ONE-PARAMETER INVERSE SEMIGROUPS

BY
CARL EBERHART AND JOHN SELDEN

Abstract

This is the second in a projected series of three papers, the aim of which is the complete description of the closure of any one-parameter inverse semigroup in a locally compact topological inverse semigroup. In it we characterize all one-parameter inverse semigroups. In order to accomplish this, we construct the free one-parameter inverse semigroups and then describe their congruences.

0 . Let G be a subgroup of the multiplicative group of positive real numbers and let P denote the subsemigroup of G consisting of all $x \in G$ with $x \geqq 1$. Denote by \mathscr{C}_{P} the class of all inverse semigroups H for which there is a homomorphism $f: P \rightarrow H$ such that $f(P)$ generates H (no proper inverse subsemigroup of H contains $f(P)$). We shall call such semigroups H one-parameter inverse semigroups and denote by $\mathscr{C}=\bigcup_{P} \mathscr{C}_{P}$ the class of all one-parameter inverse semigroups.

The class \mathscr{C} contains well-known semigroups. For example, each homomorphic image of a subgroup of R, the positive real numbers, is a member of \mathscr{C}. Also the bicyclic semigroup B is a member of \mathscr{C}, as is seen by noting that B is generated by a copy of the nonnegative integers. Indeed, if H is any elementary inverse semigroup, then H^{1} is generated by a homomorphic image of the nonnegative integers, and so is a one-parameter inverse semigroup.

The main purpose of this paper is to describe all one-parameter inverse semigroups. In the process of doing this, we shall construct what we term the free oneparameter inverse semigroups F_{P}, one for each subgroup G of R and its associated semigroup P. The semigroup F_{P} is the only inverse semigroup (up to isomorphism) generated by a subsemigroup isomorphic with P which has the property that each homomorphism $f: P \rightarrow S$, an inverse semigroup, extends uniquely to a homomorphism $\bar{f}: F_{P} \rightarrow S$. In particular, every $H \in \mathscr{C}_{P}$ is a homomorphic image of F_{P}. We thus adopt the point of view that by describing F_{P} and the lattice of congruences of F_{P} for arbitrary P, we will have described all one-parameter inverse semigroups.

We shall assume a certain familiarity with the algebraic theory of semigroups, particularly inverse semigroups. (See Clifford and Preston [1].)
The existence and uniqueness of F_{P} is a consequence of a theorem due to McAlister [3, Theorem 33]. We were greatly aided in the actual description of F_{P}

[^0]Copyright () 1972, American Mathematical Society
by two results of Gluskin on elementary inverse semigroups [2, p. 24]. For the description of the congruences on F_{P}, the results of Reilly and Scheiblich in [4] proved useful.

Although this paper is primarily algebraic in nature, there is a natural topology on F_{P} with respect to which F_{P} is a topological inverse semigroup. This fact, together with several other comments of a topological nature, are included in remarks throughout the paper.

1. The free inverse semigroup on a set X. In this section we shall review some theory which has already been obtained by McAlister in [3].

If S is an inverse semigroup generated by a subset X, then we say that S is freely generated by X provided each function from X into an inverse semigroup extends to a homomorphism on S. One shows easily, using the fact that homomorphisms on inverse semigroups take inverses to inverses, that if S is freely generated by X, then each function from X into an inverse semigroup T extends to a unique homomorphism from S into T.
1.1. Theorem. For any nonvoid X there is one and only one inverse semigroup (up to isomorphism) I_{X} freely generated by X.

Although it is not our intention to investigate them here, we remark that many interesting questions arise concerning the structure of I_{X} and its lattice of congruences. For example, it is not difficult to show that the smallest group congruence on I_{X} has the free group on X as its quotient semigroup.

Now let P be a fixed semigroup. Consider the class of pairs (f, S) where S is an inverse semigroup and f is a homomorphism from P into S so that $f(P)$ generates S. Define two pairs (f, S) and (g, T) to be equivalent provided there is an isomorphism $\phi: S \xrightarrow{\text { onto }} T$ so that $\phi f=g$. This is easily seen to be an equivalence relation on pairs. We call a pair (f, S) a free pair provided given any pair (g, T) there is a homomorphism $\phi: S \rightarrow T$ such that $\phi f=g$. It follows from the fact that two homomorphisms on an inverse semigroup which agree on a generating set are identical, that the homomorphism ϕ above is unique.

The next theorem establishes the existence and uniqueness of a free pair (f, S).
1.2. Theorem. There is an inverse semigroup S and a homomorphism $f: P \rightarrow S$ such that (f, S) is a free pair. Furthermore any two free pairs are equivalent. The homomorphism f is 1-1 if and only if P is embeddable in an inverse semigroup.

In case f is 1-1 we identify P with $f(P)$ and call S the inverse semigroup freely generated by the subsemigroup P and denote S by F_{P}. Note that F_{P} is characterized by the property that any homomorphism from P into an inverse semigroup extends to a unique homomorphism on F_{P}. In particular, any inverse semigroup generated by a homomorphic image of P is isomorphic with a quotient semigroup of F_{P}.
2. The free one-parameter inverse semigroups F_{p}. Let G be a fixed subgroup of R and let $P=\{x \in G \mid x \geqq 1\}, P_{0}=P \backslash\{1\}$. In this section we shall describe fully the structure of the semigroups F_{P} and $F_{P_{0}}$ freely generated by the subsemigroups P and P_{0} respectively.

First we construct a homomorphic image B_{P} of F_{P} which is a generalization of the bicyclic semigroup B. This construction is similar to the one found on p. 107 of Vol. 2 of [1]. Let $B_{P}=P \times P$ with the following operation:

$$
(x, y)(z, w)=(x z / y \wedge z, y w / y \wedge z)
$$

where $y \wedge z=\min \{y, z\}$. It is easily checked that the product of two elements of B_{P} is an element of B_{P}. In fact we have the following consequence of Theorems 8.43 and 8.44 of Vol. 2 of [1]:
2.1. Theorem. B_{P} is a bisimple inverse semigroup which is generated by $P_{0} \times 1$.
2.2. Theorem. The real number 1 is the identity for F_{P}. Furthermore $F_{P_{0}}$ does not have an identity and in fact is isomorphic with $F_{P} \mid\{1\}$. Thus F_{P} is obtained from $F_{P_{0}}$ by adjoining an identity.

