
One-Pass AUC Optimization

Wei Gaoa, Lu Wanga, Rong Jinb, Shenghuo Zhuc, Zhi-Hua Zhoua,∗

aNational Key Laboratory for Novel Software Technology,
Collaborative Innovation Center of Novel Software Technology and Industrialization

Nanjing University, Nanjing 210023, China
bDepartment of Computer Science and Engineering,

Michigan State University, East Lansing, USA
Institute of Data Science and Technologies at Alibaba Group, Seattle, USA
cInstitute of Data Science and Technologies at Alibaba Group, Seattle, USA

Abstract

AUC is an important performance measure that has been used in diverse
tasks, such as class-imbalanced learning, cost-sensitive learning, learning to
rank, etc. In this work, we focus on one-pass AUC optimization that re-
quires going through training data only once without having to store the
entire training dataset. Conventional online learning algorithms cannot be
applied directly to one-pass AUC optimization because AUC is measured by
a sum of losses defined over pairs of instances from different classes. We de-
velop a regression-based algorithm which only needs to maintain the first and
second-order statistics of training data in memory, resulting in a storage re-
quirement independent of the number of training data. To efficiently handle
high-dimensional data, we develop two deterministic algorithms that approx-
imate the covariance matrices. We verify, both theoretically and empirically,
the effectiveness of the proposed algorithms.

Keywords: AUC, ROC Curve, online learning, large-scale learning, least
square loss, random projection

1. Introduction

The Area Under the ROC (Receiver Operating Characteristics) Curve,
or simply AUC (Metz, 1978; Hanley and McNeil, 1983), has been an impor-
tant performance measure in many learning tasks such as class-imbalanced

∗Email: zhouzh@lamda.nju.edu.cn

Preprint submitted to Artificial Intelligence Journal February 25, 2016

learning, cost-sensitive learning, information retrieval, etc., (Provost et al.,
1998; Cortes and Mohri, 2004; Liu et al., 2009; Flach et al., 2011). AUC
is preferable to accuracy as an evaluation measure in various real applica-
tions. For example, some categories may have more instances than others
in class-imbalanced tasks such as face detection and collaborative filtering,
and the level of imbalance (ratio of size of majority category to minority
category) can be as high as 106 (Wu et al., 2008); therefore, accuracy is not
suitable in such cases since the majority classifier will always perform well
in terms of accuracy. AUC has also been used to measure the quality of
ranking positive instances over negative ones for information retrieval and
ranking problems. Many approaches have been developed to optimize AUC
(Herschtal and Raskutti, 2004; Joachims, 2006; Rudin and Schapire, 2009;
Kotlowski et al., 2011; Zhao et al., 2011; Gao et al., 2013).

In this work, we focus on AUC optimization that requires only one pass
over training examples with storage independent of the data size. This is par-
ticularly important for applications involving big data or streaming data in
which a large volume of data arrives in a short time period, making it infeasi-
ble to store the entire dataset in memory before an optimization procedure is
applied. Although many online learning algorithms have been developed to
find the optimal solution for certain performance measures by scanning the
training data only once (Cesa-Bianchi and Lugosi, 2006), few efforts address
one-pass AUC optimization.

Unlike the classical classification and regression problems where the loss
function can be calculated on a single training example, AUC is measured
by the losses defined over pairs of instances from different classes, making
it challenging to develop algorithms for one-pass optimization. An online
AUC optimization algorithm was proposed by Zhao et al. (2011). It is based
on the idea of reservoir sampling, and achieves a regret bound by storing√
T instances, where T is the number of training examples. Wang et al.

(2012) suggested an online learning algorithm with fixed-size buffer via a
FIFO strategy, while Kar et al. (2013) made use of the reservoir idea and
replacement-subsampling technique to develop another online algorithm for
pairwise loss functions. Ideally, for one-pass approaches, the storage required
by the learning process should be independent of the amount of training data,
which is the goal of this work.

