ONE-PARAMETER SEMIGROUPS HOLOMORPHIC AWAY FROM ZERO

BY

MELINDA W. CERTAIN

ABSTRACT. Suppose T is a one-parameter semigroup of bounded linear operators on a Banach space, strongly continuous on $[0, \infty)$. It is known that $\limsup_{x\to 0} |T(x) - I| < 2 \text{ implies } T \text{ is holomorphic on } (0, \infty).$ Theorem I is a generalization of this as follows: Suppose M > 0, 0 < r < s, and ρ is in (1,2). If $|(T(h) - I)^n| \le M \rho^n$ whenever nh is in [r, s], $n = 1, 2, \dots, h > 0$, then there exists b > 0 such that T is holomorphic on $[b, \infty)$. Theorem II shows that, in some sense, $b \rightarrow 0$ as $r \rightarrow 0$. Theorem I is an application of Theorem III: Suppose M > 0, 0 < r < s, ρ is in (1,2), and f is continuous on [-4s, 4s]. If $|\sum_{q=0}^{n} {n \choose q} (-1)^{n-q} f(t+qh)| \le M \rho^n$ whenever nh is in [r, s], n = 1, 2, ..., qh > 0, $[t, t + nh] \subset [-4s, 4s]$, then f has an analytic extension to an ellipse with center zero. Theorem III is a generalization of a theorem of Beurling in which the inequality on the differences is assumed for all nh. An example is given to show the hypothesis of Theorem I does not imply T holomorphic on (0, ∞).

1. Introduction. Suppose T is a one-parameter semigroup of bounded linear operators on a Banach space. Recent work of A. Beurling [3] gives the following:

Theorem A. Suppose T is weakly measurable on $(0, \infty)$. Then if $\limsup_{x\to 0} |T(x) - I| < 2, T \text{ is holomorphic on } (0, \infty).$

This is a generalization of a theorem due to J. Neuberger [8]:

Theorem B. Suppose T is strongly continuous on $[0, \infty)$. Then if $\limsup_{x \to 0} |T(x) - I| < 2$, AT(x) is bounded for all x > 0, A being the infinitesimal generator of T.

Under the assumption of strong continuity on $[0, \infty)$, Theorem A also follows from a theorem of Kato [5].

Theorem I of this note presents a generalization of Theorems A and B as follows: Suppose T is strongly continuous on $[0, \infty)$. Suppose M > 0, 0 < r < s, and ρ is in (1,2). If $|(T(b) - I)^n| \leq M \rho^n$ whenever *nb* is in $[r, s], n = 1, 2, \dots, n$ b > 0, then there exists b > 0 such that T is holomorphic on $[b, \infty)$. An example,

Presented to the Society, January 25, 1973; received by the editors December 13, 1972 and, in revised form, May 9, 1973.

AMS (MOS) subject classifications (1970). Primary 47D05; Secondary 26A93, 39A05.

Key words and phrases. Semigroup of operators, holomorphic semigroup, analytic extension of functions, finite differences, quasianalytic classes of functions. Copyright © 1974, American Mathematical Society

due to Neuberger [9], is presented in §4 to show that the hypothesis of Theorem I does not imply T holomorphic on $(0, \infty)$. However, Theorem II says that, in some sense, $b \to 0$ as $r \to 0$.

Theorems A and B trace their beginnings, at least in part, to some earlier work of Neuberger having to do with quasianalytic classes of functions determined by conditions on finite differences. In [7] Neuberger proved the following:

Theorem C. Suppose ρ and M are positive numbers, $1 \le \rho < 2$, and suppose G is a collection of continuous real-valued functions f on (0, 1) such that if u and v are in (0, 1) then

$$\left|\sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} f(u+i(v-u)/n)\right| \leq M\rho^{n}, \quad n=1, 2, \cdots.$$

Then G is a quasianalytic collection in the sense that no two members of G agree on an open subinterval of (0, 1).

The question was raised in [7], and also by D. G. Kendall in [6] in the context of Markov semigroups, of whether G could contain a nonanalytic member. Beurling has proved the following theorem which answers this question negatively.

Theorem D. Suppose f is a function continuous on [-4, 4] and for some M > 0 and ρ in [3/2, 2),

$$\left|\sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} f(u+i(v-u)/n)\right| \leq M \rho^{n}, \quad n=1, 2, \cdots,$$

u, v in [-4, 4]. Then f can be extended analytically to the rhombus with vertices at ± 4 , $\pm 4ika^2$ where $a = (2 - \rho)/4$.

Theorems III and IV of this note generalize Theorem D in that analyticity of the function f (in some open set centered at zero) is still deduced even though the inequality on the differences is assumed only for |v - u| in some interval [r, s], 0 < r < s. Theorem III is stated for purposes of comparison with Theorem D. Theorem IV is a more detailed statement and includes Theorem III; consequently, a separate proof of Theorem III is not given. Theorem D is contained in [3] as a special case. The proof here of Theorem IV parallels Beurling's proof in [3] and uses, as does his proof, some techniques described in [2]. Theorem D is applied by Neuberger in [8] to prove Theorem B. Theorem I is proved from Theorem IV using some of the same techniques.