Proof. Since 1 is the identity of P and P generates $F_{P}, 1$ is the identity of F_{P}. Let S denote the inverse subsemigroup of F_{P} generated by P_{0}, and let f be a homomorphism from P_{0} into an inverse semigroup T. We assume T has an identity e, for otherwise we could adjoin it. Then f extends to a homomorphism $g: P \rightarrow T$ by defining $g(1)=e$. Now g extends to a homomorphism $\bar{g}: F_{P} \rightarrow T$, and $\bar{g} \mid S$ is clearly the sought extension of f to S. Thus S is freely generated by P_{0}; that is, $S=F_{P_{0}}$. Now suppose S has an identity i. Then there exist $x_{1}, x_{2}, \ldots, x_{n}$ in P_{0} such that $i=x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{n}^{j_{n}}$ where $j_{k} \in\{1,-1\}$ for $k=1,2, \ldots, n$. Thus $x_{1}^{j_{1}} x_{1}^{-j_{1}}=x_{1}^{j_{1}} x_{1}^{-j_{1}} \cdot i$ $=i$ and hence, for some $x \in P_{0}, i=x x^{-1}$ or $i=x^{-1} x$. Suppose that $i=x x^{-1}$. Let $f: P_{0} \rightarrow P_{0} \times 1 \subseteq B_{P}$ be given by $f(t)=(t, 1)$. Then f extends to a homomorphism $\bar{f}: S \rightarrow B_{P}$. Further $f(S)=B_{P}$ since $P_{0} \times 1$ generates B_{P}. Hence $\bar{f}(i)$ is an identity for B_{P} and so $\bar{f}(i)=(1,1)$. But $\bar{f}(i)=\bar{f}\left(x x^{-1}\right)=\bar{f}(x) \bar{f}(x)^{-1}=(x, 1)(1, x)=(x, x)$ and $x \neq 1$. From this contradiction we conclude that $S=F_{P_{0}}$ does not have an identity. In particular $1 \notin S$. Suppose $x \in F_{P} \backslash\{1\}$. Then there exist elements $x_{1}, x_{2}, \ldots, x_{n}$ of P so that $x=x_{1}^{j} 1 x_{2}^{j_{2}} \cdots x_{n}^{j_{n}}$ where $j_{k} \in\{1,-1\}$ for $k=1,2, \ldots, n$. In fact we may assume that $x_{k} \in P_{0}$ for $k=1,2, \ldots, n$ (this is true for at least one value of k since $x \neq 1$). Thus $x \in S$ and we have shown that $S=F_{P} \backslash\{1\}$. This completes the proof of this theorem.

An elementary inverse semigroup is defined to be an inverse semigroup generated by a single element. An elementary inverse semigroup may or may not be a oneparameter inverse semigroup depending on whether it has an identity; however we do have the following corollary.
2.3. Corollary. Suppose the given subgroup G of R is cyclic. Then $F_{P_{0}}$ is an elementary inverse semigroup with the property that every elementary inverse semigroup is a homomorphic image of $F_{P_{0}}$.

Proof. This follows from 2.2 together with the fact that a homomorphism on the positive integers is determined by its value at 1 .
2.4. Lemma. If $x \leqq y$ then
(i) $x y^{-1}=(y / x)^{-1} y y^{-1}$,
(ii) $y^{-1} x=y^{-1} y(y / x)^{-1}$,
(iii) $y x^{-1}=(y / x) x x^{-1}$,
(iv) $x^{-1} y=x^{-1} x(y / x)$.

Proof. To see (i), note that

$$
\begin{aligned}
x y^{-1} & =x((y / x) x)^{-1}=x x^{-1}(y / x)^{-1}=x x^{-1}(y / x)^{-1}(y / x)(y / x)^{-1} \\
& =(y / x)^{-1}(y / x) x x^{-1}(y / x)^{-1}=(y / x)^{-1} y y^{-1} .
\end{aligned}
$$

Part (ii) is proved similarly and (iii) and (iv) are trivial.
The next result is, in a sense, an analogue of a theorem of Gluskin [2, Lemma 1.2] and follows immediately from the above lemma.
2.5. Lemma. Let $x, y, z \in P$. Then the elements $x y^{-1} z$ and $x^{-1} y z^{-1}$ of F_{P} can also be written as follows:

$$
\begin{align*}
x y^{-1} z & =x z / y & & \text { if } y \leqq x, z, \tag{i}\\
& =(y / x)^{-1} z & & \text { if } x \leqq y \leqq z, \\
& =x(y / z)^{-1} & & \text { if } z \leqq y \leqq x, \\
& =(y / x)^{-1} y(y / z)^{-1} & & \text { if } x, z \leqq y, \\
x^{-1} y z^{-1} & =(x z / y)^{-1} & & \text { if } y \leqq x, z, \\
& =x^{-1}(y / z) & & \text { if } z \leqq y \leqq x, \\
& =(y / x) z^{-1} & & \text { if } x \leqq y \leqq z, \\
& =(y / x) y^{-1}(y / z) & & \text { if } x, z \leqq y .
\end{align*}
$$

(iii) There exist a, b, c in P such that $b \geqq a, c$ and $x^{-1} y z^{-1}=a b^{-1} c$.

Proof. Parts (i) and (ii) follow immediately from Lemma 2.4. Using (ii) we can write $x^{-1} y z^{-1}$ as $a b^{-1} c$ if we choose a, b and c as follows: if $y \leqq x, z$ let $a=1$, $b=x z / y, c=1$; if $z \leqq y \leqq x$, let $a=1, b=x, c=y / z$; if $x \leqq y \leqq z$, let $a=y / x, b=z, c=1$; and if $x, z \leqq y$, let $a=y / x, b=y, c=y / z$. In each case $b \geqq a, c$, and a, b and c are in P.
2.6. Theorem. $F_{P}=P P^{-1} P=P^{-1} P P^{-1}$ and $F_{P_{0}}=P P_{0}^{-1} P=P^{-1} P_{0} P^{-1}$.