2

1.1. Our Contributions

This work develops the one-pass AUC algorithms, and verifies the effec-
tiveness of the proposed algorithms both theoretically and empirically. The
main contributions can be summarized as follows:

• We propose a regression-based algorithm for one-pass AUC optimiza-
tion where the least square loss is used to measure the ranking error
between two instances from different classes. The main advantage of
using the least square loss lies in the fact that we only need to store
the first and second-order statistics over the received training examples.
Consequently, the storage requirement is reduced to O(d2), where d is
the dimension of data, independent of the number of training examples.

• For high-dimensional dense data, we make use of the frequent direction
algorithm (Liberty, 2013) to approximate the covariance matrix by low-
rank matrix. For high-dimensional sparse data, we introduce another
deterministic algorithm, called sparse matrix algorithm, where the basic
idea is to approximate the covariance matrix by a sparse matrix that
nullifies smaller elements.

• Theoretically, the pairwise least square loss is proved to be consistent
with AUC in finite instance spaces. Then, we present regret bounds
with respect to pairwise least square loss when the covariance matrices
are provided and approximated, respectively. Finally, we present new
generalization and online-to-batch bounds for the proposed algorithms.

• Extensive experiments show the effectiveness of the proposed methods.

A preliminary version of this work appeared in a conference paper (Gao
et al., 2013). Compared with the original version, we introduce two new
approaches for high-dimensional tasks, i.e., the frequent direction (Liberty,
2013) and the sparse approach are proposed to approximate the covariance
matrices for dense and sparse datasets, respectively. We also give new regret,
generalization and online-to-batch bounds for the proposed algorithms, and
present better empirical performance.

1.2. Related Work

The study of AUC dates back to the 1970s in signal detection theory
(Egan, 1975). AUC has been an important measure used in the machine

3

learning literature (Provost et al., 1998; Provost and Fawcett, 2001; Elkan,
2001; Cortes and Mohri, 2004; Huang and Ling, 2005; Clemenćon et al.,
2008; Hand, 2009; Flach et al., 2011). AUC can be estimated under para-
metric (Zhou et al., 2002), semi-parametric (Hsieh and Turnbull, 1996) or
non-parametric (Hanley and McNeil, 1982) settings. The non-parametric es-
timation of AUC has been popular in machine learning since it is equivalent
to the Wilcoxon-Mann-Whitney (WMW) statistic test of ranks (Hanley and
McNeil, 1982).

Various algorithms have been developed to optimize AUC, such as boost-
ing (Freund et al., 2003; Rudin and Schapire, 2009), SVM (Brefeld and Schef-
fer, 2005; Joachims, 2005, 2006), and a gradient descent algorithm (Herschtal
and Raskutti, 2004). Moreover, Kotlowski et al. (2011) studied the use of
univariate losses and Zhao et al. (2011) proposed the first online algorithm
for AUC optimization. All those approaches require to store the entire or
partial training data and scan the data multiple times.

Much theoretical work has been devoted to understanding the generaliza-
tion of AUC approaches (Agarwal et al., 2005; Usunier et al., 2005; Cortes
et al., 2007; Clemenćon et al., 2008; Agarwal and Niyogi, 2009; Rudin and
Schapire, 2009; Wang et al., 2012; Kar et al., 2013). Agarwal and Roth (2005)
presented separately a sufficient and necessary condition for AUC learnabil-
ity. Gao and Zhou (2013) further proved stability as an equivalent condition.
The consistency of AUC pairwise and univariate optimization has been stud-
ied in (Menon and Williamson, 2014; Gao and Zhou, 2015) and (Kotlowski
et al., 2011; Agarwal, 2013), respectively.

1.3. Organization

Section 2 introduces some preliminaries. Sections 3 proposes the OPAUC
(One-Pass AUC) framework. Section 4 presents the approximated OPAUC
approaches for high-dimensional tasks. Section 5 provides theoretical justi-
fications. Section 6 gives detailed proofs. Section 7 shows extensive experi-
ments, and Section 8 concludes this work.

