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ABSTRACT. Suppose T is a one-parameter semigroup of bounded linear opera-
tors on a Banach space, strongly continuous on [0, o). It is known that
lim sup, |T(x) - l| < 2 implies T is holomorphic on (0, c0). Theorem I is a
generalization of this as follows: Suppose M >0, 0 <r<s, and p is in (1,2), If
|(T(h) = D™| < Mp™ whenever nk is in [r, s], n =1, 2, .., h >0, then there
exists b >0 such that T is holomorphic on [b, o). Theorem II shows that, in
some sense, b — 0 as + — 0. Theorem I is an application of Theorem III: Sup-
pose M>0, 0<r<s, pisin(l,2), and f is continuous on [~ 4s, 4s).

If |z3= 0™ (= D" f¢ +qh)| s Mp™ whenever nk isin [r, s, n=1,2,.,
B>0,0¢ ¢+ nl?] C [- 4s, 4s], then f has an analytic extension to an ellipse
with center zero. Theorem III is a generalization of a theorem of Beurling in
which the inequality on the differences is assumed for all nh. An example is
given to show the hypothesis of Theorem I does not imply T holomorphic on
(0, oo).

1. Introduction. Suppose T is a one-parameter semigroup of bounded linear
operators on a Banach space. Recent work of A. Beurling [3] gives the following:

Theorem A. Suppose T is weakly measurable on (0, «). Then if
limsup,_ |T(x) - 1| <2, T is bholomorphic on (0, ).

This is a generalization of a theorem due to J. Neuberger [8]:

Theorem B. Suppose T is strongly continuous on [0, «). Then if

limsup,_, |T(x) - 1| < 2, AT(x) is bounded for all x >0, A being the infinitesimal
generator of T.

Under the assumption of strong continuity on [0, ), Theorem A also follows
from a theorem of Kato [5].

Theorem I of this note presents a generalization of Theorems A and B as fol-
lows: Suppose T is strongly continuous on [0, ). Suppose M >0, 0<r<s, and
p is in (1,2). If |(T(h) - N*| < Mp™ whenever nb isin [r, sl,n=1, 2,...,

b > 0, then there exists > 0 such that T is holomorphic on [b, «). An example,
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378 M. W. CERTAIN

due to Neuberger [9], is presented in $4 to show that the hypothesis of Theorem I
does not imply T holomorphic on (0, «). However, Theorem II says that, in some
sense, b — 0 as r — 0,

Theorems A and B trace their beginnings, at least in part, to some earlier
work of Neuberger having to do with quasianalytic classes of functions determined
by conditions on finite differences. In [7] Neuberger proved the following:

Theorem C. Suppose p and M are positive numbers, 1 < p < 2, and suppose
G is a collection of continuous real-valued functions [ on (0, 1) such that if u
and v are in (0, 1) then
n

i=0

(?)(— D™ (u+ (v - a)/n)| <Mp™,  n=1,2,.--.

Then G is a quasianalytic collection in the sense that no two members of G
agree on an open subinterval of (0, 1).

The question was raised in [7], and also by D. G. Kendall in [6] in the context
of Markov semigroups, of whether G could contain a nonanalytic member. Beurling
has proved the following theorem which answers this question negatively.

Theorem D. Suppose [ is a function continuous on [- 4, 4] and for some
M>0 and p in [3/2, 2),

> (?)(— D" (u+ ilv=a)/n)] <Mp? n=1,2,+:+,

i=0

u, v in [~ 4, 4]. Then [ can be extended analytically to the rhombus with vertices
at 4, t4iko? where a =(2 - p)/4.

Theorems III and IV of this note generalize Theorem D in that analyticity of
the function f (in some open set centered at zero) is still deduced even though the
inequality on the differences is assumed only for |v - | in some interval [7, sl,
0<r<s. Theorem III is stated for purposes of comparison with Theorem D.
Theorem 1V is a more detailed statement and includes Theorem III; consequently,
a separate proof of Theorem III is not given. Theorem D is contained in [3las a
special case. The proof here of Theorem IV parallels Beurling’s proof in (3] and
uses, as does his proof, some techniques described in [2]. Theorem D is applied
by Neuberger in [8] to prove Theorem B. Theorem I is proved from Theorem IV
using some of the same techniques.