Proof. It is an immediate consequence of $2.5(\mathrm{i})$ that $P P^{-1} P \subset P^{-1} P P^{-1}$. Hence $P^{-1} P P^{-1}=\left(P P^{-1} P\right)^{-1} \subset\left(P^{-1} P P^{-1}\right)^{-1}=P P^{-1} P$ and so $P P^{-1} P=P^{-1} P P^{-1}$. Note also that $\left(P P^{-1} P\right)^{2}=\left(P P^{-1} P\right)\left(P P^{-1} P\right) \subset P\left(P^{-1} P P^{-1}\right) P=P\left(P P^{-1} P\right) P \subset P P^{-1} P$. Hence $P P^{-1} P$ is an inverse subsemigroup of F_{P}. Since $P \subset P P^{-1} P$, we obtain F_{P} $=P P^{-1} P$. Now suppose $u \in F_{P_{0}}=F_{P} \backslash\{1\}$. Then there exist $x, y, z \in P$ such that $u=x^{-1} y z^{-1}$. Now it follows from 2.5 (iii) that there exist $a, b, c \in P$ with $b \geqq a, c$ so
that $u=x^{-1} y z^{-1}=a b^{-1} c$. However, at least one of a, b, c is not 1 , and so $b \neq 1$. This says that $u \in P P_{0}^{-1} P$. On the other hand, choose $x y^{-1} z$ in $P P_{0}^{-1} P$. Suppose $1=x y^{-1} z$. Note that $y \neq 1$. If $x=z=1$, then $y^{-1}=1$. So $y=1$ which is a contradiction. Thus, either $x \neq 1$ or $z \neq 1$. Without loss of generality, suppose $x \neq 1$. Now if $z=1$, then $1=x y^{-1} \in F_{P_{0}}$, which is a contradiction. So $z \neq 1$. Thus none of x, y, or z is 1. Therefore $1=x y^{-1} z \in F_{P_{0}}$, another contradiction. Thus $x y^{-1} z \neq 1$; i.e., $x y^{-1} z \in F_{P_{0}}$. Hence $P P_{0}^{-1} P=F_{P_{0}}$.
2.7. Theorem. Each element of F_{P} can be written in one and only one way in the form $x y^{-1} z$ where $x, y, z \in P$ with $x, z \leqq y$. Refer to this as the canonical representation of elements of F_{P}. Then if $u, v \in F_{P}$ with canonical representations $u=x y^{-1} z$ and $v=r s^{-1} t$, then $u v$ has as its canonical representation

$$
u v=(x z r / y \wedge z r)(y z r s /(y \wedge z r)(z r \wedge s))^{-1}(z r t / z r \wedge s)
$$

Proof. Let $u \in F_{P}$. Then by 2.6 there are elements, $a, b, c \in P$ such that u $=a^{-1} b c^{-1}$. Now using 2.5 (iii) we can write $u=x y^{-1} z$ where $x, z \leqq y$. To show that the representation is unique, we make use of the semigroup B_{P} defined earlier. Let $f, g: P \rightarrow B_{P}$ be the homomorphisms given by $f(x)=(x, 1)$ and $g(x)=(1, x)$. Let \bar{f} and \bar{g} be the extensions of f and g respectively to F_{P}. Now suppose that $u \in F_{P}$ has two representations $x y^{-1} z$ and $r s^{-1} t$ where $x, z \leqq y$ and $r, t \leqq s$. Then $\bar{f}\left(x y^{-1} z\right)$ $=f(x) f(y)^{-1} f(z)=(x, 1)(1, y)(z, 1)=(x, y / z) \quad$ and \quad similarly $\quad \bar{f}\left(r s^{-1} t\right)=(r, s / t)$, $\bar{g}\left(x y^{-1} z\right)=(y / x, z)=\bar{g}\left(r s^{-1} t\right)=(s / r, t)$. Hence $r=x, s=y$ and $z=t$ and thus the representation is unique.

To establish the rule for multiplication, let $u, v \in F_{P}$ with representations (not necessarily canonical) $u=x y^{-1} z$ and $v=r s^{-1} t$. It then follows from 3.4(ii) that

$$
\begin{aligned}
u v & =x(y s / z r)^{-1} t & & \text { if } z r \leqq s, y, \\
& =x y^{-1}(z r t / s) & & \text { if } s \leqq z r \leqq y, \\
& =(x z r / y) s^{-1} t & & \text { if } y \leqq z r \leqq s, \\
& =(x z r / y)(z r)^{-1}(z r t / s) & & \text { if } s, y \leqq z r .
\end{aligned}
$$

Now since $y \wedge z r \leqq x z r$ and $z r \wedge s \leqq z r t$ it follows that $x z r /(y \wedge z r), z r t /(z r \wedge s)$, and $y z r t /((y \wedge z r)(z r \wedge s))$ are all in P. It is a simple matter to check using the four cases above that in fact,

$$
u v=(x z r / y \wedge z r)[y z r s /(y \wedge z r)(z r \wedge s)]^{-1}(z r t / z r \wedge s)
$$

Further, if $x y^{-1} z$ and $r s^{-1} t$ are canonical; i.e. if $x, z \leqq y$ and $r, t \leqq s$ then it is easily checked that $x z r / y \wedge z r, z r t / z r \wedge s \leqq y z r s /(y \wedge z r)(z r \wedge s)$ and so the representation for the product above is canonical. This completes the proof.
2.8. Corollary. The elements of $F_{P_{0}}=F_{P} \backslash\{1\}$ consist precisely of those elements of F_{P} whose canonical representation $x y^{-1} z$ is such that $y \neq 1$.

Proof. Let $u \in F_{P_{0}}$ and let $x y^{-1} z$ be its canonical representation. If $y=1$ then $x=z=1$ and so $u=1$. Hence $y \neq 1$. Conversely, if $x y^{-1} z \in F_{P}$ with $x, z \leqq y \neq 1$, then $x y^{-1} z \in P P_{0}^{-1} P=F_{P_{0}}$, by 2.6. Q.E.D.

Using 2.7 and 2.8 we immediately obtain the following parametrization theorem for F_{P} and $F_{P_{0}}$.
2.9. Corollary. Let $T_{P}=\{(x, y, z) \mid x, y, z \in P$ with $x, z \leqq y\}$. Define an operation on T_{P} by

$$
(x, y, z)(r, s, t)=(x z r / y \wedge z r, y z r s /(y \wedge z r)(z r \wedge s), z r t / z r \wedge s)
$$

Then the map $\phi: F_{P} \rightarrow T_{P}$ defined by $\phi(u)=(x, y, z)$ for $u \in F_{P}$ with canonical representation $u=x y^{-1} z$ is an isomorphism from F_{P} onto T_{P}. Further if $T_{P_{0}}=T_{P} \mid\{(1,1,1)\}$, then $\phi \mid F_{P_{0}}$ is an isomorphism from $F_{P_{0}}$ onto $T_{P_{0}}$.
2.10. Remark. If T_{P} is given the subspace topology from the product space $P \times P \times P$, where P is given the subspace topology from R with the usual topology, then it is easily seen that the multiplication and inversion on T_{P} are continuous; that is, T_{P} is a topological inverse semigroup. This follows from the fact that multiplication and inversion on R and the \wedge operation on P are all continuous operations. Hence there is a natural topology on F_{P} making F_{P} into a topological inverse semigroup. Indeed, F_{P} is freely generated by P even in the topological sense; that is, any continuous homomorphism from P into a topological inverse semigroup S extends to a unique continuous homomorphism from F_{P} into S.

The idempotent structure of F_{P} is determined next.
2.11. Lemma. Let $u \in F_{P}$ with canonical representation $u=x y^{-1} z$. Then the canonical representation of u^{-1} is $(y / z) y^{-1}(y / x)$.

