ONE-PARAMETER SEMIGROUPS HOLOMORPHIC AWAY FROM ZERO

BY

MELINDA W. CERTAIN

Abstract

Suppose T is a one-parameter semigroup of bounded linear operators on a Banach space, strongly continuous on $[0, \infty)$. It is known that $\lim \sup _{x \rightarrow 0}|T(x)-I|<2$ implies T is holomorphic on ($0, \infty$). Theorem I is a generalization of this as follows: Suppose $M>0,0<r<s$, and ρ is in (1,2). If $\left|(T(h)-I)^{n}\right| \leq M \rho^{n}$ whenever $n h$ is in $[r, s], n=1,2, \cdots, h>0$, then there exists $b>0$ such that T is holomorphic on $[b, \infty)$. Theorem II shows that, in some sense, $b \rightarrow 0$ as $r \rightarrow 0$. Theorem I is an application of Theorem III: Suppose $M>0,0<r<s, \rho$ is in (1,2), and f is continuous on [-4s, 4s].

If $\left|\Sigma_{q=0}^{n}\binom{n}{q}(-1)^{n-q} f(t+q h)\right| \leqslant M \rho^{n}$ whenever $n h$ is in $[r, s], n=1,2, \cdots$, $h>0,[t, t+n h] \subset[-4 s, 4 s]$, then f has an analytic extension to an ellipse with center zero. Theorem III is a generalization of a theorem of Beurling in which the inequality on the differences is assumed for all nh. An example is given to show the hypothesis of Theorem I does not imply T holomorphic on ($0, \infty$).

1. Introduction. Suppose T is a one-parameter semigroup of bounded linear operators on a Banach space. Recent work of A. Beurling [3] gives the following:

Theorem A. Suppose T is weakly measurable on ($0, \infty$). Then if $\lim \sup _{x \rightarrow 0}|T(x)-I|<2, T$ is bolomorphic on $(0, \infty)$.

This is a generalization of a theorem due to J. Neuberger [8]:
Theorem B. Suppose T is strongly continuous on $[0, \infty)$. Then if $\lim \sup _{x \rightarrow 0}|T(x)-I|<2, A T(x)$ is bounded for all $x>0$, A being the infinitesimal generator of T.

Under the assumption of strong continuity on $[0, \infty)$, Theorem A also follows from a theorem of Kato [5].

Theorem I of this note presents a generalization of Theorems A and B as follows: Suppose T is strongly continuous on $[0, \infty)$. Suppose $M>0,0<r<s$, and ρ is in (1,2). If $\left|(T(b)-I)^{n}\right| \leq M \rho^{n}$ whenever $n b$ is in $[r, s], n=1,2, \ldots$, $b>0$, then there exists $b>0$ such that T is holomorphic on $[b, \infty)$. An example,

[^0]due to Neuberger [9], is presented in $\S 4$ to show that the hypothesis of Theorem I does not imply T holomorphic on ($0, \infty$). However, Theorem II says that, in some sense, $h \rightarrow 0$ as $r \rightarrow 0$.

Theorems A and B trace their beginnings, at least in part, to some earlier work of Neuberger having to do with quasianalytic classes of functions determined by conditions on finite differences. In [7] Neuberger proved the following:

Theorem C. Suppose ρ and M are positive numbers, $1 \leq \rho<2$, and suppose G is a collection of continuous real-valued functions f on $(0,1)$ such that if u and v are in $(0,1)$ then

$$
\left|\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} f(u+i(v-u) / n)\right| \leq M \rho^{n}, \quad n=1,2, \cdots
$$

Then G is a quasianalytic collection in the sense that no two members of G agree on an open subinterval of (0,1).

The question was raised in [7], and also by D. G. Kendall in [6] in the context of Markov semigroups, of whether G could contain a nonanalytic member. Beurling has proved the following theorem which answers this question negatively.

Theorem D. Suppose f is a function continuous on $[-4,4]$ and for some $M>0$ and ρ in $[3 / 2,2)$,

$$
\left|\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} f(u+i(v-u) / n)\right| \leq M \rho^{n}, \quad n=1,2, \cdots
$$

u, v in $[-4,4]$. Then f can be extended analytically to the rbombus with vertices at $\pm 4, \pm 4 i k a^{2}$ where $\alpha=(2-\rho) / 4$.

Theorems III and IV of this note generalize Theorem D in that analyticity of the function f (in some open set centered at zero) is still deduced even though the inequality on the differences is assumed only for $|v-u|$ in some interval $[r, s]$, $0<r<s$. Theorem III is stated for purposes of comparison with Theorem D. Theorem IV is a more detailed statement and includes Theorem III; consequently, a separate proof of Theorem III is not given. Theorem D is contained in [3] as a special case. The proof here of Theorem IV parallels Beurling's proof in [3] and uses, as does his proof, some techniques described in [2]. Theorem D is applied by Neuberger in [8] to prove Theorem B. Theorem I is proved from Theorem IV using some of the same techniques.
2. Definitions and statement of theorems. Suppose X is a (complex) Banach space and T is a one-parameter semigroup of bounded linear transformations from X to X, strongly continuous on $[0, \infty)$. For p in X and f in X^{*}, denote by $z_{p, f}$ the function on $[0, \infty)$ defined by $z_{p, f}(x)=f(T(x) p)$.

An additive abelian semigroup (in the complex plane, in this note) will be called a semimodule. An angular semimodule is a semimodule which is an open set and which has zero as a limit point. A spinal semimodule is a semimodule which includes a ray from the origin and an open set intersected by this ray. These definitions are given in [4, pp. 256-269].