2. Definitions and statement of theorems. Suppose X is a (complex) Banach
space and T is a one-parameter semigroup of bounded linear transformations from
X to X, strongly continuous on [0, «). For p in X and / in X*, denote by Z, 4
the function on [0, «) defined by z,, (x) = (T (x)p).
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ONE-PARAMETER SEMIGROUPS 379

An additive abelian semigroup (in the complex plane, in this note) will
be called a semimodule. An angular semimodule is a semimodule which is
an open set and which has zero as a limit point. A spinal semimodule is a
semimodule which includes a ray from the origin and an open set intersected
by this ray. These definitions are given in [4, pp. 256—-269].

The statement that U is an extension of T to a domain § in the complex
plane means that (1) $ is a semimodule; (2) for 7 in S, U(y) is a bounded linear
transformation from X to X; (3)if A,  in S, then UNU(n) = UA + 7); () SN
[0, ) is not empty and if x is in $ N [0, ) then U(x) = T(x). If U is an exten-
s1on of T to S, then the functions z »,; have an obvious extension ;\l/m S:

z, /()\) f(UAP), f in X*, p in X, t\ in S.

U is said to be a holomorphic (analytic) extension of T to S if, for p in X,
fin X *,’z-p\jis holomorphic in S. Seemingly this is a definition of weak differ-
entiability, but if U is holomorphic in § by the definition just given, then U is
continuous and differentiable in § in the uniform operator topology, uniformly on
compact subsets of S. For a proof and discussion see [4, pp. 92-94].

Theorem ). Suppose r, s, p are positive numbers with 1 < p<2,r<s, and
suppose there exists M >0 such that if n is a nonnegative integer, b > 0,

I(T(h) = D] < Mp™ whenever n=0 or nb is in [r, sl.

Then there exists b > 0 such that T has a holomorphic extension to a domain
which includes [b, ).

Theorem I Suppose p >0 and for each positive integer j, r; and s; are
numbers such that (i) 0< r;<s; (ii) r; = 0 as j — oo (iii) {r /SI},_I is bounded
away from 1. Suppose tbat for eacb posztwe integer j, T]. is a strongly continuous
semigroup on [0, ) and there exists M. >0 such that |(T,(h) - D" <M, " when-
ever n=0 or nh is in [r sl Then tbere is a sequence by, b,, -+ of positive
numbers converging to 0 sucb that T has a holomorphic extension to a domain
which includes [b]., ).

Some additional notation and definitions are given before the next theorems
are stated. If B8,60>0 and ¢t is a real number, then E ﬁ’g(to) denotes the ellipse
with foci at ¢, - B, 15 + B and with sum of semiaxes equal to B/6. Eg 4(0) will
be denoted simply Egg. Also 27_o(7) (- 1)~ ¥/(t + vh), for { a function on
[¢, ¢ + nb), will be denoted by AZ/(!).

The statement that { has an analytic extension to E B, 0(‘0) means that there
is a function / analync at every point within and on E B, o(ty), such that if x is

in [to -B,ty+ Bl /’(x) f(x).
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380 M. W. CERTAIN

Theorem Il. Suppose r, s are positive numbers, r<s, { is a function con-
tinuous on [- 4s, 4s), and for some M >0, p in (1,2),

( )(——1)”"’/(11 +qlv=u)/n)| < Mp™
q=0
if u, v arein [- 4s, 4sl, lv—u| isin s, sl,m=1,2,.... Then if 0 is in (p,2)
there exists a number B, 0 < B < ols - r)/8, such that { can be extended analyt-
ically to the ellipse EB.U/Z'