Proof. Note $y / z, y / x \in P$. Also note $u^{-1}=z^{-1} y x^{-1}$. Hence by 2.5 (ii) u^{-1} $=(y / z) y^{-1}(y / x)$.
For $x \in P$, let $e_{x}=x x^{-1}$ and $f_{x}=x^{-1} x$, and let $E=\left\{e_{x} \mid x \in P\right\}, F=\left\{f_{x} \mid x \in P\right\}$. Note $E, F \subseteq E_{P}$, the set of idempotents of F_{P}.
2.12. Theorem. Let $u \in F_{P}$ with canonical representation $x y^{-1} z$. Then $u \in E_{P}$ if and only if $y=x z$. Furthermore, each element of E can be written in one and only one way in the form $e_{x} f_{x}$ for some $x, z \in P$. Thus E_{P} is the direct sum of the two subsemilattices E and F. Also $e_{x} f_{y} \leqq e_{u} f_{v}$ if and only if $u \leqq x$ and $v \leqq y$.

Proof. Suppose $u \in E_{P}$ and $x y^{-1} z$ is the canonical representation of u. Then by 2.9, $u=u^{-1}=(y / z) y^{-1}(y / x)$. Hence $(y / z)=x$, that is, $y=x z$. On the other hand, if $y=z x$ then $x y^{-1} z=\left(x x^{-1}\right)\left(z^{-1} z\right)=e_{x} f_{z} \in E_{P}$. Hence to establish the last statement we need only show the uniqueness of the representation. So suppose $x, z, r, t \in P$ with $x x^{-1} z^{-1} z=e_{x} f_{z}=e_{r} f_{t}=r r^{-1} t^{-1} t$. Then, using the homomorphisms \bar{f} and \bar{g} of 2.7 we see that $f\left(x x^{-1} z^{-1} z\right)=f(x) f(x)^{-1} f(z)^{-1} f(z)=(x, 1)(1, x)(1, z)(z, 1)=(x, x)$ $=\bar{f}\left(r r^{-1} t t^{-1}\right)=(r, r)$ and similarly $\bar{g}\left(x x^{-1} z^{-1} z\right)=(z, z)=\bar{g}\left(r r^{-1} t^{-1} t\right)=(t, t)$. Hence $x=r$ and $z=t$. The last assertion follows easily upon noting that $e_{x} e_{u}=e_{x \vee u} .2 .13$ follows immediately from 2.12 and the fact that $F_{P_{0}}=F_{P} \mid\{1\}$.
2.13. Corollary. The idempotents of $F_{P_{0}}$ are precisely those elements of F_{P} which can be written (uniquely) in the form $e_{x} f_{z}$ where $\{x, z\} \cap P_{0} \neq \varnothing$.

Next we determine Green's relations (confer with [1]) on F_{P}.
2.14. Theorem. Let $u, v \in F_{P}$ with canonical representations $u=x y^{-1} z$ and $v=r s^{-1} t$. Then
(i) $u \mathscr{R} v$ if and only if $x=r$ and $y=s$,
(ii) $u \mathscr{L} v$ if and only if $y=s$ and $z=t$,
(iii) $u \mathscr{H} v$ if and only if $x=r, y=s$ and $z=t$,
(iv) $u \mathscr{D} v$ if and only if $y=s$.

Proof. (i) We know $u \mathscr{R} v$ if and only if $u u^{-1}=v v^{-1}$. But

$$
u u^{-1}=\left(x y^{-1} z\right)\left((y / z) y^{-1}(y / x)\right)=x y^{-1}(y / x)
$$

and similarly $v v^{-1}=r s^{-1}(s / t)$. Hence by $2.7 u u^{-1}=v v^{-1}$ if and only if $x=r$ and $y=s$.
(ii) Analogous to (i).
(iii) Follows immediately from (i) and (ii).
(iv) Suppose $u \mathscr{D} v$. Then there is an element w of F with $u \mathscr{R} w$ and $w \mathscr{L} v$. Let $a b^{-1} c$ be the canonical representation of w. Then by (i) $y=b$ and by (ii) $b=s$. Hence $y=s$. On the other hand, if $y=s$ let $w=x y^{-1} t$. Then $u \mathscr{R} w$ by (i) and $w \mathscr{L} v$ by (ii). Hence $u \mathscr{D} v$. This completes the proof of 2.12 .

From 2.14 we get that there is a \mathscr{D}-class D_{y} for each element y of $D: D_{y}$ $=\left\{x y^{-1} z \mid x, z \in P\right.$ with $\left.x, z \leqq y\right\}$. Note also that $E_{P} \cap D_{y}=\left\{e_{x} f_{z} \mid x z=y\right\}$. Hence the \mathscr{D}-class D_{y} can be pictured as in Figure 1.

Figure 1

It may be helpful to visualize F_{P} as in Figure 2.

Figure 2
Note that the idempotents of F_{P} lie in a plane which cuts F_{P} into two pieces.
Next we determine the ideal structure of F_{P}. For $y \in R$, let

$$
I_{y}=\bigcup\left\{D_{t} \mid t \geqq y \text { and } t \in P\right\}
$$

and let

$$
I_{y}^{\circ}=\bigcup\left\{D_{t} \mid t>y \text { and } t \in P\right\} .
$$

2.15. Theorem. For each $y \in P, I_{y}$ and I_{y}° are ideals of F_{P}. Conversely, if I is an ideal of F_{P}, then there is an element $y \geqq 1$ of R such that $I=I_{y}$ or $I=I_{y}^{\circ}$. Consequently the ideals of F_{P} are totally ordered with respect to set inclusion.

Proof. The fact that I_{y} and I_{y}° are ideals of F_{P} follows readily from the rule for multiplication expressed in 2.7. On the other hand, if I is an ideal of F_{P}, then let y denote the greatest lower bound of the set of all $t \in P$ such that $D_{t} \cap I \neq \varnothing$. It is not difficult to show that if $D_{t} \cap I \neq \varnothing$, then $D_{t t_{1}} \subset I$ for all $t_{1} \in P$, and hence $I=I_{y}$ if $D_{y} \cap I \neq \varnothing$ or $I=I_{y}^{\circ}$ if $D_{y} \cap I=\varnothing$. Q.E.D.
2.16. Remark. If we give F_{P} the natural topology described in 2.10 then the closed ideals are the ones which can be written in the form I_{y}.
3. The lattice of congruences on F_{P}. In this section as in the last, G is an arbitrary subgroup of R, the multiplicative group of positive reals, and $P=\{x \in G \mid x \geqq 1\}$. We shall describe here the structure of the lattice of congruences on the free one-parameter inverse semigroup F_{P}, and hence obtain a description of every one-parameter inverse semigroup.