The statement that U is an extension of T to a domain S in the complex plane means that (1) S is a semimodule; (2) for η in $S, U(\eta)$ is a bounded linear transformation from X to X; (3) if λ, η in S, then $U(\lambda) U(\eta)=U(\lambda+\eta)$; (4) $S \cap$ $[0, \infty)$ is not empty and if x is in $S \cap[0, \infty)$ then $U(x)=T(x)$. If U is an extension of T to S, then the functions $z_{p, f}$ have an obvious extension $\widetilde{z_{p, f}}$ to S : $z_{p, f}(\lambda)=f(U(\lambda) p), f$ in X^{*}, p in X, λ in S.
U is said to be a holomorphic (analytic) extension of T to S if, for p in X, f in $X^{*}, \widetilde{z}_{p, f}$ is holomorphic in S. Seemingly this is a definition of weak differentiability, but if U is holomorphic in S by the definition just given, then U is continuous and differentiable in S in the uniform operator topology, uniformly on compact subsets of S. For a proof and discussion see [4, pp. 92-94].

Theorem I. Suppose r, s, ρ are positive numbers with $1<\rho<2, r<s$, and suppose there exists $M>0$ such that if n is a nonnegative integer, $b>0$,

$$
\left|(T(b)-1)^{\prime \prime}\right| \leq M \rho^{n} \text { whenever } n=0 \text { or } n b \text { is in }[r, s] .
$$

Then there exists $b>0$ such that T has a bolomorphic extension to a domain which includes $[b, \infty)$.

Theorem II. Suppose $\rho>0$ and for each positive integer $j_{j} r_{j}$ and s_{j} are numbers sucb that (i) $0<r_{j}<s_{j}$; (ii) $r_{j} \rightarrow 0$ as $j \rightarrow \infty$; (iii) $\left\{r_{j} / s_{j}\right\}_{j=1}^{\infty}$ is bounded away from 1. Suppose that for each positive integer j, T_{j} is a strongly continuous semigroup on $[0, \infty)$ and there exists $M_{j}>0$ such that $\left|\left(T_{j}(b)-I\right)^{n}\right| \leq M_{j} \rho^{n}$ whenever $n=0$ or $n b$ is in $\left[r_{j}, s_{j}\right]$. Then there is a sequence b_{1}, b_{2}, \cdots of positive numbers converging to 0 such that T has a bolomorphic extension to a domain which includes $\left[b_{j}, \infty\right)$.

Some additional notation and definitions are given before the next theorems are stated. If $\beta, \theta>0$ and t_{0} is a real number, then $E_{\beta, \theta}\left(t_{0}\right)$ denotes the ellipse with foci at $t_{0}-\beta, t_{0}+\beta$ and with sum of semiaxes equal to β / θ. $E_{\beta, \theta}(0)$ will be denoted simply $E_{\beta, \theta}$. Also $\Sigma_{v=0}^{n}\binom{n}{v}(-1)^{n-v} f(t+v b)$, for f a function on $[t, t+n h]$, will be denoted by $\Delta_{b}^{n} f(t)$.

The statement that f has an analytic extension to $E_{\beta, \theta}\left(t_{0}\right)$ means that there is a function \tilde{f}, analytic at every point within and on $E_{\beta, \theta}\left(t_{0}\right)$, such that if x is in $\left[t_{0}-\beta, t_{0}+\beta\right], \tilde{f}(x)=f(x)$.

Theorem III. Suppose r,s are positive numbers, $r<s, f$ is a function continuous on $[-4 s, 4 s]$, and for some $M>0, \rho$ in (1,2),

$$
\left|\sum_{q=0}^{n}\binom{n}{q}(-1)^{n-q} f(u+q(v-u) / n)\right| \leq M \rho^{n}
$$

if u, v are in $[-4 s, 4 s],|v-u|$ is in $[r, s], n=1,2, \ldots$. Then if σ is in $(\rho, 2)$ there exists a number $\beta, 0<\beta<\sigma(s-r) / 8$, such that f can be extended analytically to the ellipse $E_{\beta, \sigma / 2}$.

Theorem IV. Suppose r, s, ρ are positive numbers with $1<\rho<2, r<s$. Then there are positive numbers D, β, σ such that the following is true: Suppose $K>0$ and denote by G_{K} a collection of functions f such that for some real number t_{0},
(1) f is continuous on $\left[t_{0}-D, t_{0}+D\right]$, and
(2) $\left|\Delta_{b}^{n} f(t)\right| \leq K \rho^{n}$, whenever $n=0$ or $n b$ is in $[r, s]$ and $[t, t+n b] C$ $\left[t_{0}-D, t_{0}+D\right]$.

Then there exists $\tilde{K}>0$ such that if f is in G_{K}, f continuous on $\left[t_{0}-D, t_{0}+\underset{\sim}{D}\right]$, then f bas an analytic extension \tilde{f} to $E_{\beta_{0} \sigma / 2}\left(t_{0}\right)$ and \tilde{f} is bounded by \widetilde{K} in $E_{\beta, \sigma / 2}\left(t_{0}\right)$.
3. Proofs. The proof of Theorem IV is given first. It depends upon the following theorem of S . Bernstein [1, p. 112]:

Theorem E. Suppose f is a function continuous on $[-\beta, \beta]$ and there exist polynomials P_{n} of degree n, θ_{0} in $(0,1)$, and $M>0$ such that

$$
\begin{equation*}
\int_{-\beta}^{\beta}\left|f(t)-P_{n}(t)\right|^{2} d t<M \theta_{0}^{2 n}, \quad n=0,1,2, \ldots \tag{3}
\end{equation*}
$$

Then if θ is in $\left(\theta_{0}, 1\right), f$ bas an analytic extension \tilde{f} to $E_{\beta, \theta}$. Furthermore, if M, $\beta>0$ and $0<\theta_{0}<\theta<1$, there exists \tilde{M} such that for any continuous function f for which there exist polynomials P_{n} of degree n such that (3) bolds, the extension \tilde{f} is bounded by \tilde{M} in $E_{\beta, \theta}$.