2. Preliminaries

Let X ⊂ Rd and Y = {+1,−1} be the instance and label space, respec-
tively. Denote D by an unknown (underlying) distribution over the product
space X × Y . Let S = {(x1, y1), (x2, y2), . . . , (xT , yT)} be a training sample,

4

where each element is drawn identically and independently (i.i.d.) from dis-
tribution D. For an integer n > 0 and a real α > 0, let [n] = {1, 2, . . . , n},
and denote ⌊α⌋ by the largest integer which is no more than α. For a set A,
let |A| denote its cardinality.

Let f : X → R be a real-valued function. Given a sample S, the AUC of
function f is defined as

AUC(f,S) =
T∑
i=1

T∑
j=1

(I[f(xi) > f(xj)] +
1
2
I[f(xi) = f(xj)])I[yi > yj]

T+
S T

−
S

,

where I[·] is the indicator function which returns 1 if the argument is true
and 0 otherwise. Here

T+
S = |{(xi, yi) ∈ S : yi = +1}| and T−

S = |{(xi, yi) ∈ S : yi = −1}|.

Direct optimization of AUC often yields an NP-hard problem since it can
be cast into a combinatorial optimization problem. A feasible solution in
practice is to optimize some pairwise surrogate losses as follows:

L(f,S) =
T∑
i=1

T∑
j=1

ℓ(f(xi)− f(xj))I[yi > yj]

T+
S T

−
S

=
T∑
i=1

i−1∑
j=1

ℓ(yi(f(xi)− f(xj)))I[yi ̸= yj]

T+
S T

−
S

where ℓ : R → R+ is a convex function such as exponential loss ℓ(t) = e−t,
hinge loss ℓ(t) = max(0, 1 − t), logistic loss ℓ(t) = log(1 + e−t), etc. The
loss function ℓ(yi(f(xi)− f(xj)) is also called pairwise surrogate loss since it
involves two instances from different classes.

Any distribution D can be specified exactly by the triplet (D+,D−, p) as
in (Menon and Williamson, 2014), where D+(x) = Pr[x|y = +1], D−(x) =
Pr[x|y = −1] and p = Pr[y = +1]. The expectation over S can be further
decomposed into an expectation over random draws of T+

S and T−
S from

Binomial(T, p), followed by an expectation over draw of samples from D+

and D−, respectively. Based on this decomposition, we have

Proposition 1. Define the surrogate loss L(f,D) = ES [L(f,S)] with respect
to distribution D. We have

L(f,D) = Exi∼D+,xj∼D− [ℓ(f(xi)− f(xj))] (1)

= E(xi,yi)∼D, (xj ,yj)∼D[ℓ(f(xi)− f(xj))|yi > yj]. (2)

5

The detailed proof is given in Section 6.1.
Many learning approaches and studies fall into this formulation (Herschtal

and Raskutti, 2004; Cortes and Mohri, 2004; Agarwal et al., 2005; Brefeld
and Scheffer, 2005; Rudin and Schapire, 2009). There has been previous
work of (Wang et al., 2012; Kar et al., 2013), which considered the following
formulation:

E(xi,yi)∼D,(xj ,yj)∼D [ℓ(yi(f(xi)− f(xj))I[yi ̸= yj])] . (3)

Notice that

L(f,D) ̸= E(xi,yi)∼D,(xj ,yj)∼D [ℓ(yi(f(xi)− f(xj))I[yi ̸= yj])] .

Thus, our formulation is different from the work of (Wang et al., 2012; Kar
et al., 2013). Ying and Zhou (2015) considered the least square loss as surro-
gate loss and presented an online pairwise algorithm with kernels. However,
this work requires to store the entire training sample for kernel tricks and fol-
lows the optimization formulation (given by Eqn. 3) as in the work of (Wang
et al., 2012; Kar et al., 2013).

