the canonical representations of u and v. Let Ia = (a n I2) u AFP
(Iß = (ß n I2) u AFP). It is readily checked that la (/)3) is a congruence on FP
lying in the ö-class belonging to I A ilB).

3.9. Theorem. The 6-class belonging to IA (IB) has la (Iß) as its only member.

Proof. Let V denote the ô-class belonging to IA, and let p and a denote the largest
and smallest elements of Y respectively. It follows from Theorem 4.2 of [4] that
for u,veFp with canonical representations xy~xz and rs~Yt respectively that u av
if and only if uu'1 {IA) vv~x and eu = ev for some e e EP such that e IA uu'1. To
prove the theorem we need only show that u p v implies u a v. So suppose u p v.
Then u~l pv'1 so uu'1 pvv'1. Thus exfylx = uu~1 (IA) vv~1 = erfslr and so x = r.
Also eyl:,fz = u~1u(IA) v~1v = e$ltf and so yt = sz. Now let e = exfsy and note that
eu = ev and e IA uu'1. Hence u a v, and we conclude that a = p = Ia. The proof that
the ö-class belonging to IB contains only Iß is analogous.

The following corollary sums up the information contained in 3.7 and 3.9. For
an arbitrary ideal / of FP and an arbitrary congruence a on FP, let Io denote the
congruence (a n I2) u AF2 on FP. The top of A(FP), T, is the set of group congru-
ences on Fp together with the two congruences a and ß.

Figure 4
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3.10. Corollary. Every nonzero congruence a on FP can be written uniquely in
the form I o for some o e T and some ideal I of FP. Furthermore for ideals I and J of
FP and y and o in T, Iy<^J8 if and only ifl^J and ycg,

3.11. Remark. If we consider FP with the topology described in 2.10, then it is
natural to ask what the closed congruences on FP are. It is not hard to see that 1, 0,
a and ß are closed. Also the group congruence aN is closed if and only if N is cyclic,
and if / is an ideal of FP and o eT then la is closed if and only if / is closed and a
is closed.

Several additional pieces of information can be obtained from the preceding
theorems. We state them below.

3.12. Corollary. A(FP) is a nonmodular lattice.

3.13. Corollary. All one-parameter inverse semigroups except those of the
form FP have a kernel (i.e. minimal ideal). In particular, if I is an ideal of FP then
Fp/Ia and FP/Iß have a kernel isomorphic with BP and FP/IaN has a kernel isomorphic
with G/N.

3.14. Corollary. The lattice of congruences on FPo is isomorphic with the
complement of the top of A(FP) under the mapping a -> a u {(1, 1)}.
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