Theorem IV. Suppose 1, s, p are positive numbers with 1 < p<2,r<s.
Then there are positive numbers D, B, 0 such that the following is true: Suppose

K> 0 and denote by Gy a collection of functions f such that for some real
number t,

(1) f is continuous on [to -D, ty+ D], and

(2) |A7 f(t)| < Kp", whenever n=0 or nb is in [r, s] and [1, t + nb] C
lty - D, tg + DL

Then there exists K> 0 such that if [ is in GK, [ continuous on
lty-D, 15+ D] then [ bas an analytic extension [ to EB o72tg) and/ is
bounded by K in E/_; o72(tg):

3. Proofs. The proof of Theorem IV is given first. It depends upon the fol-
lowing theorem of S. Bemstein [1, p. 112):

Theorem E. Suppose [ is a function continuous on [~ B, Bl and there exist
polynomials P, of degree n, 0y in (0, 1), and M >0 such that

3) f’jﬁ /() ~P (|2 < MO2",  7=0,1,2, -

Then if 0 is in (0, 1), f has an analytic extension / to Egg. Furthermore, if
M, 8>0 and 0< 0 <0< 1, there exists M such that for any continuous func-
tion [ for wbzcb tbere exist polynomzals P_ of degree n such that (3) bolds, the
extension / is bounded by MinE B,6"

Lemma. If ry, 8, >0, n is a positive integer, and |x| > 4an/8,, then

J<(r0+50)/n

sin?™(bx/2) db > 30/4712.
rO/n -

Proof of lemma. Suppose 7 is a positive integer and x > 47n/3,. Then
there is a positive integer K > 1 such that x is in [4mnK/8, 4mm (K +1)/8,).
It is easy to verify that f(z,K" sin?®udu > Kn/n. Hence, one has
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ONE-PARAMETER SEMIGROUPS 381

(ro+30)x/2n

(r.+8
J.ro+ o)/n . 2m
sin“®udu
0% x/2n

rO/n

sin2?(bx/2)db = 2/x f

>2/x J:;Kﬂ sin®?udu > 2Ka/xn,

using that x > 4nKn/8, and hence 8yx/2n > 2Kn. But also x < 4m(K + 1)/8, and
hence 2Km/xn > §yK/2n*(K + 1) > 8y/4n?.

Proof of Theorem IV. Suppose 7, s, p are positive numbers with 1 <p <2,
r<s.

Choose o such that p<o<2.
The choice of D and B is more complicated but an explicit procedure follows.
Choose 0, such that p < gy < 0; choose a such that
(i) 0<ac<y,
(ii) a<1-(r/s), and
(iii) for all positive integers ,

()P <%

choose B >0 such that (s/B)*< 0,/4. Denote 7/(1 - a) by ry and denote s -7,
by 8,. Thenlet D =3B +s and B = 0,0,/8en.

Suppose K >0 and denote by Gy a collecnon of functions as described in
the statement of the theorem. The selection of K is made as follows: Denote by

0, a number such that 0y <o, <0, by K, a number such that

K, > max{24y2aBK/8 ), 16K*(6B + s)},

and by K; a number such that
2B(K )0, /2)*" + n*K (0)/2)* < K (0,/2)?",  n=1,2,+-.

Choose K to be a number such that if { is continuous on [- B, B] and, for some
polynomials P_, (3) holds wi’&h M replaced by 5 1 and 6, teplac':sd by 0,/2, then
{ has an analytic extension [ to Eg s, and [ is bounded by K on Eg /.
The theorem of Bernstein quoted above says this is possible.

Suppose now that f is a member of G. Then [ is continuous on
[ty - D, 3 + D] for some real number ¢5. It can be assumed that ¢y = 0. The
essence of the proof is the construction of polynomials P which approximate f
on [~ B, B] in such a way that Bernstein’s theorem can be invoked.