The set $\Lambda(S)$ of congruences on a semigroup S is well known to be a complete lattice with respect to the operations

$$
\sigma \wedge \rho=\sigma \cap \rho \quad \text { and } \sigma \vee \rho=\bigcap\{\delta \in \Lambda(S) \mid \cup \rho \sigma \subset \delta\} .
$$

The largest (resp. smallest) congruence on S, which is $S^{2}=S \times S$ (resp. ΔS^{2} $=\{(x, x) \mid x \in S\}$), is denoted by 1 (resp. 0). The θ relation on $\Lambda(S)$, first defined and studied on regular semigroups S by Reilly and Scheiblich [4] provides a useful aid in visualizing $\Lambda(S)$. The relation is defined by $\sigma \theta \rho$ if and only if $\sigma \cap E^{2}=$
$\rho \cap E^{2}$, where E is the set of idempotents on S. It is shown in [4] that if S is an inverse semigroup, then θ is a lattice congruence on $\Lambda(S)$. The θ-class of 1 is the set of group congruences on S; the θ-class of 0 is the set of idempotent-separating congruences; in general, each θ-class is a complete lattice of commuting congruences on S.

A congruence ω on E, the idempotents of an inverse semigroup S, is normal provided whenever $e \omega f$, then $x e x^{-1} \omega x f x^{-1}$ for all $x \in S$. The normal congruences on E are precisely those congruences ω on E such that $\omega=\sigma \cap E^{2}$ for some $\sigma \in \Lambda(S)$. In fact one sees that $\Lambda(S) / \theta$ is isomorphic with the lattice of normal congruences on E, under the map induced by the map from $\Lambda(S)$ to the normal congruences on E given by $\sigma \rightarrow \sigma \cap E^{2}$.

As a first step in describing $\Lambda\left(F_{P}\right)$, we shall determine the normal congruences on E_{P}, the set of idempotents of F_{P}. Recall 2.12, which says that E_{P} is the direct sum of $E=\left\{x x^{-1} \mid x \in P\right\}$ and $F=\left\{x^{-1} x \mid x \in P\right\}$.

3.1. Lemma. Let $x, y, t \in P$. Then

$$
\begin{align*}
& t e_{x} f_{y} t^{-1}=\left\{\begin{array}{ll}
e_{t x} f_{y / t} & \text { if } t \leqq y \\
e_{t x} & \text { if } y \leqq t
\end{array}\right\}=e_{x t} f_{y / y \wedge t} \tag{i}\\
& t^{-1} e_{x} f_{y} t=\left\{\begin{array}{ll}
e_{x i t} f_{t y} & \text { if } t \leqq x \\
f_{t y} & \text { if } x \leqq t
\end{array}\right\}=e_{x \mid x \Lambda t} f_{t y} \tag{ii}
\end{align*}
$$

Proof. This follows from the rule for multiplication expressed in 2.7.
Let A and B denote the relations on E_{P} defined by $e_{x} f_{y} A e_{r} f_{s}$ if and only if $x=r$ and $e_{x} f_{y} B e_{r} f_{\mathrm{s}}$ if and only if $y=s$. These are clearly congruence relations on E_{P}. Furthermore, it is also clear that $A \vee B=E_{P}^{2}$ and $A \wedge B=\Delta E_{P}^{2}$. Let I be an ideal of F_{P}, and let $I A=\left(A \cap I^{2}\right) \cup \Delta E_{P}^{2}, I B=\left(B \cap I^{2}\right) \cup \Delta E_{P}^{2}$, and $I E_{P}^{2}=\left(E_{P}^{2} \cap I^{2}\right)$ $\cup \Delta E_{P}^{2}$. We see immediately that $I A, I B$, and $I E_{P}^{2}$ are all congruences on E_{P} also.
3.2. Theorem. Each of the above congruences on E_{P} is normal. As a set of normal congruences, they form a lattice with the structure as indicated in the diagram below:

Figure 3

Proof. If I is an ideal of F_{P} and ω is a normal congruence on E_{P}, then $I \omega=\left(\omega \cap I^{2}\right) \cup \Delta E_{P}^{2}$ is clearly a normal congruence on E_{P}, since it is the intersection of the two normal congruences ω and $\left(I^{2} \cap E_{P}^{2}\right) \cup \Delta E_{P}^{2}$. Hence the only assertion requiring proof is that A and B are normal. To see this, let $u=a b^{-1} c \in F_{P}$ and note that by 3.1

$$
u e_{x} f_{y} u^{-1}=e_{a c x / b \wedge c x} f_{(b y / y \wedge c) /(a \wedge[b y /(y \wedge c))]} .
$$

From this we see that A and B are normal. Q.E.D.
3.3. Lemma. Suppose ω is a normal congruence on E_{P}, and suppose $x_{0}, y_{0}, t_{0} \in P$ with $t_{0} \neq 1$. Let I denote the ideal $I_{x_{0} y_{0}}=\bigcup\left\{D_{t} \mid t \geqq x_{0} y_{0}\right\}$ of F_{P}. Then
(i) if $e_{x_{0}} f_{y_{0}} \omega e_{x_{0}} f_{y_{0} t_{0}}$, then $I A \subseteq \omega$,
(ii) if $e_{x_{0}} f_{y_{0}} \omega e_{x_{0} t_{0}} f_{y_{0}}$, then $I B \subseteq \omega$.

Proof. (i) Suppose $x, y, t \in P$ with $x y \geqq x_{0} y_{0}$. We wish to show that $e_{x} f_{y} \omega e_{x} f_{y t}$. Note that $e_{x} f_{y}=x f_{x y} x^{-1}$ and $e_{x} f_{y t}=x f_{x y t} x^{-1}$; hence the result follows if $f_{x y} \omega f_{x y t}$. To see this, first note that $f_{x_{0} y_{0}}=x_{0}^{-1} e_{x_{0}} f_{y_{0} x_{0}} \omega x_{0}^{-1} e_{x_{0}} f_{y_{0} t_{0}} x_{0}=f_{x_{0} y_{0} t_{0}}$. Hence $f_{x_{0} y_{0} t_{0}}=t_{0}^{-1} f_{x_{0} y_{0}} t_{0} \omega t_{0}^{-1} f_{x_{0} y_{0} t_{0}} t_{0}=f_{x_{0} y_{0} t_{0}^{2}}$, and so $f_{x_{0} y_{0}} \omega f_{x_{0} y_{0} t_{0}}$. Inductively, we have that $f_{x_{0} y_{0}} \omega f_{x_{0} y_{0} t_{0}^{n}}$ for each positive integer n. Now choose n so large that $x_{0} y_{0} t_{0}^{n}$ $\geqq x y t \geqq x y$. Then since ω is a congruence on E_{P},

$$
f_{x y}=f_{x y} \cdot f_{x_{0} y_{0}} \omega f_{x y} \cdot f_{x_{0} y_{0} t_{0}^{n}}=f_{x_{0} y_{0} t_{0}^{n}}
$$

and

$$
f_{x y t}=f_{x y t} \cdot f_{x_{0} y_{0}} \omega f_{x y t} \cdot f_{x_{0} y_{0} t_{0}^{n}}=f_{x_{0} y_{0} t_{0}^{n}}
$$

Hence $f_{x y} \omega f_{x y t}$ and the proof of (i) is complete. The proof of (ii) is analogous.
3.4. Theorem. Let ω be a nonzero normal congruence on E_{P}. Then there is an ideal I of F_{P} such that ω is one of the congruences $I A, I B$, or $I E_{P}^{2}$. Consequently the lattice shown in 3.2 is the lattice of all normal congruences on E_{P}.