2. Definitions and statement of theorems. Suppose X is a (complex) Banach space and T is a one-parameter semigroup of bounded linear transformations from X to X, strongly continuous on $[0, \infty)$. For p in X and f in X*, denote by $z_{p,f}$ the function on $[0, \infty)$ defined by $z_{p,f}(x) = f(T(x)p)$.

An additive abelian semigroup (in the complex plane, in this note) will be called a semimodule. An angular semimodule is a semimodule which is an open set and which has zero as a limit point. A spinal semimodule is a semimodule which includes a ray from the origin and an open set intersected by this ray. These definitions are given in [4, pp. 256-269].

The statement that U is an extension of T to a domain S in the complex plane means that (1) S is a semimodule; (2) for η in S, $U(\eta)$ is a bounded linear transformation from X to X; (3) if λ , η in S, then $U(\lambda)U(\eta) = U(\lambda + \eta)$; (4) S \cap $[0, \infty)$ is not empty and if x is in $S \cap [0, \infty)$ then U(x) = T(x). If U is an extension of T to S, then the functions $z_{p,f}$ have an obvious extension $\widetilde{z_{p,f}}$ to S: $\widetilde{z_{p,f}}(\lambda) = f(U(\lambda)p)$, f in X*, p in X, λ in S.

U is said to be a holomorphic (analytic) extension of T to S if, for p in X, f in $X^*, \widetilde{z_{p,f}}$ is holomorphic in S. Seemingly this is a definition of weak differentiability, but if U is holomorphic in S by the definition just given, then U is continuous and differentiable in S in the uniform operator topology, uniformly on compact subsets of S. For a proof and discussion see [4, pp. 92-94].

Theorem 1. Suppose r, s, ρ are positive numbers with $1 < \rho < 2$, r < s, and suppose there exists M > 0 such that if n is a nonnegative integer, b > 0,

 $|(T(b) - I)''| \leq M\rho^n \quad \text{whenever } n = 0 \text{ or } nb \text{ is in } [r, s].$

Then there exists b > 0 such that T has a holomorphic extension to a domain which includes $[b, \infty)$.

Theorem II. Suppose $\rho > 0$ and for each positive integer j, r_j and s_j are numbers such that (i) $0 < r_j < s_j$; (ii) $r_j \rightarrow 0$ as $j \rightarrow \infty$; (iii) $\{r_j/s_j\}_{j=1}^{\infty}$ is bounded away from 1. Suppose that for each positive integer j, T_j is a strongly continuous semigroup on $[0, \infty)$ and there exists $M_j > 0$ such that $|(T_j(b) - 1)^n| \leq M_j \rho^n$ whenever n = 0 or nh is in $[r_j, s_j]$. Then there is a sequence b_1, b_2, \cdots of positive numbers converging to 0 such that T has a holomorphic extension to a domain which includes $[b_j, \infty)$.

Some additional notation and definitions are given before the next theorems are stated. If β , $\theta > 0$ and t_0 is a real number, then $E_{\beta,\theta}(t_0)$ denotes the ellipse with foci at $t_0 - \beta$, $t_0 + \beta$ and with sum of semiaxes equal to β/θ . $E_{\beta,\theta}(0)$ will be denoted simply $E_{\beta,\theta}$. Also $\sum_{\nu=0}^{n} {n \choose \nu} (-1)^{n-\nu} f(t+\nu b)$, for f a function on [t, t+nb], will be denoted by $\Delta_{h}^{n} f(t)$.

The statement that f has an analytic extension to $E_{\beta,\theta}(t_0)$ means that there is a function \tilde{f} , analytic at every point within and on $E_{\beta,\theta}(t_0)$, such that if x is in $[t_0 - \beta, t_0 + \beta], \tilde{f}(x) = f(x)$.

Theorem III. Suppose r, s are positive numbers, r < s, f is a function continuous on [-4s, 4s], and for some M > 0, ρ in (1,2),

$$\left|\sum_{q=0}^{n} \binom{n}{q} (-1)^{n-q} f(u+q(\nu-u)/n)\right| \leq M \rho^{n}$$

if u, v are in [-4s, 4s], |v - u| is in [r, s], $n = 1, 2, \dots$. Then if σ is in $(\rho, 2)$ there exists a number β , $0 < \beta < \sigma(s - r)/8$, such that f can be extended analytically to the ellipse $E_{\beta,\sigma/2}$.

Theorem IV. Suppose r, s, ρ are positive numbers with $1 < \rho < 2$, r < s. Then there are positive numbers D, β , σ such that the following is true: Suppose K > 0 and denote by G_K a collection of functions f such that for some real number t_0 ,

(1) f is continuous on $[t_0 - D, t_0 + D]$, and

(2) $|\Delta_b^n f(t)| \leq K \rho^n$, whenever n = 0 or nb is in [r, s] and $[t, t + nb] \subset [t_0 - D, t_0 + D]$.

Then there exists $\widetilde{K} > 0$ such that if f is in G_K , f continuous on $[t_0 - D, t_0 + D]$, then f has an analytic extension \widetilde{f} to $E_{\beta,\sigma/2}(t_0)$ and \widetilde{f} is bounded by \widetilde{K} in $E_{\beta,\sigma/2}(t_0)$.