Lemma. If $r_{0}, \delta_{0}>0, n$ is a positive integer, and $|x| \geq 4 \pi n / \delta_{0}$, then

$$
\int_{r_{0} / n}^{\left(r_{0}+\delta_{0}\right) / n} \sin ^{2 n}(b x / 2) d b \geq \delta_{0} / 4 n^{2} .
$$

Proof of lemma. Suppose n is a positive integer and $x \geq 4 \pi n / \delta_{0}$. Then there is a positive integer $K \geq 1$ such that x is in [$4 \pi n K / \delta_{0}, 4 \pi n(K+1) / \delta_{0}$]. It is easy to verify that $\int_{0}^{2 K \pi} \sin ^{2 n} u d u \geq K \pi / n$. Hence, one has

$$
\begin{aligned}
\int_{r_{0} / n}^{\left(r_{0}+\delta_{0}\right) / n} \sin ^{2 n}(b x / 2) d b & =2 / x \int_{r_{0} x / 2 n}^{\left(r_{0}+\delta_{0}\right) x / 2 n} \sin ^{2 n} u d u \\
& \geq 2 / x \int_{0}^{2 K \pi} \sin ^{2 n} u d u \geq 2 K \pi / x n,
\end{aligned}
$$

using that $x \geq 4 n K \pi / \delta_{0}$ and hence $\delta_{0} x / 2 n \geq 2 K \pi$. But also $x \leq 4 \pi n(K+1) / \delta_{0}$ and hence $2 K \pi / x n \geq \delta_{0} K / 2 n^{2}(K+1) \geq \delta_{0} / 4 n^{2}$.

Proof of Theorem IV. Suppose r,s, ρ are positive numbers with $1<\rho<2$, $r<s$.

Choose σ such that $\rho<\sigma<2$.
The choice of D and β is more complicated but an explicit procedure follows.
Choose σ_{0} such that $\rho<\sigma_{0}<\sigma$, choose a such that
(i) $0<\alpha<1 / 2$,
(ii) $a<1-(r / s)$, and
(iii) for all positive integers n,

$$
\binom{n}{\left[\alpha_{n}\right]} \rho^{n}<\sigma_{0}^{n}
$$

choose $B>0$ such that $(s / B)^{\alpha}<\sigma_{0} / 4$. Denote $r /(1-\alpha)$ by r_{0} and denote $s-r_{0}$ by δ_{0}. Then let $D=3 B+s$ and $\beta=\sigma_{0} \delta_{0} / 8 e \pi$.

Suppose $K>0$ and denote by G_{K} a collection of functions as described in the statement of the theorem. The selection of \widetilde{K} is made as follows: Denote by σ_{1} a number such that $\sigma_{0}<\sigma_{1}<\sigma$, by K_{0} a number such that

$$
K_{0} \geq \max \left\{24 \sqrt{2 \pi} B K / \delta_{0}, 16 K^{2}(6 B+s)\right\}
$$

and by K_{1} a number such that

$$
2 \beta\left(K_{0}\right)^{2}\left(\sigma_{0} / 2\right)^{2 n}+n^{3} K_{0}\left(\sigma_{0} / 2\right)^{2 n}<K_{1}\left(\sigma_{1} / 2\right)^{2 n}, \quad n=1,2, \cdots
$$

Choose \widetilde{K} to be a number such that if f is continuous on $[-\beta, \beta]$ and, for some polynomials P_{n}, (3) holds with M replaced by K_{1} and θ_{0} replaced by $\sigma_{1} / 2$, then f has an analytic extension \tilde{f} to $E_{\beta, \sigma / 2}$ and \tilde{f} is bounded by \tilde{K} on $E_{\beta, \sigma / 2}$. The theorem of Bernstein quoted above says this is possible.

Suppose now that f is a member of G_{K}. Then f is continuous on $\left[t_{0}-D, t_{0}+D\right]$ for some real number t_{0}. It can be assumed that $t_{0}=0$. The essence of the proof is the construction of polynomials P_{n} which approximate f on $[-\beta, \beta]$ in such a way that Bernstein's theorem can be invoked.

The first step is to replace f by functions f_{n} which coincide with f on $[-B, B]$ and vanish off $[-3 B, 3 B]$.

The norms of $L^{1}(-\infty, \infty), L^{2}(-\infty, \infty)$, and $L^{\infty}(-\infty, \infty)$ will be denoted $\|\cdot\|_{1}$, $\|\cdot\|_{2},\|\cdot\|_{\infty}$, respectively. Also, if g is a function, n a nonnegative integer, and t a number, then $g^{(n)}(t)$ denotes the nth derivative of g at t.

For n a positive integer, define $Q_{n, B}$ by

$$
Q_{n, B}(t)= \begin{cases}B^{-2 n}\left(B^{2}-t^{2}\right)^{n}, & \text { if }|t| \leq B ; \\ 0, & \text { if }|t|>B\end{cases}
$$

An important property of $Q_{n, B}$ is that

$$
\begin{equation*}
\left|Q_{n, B}^{(m)}(t)\right| \leq(2 n / B)^{n}, \quad n=0,1, \cdots, n-1, \text { all real } t . \tag{4}
\end{equation*}
$$

To verify this suppose t is in ($-B, B$). Then, for any positive integer n, $\left|Q_{n, B}^{(m)}(t)\right| \leq(2 n / B)^{m}$ for all nonnegative integers m : use induction on n and the fact that if f, g each possess m derivatives at t then

$$
(f g)^{(m)}(t)=\sum_{v=0}^{m}\binom{m}{v} f^{(v)}(t) g^{(m-v)}(t) .
$$

If $|t|>B$ then $Q_{n}^{(m)}(t)=0$ for all nonnegative integers m. Finally, if $t= \pm B$, an elementary argument gives $Q_{n, B}^{(m)}(t)=0$ for $m=0,1,2, \ldots, n-1$.