Proof. Since $\omega \neq \Delta E_{P}^{2}$, there exist $x, y, r, s \in P$ with $x \neq r$ or $y \neq s$ such that $e_{x} f_{y} \omega e_{r} f_{s}$. Suppose $x \neq r$; say $x<r$. Then since $e_{x} f_{y \vee s}=e_{x} f_{y}\left(f_{y \vee s}\right) \omega e_{r} f_{s}\left(f_{y v s}\right)$ $=e_{r} f_{y \vee s}$, we have by 3.3 that $I_{x(s \vee y)} B \subseteq \omega$. Similarly, if $y<s$, then $I_{(x \vee r) y} A \subseteq \omega$. In any event, at least one of the sets $L=\left\{t \in P: I_{t} A \subseteq \omega\right\}$ and $R=\left\{T \in P: I_{t} B \subseteq \omega\right\}$ is nonvoid.
Suppose $R=\varnothing$ and $L \neq \varnothing$. Let $I_{L}=\bigcup\left\{I_{i}: t \in L\right\}$ and note that $I_{L} A$ $=\bigcup\left\{I_{t} A: t \in L\right\} \subseteq \omega$. So let $e_{x} f_{y} \omega e_{r} f_{s} ; x=r$, otherwise $R \neq \varnothing$. Assume $y<s$. Then $\left(e_{x} f_{y}, e_{r} f_{s}\right) \in I_{x y} A$. But by $3.3, I_{x y} A \subseteq \omega$ so $x y \in L$; hence $I_{x y} A \subseteq I_{L} A$. Therefore $\omega=I_{L} A$. By an analogous argument we conclude that if $L=\varnothing$, then $R \neq \varnothing$, so $I_{R} B$ $=\omega$ where $I_{R}=\bigcup\left\{I_{t}: t \in R\right\}$.
If neither L nor R is void, then we claim $L=R$ and $\omega=I_{L} E_{P}^{2}$. To see that $L=R$, let $t \in L$. Choose any $t_{0} \in R$. Then ($\left.e_{t} f_{1}, e_{t} f_{t_{0}}\right) \in I_{t} A \subseteq \omega$ as $t \in L$; also $\left(e_{t} f_{t_{0}}, e_{t_{0}} f_{t_{0}}\right)$ $\in I_{t_{0}} B \subseteq \omega$ and $\left(e_{t t_{0}} f_{t_{0}}, e_{t t_{0}} f_{1}\right) \in I_{t} A \subseteq \omega$. So $\left(e_{t} f_{1}, e_{t_{0}} f_{1}\right) \in \omega$. By 3.3 we conclude that $I_{t} B \subseteq \omega$; i.e. $t \in R$. Thus $L \subseteq R$. Similarly $R \subseteq L$. So $L=R$.

Note that $I_{L} E_{P}^{2} \subseteq \omega$ since $I_{L} A \subseteq \omega$ and $I_{R} B \subseteq \omega$, and $I_{L} A \vee I_{L} B=I_{L} E_{P}^{2}$. Now suppose $e_{x} f_{y} \omega e_{r} f_{s}$. If $x=r$ and $y=s$, then $\left(e_{x} f_{y}, e_{r} f_{s}\right) \in \Delta E_{P}^{2} \subseteq I_{L} E_{P}^{2}$. Without loss of generality assume $x \neq r$, say $x>r$. If $y=s$, then $\left(e_{x} f_{y}, e_{r} f_{y}\right) \in \omega$, so $I_{r y} B \subseteq \omega$. Thus $I_{r y} B \subseteq I_{L} E_{P}^{2}$, so $\left(e_{x} f_{y}, e_{r} f_{s}\right)=\left(e_{x} f_{y}, e_{r} f_{y}\right) \in I_{L} E_{P}^{2}$. Similarly for the case $x<r$. A similar argument shows if $x=r$ and $y \neq s$, then $\left(e_{x} f_{y}, e_{r} f_{s}\right) \in I_{L} E_{P}^{2}$. Now if $x \neq r$ and $y \neq s$, w.l.o.g. assume $x>r$. Then $e_{x} f_{y} \omega e_{x} f_{s}$, and hence $e_{x} f_{s} \omega e_{r} f_{s}$. By 3.3, this implies $I_{x(y \wedge s)} A \subseteq \omega$ and $I_{r s} B \subseteq \omega$, so $I_{x}(y \wedge s) A$ and $I_{r s} B \subseteq I_{L} E_{P}^{2}$. Therefore, $e_{x} f_{y}\left(I_{L} E_{P}^{2}\right) e_{x} f_{s}\left(I_{L} E_{P}^{2}\right) e_{r} f_{s}$, so $\left(e_{x} f_{y}, e_{r} f_{s}\right) \in I_{L} E_{P}^{2}$, and $\omega \subseteq I_{L} E_{P}^{2}$. This completes the proof.

Now that we have determined the lattice of normal congruences on E_{P} (and hence the lattice $\left.\Lambda\left(F_{P}\right) / \theta\right)$, we concentrate on determining each θ-class of $\Lambda\left(F_{P}\right)$. If ω is a normal congruence on E_{P} then the θ-class belonging to ω is the set of all congruences $\sigma \in \Lambda\left(F_{P}\right)$ such that $\sigma \cap E_{P}^{2}=\omega$.

Let I be an arbitrary ideal of F_{P}. In the next three theorems we shall determine the θ-class belonging to $I E_{P}^{2}$. Let f denote the inclusion map of P into G and let \bar{f} denote the extension of f to F_{P}. Note that $\bar{f}\left(x y^{-1} z\right)=x z / y$, and that $\bar{f} \mid I$ is onto G.
3.5. Theorem. A congruence σ on I is a group congruence if and only if there is a subgroup N of G such that for each $u, v \in I$ (with canonical representations $u=x y^{-1} z$, $\left.v=r s^{-1} t\right), u \sigma v$ if and only if $x z s / r t y \in N$.