The first step is to replace [ by functions f, which coincide with f on
[- B, B] and vanish off [- 3B, 3B).
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The norms of L(= e, o), L2(~ oo, ), and L*(~ oo, =) will be denoted N4

||-||2, I|l-Il.o» respectively. Also, if g is a function, » a nonnegative integer, and ¢
a number, then g"X¢) denotes the nth derivative of g at t.
For n a positive integer, define O p by

0 B~%(B2 ~ 1?)", if |t| <B;
B -
”' 0, if |¢| >B.

.

An important property of O, p is that
(4) 10| < (2n/B),  n=0,1,-++,n~1, all real .

To verify this suppose ¢ is in (~ B, B). Then, for any positive integer n,
le,’:'B)(tN < (2n/B)™ for all nonnegative integers m: use induction on n and the
fact that if [, g each possess m derivatives at ¢ then

™= T (™) @A™V o).
v

v=0

If |¢t| > B then Qf"")(t) = 0 for all nonnegative integers m. Finally, if ¢t = £B, an
elementary argument gives sz’,"g(t) =0 form=0,1,2,...,n-1.

Denote (X0 g(0)d:t by y, p-

Then y, p=2B(2-4-6---(20))/(3-5-7 ... (2n+1)) [2, p. 4l and y, g
> B/\/n for all positive integers n.

As in [2, p. 4] and [3, p. 392], multiplier functions are now defined.

Define k, (1) = y; ! [2,(Q, p(u+2B) - Q, p(u - 2B))du.

Using (4) one has

(5) kL] <y 12n/B)"! < n/B)2n/B)*" Y,

v=1,2,..-,m t any real number.

If a function g has v continuous derivatives on [, t + vh], then there exists
anumber ¢ in [z, ¢ + vh] such thar (A¥) () = 5¥g)c).

This together with (5) gives the following:

|AVk, g0 < b*(/n/B)2n/B)*=! = (Vu/BY2bn/B)*"h, v=1,2, sy m;
hence,
6) IAan'B(t)I <@mn/B)¥, ©v=0,1,2,++,m

Now for each positive integer n, define f by
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(fe_ )8), if |¢| <D;
&ma{/ma if 1] <
0, if |2| > D.

Then for each positive integer 7,
(i) f, is continuous on (- oo, );
(ii) f, has its support in [- 3B, 3B] and agrees with f on [- B, Bl;
@iii) |If,|l, < 6BK.
The next step is to define polynomials P , of degree 7, such that (3) holds
with M replaced by K; and 6, replaced by 0,/2.
Denote by fn the Fourier transform of fpe For n=1,2,...,define

% P (1) = 72_;_ Jitenn s, (/"(,o z (z'tx)"/v!) ds.

If /; denotes the Fourier transform of f,, then the Fourier transform of A}f, at
x is /”(x)(ei”" - 1)*. By Parseval’s relation

[T TGt — 1?7 ax
® -
f |A7f ()|2dx, n=1,2,+-,b>0.

In what follows, a bound on |A%f | is deduced for nb in [r/(1 - @), s]=1[ry, sl.
Suppose ¢ is a real number, 7 is a positive integer, b > 0, and g,, g, are func-
tions each of whose domain includes [z, ¢ + nb]. Then

©) RACED> (7) (A5~ve Mo Ag, )t + (3 = o)D)

From (9),

lan]
A7 ()] < z;o (:)IAZ“”/(t)HAZk”(t + (- )b)|

+ ( )lA""’f(t)llA"k (t + (n = VD).

v-[an +1

Suppose nb is in [ry, s]. Then if ¢ is outside [- 3B -, 3B], A}f,(¢) = 0. Sup-
pose t is in [~ 3B ~s, 3Bl. Since nb is in [ry, s], if v <[an] < an, then

(n -2 is in [r, s] and hence |AZ~¥f(s)] < Kp"~ . Also 2hn/B <1, since
(s/B)* < 0,/4 <1/2. Hence,
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[an]
z (2)185 DI1AZk (t + (= )b

(10)

< 2 ( )Kp"'”(Zlm/B)"SnK ([Zn]>p"

v=0

<nKoy, using alsothat a<' and p>1.