Denote $\int_{-\infty}^{\infty} Q_{n, B}(t) d t$ by $\gamma_{n, B}$.
Then $\gamma_{n, B}=2 B(2 \cdot 4 \cdot 6 \cdots(2 n)) /(3 \cdot 5 \cdot 7 \cdots(2 n+1))\left[2\right.$, p. 4] and $\gamma_{n, B}$ $>B / \sqrt{n}$ for all positive integers n.

As in [2, p. 4] and [3, p. 392], multiplier functions are now defined.
Define $k_{n, B}(t)=\gamma_{n}^{-1} \int_{-\infty}^{t}\left(Q_{n, B}(u+2 B)-Q_{n, B}(u-2 B)\right) d u$.
Using (4) one has

$$
\begin{equation*}
\left|k_{n, B}^{(\nu)}(t)\right| \leq \gamma_{n}^{-1}(2 n / B)^{\nu-1} \leq(\sqrt{n} / B)(2 n / B)^{\nu-1}, \tag{5}
\end{equation*}
$$

$v=1,2, \cdots, n, t$ any real number.
If a function g has v continuous derivatives on [$t, t+v b$], then there exists a number c in $[t, t+v b]$ such that $\left(\Delta_{b}^{v} g\right)(t)=b^{v} g^{(v)}(c)$.

This together with (5) gives the following:

$$
\left|\Delta_{b}^{\nu} k_{n, B}(t)\right|<b^{v}(\sqrt{n} / B)(2 n / B)^{v-1}=(\sqrt{n} / B)(2 h n / B)^{v-1} h, \quad v=1,2, \cdots, n ;
$$

hence,

$$
\begin{equation*}
\left|\Delta_{b}^{v} k_{n, B}(t)\right| \leq(2 h n / B)^{v}, \quad v=0,1,2, \cdots, n . \tag{6}
\end{equation*}
$$

Now for each positive integer n, define f_{n} by

$$
f_{n}(t)= \begin{cases}\left(f k_{n, B}\right)(t), & \text { if }|t| \leq D \\ 0, & \text { if }|t|>D .\end{cases}
$$

Then for each positive integer n,
(i) f_{n} is continuous on $(-\infty, \infty)$;
(ii) f_{n} has its support in $[-3 B, 3 B]$ and agrees with f on $[-B, B]$;
(iii) $\left\|f_{n}\right\|_{1}<6 B K$.

The next step is to define polynomials P_{n}, of degree n, such that (3) holds with M replaced by K_{1} and θ_{0} replaced by $\sigma_{1} / 2$.

Denote by \hat{f}_{n} the Fourier transform of f_{n}. For $n=1,2, \ldots$, define

$$
\begin{equation*}
P_{n}(t)=\frac{1}{\sqrt{2 \pi}} \int_{|x|<4 \pi n / \delta_{0}}\left(\hat{f}_{n}(x) \sum_{v=0}^{n}(i t x)^{v} / v!\right) d x \tag{7}
\end{equation*}
$$

If \hat{f}_{n} denotes the Fourier transform of f_{n}, then the Fourier transform of $\Delta_{b}^{n} f_{n}$ at x is $\hat{f}_{n}(x)\left(e^{i b x}-1\right)^{n}$. By Parseval's relation

$$
\int_{-\infty}^{\infty}\left|\hat{f}_{n}(x)\right|^{2}\left|e^{i b x}-1\right|^{2 n} d x
$$

$$
\begin{equation*}
=\int_{-\infty}^{\infty}\left|\Delta_{b}^{n} f_{n}(x)\right|^{2} d x, \quad n=1,2, \ldots, b>0 . \tag{8}
\end{equation*}
$$

In what follows, a bound on $\left|\Delta_{b}^{n} f_{n}\right|$ is deduced for $n b$ in $[r /(1-\alpha), s]=\left[r_{0}, s\right]$. Suppose t is a real number, n is a positive integer, $b>0$, and g_{1}, g_{2} are functions each of whose domain includes $[t, t+n b]$. Then

$$
\begin{equation*}
\left(\Delta_{b}^{n} g_{1} g_{2}\right)(t)=\sum_{v=0}^{n}\binom{n}{v}\left(\Delta_{b}^{n-v} g_{1}\right)(t)\left(\Delta_{b}^{v} g_{2}\right)(t+(n-v) b) \tag{9}
\end{equation*}
$$

From (9),

$$
\begin{aligned}
\left|\Delta_{b}^{n} f_{n}(t)\right|< & \sum_{v=0}^{[a n]}\binom{n}{v}\left|\Delta_{b}^{n-v_{f}}(t)\right|\left|\Delta_{b}^{v} k_{n}(t+(n-v) b)\right| \\
& \left.+\sum_{v=\left[a_{n}\right]_{+1}}^{n}\binom{n}{v} \right\rvert\, \Delta_{b}^{n-v_{f}(t)| | \Delta_{b}^{v} k_{n}(t+(n-v) b) \mid .}
\end{aligned}
$$

Suppose $n b$ is in $\left[r_{0}, s\right]$. Then if t is outside $[-3 B-s, 3 B], \Delta_{b}^{n} f_{n}(t)=0$. Suppose t is in $[-3 B-s, 3 B]$. Since $n b$ is in $\left[r_{0}, s\right]$, if $v \leq\left[\alpha_{n}\right] \leq \alpha_{n}$, then $(n-v) b$ is in $[r, s]$ and hence $\left|\Delta_{b}^{n-v} f(t)\right| \leq K \rho^{n-v}$. Also $2 b n / B<1$, since $(s / B)^{a}<\sigma_{0} / 4<1 / 2$. Hence,

$$
\begin{aligned}
\sum_{v=0}^{\left[a_{n}\right]}\binom{n}{v} & \mid \Delta_{b}^{n-v} f(t) \| \Delta_{b}^{v} k_{n}(t+(n-v) b \mid \\
& \leq \sum_{v=0}^{\left[a_{n}\right]}\binom{n}{v} K \rho^{n-v}(2 b n / B)^{v} \leq n K\binom{n}{\left[a_{n}\right]} \rho^{n} \\
& <n K \sigma_{0}^{n}, \quad \text { using also that } a<1 / 2 \text { and } \rho>1 .
\end{aligned}
$$