3. OPAUC

To address the challenge of one-pass AUC optimization, we propose to
use the least square loss ℓ(t) = (1− t)2, and focus on a linear space W ⊆ Rd.
Given a sample S, we consider the following pairwise least square loss:

L(w,S) = λ

2
|w|2 + 1

2

T∑
i=1

i−1∑
j=1

(1− yi(xi − xj)
⊤w)2I[yi ̸= yj]

T+
S T

−
S

(4)

where λ is a regularization parameter that controls the model complexity,
and the constant 1/2 is introduced for simplicity. Further, we define the
pairwise least square loss with respect to distribution D as

L(w,D) = ES [L(w,S)]

=
λ

2
|w|2 + 1

2
Exi∼D+,xj∼D− [(1− (xi − xj)

⊤w)2]

=
λ

2
|w|2 + 1

2
E(xi,yi)∼D,(xj ,yj)∼D[(1− (xi − xj)

⊤w)2|yi > yj].

6

The main advantage of using the least square loss lies in the fact that it
is sufficient to store the first and second-order statistics over training exam-
ples for optimization, leading to a memory requirement of O(d2), which is
independent of the number of training examples. Another advantage is that
the least square loss is consistent with AUC in finite instance space (Theo-
rem 1 in Section 5), whereas loss functions such as hinge loss are proven to
be inconsistent with AUC (Gao and Zhou, 2015).

In the online/stochastic setting, we will optimize a variant of the objective
in Eqn. 4 that can be written as a sum of losses for individual training instance

1

T

T∑
t=1

Lt(w) where

Lt(w) =
λ

2
|w|2 +

∑t−1
i=1 I[yi ̸= yt](1− yt(xt − xi)

⊤w)2

2|{i ∈ [t− 1] : yiyt = −1}|
. (5)

It is easy to see that Lt(w) is an unbiased estimator of L(w,D) by the
following proposition. The detailed proof is given in Section 6.2.

Proposition 2. We have L(w,D) = E(x1,y1),...,(xt,yt)∼Dt [Lt(w)].

Another main difference from (Wang et al., 2012; Kar et al., 2013) is the
normalization term |{i ∈ [t − 1] : yiyt = −1}|, which is dependent on the
received data St, and it is essential to the derivations of first and second-order
statistics. In (Wang et al., 2012; Kar et al., 2013), however, this normalization
term is fixed by 1/t, which is only dependent on the time step t.

Let T+
t and T−

t denote the cardinalities of positive and negative instances
in St, respectively. Further, we define Lt(w) = 0 for T+

t T
−
t = 0. If yt = 1,

we calculate the gradient as

∇Lt(w) = λw+xtx
⊤
t w−xt+

∑
i : i<t, yi=−1

xi + (xix
⊤
i − xix

⊤
t − xtx

⊤
i)w

T−
t

. (6)

It is easy to observe that

c−t =
∑

i : i<t, yi=−1

xi

T−
t

and S−
t =

∑
i : i<t, yi=−1

xix
⊤
i − c−t [c

−
t]

⊤

T−
t

correspond to the mean and covariance matrix of negative instances, respec-
tively; therefore, Eqn. 6 can be further simplified as

∇Lt(w) = λw − xt + c−t + (xt − c−t)(xt − c−t)
⊤w + S−

t w. (7)

7

Algorithm 1 The OPAUC algorithm

Input: The regularization parameter λ > 0 and stepsizes {ηt}Tt=1.
Initialize: Set T+

0 = T−
0 = 0, c+0 = c−0 = 0, w0 = 0 and Γ+

0 = Γ−
0 = [0]d×u

for some u > 0

1: for t = 1, 2, . . . , T do
2: Receive a training example (xt, yt)
3: if yt = +1 then
4: T+

t = T+
t−1 + 1 and T−

t = T−
t−1;

5: c+t = c+t−1 +
1
T+
t

(xt − c+t−1) and c−t = c−t−1;

6: Update Γ+
t and Γ−

t ;
7: Calculate the gradient ĝt(wt−1)
8: else
9: T−

t = T−
t−1 + 1 and T+

t = T+
t−1;

10: c−t = c−t−1 +
1

T−
t

(xt − c−t−1) and c+t = c+t−1;

11: Update Γ+
t and Γ−

t ;
12: Calculate the gradient ĝt(wt−1)
13: end if
14: Update wt = wt−1 − ηtĝt(wt−1)
15: end for