Any function g bounded by M on [t, ¢ + nb] satisfies |A}g(e)| < M2%, n =
1,2,...,bh>0. Hence for nb in [rj, s] and ¢ a real number,

v=[an]+1 ( )|An-v/(t)||Avk (¢ + (n = 0)b))|

an < Z ()Kz"'"(zbn/s)”

v=lanl41

<27K (7)(s/B) < 47K(s/B)*" < Koy,
u—[an]+1
Thus if nb is in [ry, s, (10) and (11) give |A%f,| < 2Kn(ap)?, n =1, 2,.
Since A}/ is zero outside [- 3B - s, 3B], using (8) one gets

f 7 @1%2%" sin®" (bx/2) dx = f A R S I

<(6B + s)2Knla)™?, if nb in [, sl

Hence

f[fo/ﬂ.s/r] (I|xlz4rrﬂ8 |f"(x)|2 sinZn(hX/Z)dx> db

<nd,(6B + 4K /2)?",  n=1,2,¢0-.

Using the lemma stated above and reversing the order of integration one has

Jistssnps, Va0 dx < 4n(6B + 14K (g /2)%"
0

< Koﬂs(oo/Z)zn, n= 1, 2’ oo,

Define g,(t) = 1/\2n f|x[<4mz/80 (/:,(x)ei"‘)dx. n=1,2,.... If for n a positive
integer,

A(t), t| <4 /8 ’
b ()= fa el < dan/2q
0, || > 4mn/8 ),
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then g (1) = ffmbn(x)ei"‘dx, so b, =g, in L2(~ =, ). Hence

“in- §n“2 = “fn - bn“Z = flﬂz:ﬂm/ 80 Vn(x)lz dx < KO”B(UO/Z)Z";

also
[ 0= g 1 de< [ 110 - g, ds
= (2,110 =g Oa< N, - g0, = I, - &,
which yields
(12 [2 110 = g, 01 dr < Kp¥loy /2%, m=1,2, e

Suppose ¢ is a real number and n is a positive integer. Then

1 - nsl
|gn(t) - Pn(t)| < —2—7;- f‘x‘<4ﬂn/3o |fn(x)||tx| +H/(n + 1)ldx
f ntl [\ f n4l
< ||/"||°°|t| H\2aln + 10! flx|<41m/80 Il e

< (4m/8)"+2 2|1 | 1ltl""‘/\/'ZTr(rz + Din +2),

using that |e** — £_ (itx)?/v!| < |tx|"*1/(n + 1)! and that n! > (n/e)".
If |t| < B =0ydy/8em, then

g, (1) = P_()] < (48BKn/\Zm 8 Yn/(n + D) n/(n + 1)+ (0o /2)"+!
<Kyloy/D" n=1,2,....

Hence,
(13) J? 3le, (0 - P 01 de < 28K2oy/20%.

Recalling that K, is a number such that 28(Ky)%(ay/ 2)2" 4 a3 Ko(oo/ 2% <
Kl(al/Z)z", n=1,2,...,one gets, from (12) and (13),

[2 10 =P W <Ko,/ n=1,2,0n,

and the desired analytic extension of f follows from Bernstein’s theorem.

Proof of Theorem I. Suppose 7, s, p are positive numbers with 1<p <2,
r<s, and suppose M is a number such that if » is a nonnegative integer, b >0,
and nb is in [r, s], then |(T(b) - I)?| < Mp™. Suppose D, B, o are positive num-
bers such that Theorem IV holds for 7, s, p, D, B, 0. The claim is that the con-
clusion of Theorem I holds for 4 =D - f.
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Suppose t > 0. It is easy to verify that for b > 0, n a nonnegative integer, p
in X, and [ in X*, [AZz ()] < |f] |ip]l IT@)] |(T(®) - D™|. Denote by M, a num-
ber such that |T(e)| <M, if ¢ is in [0, 2D} If nb isin [r, s], |Ipll <1, |f| < 1,
then |A%z, (1)| < MoMp”™ if [z, t + nb) C [0, 2D]. Hence, by Theorem IV, there
exists M such,tzt/lf lloll <1, |f] <1 » Z,,; has an analytic extenswnfzﬁ to
Eg o/,\D) and "z, is bounded by W in E g o/,(D).