Any function g bounded by M on $[t, t+n b]$ satisfies $\left|\Delta_{b}^{n} g(t)\right| \leq M 2^{n}, n=$ $1,2, \cdots, b>0$. Hence for $n b$ in $\left[r_{0}, s\right]$ and t a real number,

$$
\left.\sum_{v=\left[a_{n}\right]_{+1}}^{n}\binom{n}{v} \right\rvert\, \Delta_{b}^{n-v_{f}(t)| | \Delta_{b}^{v_{n}}(t+(n-v) b) \mid}
$$

$$
\begin{align*}
& \leq \sum_{v=\left[a_{n}\right]_{+1}}^{n}\binom{n}{v} K 2^{n-v(2 b n / B)^{v}} \tag{11}\\
& \leq 2^{n} K \sum_{v=\left[a_{n}\right]_{+1}}^{n}\binom{n}{v}(s / B)^{v}<4^{n} K(s / B)^{a n}<K \sigma_{0}^{n} .
\end{align*}
$$

Thus if $n b$ is in $\left[r_{0}, s\right],(10)$ and (11) give $\left|\Delta_{b}^{n} f_{n}\right| \leq 2 K n\left(\sigma_{0}\right)^{n}, n=1,2, \cdots$ Since $\Delta_{b}^{n} f_{n}$ is zero outside $[-3 B-s, 3 B$], using (8) one gets

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|\hat{f}_{n}(x)\right|^{2} 2^{2 n} \sin ^{2 n}(b x / 2) d x & =\int_{-\infty}^{\infty}\left|\hat{f}_{n}(x)\right|^{2}\left|e^{i b x}-1\right|^{2 n} d x \\
& <(6 B+s)\left(2 K n\left(\sigma_{0}\right)^{n}\right)^{2}, \text { if } n b \text { in }\left[r_{0}, s\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\iint_{\left.r_{0} / n, s / n\right]}\left(\int_{|x| 24 \pi n / \delta_{0}}\left|\hat{f}_{n}(x)\right|^{2} \sin ^{2 n}(b x / 2) d x\right) d b & \\
& <n \delta_{0}(6 B+s) 4 K^{2}\left(\sigma_{0} / 2\right)^{2 n}, \quad n=1,2, \ldots
\end{aligned}
$$

Using the lemma stated above and reversing the order of integration one has

$$
\begin{aligned}
\int_{|x| \geq 4 \pi n / \delta_{0}}\left|\hat{f}_{n}(x)\right|^{2} d x & <4 n^{3}(6 B+s) 4 K^{2}\left(\sigma_{0} / 2\right)^{2 n} \\
& <K_{0} n^{3}\left(\sigma_{0} / 2\right)^{2 n}, \quad n=1,2, \cdots
\end{aligned}
$$

Define $g_{n}(t)=1 / \sqrt{2 \pi} \int_{|x|<4 \pi n / \delta_{0}}\left(\hat{f_{n}}(x) e^{i t x}\right) d x, n=1,2, \ldots$. If for n a positive integer,

$$
b_{n}(t)= \begin{cases}\hat{f}_{n}(t), & |t|<4 \pi n / \delta_{0}, \\ 0, & |t| \geq 4 \pi n / \delta_{0},\end{cases}
$$

then $g_{n}(t)=\int_{-\infty}^{\infty} b_{n}(x) e^{i t x} d x$, so $b_{n}=\hat{g}_{n}$ in $L^{2}(-\infty, \infty)$. Hence

$$
\left\|\hat{f}_{n}-\hat{g}_{n}\right\|_{2}=\left\|\hat{f}_{n}-b_{n}\right\|_{2}=\int_{|x| \geq 4 \pi n / \delta_{0}}\left|\hat{f}_{n}(x)\right|^{2} d x<K_{0} n^{3}\left(\sigma_{0} / 2\right)^{2 n} ;
$$

also

$$
\begin{aligned}
& \int_{-\beta}^{\beta}\left|f(t)-g_{n}(t)\right|^{2} d t<\int_{-B}^{B}\left|f(t)-g_{n}(t)\right|^{2} d t \\
& \quad=\int_{-B}^{B}\left|f_{n}(t)-g_{n}(t)\right|^{2} d t \leq\left\|f_{n}-g_{n}\right\|_{2}=\left\|\hat{f}_{n}-\hat{g}_{n}\right\|_{2}
\end{aligned}
$$

which yields

$$
\begin{equation*}
\int_{-\beta}^{\beta}\left|f(t)-g_{n}(t)\right|^{2} d t<K_{0} n^{3}\left(\sigma_{0} / 2\right)^{2 n}, \quad n=1,2, \ldots \tag{12}
\end{equation*}
$$

Suppose t is a real number and n is a positive integer. Then

$$
\begin{aligned}
\left|g_{n}(t)-P_{n}(t)\right| & \leq \frac{1}{\sqrt{2 \pi}} \int|x|<4 \pi n / \delta_{0} \\
& \left|\hat{f}_{n}(x)\right||t x|^{n+1} /(n+1)!d x \\
& \leq\left\|\hat{f}_{n}\right\|_{\infty}|t|^{n+1} / \sqrt{2 \pi}(n+1)!\int_{|x|<4 \pi n / \delta_{0}}|x|^{n+1} d x \\
& \leq\left(4 \pi n / \delta_{0}\right)^{n+2}\left(2\left\|f_{n}\right\|_{1}|t|^{n+1} / \sqrt{2 \pi}(n+1)!(n+2)\right)
\end{aligned}
$$

using that $\left|e^{i t x}-\sum_{v=0}^{n}(i t x)^{\nu} / v!\right| \leq|t x|^{n+1} /(n+1)!$ and that $n!>(n / e)^{n}$. If $|t| \leq \beta=\sigma_{0} \delta_{0} / 8 e \pi$, then

$$
\begin{aligned}
\left|g_{n}(t)-P_{n}(t)\right| & <\left(48 B K \pi / \sqrt{2 \pi} \delta_{0}\right)(n /(n+2))(n /(n+1))^{n+1}\left(\sigma_{0} / 2\right)^{n+1} \\
& <K_{0}\left(\sigma_{0} / 2\right)^{n}, \quad n=1,2, \ldots
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{-\beta}^{\beta}\left|g_{n}(t)-P_{n}(t)\right|^{2} d t<2 \beta K_{0}^{2}\left(\sigma_{0} / 2\right)^{2 n} \tag{13}
\end{equation*}
$$