3. Proofs. The proof of Theorem IV is given first. It depends upon the following theorem of S. Bernstein [1, p. 112]:

Theorem E. Suppose f is a function continuous on $[-\beta, \beta]$ and there exist polynomials P_n of degree n, θ_0 in (0, 1), and M > 0 such that

(3)
$$\int_{-\beta}^{\beta} |f(t) - P_n(t)|^2 dt < M\theta_0^{2n}, \quad n = 0, 1, 2, \cdots$$

Then if θ is in $(\theta_0, 1)$, f has an analytic extension \tilde{f} to $E_{\beta,\theta}$. Furthermore, if $M, \beta > 0$ and $0 < \theta_0 < \theta < 1$, there exists \tilde{M} such that for any continuous function f for which there exist polynomials P_n of degree n such that (3) holds, the extension \tilde{f} is bounded by \tilde{M} in $E_{\beta,\theta}$.

Lemma. If r_0 , $\delta_0 > 0$, n is a positive integer, and $|x| \ge 4\pi n/\delta_0$, then

$$\int_{r_0/n}^{(r_0+\delta_0)/n} \sin^{2n}(bx/2) \, db \ge \delta_0/4n^2.$$

Proof of lemma. Suppose *n* is a positive integer and $x \ge 4\pi n/\delta_0$. Then there is a positive integer $K \ge 1$ such that *x* is in $[4\pi nK/\delta_0, 4\pi n(K+1)/\delta_0]$. It is easy to verify that $\int_0^{2K\pi} \sin^{2n} u \, du \ge K\pi/n$. Hence, one has

$$\int_{r_0/n}^{(r_0+\delta_0)/n} \sin^{2n}(bx/2) \, db = 2/x \int_{r_0x/2n}^{(r_0+\delta_0)x/2n} \sin^{2n}u \, du$$
$$\geq 2/x \int_0^{2K\pi} \sin^{2n}u \, du \geq 2K\pi/xn$$

using that $x \ge 4nK\pi/\delta_0$ and hence $\delta_0 x/2n \ge 2K\pi$. But also $x \le 4\pi n(K+1)/\delta_0$ and hence $2K\pi/xn \ge \delta_0 K/2n^2(K+1) \ge \delta_0/4n^2$.

Proof of Theorem IV. Suppose r, s, ρ are positive numbers with $1 < \rho < 2$, r < s.

Choose σ such that $\rho < \sigma < 2$.

The choice of D and β is more complicated but an explicit procedure follows. Choose σ_0 such that $\rho < \sigma_0 < \sigma$; choose α such that

- (i) $0 < \alpha < \frac{1}{2}$,
- (ii) $\alpha < 1 (r/s)$, and
- (iii) for all positive integers n,

$$\binom{n}{[\alpha n]}\rho^n < \sigma_0^n;$$

choose B > 0 such that $(s/B)^{\alpha} < \sigma_0/4$. Denote $r/(1 - \alpha)$ by r_0 and denote $s - r_0$ by δ_0 . Then let D = 3B + s and $\beta = \sigma_0 \delta_0/8e\pi$.

Suppose K > 0 and denote by G_K a collection of functions as described in the statement of the theorem. The selection of \widetilde{K} is made as follows: Denote by σ_1 a number such that $\sigma_0 < \sigma_1 < \sigma$, by K_0 a number such that

$$K_0 \ge \max\{24\sqrt{2\pi}BK/\delta_0, 16K^2(6B+s)\},\$$

and by K_1 a number such that

$$2\beta(K_0)^2(\sigma_0/2)^{2n} + n^3K_0(\sigma_0/2)^{2n} < K_1(\sigma_1/2)^{2n}, \quad n = 1, 2, \cdots$$

Choose \widetilde{K} to be a number such that if f is continuous on $[-\beta, \beta]$ and, for some polynomials P_n , (3) holds with M replaced by K_1 and θ_0 replaced by $\sigma_1/2$, then f has an analytic extension \widetilde{f} to $E_{\beta,\sigma/2}$ and \widetilde{f} is bounded by \widetilde{K} on $E_{\beta,\sigma/2}$. The theorem of Bernstein quoted above says this is possible.

Suppose now that f is a member of G_K . Then f is continuous on $[t_0 - D, t_0 + D]$ for some real number t_0 . It can be assumed that $t_0 = 0$. The essence of the proof is the construction of polynomials P_n which approximate f on $[-\beta, \beta]$ in such a way that Bernstein's theorem can be invoked.

The first step is to replace f by functions f_n which coincide with f on [-B, B] and vanish off [-3B, 3B].

The norms of $L^{1}(-\infty, \infty)$, $L^{2}(-\infty, \infty)$, and $L^{\infty}(-\infty, \infty)$ will be denoted $\|\cdot\|_{1}$, $\|\cdot\|_{2}$, $\|\cdot\|_{\infty}$, respectively. Also, if g is a function, n a nonnegative integer, and t a number, then $g^{(n)}(t)$ denotes the nth derivative of g at t.