Denote by B(x, ¢) the ball in the complex plane with center at x and radius
€, x a real number, € > 0.

The ellipse E,B,a/z(D) has its foci at D - B, D + B. Hence there exists
8>0 such thatNB(b; 28) = B(D - B; 28) is contained in E,B,cr/z(D)' Since,;p\',/
is bounded by M in Eg,/,(D), [lpll < 1, |f| < 1, then if A is in B(b; 3),

" ~
Iz(p"}()\)l <n!M&~", n=0,1,2,-...

The claim is that if ¢ is in B(b;5), then A”T(t) is a bounded operator on X,
AT ()| < aIM8~", n=0,1,2,.--. The argument verifying this, by induction on
n, is presented below; for the case n =1, it is found in [8] of Neuberger.

If n =0, the claim is obviously true since |?/t)| < M loll <1, /<1, ¢t in
B(b; 8), implies ||T(2)| < M.t in B(b; 8).

Suppose K is a positive integer and suppose AX=1T(s) is a bounded operator
on X, t in B(b; 8). It will be shown that AKT(¢) is a bounded operator on X,
for ¢ in B(b; 8), and that |AKT()]| < KIMs—X.

Suppose ¢ is in B(b; 8) and p is in the domain of A. Then AKT(¢)p =
lim__,4(x - )~ MT(x) - DAK=1T(t)p, if this limit exists. By assumption,
AK=1T(x)p exists for all x in B(b; 8). Then

lim (x = )= XT(x = 1) = DAK=1T()p

x—tt

lim (= 0~ NT(x = DAK=1T()p - AK-1T()p)

x—tt

lim (x - )~ HAK=1T(x)p - AK=1T(2)p)

x—~t+
= 1im+ AK=1T()((x = )~ UT(x = ) = D)p
x—t
- AK=17(p) ( lim (x = 07} (T(r - 1) - I)p) = AK=17(;)Ap,
X—l

and thus AKT(t)p exists. The above equalities also show that if p is any point
of X and lim__,+(x - 1)1 (AK-1T(x)p - AK=1T(:)p)} exists, then this limit is
AXT()p.
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Suppose f is in X*,p isin X, |If]| < 1, |lp|| < 1. Then
If((x = D= HAK=1T(x) + AK=1T())p)|

= |(x - t)'l(z(p"(;'”(x) - z(p{(/' D@ = |z£’f/)(xo)l
for some x in [x, ¢], and Iz(pK/)(xo)| < S—KK!?AJ if [x, ¢] is in B(b; 8).

Hence if [x, ¢] is in B(b; 6),

(e = D= 1AK=1T() - AK=1TQ)| < 5~ KKIM.

Thus if ¢ is in B(b; 8), lim,_ +(x - 1)~ LAK=1T(x)p — AK=1T(s)p) exists for
p in a dense set (the domain of A), and also ||(x - )= 1 (AK=1T(x) - AK=1T())||
_<_8‘KK!’M when [x, ¢] is in B(b; §).

Hence for any p in X, ¢ in B(b; 8), lim _ +(x - 1)~ Y(AK=1T(x)p - AK=1T(s)p)
exists, this limit is AKT(¢)p, and |AKT(2)| < 6~ KK'M.

Suppose A is in B(b; 8/2). Then W(A)p = 2:‘;0 (A = 8)*/n)A™T(b)p defines
W(X) as a bounded linear transformation on X. Furthermore, W is holomorphic at
each A in B(b; 8/2) since if f isin X*, p in X, then

[P = X (A = 5)*/n)f(A™T(B)p)

n=0

= T (A= DY = 2, W

n=0

and /z:,/is holomorphic at A.