Recalling that K_{1} is a number such that $2 \beta\left(K_{0}\right)^{2}\left(\sigma_{0} / 2\right)^{2 n}+n^{3} K_{0}\left(\sigma_{0} / 2\right)^{2 n}<$ $K_{1}\left(\sigma_{1} / 2\right)^{2 n}, n=1,2, \cdots$, one gets, from (12) and (13),

$$
\int_{-\beta}^{\beta}\left|f(t)-P_{n}(t)\right|^{2} d t<K_{1}\left(\sigma_{1} / 2\right)^{2 n}, \quad n=1,2, \ldots
$$

and the desired analytic extension of f follows from Bernstein's theorem.
Proof of Theorem I. Suppose r, s, ρ are positive numbers with $1<\rho<2$, $r<s$, and suppose M is a number such that if n is a nonnegative integer, $b>0$, and $n b$ is in $[r, s]$, then $\left|(T(b)-I)^{n}\right|<M \rho^{n}$. Suppose D, β, σ are positive numbers such that Theorem IV holds for $r, s, \rho, D, \beta, \sigma$. The claim is that the conclusion of Theorem I holds for $b=D-\beta$.

Suppose $t \geq 0$. It is easy to verify that for $b>0, n$ a nonnegative integer, p in X, and f in $X^{*},\left|\Delta_{b}^{n} z_{p, f}(t)\right| \leq|f|\|p\||T(t)|\left|(T(b)-I)^{n}\right|$. Denote by M_{0} a number such that $|T(t)| \leq M_{0}$ if t is in $[0,2 D]$. If $n b$ is in $[r, s],\|p\| \leq 1,|f| \leq 1$, then $\left|\Delta_{b}^{n} z_{p, f}(t)\right| \leq M_{0} M \rho^{n}$ if $[t, t+n h] \subset[0,2 D]$. Hence, by Theorem IV, there exists \tilde{M} such that if $\|p\| \leq 1,|f| \leq 1, z_{p, f}$ has an analytic extension $\widetilde{z_{p, f}}$ to $E_{\beta, \sigma / 2}(D)$ and $\widetilde{z}_{p, f}$ is bounded by \tilde{M} in $E_{\beta, \sigma / 2}(D)$.

Denote by $B(x ; \epsilon)$ the ball in the complex plane with center at x and radius ϵ, \boldsymbol{x} a real number, $\epsilon>0$.

The ellipse $E_{\beta, \sigma / 2}(D)$ has its foci at $D-\beta, D+\beta$. Hence there exists $\delta>0$ such that $B(b ; 2 \delta)=B(D-\beta ; 2 \delta)$ is contained in $E_{\beta, \sigma / 2}(D)$. Since $\widetilde{z}_{p, f}$ is bounded by \tilde{M} in $E_{\beta, \sigma / 2}(D),\|p\| \leq 1,|f| \leq 1$, then if λ is in $B(b ; \delta)$,

$$
\widetilde{\mid z_{p, f}^{(n)}}(\lambda) \mid \leq n!\tilde{M} \delta^{-n}, \quad n=0,1,2, \ldots
$$

The claim is that if t is in $B(b ; \delta)$, then $A^{n} T(t)$ is a bounded operator on X, $\left\|A^{n} T(t)\right\| \leq n!\tilde{M} \delta^{-n}, n=0,1,2, \ldots$. The argument verifying this, by induction on n, is presented below; for the case $n=1$, it is found in [8] of Neuberger.

If $n=0$, the claim is obviously true since $\left|\widetilde{z_{p, f}}(t)\right| \leq \tilde{M},\|p\| \leq 1,|f| \leq 1, t$ in $B(b ; \delta)$, implies $\|T(t)\| \leq \tilde{M}, t$ in $B(b ; \delta)$.

Suppose K is a positive integer and suppose $A^{K-1} T(t)$ is a bounded operator on X, t in $B(b ; \delta)$. It will be shown that $A^{K} T(t)$ is a bounded operator on X, for t in $B(b ; \delta)$, and that $\left\|A^{K} T(t)\right\| \leq K!\tilde{M} \delta^{-K}$.

Suppose t is in $B(b ; \delta)$ and p is in the domain of A. Then $A^{K} T(t) p=$ $\lim _{x \rightarrow t}+(x-t)^{-1}(T(x)-I) A^{K-1} T(t) p$, if this limit exists. By assumption, ${ }_{A^{K-1}} T(x) p$ exists for all x in $B(b ; \delta)$. Then

$$
\begin{aligned}
\lim _{x \rightarrow t^{+}} & (x-t)^{-1}(T(x-t)-I) A^{K-1} T(t) p \\
& =\lim _{x \rightarrow t^{+}}(x-t)^{-1}\left(T(x-t) A^{K-1} T(t) p-A^{K-1} T(t) p\right) \\
& =\lim _{x \rightarrow t^{+}}(x-t)^{-1}\left(A^{K-1} T(x) p-A^{K-1} T(t) p\right) \\
& =\lim _{x \rightarrow t^{+}} A^{K-1} T(t)\left((x-t)^{-1}(T(x-t)-I)\right) p \\
& =A^{K-1} T(t)\left(\lim _{x \rightarrow t^{+}}(x-t)^{-1}(T(x-t)-I) p\right)=A^{K-1} T(t) A p,
\end{aligned}
$$

and thus $A^{K} T(t) p$ exists. The above equalities also show that if p is any point of X and $\lim _{x \rightarrow t^{+}}(x-t)^{-1}\left(A^{K-1} T(x) p-A^{K-1} T(t) p\right)$ exists, then this limit is $A^{K} T(t) p$.