For *n* a positive integer, define $Q_{n,B}$ by

$$Q_{n,B}(t) = \begin{cases} B^{-2n}(B^2 - t^2)^n, & \text{if } |t| \le B; \\ 0, & \text{if } |t| > B. \end{cases}$$

٠

An important property of $Q_{n,B}$ is that

(4)
$$|Q_{n,B}^{(m)}(t)| \leq (2n/B)^n, \quad n = 0, 1, \dots, n-1, \text{ all real } t.$$

To verify this suppose t is in (-B, B). Then, for any positive integer n, $|Q_{n,B}^{(m)}(t)| \leq (2n/B)^m$ for all nonnegative integers m: use induction on n and the fact that if f, g each possess m derivatives at t then

$$(fg)^{(m)}(t) = \sum_{\nu=0}^{m} {m \choose \nu} f^{(\nu)}(t)g^{(m-\nu)}(t).$$

If |t| > B then $Q_n^{(m)}(t) = 0$ for all nonnegative integers m. Finally, if $t = \pm B$, an elementary argument gives $Q_{n,B}^{(m)}(t) = 0$ for $m = 0, 1, 2, \dots, n-1$.

Denote $\int_{-\infty}^{\infty} Q_{n,B}(t) dt$ by $\gamma_{n,B}$.

Then $\gamma_{n,B} = 2B(2 \cdot 4 \cdot 6 \cdots (2n))/(3 \cdot 5 \cdot 7 \cdots (2n+1))$ [2, p. 4] and $\gamma_{n,B} > B/\sqrt{n}$ for all positive integers *n*.

As in [2, p. 4] and [3, p. 392], multiplier functions are now defined. Define $k_{n,B}(t) = \gamma_n^{-1} \int_{-\infty}^t (Q_{n,B}(u+2B) - Q_{n,B}(u-2B)) du$. Using (4) one has

(5)
$$|k_{n,B}^{(\nu)}(t)| \leq \gamma_n^{-1} (2n/B)^{\nu-1} \leq (\sqrt{n}/B)(2n/B)^{\nu-1},$$

 $v = 1, 2, \cdots, n, t$ any real number.

If a function g has v continuous derivatives on [t, t + vb], then there exists a number c in [t, t + vb] such that $(\Delta_{hg}^{v})(t) = b^{v}g^{(v)}(c)$.

This together with (5) gives the following:

$$|\Delta_{b}^{\nu}k_{n,B}(t)| < b^{\nu}(\sqrt{n}/B)(2n/B)^{\nu-1} = (\sqrt{n}/B)(2bn/B)^{\nu-1}b, \quad \nu = 1, 2, \cdots, n;$$

hence,

(6)
$$|\Delta_b^{\nu} k_{n,B}(t)| \leq (2hn/B)^{\nu}, \quad \nu = 0, 1, 2, \cdots, n.$$

Now for each positive integer n, define f_n by

$$f_n(t) = \begin{cases} (f_{n,B})(t), & \text{if } |t| \le D; \\ 0, & \text{if } |t| > D. \end{cases}$$

Then for each positive integer n,

- (i) f_n is continuous on $(-\infty, \infty)$;
- (ii) f_n has its support in [-3B, 3B] and agrees with f on [-B, B];
- (iii) $||f_n||_1 < 6BK$.

The next step is to define polynomials P_n , of degree *n*, such that (3) holds with *M* replaced by K_1 and θ_0 replaced by $\sigma_1/2$.

Denote by \hat{f}_n the Fourier transform of f_n . For $n = 1, 2, \dots$, define

(7)
$$P_{n}(t) = \frac{1}{\sqrt{2\pi}} \int_{|x| < 4\pi n/\delta_{0}} \left(\hat{f}_{n}(x) \sum_{\nu=0}^{n} (itx)^{\nu} / \nu! \right) dx.$$

If \hat{f}_n denotes the Fourier transform of f_n , then the Fourier transform of $\Delta_b^n f_n$ at x is $\hat{f}_n(x)(e^{ibx}-1)^n$. By Parseval's relation

(8)
$$\int_{-\infty}^{\infty} |\hat{f}_{n}(x)|^{2} |e^{ibx} - 1|^{2n} dx$$
$$= \int_{-\infty}^{\infty} |\Delta_{b}^{n} f_{n}(x)|^{2} dx, \quad n = 1, 2, \dots, b > 0.$$

In what follows, a bound on $|\Delta_{b}^{n}/_{n}|$ is deduced for nb in $[r/(1-\alpha), s] = [r_{0}, s]$. Suppose t is a real number, n is a positive integer, b > 0, and g_{1}, g_{2} are functions each of whose domain includes [t, t + nb]. Then

(9)
$$(\Delta_{b}^{n}g_{1}g_{2})(t) = \sum_{\nu=0}^{n} {\binom{n}{\nu}} (\Delta_{b}^{n-\nu}g_{1})(t)(\Delta_{b}^{\nu}g_{2})(t+(n-\nu)b).$$

From (9),

$$\begin{aligned} |\Delta_b^n f_n(t)| &< \sum_{\nu=0}^{\lfloor \alpha n \rfloor} \binom{n}{\nu} |\Delta_b^{n-\nu} f(t)| |\Delta_b^{\nu} k_n(t+(n-\nu)b)| \\ &+ \sum_{\nu=\lfloor \alpha n \rfloor+1}^n \binom{n}{\nu} |\Delta_b^{n-\nu} f(t)| |\Delta_b^{\nu} k_n(t+(n-\nu)b)|. \end{aligned}$$