Thus there is a function W from B(&; 8/2) to the set of bounded linear trans-
formations on X, ¥ is holomorphic at each A in B(b; 8/2), and if x is in
(b= (8/2), b + (8/2)), then W(x) = T(x). By a theorem of Hille [4, p. 477] T has
an analytic extension to the interior of a spinal semimodule which includes [b, ).

Proof of Theorem II. Suppose p is a number, 1 < p < 2, and {[r,., si]};;l isa
sequence of intervals such that = 0 as j — « and such that there exists
€> 0 such that r]./s]. <l-¢j=1,2,-... Suppose that for each j, T; is a
strongly continuous semigroup on [0, «) and there exists M; >0 such that if » is
a nonnegative integer, » >0, and n =0 or nb is in [r]., 5,1, then I(T;(5) - n"l <
M.p™.

Denote 7,/(1 - ¢) by s;. Then r;<s;<s, forall j, and s; — 0 as j — oo,

Suppose 0, 0, are numbers such that p < 0y <0< 2, and suppose a is a
number such that a <e¢, a is in 0, 1/2), and

()" <%

n=1,2,.... Then a<l—(ri/s!j)=e,7'=l, 2,0,
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Since s]'. — 0 as j — o, there exists a sequence of positive numbers {B 7,
such that Bj — 0 as j — o and such that (s;/Bj)a' <0y/4,j=1,2,--.. Denote
r/(l- a) by o ; and denote s;—ry . by & .. - Let D;=3B;+s; and let B, =

3 100/8e1r Then Theorem IV holds for r, s psD;s B,, o, and hence for 7, s
p»D;, B> o since [r s']C[r s] Let b; -D -Bjpi=1,2,-.. Then foreach
j»> Theorem I holds for T T Sp P> and b, Clearly D, — 0 as j — «. Hence
b; >0 as j— .

4. Example. The following example is due to Neuberger [9]. Suppose X =
Clo0,1];0- the space of all functions b continuous on [0, 1], with 5(0) =0, and
with [|b]] = sup,, e[(,’I]Hb(x)l}.

For each A >0, define

0 #A-x>0,
(TWB)(x) = -
Bx-A) if x=A>0,

xin [0, 1), b in C[o,l];O‘

Then T is a one-parameter semigroup of operators on C[o’l]; o- T is
strangly continuous at A > 1 since T(A) = 0 for all A> 1; T is strongly continu-
ous at A <1 since each element of C [0,1);0 is uniformly continuous on fo, 1];
and T is strongly continuous at A =1 since each element b of Clo,1);0 is con-
tinuous at 0 and 5(0) = 0.

Suppose @ is a number such that 0 < @ <1/2. Then there exists M >0 and
p in (1,2) such that 252’6] (®*)<Mp",n=0,1,2,.... Denote 1/a by r, and sup-
pose s is any number > 7. Then if nA isin [r, s], [(TA) = D?| <Mp™, n =0,

1, 2,..., since

II(T()«)-I)"b||=| ( )(- 1) vT(sA\)b

v=0

IN

[an]
\ (:)(- 1)~ YT(w\)b

v=0

): (7)nmrTan

ve[ay]+1

< I8 Zo () < mo™la

using that vA > anA > 1 implies sl a'f}a,,]'rl (™ (- 1)""*T(wA)h = 0.
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However, T does not have an analytic extension to an open set which has
zero as a limit point. Suppose ¢, is in (0, 1), suppose g(x) =x, x in [0, 1], and
suppose /to(b) =b(ty), b in C[g 1],0- Then the function 2 10" where zg',lo()t) =

{15(TM)g), is not analytic at ty since

to=x if ty-x20,
z,, W)= )
¢ 0 if x-1,>0.
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