Output: wT

In a similar manner for yt = −1, we calculate the following gradient:

∇Lt(w) = λw + xt − c+t + (xt − c+t)(xt − c+t)
⊤w + S+

t w (8)

where

c+t =
∑

i : i<t, yi=1

xi

T+
t

and S+
t =

∑
i : i<t, yi=1

xix
⊤
i − c+t [c

+
t]

⊤

T+
t

denote the mean and covariance matrix of positive instances, respectively.
The storage cost for keeping the class means (c+t and c−t) and covariance

matrices (S+
t−1 and S−

t−1) is O(d
2). Once we compute the gradient ∇Lt(w),

by the theory of gradient descent, the classifier can be updated by

wt = wt−1 − ηt∇Lt(wt−1),

where ηt is the stepsize in the t-th iteration.

8

Algorithm 1 presents a generic algorithm, which highlights the key steps.
We initialize Γ−

0 = Γ+
0 = [0]d×d, where u = d. At each iteration, we denote

Γ+
t = S+

t and Γ−
t = S−

t . In Line 6, we update Γ−
t = Γ−

t−1 and

Γ+
t = Γ+

t−1 + c+t−1[c
+
t−1]

⊤ − c+t [c
+
t]

⊤ + (xtx
⊤
t − Γ+

t−1 − c+t−1[c
+
t−1]

⊤)/T+
t ,

whereas in Line 11, we update Γ+
t = Γ+

t−1 and

Γ−
t = Γ−

t−1 + c−t−1[c
−
t−1]

⊤ − c−t [c
−
t]

⊤ + (xtx
⊤
t − Γ−

t−1 − c−t−1[c
−
t−1]

⊤)/T−
t .

Finally, the gradient ĝt(wt−1) of Lines 7 and 12 in Algorithm 1 are given by
∇Lt(wt−1) that are calculated by Eqs. 7 and 8, respectively.

Notice that Γ+
t = S+

t and Γ−
t = S−

t are only specific to this section.
Throughout this work, S+

t and S−
t denote the covariance matrices of positive

and negative instances, respectively, whereas Γ+
t and Γ−

t take different values
for different approximation algorithms in Section 4.

4. Handling High Dimensions

One limitation of the OPAUC algorithm is the O(d2) storage for two
covariance matrices S+

t and S−
t , making it unsuitable for high-dimensional

data. A natural idea is to first project the high-dimensional data into a
low-dimensional space by dimensionality reduction (PCA, hashing, random
projection, etc.), and then apply the OPAUC algorithm. This strategy, how-
ever, does not work empirically (Section 7) because much information is lost
in dimensionality reduction.

Let X+
t and X−

t denote the matrices of positive and negative instances
in St = {(x1, y1), (x2, y2), . . . , (xt, yt)}, respectively. Then, we have

S+
t =

1

T+
t

X+
t [X

+
t]

⊤ − c+t [c
+
t]

⊤ and S−
t =

1

T−
t

X−
t [X

−
t]

⊤ − c−t [c
−
t]

⊤. (9)

Therefore, it suffices to approximate X+
t [X

+
t]

⊤ and X−
t [X

−
t]

⊤ since we can
store the class means c+t and c−t in memory. In this section, we will in-
troduce two deterministic methods to approximate covariance matrices for
high-dimensional dense and sparse tasks, respectively.

9

Algorithm 2 Frequent direction

Input: instance x ∈ Rd and sketch matrices Z ∈ Rd×τ

Insert x into a column of Z with zeros elements
if Z has no column with zeros elements then
[U,Σ, V] = SVD(Z)

Σ̂ =
√

max(Σ2 − Id×τσ2
⌊τ/2⌋, [0]d×τ), where max(·) denotes an element-

wise maximum.
Z = UΣ̂

end if

Output: Z

4.1. High-Dimensional Dense Data

For high-dimensional dense data, we make use of the frequent direction
method (Liberty, 2013) to approximate the covariance matrices, because this
method works well in practice, and takes faster convergence rate for ap-
proximation error than random projection, hashing, etc. The basic idea is
to maintain two d × τ sketch matrices Z+

t and Z−
t , and use Z+

t [Z
+
t]

⊤ and
Z−

t [Z
−
t]

⊤ to approximate X+
t [X

+
t]

⊤ and X−
t [X

−
t]

⊤, respectively. Here τ is
the sketch size.