Suppose *nb* is in $[r_0, s]$. Then if *t* is outside [-3B - s, 3B], $\Delta_b^n f_n(t) = 0$. Suppose *t* is in [-3B - s, 3B]. Since *nb* is in $[r_0, s]$, if $v \leq [\alpha n] \leq \alpha n$, then (n - v)b is in [r, s] and hence $|\Delta_b^{n-v}f(t)| \leq K\rho^{n-v}$. Also 2bn/B < 1, since $(s/B)^{\alpha} < \sigma_0/4 < 1/2$. Hence,

(10)

$$\sum_{\nu=0}^{\lfloor \alpha_n \rfloor} \binom{n}{\nu} |\Delta_b^{n-\nu} f(t)| |\Delta_b^{\nu} k_n(t+(n-\nu)b|)$$

$$\leq \sum_{\nu=0}^{\lfloor \alpha_n \rfloor} \binom{n}{\nu} K \rho^{n-\nu} (2bn/B)^{\nu} \leq nK \binom{n}{\lfloor \alpha_n \rfloor} \rho^n$$

$$< nK\sigma_0^n, \text{ using also that } \alpha < \frac{1}{2} \text{ and } \rho > 1.$$

Any function g bounded by M on [t, t+nb] satisfies $|\Delta_{bg}^{n}(t)| \le M2^{n}$, $n = 1, 2, \dots, b > 0$. Hence for nb in $[r_0, s]$ and t a real number,

(11)

$$\sum_{\nu=\lfloor \alpha n \rfloor+1}^{n} \binom{n}{\nu} |\Delta_{b}^{n-\nu}f(t)| |\Delta_{b}^{\nu}k_{n}(t+(n-\nu)b)|$$

$$\leq \sum_{\nu=\lfloor \alpha n \rfloor+1}^{n} \binom{n}{\nu} K2^{n-\nu}(2bn/B)^{\nu}$$

$$n$$

$$\leq 2^{n}K \sum_{\nu=[a_{n}]+1}^{n} \binom{n}{\nu} (s/B)^{\nu} < 4^{n}K(s/B)^{a_{n}} < K\sigma_{0}^{n}.$$

Thus if nb is in $[r_0, s]$, (10) and (11) give $|\Delta_b^n/n| \le 2Kn(\sigma_0)^n$, $n = 1, 2, \dots$. Since Δ_b^n/n is zero outside [-3B - s, 3B], using (8) one gets

$$\int_{-\infty}^{\infty} |\hat{f}_n(x)|^2 2^{2n} \sin^{2n}(bx/2) \, dx = \int_{-\infty}^{\infty} |\hat{f}_n(x)|^2 |e^{ibx} - 1|^{2n} \, dx$$

< $(6B + s)(2Kn(\sigma_0)^n)^2$, if nb in $[r_0, s]$.

Hence

$$\int_{[r_0/n,s/n]} \left(\int_{|x| \ge 4\pi n/\delta_0} |\hat{f}_n(x)|^2 \sin^{2n}(bx/2) \, dx \right) db$$

< $n\delta_0(6B + s) 4K^2(\sigma_0/2)^{2n}, \quad n = 1, 2, \cdots$

Using the lemma stated above and reversing the order of integration one has

$$\int_{|x| \ge 4\pi n/\delta_0} |\hat{f}_n(x)|^2 dx < 4n^3(6B + s)4K^2(\sigma_0/2)^{2n}$$
$$< K_0 n^3(\sigma_0/2)^{2n}, \quad n = 1, 2, \cdots,$$

Define $g_n(t) = 1/\sqrt{2\pi} \int_{|x| < 4\pi n/\delta_0} (\hat{f}_n(x)e^{itx}) dx$, $n = 1, 2, \cdots$. If for n a positive integer,

$$b_{n}(t) = \begin{cases} \hat{f}_{n}(t), & |t| < 4\pi n/\delta_{0}, \\ 0, & |t| \ge 4\pi n/\delta_{0}, \end{cases}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

then $g_n(t) = \int_{-\infty}^{\infty} b_n(x) e^{itx} dx$, so $b_n = \hat{g}_n$ in $L^2(-\infty, \infty)$. Hence

$$\|\hat{f}_n - \hat{g}_n\|_2 = \|\hat{f}_n - b_n\|_2 = \int_{|x| \ge 4\pi n/\delta_0} |\hat{f}_n(x)|^2 \, dx < K_0 n^3 (\sigma_0/2)^2 n_{10}^2$$

also

$$\int_{-\beta}^{\beta} |f(t) - g_n(t)|^2 dt < \int_{-B}^{B} |f(t) - g_n(t)|^2 dt$$
$$= \int_{-B}^{B} |f_n(t) - g_n(t)|^2 dt \le ||f_n - g_n||_2 = ||\hat{f}_n - \hat{g}_n||_2$$

which yields

(12)
$$\int_{-\beta}^{\beta} |f(t) - g_n(t)|^2 dt < K_0 n^3 (\sigma_0/2)^{2n}, \quad n = 1, 2, \cdots$$