Proof. Let σ be a group congruence on I, and consider the following diagram:

In order to check that the homomorphism h_{σ} exists, we note that if $\bar{f} \mid I\left(x y^{-1} z\right)$ $=\bar{f} \mid I\left(r s^{-1} t\right)$, then $x z s=r t y$. Hence $\bar{\sigma}\left(x y^{-1} z\right)=\bar{\sigma}\left(r s^{-1} t\right)$. Since $\bar{f} \mid I$ is onto, there is a unique homomorphism induced which we call h_{σ}. Now let $N=\operatorname{ker} h_{\sigma}$ and note that $x y^{-1} z \sigma r s^{-1} t$ if and only if $\bar{\sigma}\left(x y^{-1} z\right)=\bar{\sigma}\left(r s^{-1} t\right)$ if and only if $h_{\sigma} \bar{f}\left(x y^{-1} z\right)=h_{\sigma} \bar{f}\left(r s^{-1} t\right)$ if and only if $h_{\sigma}(x z / y)=h_{\sigma}(r t / s)$ if and only if $x z / y \div r t / s=x z s / r t y \in \operatorname{ker} h_{\sigma}=N$.

Conversely suppose N is a subgroup of G. Let σ_{N} be the relation on I defined by $x y^{-1} z \sigma_{N} r s^{-1} t$ if and only if $x z s / r t y \in N$, where $y \geqq x, z$ and $s \geqq r, t$ and $x y^{-1} z$, $r s^{-1} t \in I$. It is readily checked that σ_{N} is a congruence on I using the fact that N is a group.

To see that σ_{N} is a group congruence we need only show I / σ_{N} has only one idempotent. So let e, f be idempotents in I. Then by $2.10, e=x(x z)^{-1} z$ and $f=r(r t)^{-1} t$ for some x, z, r, and t in P. Since $x z(r t) / r t(x z)=1 \in N$ we have that $e \sigma_{N} f$. Thus I / σ_{N} is a group.
3.6. Theorem. The correspondences $\sigma \rightarrow \operatorname{ker} h_{\sigma}$ and $N \rightarrow \sigma_{N}$ described in 3.1 between the lattice of group congruences on I and the lattice of subgroups of G are mutually inversive lattice isomorphisms.

Proof. Let σ be a group congruence on I, and let $\delta=\sigma_{\text {ker } h_{\sigma}}$. Now as in 3.5 $x y^{-1} z \sigma r s^{-1} t$ if and only if $x z s / r t y \in \operatorname{ker} h_{\sigma}$. But from the definition of δ, $x y^{-1} z \delta r s^{-1} t$ if and only if $x z s / r t y \in \operatorname{ker} h_{\sigma}$. Hence $\sigma_{\text {ker } h_{\sigma}}=\sigma$. On the other hand, let N be a subgroup of G. Let $u, v \in I$ with canonical representations $u=x y^{-1} z$ and $v=r s^{-1} t$. Now $u \sigma_{N} v$ if and only if $x z s / r t y \in N$. Also using the induced homomorphism $h_{\sigma_{N}}, u \sigma_{N} v$ if and only if $x z s / r t y \in \operatorname{ker} h_{\sigma_{N}}$. Hence $N=\operatorname{ker} h_{\sigma_{N}}$. Hence the correspondences are mutually inversive functions. To complete the proof we need only show that the correspondence $N \rightarrow \sigma_{N}$ is a lattice homomorphism.

Let N and M be subgroups of G. It will suffice to show that $N \subseteq M$ if and only if $\sigma_{N} \subseteq \sigma_{M}$. Now it is clear that $N \subseteq M$ implies $\sigma_{N} \subseteq \sigma_{M}$. Conversely if $\sigma_{N} \subseteq \sigma_{M}$ let x be in N with $x=y / z$ such that $y, z \in P$. Then $(1, y, 1) \sigma_{N}(1, z, 1)$ implies $(1, y, 1) \sigma_{M}(1, z, 1)$. Thus $x \in M$ and $N \subseteq M$. This completes the proof of 3.6.
3.7. Theorem. The θ-class belonging to the normal congruence $I E_{P}^{2}$ is isomorphic with the lattice of subgroups of G under the correspondence $N \rightarrow \sigma_{N} \cup \Delta F_{P}^{2}$.

Proof. Let Γ denote the θ-class belonging to $I E_{P}^{2}, \Omega$ the lattice of subgroups of G, and Δ the lattice of group congruences on I. By 3.6 the function from Ω onto Δ taking N to σ_{N} is a lattice isomorphism. Hence we only need show that the function from Δ to Γ taking δ to $\delta \cup \Delta F_{P}^{2}$ is a 1-1 onto lattice isomorphism.

To see that this function is $1-1$ and onto, let $\delta \cup \Delta F_{P}^{2}=\delta^{\prime}$ for $\delta \in \Delta$ and $\rho \cap I^{2}$ $=\rho^{*}$ for $\rho \in \Gamma$. Clearly $\delta^{\prime} \in \Gamma$ and $\rho^{*} \in \Delta$. Also one sees without difficulty that $\left(\delta^{\prime}\right)^{*}=\delta$, for $\delta \in \Delta$. On the other hand if $\rho \in \Gamma$, then to show that $\left(\rho^{*}\right)^{\prime}=\rho$ we need only show that whenever $u, v \in F_{P}$ with $u \neq v$ and $u \rho v$ then $u, v \in I$. We consider two cases: (1) If $u \notin I, v \in I$, then $u u^{-1} \notin I$ and $v v^{-1} \in I$. Also $u u^{-1} \rho v v^{-1}$. However this is impossible since $\rho \cap E_{P}^{2}=I E_{P}^{2}$. (2) If $u \notin I, v \notin I$, then $u u^{-1}, v v^{-1}, u^{-1} u$, $v^{-1} v \notin I$; but $u u^{-1} \rho v v^{-1}$, so $u u^{-1}=v v^{-1}$ since $\rho \cap E_{P}^{2}=I E_{P}^{2}$. Similarly $u^{-1} u$ $=v^{-1} v$. However this implies that u and v are \mathscr{H} related and so by 2.14 we conclude that $u=v$, a contradiction. This shows that $\left(\rho^{*}\right)^{\prime}=\rho$. Hence the functions $\delta \rightarrow \delta^{\prime}$ and $\rho \rightarrow \rho^{*}$ are mutually inversive functions; and thus $\sigma_{N} \rightarrow \sigma_{N} \cup \Delta F_{P}^{2}$ is a 1-1 onto function.