Suppose f is in X^{*}, p is in $X,\|f\| \leq 1,\|p\| \leq 1$. Then

$$
\begin{aligned}
& \left|f\left((x-t)^{-1}\left(A^{K-1} T(x)+A^{K-1} T(t)\right) p\right)\right| \\
& \quad=\left|(x-t)^{-1}\left(z_{p, f}^{(K-1)}(x)-z_{p, f}^{(K-1)}(t)\right)\right|=\left|z_{p, f}^{(K)}\left(x_{0}\right)\right|
\end{aligned}
$$

for some x_{0} in $[x, t]$, and $\left|z_{p, f}^{(K)}\left(x_{0}\right)\right| \leq \delta^{-K} K!\tilde{M}$ if $[x, t]$ is in $B(b ; \delta)$.
Hence if $[x, t]$ is in $B(b ; \delta)$,

$$
\left\|(x-t)^{-1}\left(A^{K-1} T(x)-A^{K-1} T(t)\right)\right\| \leq \delta^{-K} K!\tilde{M}
$$

Thus if t is in $B(b ; \delta), \lim _{x \rightarrow t^{+}}(x-t)^{-1}\left(A^{K-1} T(x) p-A^{K-1} T(t) p\right)$ exists for p in a dense set (the domain of A), and also $\left\|(x-t)^{-1}\left(A^{K-1} T(x)-A^{K-1} T(t)\right)\right\|$ $\leq \delta^{-K} K!\tilde{M}$ when $[x, t]$ is in $B(b ; \delta)$.

Hence for any p in X, t in $B(b ; \delta), \lim _{x \rightarrow t^{+}}(x-t)^{-1}\left(A^{K-1} T(x) p-A^{K-1} T(t) p\right)$ exists, this limit is $A^{K} T(t) p$, and $\left\|A^{K} T(t)\right\| \leq \delta^{-K} K!\widetilde{M}$.

Suppose λ is in $B(b ; \delta / 2)$. Then $W(\lambda) p=\sum_{n=0}^{\infty}\left((\lambda-b)^{n} / n!\right) A^{n} T(b) p$ defines $W(\lambda)$ as a bounded linear transformation on X. Furthermore, W is holomorphic at each λ in $B(b ; \delta / 2)$ since if f is in X^{*}, p in X, then

$$
\begin{aligned}
f(W(\lambda) p) & =\sum_{n=0}^{\infty}\left((\lambda-b)^{n} / n!\right) f\left(A^{n} T(b) p\right) \\
& =\sum_{n=0}^{\infty}\left((\lambda-b)^{n} / n!\right) z_{p, f}^{(n)}(b)=\widetilde{z_{p, f}}(\lambda)
\end{aligned}
$$

and $\widetilde{z_{p, f}}$ is holomorphic at λ.
Thus there is a function W from $B(b ; \delta / 2)$ to the set of bounded linear transformations on X, W is holomorphic at each λ in $B(b ; \delta / 2)$, and if x is in ($b-(\delta / 2), b+(\delta / 2)$), then $W(x)=T(x)$. By a theorem of Hille [4, p. 477] T has an analytic extension to the interior of a spinal semimodule which includes $[b, \infty)$.

Proof of Theorem II. Suppose ρ is a number, $1<\rho<2$, and $\left\{\left[r_{j}, s_{j}\right]\right\}_{j=1}^{\infty}$ is a sequence of intervals such that $r_{j} \rightarrow 0$ as $j \rightarrow \infty$ and such that there exists $\epsilon>0$ such that $r_{j} / s_{j}<1-\epsilon, j=1,2, \ldots$. Suppose that for each j, T_{j} is a strongly continuous semigroup on $[0, \infty)$ and there exists $M_{j}>0$ such that if n is a nonnegative integer, $b>0$, and $n=0$ or $n b$ is in $\left[r_{j}, s_{j}\right]$, then $\left|\left(T_{j}(b)-I\right)^{n}\right| \leq$ $M_{j} \rho^{n}$.

Denote $r_{j} /(1-\epsilon)$ by s_{j}^{\prime}. Then $r_{j}<s_{j}^{\prime}<s_{j}$, for all j, and $s_{j}^{\prime} \rightarrow 0$ as $j \rightarrow \infty$.
Suppose σ, σ_{0} are numbers such that $\rho<\sigma_{0}<\sigma<2$, and suppose α is a number such that $\alpha<\epsilon, a$ is in ($0,1 / 2$), and

$$
\binom{n}{\left[a_{n}\right]} \rho^{n}<\sigma_{0}^{n}
$$

$n=1,2, \ldots$. Then $a<1-\left(r_{j} / s_{j}^{\prime}\right)=\epsilon, j=1,2, \ldots$.