Suppose t is a real number and n is a positive integer. Then

$$\begin{split} |g_{n}(t) - P_{n}(t)| &\leq \frac{1}{\sqrt{2\pi}} \int_{|x| < 4\pi n/\delta_{0}} |\hat{f}_{n}(x)| |tx|^{n+1} / (n+1)! \, dx \\ &\leq \|\hat{f}_{n}\|_{\infty} |t|^{n+1} / \sqrt{2\pi} (n+1)! \int_{|x| < 4\pi n/\delta_{0}} |x|^{n+1} \, dx \\ &\leq (4\pi n/\delta_{0})^{n+2} (2\|f_{n}\|_{1} |t|^{n+1} / \sqrt{2\pi} (n+1)! (n+2)), \end{split}$$

using that $|e^{itx} - \sum_{\nu=0}^{n} (itx)^{\nu} / \nu!| \le |tx|^{n+1} / (n+1)!$ and that $n! > (n/e)^{n}$. If $|t| \le \beta = \sigma_0 \delta_0 / 8e\pi$, then

$$|g_n(t) - P_n(t)| < (48BK\pi/\sqrt{2\pi\delta_0})(n/(n+2))(n/(n+1))^{n+1}(\sigma_0/2)^{n+1} < K_0(\sigma_0/2)^n, \quad n = 1, 2, \cdots.$$

Hence,

(13)
$$\int_{-\beta}^{\beta} |g_n(t) - P_n(t)|^2 dt < 2\beta K_0^2 (\sigma_0/2)^{2n}.$$

Recalling that K_1 is a number such that $2\beta(K_0)^2(\sigma_0/2)^{2n} + n^3K_0(\sigma_0/2)^{2n} < K_1(\sigma_1/2)^{2n}$, $n = 1, 2, \cdots$, one gets, from (12) and (13),

$$\int_{-\beta}^{\beta} |f(t) - P_n(t)|^2 dt < K_1(\sigma_1/2)^{2n}, \quad n = 1, 2, \cdots,$$

and the desired analytic extension of / follows from Bernstein's theorem.

Proof of Theorem I. Suppose r, s, ρ are positive numbers with $1 < \rho < 2$, r < s, and suppose M is a number such that if n is a nonnegative integer, b > 0, and nb is in [r, s], then $|(T(b) - I)^n| < M\rho^n$. Suppose D, β , σ are positive numbers such that Theorem IV holds for r, s, ρ , D, β , σ . The claim is that the conclusion of Theorem I holds for $b = D - \beta$.

Suppose $t \ge 0$. It is easy to verify that for b > 0, n a nonnegative integer, p in X, and f in X^* , $|\Delta_b^n z_{p,f}(t)| \le |f| ||p|| |T(t)| |(T(b) - 1)^n|$. Denote by M_0 a number such that $|T(t)| \le M_0$ if t is in [0, 2D]. If nb is in [r, s], $||p|| \le 1$, $|f| \le 1$, then $|\Delta_b^n z_{p,f}(t)| \le M_0 M \rho^n$ if $[t, t + nb] \subset [0, 2D]$. Hence, by Theorem IV, there exists \widehat{M} such that if $||p|| \le 1$, $|f| \le 1$, $z_{p,f}$ has an analytic extension $\widehat{z_{p,f}}$ to $E_{\beta,\sigma/2}(D)$ and $\widehat{z_{p,f}}$ is bounded by \widetilde{M} in $E_{\beta,\sigma/2}(D)$.

Denote by $B(x; \epsilon)$ the ball in the complex plane with center at x and radius ϵ, x a real number, $\epsilon > 0$.

The ellipse $E_{\beta,\sigma/2}(D)$ has its foci at $D - \beta$, $D + \beta$. Hence there exists $\delta > 0$ such that $B(b; 2\delta) = B(D - \beta; 2\delta)$ is contained in $E_{\beta,\sigma/2}(D)$. Since $\widetilde{z_{p,f}}$ is bounded by \widetilde{M} in $E_{\beta,\sigma/2}(D)$, $||p|| \le 1$, $|f| \le 1$, then if λ is in $B(b; \delta)$,

$$\widetilde{|z_{p,f}^{(n)}(\lambda)|} \leq n! \widetilde{M} \delta^{-n}, \quad n = 0, 1, 2, \cdots.$$

The claim is that if t is in $B(b;\delta)$, then $A^nT(t)$ is a bounded operator on X, $||A^nT(t)|| \le n!M\delta^{-n}$, $n = 0, 1, 2, \cdots$. The argument verifying this, by induction on n, is presented below; for the case n = 1, it is found in [8] of Neuberger.

If n = 0, the claim is obviously true since $|\widetilde{z}_{p,f}(t)| \leq \widetilde{M}$, $||p|| \leq 1$, $|f| \leq 1$, t in $B(b; \delta)$, implies $||T(t)|| \leq \widetilde{M}$, t in $B(b; \delta)$.

Suppose K is a positive integer and suppose $A^{K-1}T(t)$ is a bounded operator on X, t in $B(b; \delta)$. It will be shown that $A^{K}T(t)$ is a bounded operator on X, for t in $B(b; \delta)$, and that $||A^{K}T(t)|| \le K!M\delta^{-K}$.