To see that it is a lattice isomorphism, let $\delta, \sigma \in \Delta$. Then $\delta \vee \sigma=\delta \circ \sigma$, since $\delta \circ \sigma=\sigma \circ \delta$. Also $\delta^{\prime} \vee \sigma^{\prime}=\delta^{\prime} \circ \sigma^{\prime}$ according to [4]. So $(\delta \vee \sigma)^{\prime}=(\delta \circ \sigma) \cup \Delta F_{P}^{2}$, and $\delta^{\prime} \vee \sigma^{\prime}=\left(\delta \cup \Delta F_{P}^{2}\right) \circ\left(\sigma \cup \Delta F_{P}^{2}\right)$. From this it follows that $(\delta \vee \sigma)^{\prime}=\delta^{\prime} \vee \sigma^{\prime}$; hence $\sigma_{N} \rightarrow \sigma_{N} \cup \Delta F_{P}^{2}$ preserves \vee. Since the inverse of this function clearly preserves \wedge, we conclude that $\sigma_{N} \rightarrow \sigma_{N} \cup \Delta F_{P}^{2}$ is a lattice isomorphism.
3.8. Corollary. For each subgroup N of G, let σ^{N} denote the relation on F_{P} defined by $u \sigma^{N} v$ if and only if $u=v$, or $u, v \in I$ and $x z s / r t y \in N$, where $x y^{-1} z$ and $r s^{-1} t$ are the canonical representations of u and v respectively. Then σ^{N} is a member
of the θ-class belonging to $I E_{P}^{2}$. Furthermore if M is a subgroup of G then $\sigma^{N} \vee \sigma^{M}$ $=\sigma^{N M}$ and $\sigma^{N} \cap \sigma^{M}=\sigma^{N \cap M}$.

Now we shall determine the θ-class belonging to $I A$ and $I B$. It turns out that they are both degenerate. Let $g, h: P \rightarrow B_{P}$ be the homomorphisms given by $g(x)$ $=(x, 1)$ and $h(x)=(1, x)$. Let $\bar{g}, \bar{h}: F_{P} \rightarrow B_{P}$ denote the extensions of g and h, and let α, β be the congruences on F_{P} determined by \bar{g}, \bar{h} respectively. Note that $u \propto v(u \beta v)$ if and only if $x=r$ and $y t=s z(z=t$ and $y r=s x)$ where $x y^{-1} z$ and $r s^{-1} t$ are the canonical representations of u and v. Let $I \alpha=\left(\alpha \cap I^{2}\right) \cup \Delta F_{P}^{2}$ ($\left.I \beta=\left(\beta \cap I^{2}\right) \cup \Delta F_{P}^{2}\right)$. It is readily checked that $I \alpha(I \beta)$ is a congruence on F_{P} lying in the θ-class belonging to $I A(I B)$.
3.9. Theorem. The θ-class belonging to IA (IB) has I $\alpha(I \beta$) as its only member.

Proof. Let Γ denote the θ-class belonging to $I A$, and let ρ and σ denote the largest and smallest elements of Γ respectively. It follows from Theorem 4.2 of [4] that for $u, v \in F_{P}$ with canonical representations $x y^{-1} z$ and $r s^{-1} t$ respectively that $u \sigma v$ if and only if $u u^{-1}(I A) v v^{-1}$ and $e u=e v$ for some $e \in E_{P}$ such that $e I A u u^{-1}$. To prove the theorem we need only show that $u \rho v$ implies $u \sigma v$. So suppose $u \rho v$. Then $u^{-1} \rho v^{-1}$ so $u u^{-1} \rho v v^{-1}$. Thus $e_{x} f_{y / x}=u u^{-1}(I A) v v^{-1}=e_{r} f_{s / r}$ and so $x=r$. Also $e_{y \mid z} f_{z}=u^{-1} u(I A) v^{-1} v=e_{s i t} f_{t}$ and so $y t=s z$. Now let $e=e_{x} f_{s y}$ and note that $e u=e v$ and $e I A u u^{-1}$. Hence $u \sigma v$, and we conclude that $\sigma=\rho=I \alpha$. The proof that the θ-class belonging to $I B$ contains only $I \beta$ is analogous.
The following corollary sums up the information contained in 3.7 and 3.9. For an arbitrary ideal I of F_{P} and an arbitrary congruence σ on F_{P}, let $I \sigma$ denote the congruence ($\sigma \cap I^{2}$) $\cup \Delta F_{P}^{2}$ on F_{P}. The top of $\Lambda\left(F_{P}\right), T$, is the set of group congruences on F_{P} together with the two congruences α and β.

Figure 4
3.10. Corollary. Every nonzero congruence σ on F_{P} can be written uniquely in the form I for some $\delta \in T$ and some ideal I of F_{P}. Furthermore for ideals I and J of F_{P} and γ and δ in $T, I \gamma \subset J \delta$ if and only if $I \subset J$ and $\gamma \subset \delta$.
3.11. Remark. If we consider F_{P} with the topology described in 2.10 , then it is natural to ask what the closed congruences on F_{P} are. It is not hard to see that 1,0 , α and β are closed. Also the group congruence σ_{N} is closed if and only if N is cyclic, and if I is an ideal of F_{P} and $\sigma \in T$ then $I \sigma$ is closed if and only if I is closed and σ is closed.

Several additional pieces of information can be obtained from the preceding theorems. We state them below.
3.12. Corollary. $\Lambda\left(F_{P}\right)$ is a nonmodular lattice.
3.13. Corollary. All one-parameter inverse semigroups except those of the form F_{P} have a kernel (i.e. minimal ideal). In particular, if I is an ideal of F_{P} then $F_{P} / I \alpha$ and $F_{P} / I \beta$ have a kernel isomorphic with B_{P} and $F_{P} / I \sigma_{N}$ has a kernel isomorphic with G / N.
3.14. Corollary. The lattice of congruences on $F_{P_{0}}$ is isomorphic with the complement of the top of $\Lambda\left(F_{P}\right)$ under the mapping $\sigma \rightarrow \sigma \cup\{(1,1)\}$.

References

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vols. 1, 2, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., 1961, 1967. MR 24 \#A2627; MR 36 \#1558.
2. L. M. Gluskin, Elementary generalized groups, Mat. Sb. 41 (83) (1957), 23-36. (Russian) MR 19, 836.
3. D. B. McAlister, A homomorphism theorem for semigroups, J. London Math. Soc. 43 (1968), 355-366. MR 37 \#329.
4. N. R. Reilly and H. E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349-360. MR 36 \#2725.

University of Kentucky, Lexington, Kentucky 40506

[^0]: Presented to the Society, August 27, 1969; received by the editors June 10, 1969.
 AMS 1970 subject classifications. Primary 20M10; Secondary 20M05, 22A15.
 Key words and phrases. Inverse semigroup, one-parameter inverse semigroup, bicyclic semigroup, free semigroup, lattice of congruences, freely generated, bisimple inverse semigroup, Green's relations, normal congruence, group congruence, lattice of subgroups, kernel.