Since $s_{j}^{\prime} \rightarrow 0$ as $j \rightarrow \infty$, there exists a sequence of positive numbers $\left\{B_{j}\right\}_{j=1}^{\infty}$ such that $B_{j} \rightarrow 0$ as $j \rightarrow \infty$ and such that $\left(s_{j}^{\prime} / B_{j}\right)^{\alpha}<\sigma_{0} / 4, j=1,2, \cdots$. Denote $r_{j} /(1-\alpha)$ by $r_{0, j}$ and denote $s_{j}^{\prime}-r_{0, j}$ by $\delta_{0, j}$. Let $D_{j}=3 B_{j}+s_{j}^{\prime}$ and let $\beta_{j}=$ $\delta_{0, j} \sigma_{0} / 8 e \pi$. Then Theorem IV holds for $r_{j}, s_{j}^{\prime} \rho, D_{j}, \beta_{j}, \sigma$, and hence for r_{j}, s_{j}, $\rho, D_{j}, \beta_{j}, \sigma$ since $\left[r_{j}, s_{j}^{\prime}\right] \subset\left[r_{j}, s_{j}\right]$. Let $b_{j}=D_{j}-\beta_{j}, j=1,2, \ldots$. Then for each j, Theorem I holds for $T_{j}, r_{j}, s_{j}, \rho$, and b_{j}. Clearly $D_{j} \rightarrow 0$ as $j \rightarrow \infty$. Hence $b_{j} \rightarrow 0$ as $j \rightarrow \infty$.
4. Example. The following example is due to Neuberger [9]. Suppose $X=$ $C_{[0,1] ; 0}$, the space of all functions b continuous on $[0,1]$, with $b(0)=0$, and with $\|b\|=\sup _{x} \in[0,1]\{|b(x)|\}$.

For each $\lambda \geq 0$, define

$$
(T(\lambda) b)(x)= \begin{cases}0 & \text { if } \lambda-x \geq 0 \\ b(x-\lambda) & \text { if } x-\lambda \geq 0\end{cases}
$$

x in $[0,1], b$ in $C_{[0,1] ; 0 .}$.
Then T is a one-parameter semigroup of operators on $C_{[0,1] ; 0}, T$ is strangly continuous at $\lambda>1$ since $T(\lambda)=0$ for all $\lambda>1 ; T$ is strongly continuous at $\lambda<1$ since each element of $C_{[0,1] ; 0}$ is uniformly continuous on $[0,1]$; and T is strongly continuous at $\lambda=1$ since each element b of $C_{[0,1] ; 0}$ is continuous at 0 and $b(0)=0$.

Suppose a is a number such that $0<a<1 / 2$. Then there exists $M>0$ and ρ in (1,2) such that $\sum_{\nu=0}^{\left[a_{n}\right]}\binom{n}{v}<M \rho^{n}, n=0,1,2, \ldots$. Denote $1 / \alpha$ by r, and suppose s is any number $>r$. Then if $n \lambda$ is in $[r, s],\left|(T(\lambda)-I)^{n}\right|<M \rho^{n}, n=0$, $1,2, \ldots$, since

$$
\begin{aligned}
\left\|(T(\lambda)-I)^{n} b\right\|= & \left\|\sum_{v=0}^{n}\binom{n}{v}(-1)^{n-v} T(v \lambda) b\right\| \\
\leq & \left\|\sum_{v=0}^{\left[a_{n}\right]}\binom{n}{v}(-1)^{n-v} T(v \lambda) b\right\| \\
& +\left\|\sum_{v=\left[a_{n}\right]+1}^{n}\binom{n}{v}(-1)^{n-v} T(v \lambda) b\right\| \\
& \leq\|b\| \sum_{v=0}^{a_{n}}\binom{n}{v} \leq M \rho^{n}\|b\|
\end{aligned}
$$

using that $v \lambda \geq a_{n \lambda}>1$ implies $\sum_{v=\left[a_{n}\right]+1}^{\left[a_{n}\right]} \underset{v}{n}(-1)^{n-v} T(v \lambda) b=0$.

However, T does not have an analytic extension to an open set which has zero as a limit point. Suppose t_{0} is in (0,1), suppose $g(x)=x, x$ in $[0,1]$, and suppose $f_{t_{0}}(b)=b\left(t_{0}\right), b$ in $C_{[0,1] ; 0}$. Then the function $z_{g, f_{t}}$, where $\boldsymbol{z}_{g}, f_{t_{0}}(\lambda)=$ $f_{t 0}(T(\lambda) g)$, is not analytic at t_{0} since

$$
z_{g, f_{t_{0}}}(x)= \begin{cases}t_{0}-x & \text { if } t_{0}-x \geq 0 \\ 0 & \text { if } x-t_{0} \geq 0\end{cases}
$$

REFERENCES

1. S. Bemstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthiers-Villars, Paris, 1926.
2. A. Beurling, On quasi-analyticity and general distributions, Multigraphed lecture notes, Stanford University, Stanford, Calif., 1961, Lecture 3.
3. \longrightarrow On analytic extension of semigroups of operators, J. Functional Analysis 6 (1970), 387-400. MR 43 \#7960.
4. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664.
5. T. Kato, A characterization of holomorphic semigroups, Proc. Amer. Math. Soc. 25 (1970), 495-498. MR 41 \#9050.
6. D. G. Kendall, Some recent developments in the theory of denumerable Markov processes, Tran's. Fourth Prague Conf. on Information Theory, Statistical Decision Functions, Random Processes (Prague, 1965), Academia, Prague, 1967, pp. 11-27. MR 36 \# 974.
7. J. W. Neuberger, A quasi-analyticity condition in terms of finite differences, Proc. London Mach. Soc. (3) 14 (1964), 245-259. MR 28 \#3130.
8. Analyticity and quasi-analyticity for one-parameter semigroups, Proc. Amer. Mach. Soc. 25 (1970), 488-494. MR 41 \# 4296.
9. \longrightarrow Quasi-analyticity and semigroups, Bull. Amer. Math. Soc. (6) 78 (1972), 909-922.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

[^0]: Presented to the Society, January 25, 1973; received by the editors December 13, 1972 and, in revised form, May 9, 1973.

 AMS (MOS) subject classifications (1970). Primary 47D05; Secondary 26A93, 39A05.
 Key words and phrases. Semigroup of operators, holomorphic semigroup, analytic extension of functions, finite differences, quasianalytic classes of functions.

 Copyright © 1974, American Mathematical Society