Suppose t is in $B(b; \delta)$ and p is in the domain of A. Then $A^K T(t)p = \lim_{x \to t^+} (x - t)^{-1} (T(x) - 1) A^{K-1} T(t)p$, if this limit exists. By assumption, $A^{K-1} T(x)p$ exists for all x in $B(b; \delta)$. Then

$$\begin{split} \lim_{x \to t^+} (x-t)^{-1} (T(x-t)-I) A^{K-1} T(t) p \\ &= \lim_{x \to t^+} (x-t)^{-1} (T(x-t) A^{K-1} T(t) p - A^{K-1} T(t) p) \\ &= \lim_{x \to t^+} (x-t)^{-1} (A^{K-1} T(x) p - A^{K-1} T(t) p) \\ &= \lim_{x \to t^+} A^{K-1} T(t) ((x-t)^{-1} (T(x-t)-I)) p \\ &= A^{K-1} T(t) \left(\lim_{x \to t^+} (x-t)^{-1} (T(x-t)-I) p \right) = A^{K-1} T(t) A p, \end{split}$$

and thus $A^{K}T(t)p$ exists. The above equalities also show that if p is any point of X and $\lim_{x \to t^{+}} (x - t)^{-1} (A^{K-1}T(x)p - A^{K-1}T(t)p)$ exists, then this limit is $A^{K}T(t)p$.

Suppose f is in X^* , p is in X, $||f|| \le 1$, $||p|| \le 1$. Then

$$|f((x-t)^{-1}(A^{K-1}T(x) + A^{K-1}T(t))p)| = |(x-t)^{-1}(z_{p,f}^{(K-1)}(x) - z_{p,f}^{(K-1)}(t))| = |z_{p,f}^{(K)}(x_0)|$$

for some x_0 in [x, t], and $|z_{p, t}^{(K)}(x_0)| \le \delta^{-K} K! \widetilde{M}$ if [x, t] is in $B(b; \delta)$. Hence if [x, t] is in $B(b; \delta)$,

$$\|(x-t)^{-1}(A^{K-1}T(x)-A^{K-1}T(t))\| \leq \delta^{-K}K!\widetilde{M}.$$

Thus if t is in $B(b; \delta)$, $\lim_{x \to t^+} (x - t)^{-1} (A^{K-1}T(x)p - A^{K-1}T(t)p)$ exists for p in a dense set (the domain of A), and also $\|(x - t)^{-1} (A^{K-1}T(x) - A^{K-1}T(t))\| \le \delta^{-K} K! \widetilde{M}$ when [x, t] is in $B(b; \delta)$.

Hence for any p in X, t in $B(b; \delta)$, $\lim_{x \to t^+} (x - t)^{-1} (A^{K-1}T(x)p - A^{K-1}T(t)p)$ exists, this limit is $A^KT(t)p$, and $||A^KT(t)|| \leq \delta^{-K}K!\widetilde{M}$.

Suppose λ is in $B(b; \delta/2)$. Then $W(\lambda)p = \sum_{n=0}^{\infty} ((\lambda - b)^n/n!)A^nT(b)p$ defines $W(\lambda)$ as a bounded linear transformation on X. Furthermore, W is holomorphic at each λ in $B(b; \delta/2)$ since if f is in X*, p in X, then

$$f(W(\lambda)p) = \sum_{n=0}^{\infty} ((\lambda - b)^n/n!) f(A^n T(b)p)$$
$$= \sum_{n=0}^{\infty} ((\lambda - b)^n/n!) z_{p,f}^{(n)}(b) = \widecheck{z_{p,f}}(\lambda)$$

and $\widetilde{z_{p,f}}$ is holomorphic at λ .

Thus there is a function W from $B(b; \delta/2)$ to the set of bounded linear transformations on X, W is holomorphic at each λ in $B(b; \delta/2)$, and if x is in $(b - (\delta/2), b + (\delta/2))$, then W(x) = T(x). By a theorem of Hille [4, p. 477] T has an analytic extension to the interior of a spinal semimodule which includes $[b, \infty)$.

Proof of Theorem II. Suppose ρ is a number, $1 < \rho < 2$, and $\{[r_j, s_j]\}_{j=1}^{\infty}$ is a sequence of intervals such that $r_j \rightarrow 0$ as $j \rightarrow \infty$ and such that there exists $\epsilon > 0$ such that $r_j / s_j < 1 - \epsilon$, $j = 1, 2, \cdots$. Suppose that for each j, T_j is a strongly continuous semigroup on $[0, \infty)$ and there exists $M_j > 0$ such that if n is a nonnegative integer, b > 0, and n = 0 or nb is in $[r_j, s_j]$, then $|(T_j(b) - I)^n| \leq M_j \rho^n$.

Denote $r_j/(1-\epsilon)$ by s'_j . Then $r_j < s'_j < s_j$, for all j, and $s'_j \to 0$ as $j \to \infty$.

Suppose σ , σ_0 are numbers such that $\rho < \sigma_0 < \sigma < 2$, and suppose α is a number such that $\alpha < \epsilon$, α is in (0, 1/2), and

$$\binom{n}{[\alpha n]}\rho^n < \sigma_0^n,$$

 $n = 1, 2, \cdots$. Then $\alpha < 1 - (r_j/s_j) = \epsilon, j = 1, 2, \cdots$.

Since $s'_j \to 0$ as $j \to \infty$, there exists a sequence of positive numbers $\{B_j\}_{j=1}^{\infty}$ such that $B_j \to 0$ as $j \to \infty$ and such that $(s'_j/B_j)^{\alpha} < \sigma_0/4, j = 1, 2, \cdots$. Denote $r_j/(1-\alpha)$ by $r_{0,j}$ and denote $s'_j - r_{0,j}$ by $\delta_{0,j}$. Let $D_j = 3B_j + s'_j$ and let $\beta_j = \delta_{0,j} \sigma_0/8e\pi$. Then Theorem IV holds for r_j , s'_j , ρ , D_j , β_j , σ , and hence for r_j , s_j , ρ , D_j , β_j , σ since $[r_j, s'_j] \subset [r_j, s_j]$. Let $b_j = D_j - \beta_j$, $j = 1, 2, \cdots$. Then for each j, Theorem I holds for T_j , r_j , ρ , and b_j . Clearly $D_j \to 0$ as $j \to \infty$. Hence $b_j \to 0$ as $j \to \infty$.

4. Example. The following example is due to Neuberger [9]. Suppose $X = C_{[0,1];0}$, the space of all functions b continuous on [0, 1], with b(0) = 0, and with $||b|| = \sup_{x \in [0,1]} \{|b(x)|\}$.

For each $\lambda \ge 0$, define

$$(T(\lambda)b)(x) = \begin{cases} 0 & \text{if } \lambda - x \ge 0, \\ b(x - \lambda) & \text{if } x - \lambda \ge 0, \end{cases}$$

x in [0, 1], b in $C_{[0,1];0}$.

Then T is a one-parameter semigroup of operators on $C_{[0,1];0}$. T is strongly continuous at $\lambda > 1$ since $T(\lambda) = 0$ for all $\lambda > 1$; T is strongly continuous at $\lambda < 1$ since each element of $C_{[0,1];0}$ is uniformly continuous on [0, 1]; and T is strongly continuous at $\lambda = 1$ since each element b of $C_{[0,1];0}$ is continuous at 0 and b(0) = 0.

Suppose α is a number such that $0 < \alpha < 1/2$. Then there exists M > 0 and ρ in (1,2) such that $\sum_{\nu=0}^{\lfloor \alpha n \rfloor} {n \choose \nu} < M \rho^n$, $n = 0, 1, 2, \cdots$. Denote $1/\alpha$ by r, and suppose s is any number > r. Then if $n\lambda$ is in [r, s], $|(T(\lambda) - I)^n| < M \rho^n$, n = 0, 1, 2,..., since

$$\|(T(\lambda) - I)^{n}b\| = \left\| \sum_{\nu=0}^{n} \binom{n}{\nu} (-1)^{n-\nu} T(\nu\lambda)b \right\|$$
$$\leq \left\| \sum_{\nu=0}^{\left[\alpha n\right]} \binom{n}{\nu} (-1)^{n-\nu} T(\nu\lambda)b \right\|$$
$$+ \left\| \sum_{\nu=\left[\alpha n\right]+1}^{n} \binom{n}{\nu} (-1)^{n-\nu} T(\nu\lambda)b \right\|$$
$$\leq \|b\| \sum_{\nu=0}^{\alpha n} \binom{n}{\nu} \leq M\rho^{n} \|b\|,$$

using that $\nu\lambda \geq \alpha n\lambda > 1$ implies $\sum_{\nu=\lfloor \alpha n \rfloor+1}^{\lfloor \alpha n \rfloor} {n \choose \nu} (-1)^{n-\nu} T(\nu\lambda) b = 0.$

However, T does not have an analytic extension to an open set which has zero as a limit point. Suppose t_0 is in (0, 1), suppose g(x) = x, x in [0, 1], and suppose $f_{t_0}(b) = b(t_0)$, b in $C_{[0,1];0}$. Then the function $z_{g,f_{t_0}}$, where $z_{g,f_{t_0}}(\lambda) = f_{t_0}(T(\lambda)g)$, is not analytic at t_0 since

$$z_{g,f_{t_0}}(x) = \begin{cases} t_0 - x & \text{if } t_0 - x \ge 0, \\ 0 & \text{if } x - t_0 \ge 0. \end{cases}$$

REFERENCES

1. S. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthiers-Villars, Paris, 1926.

2. A. Beurling, On quasi-analyticity and general distributions, Multigraphed lecture notes, Stanford University, Stanford, Calif., 1961, Lecture 3.

3. ———, On analytic extension of semigroups of operators, J. Functional Analysis 6 (1970), 387-400. MR 43 #7960.

4. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664.

5. T. Kato, A characterization of holomorphic semigroups, Proc. Amer. Math. Soc. 25 (1970), 495-498. MR 41 #9050.

6. D. G. Kendall, Some recent developments in the theory of denumerable Markov processes, Trans. Fourth Prague Conf. on Information Theory, Statistical Decision Functions, Random Processes (Prague, 1965), Academia, Prague, 1967, pp. 11-27. MR 36 #974.

7. J. W. Neuberger, A quasi-analyticity condition in terms of finite differences, Proc. London Math. Soc. (3) 14 (1964), 245-259. MR 28 #3130.

8. ———, Analyticity and quasi-analyticity for one-parameter semigroups, Proc. Amer. Math. Soc. 25 (1970), 488-494. MR 41 #4296.

9. ———, Quasi-analyticity and semigroups, Bull. Amer. Math. Soc. (6) 78 (1972), 909-922.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706