More specifically, we receive an example (xt, yt) in the t-th iteration, and
assume yt = +1 (a similar procedure works for yt = −1). If there are unfilled
columns in Z+

t , then we add xt as a column vector to Z+
t ; otherwise, we

nullify half of the columns in Z+
t and then add xt as the ⌊τ/2⌋ + 1 column

in Z+
t . The nullification procedure can be decomposed as (i) apply singular

value decomposition (SVD) to compute the singular values and vectors of
Z+

t , and (ii) ‘shrink’ columns such that at least half of columns in Z+
t are

zeros and therefore open to be filled.
Algorithm 2 presents a description of frequent direction. Let SVD(Z) =

[U,Σ, V] be the singular value decomposition, i.e., Z = UΣV ⊤, U⊤U = Id,
V ⊤V = Iτ , and Σ is a rectangular diagonal matrix of size d × τ with non-
negative diagonal elements σ1, σ2, . . . , στ in non-increasing magnitude or-
der. Here, Iτ and Id denote the identity matrix of size τ × τ and d × d,
respectively. Let Id×τ denote a rectangular diagonal matrix whose diag-
onal elements are all 1. To shrink at least half of columns of Z, we set

Σ̂ =
(
max(Σ2 − Id×τσ

2
⌊τ/2⌋, [0]d×τ)

)1/2
and output UΣ̂. Here [0]d×τ denotes

an d × τ matrix of zeros and max(·) denotes an element-wise maximum.

10

Algorithm 2 outputs UΣ̂ rather than UΣ̂V ⊤ since we have, by V ⊤V = Iτ ,

UΣ̂[UΣ̂]⊤ = UΣ̂Σ̂⊤U⊤ = UΣ̂V ⊤V Σ̂⊤U⊤ = UΣ̂V ⊤[UΣ̂V ⊤]⊤.

Moreover, the matrix UΣ̂ maintains at least half of zero columns.
Let Z+

t and Z−
t be updated according to Algorithm 2, and we approximate

covariance matrices S+
t and S−

t by

Ŝ+
t = Z+

t [Z
+
t]

⊤/T+
t − c+t [c

+
t]

⊤, (10)

Ŝ−
t = Z−

t [Z
−
t]

⊤/T−
t − c−t [c

−
t]

⊤. (11)

Based on approximated covariance matrices Ŝ+
t and Ŝ−

t , the online optimiza-
tion algorithm essentially tries to minimize

∑T
t=1 L̂t(w), where

L̂t(w) = w⊤(c−t − xt) + λ|w|2/2
+(1 +w⊤Ŝ−

t w)/2 +w⊤(xt − c−t)(xt − c−t)
⊤w/2 (12)

if yt = 1; otherwise,

L̂t(w) = w⊤(xt − c+t) + λ|w|2/2
+(1 +w⊤Ŝ+

t w)/2 +w⊤(xt − c+t)(xt − c+t)
⊤w/2. (13)

We do not intend to calculate and store the approximated covariance matrices
Ŝ+
t and Ŝ−

t explicitly, but to maintain the matrices Z+
t and Z−

t in memory.
This is because the gradient ĝt(w) based on the approximate covariance
matrices can be computed from Z+

t and Z−
t directly, i.e.,

ĝt(w) = c−t − xt + (xt − c−t)(xt − c−t)
⊤w

+λw + (Z−
t [Z

−
t]

⊤/T−
t − c−t [c

−
t]

⊤)w (14)

if yt = 1; otherwise

ĝt(w) = xt − c+t + (xt − c+t)(xt − c+t)
⊤w

+λw + (Z+
t [Z

+
t]

⊤/T+
t − c+t [c

+
t]

⊤)w. (15)

We require a memory of O(τd) instead of O(d2) to calculate ĝt(w) by using
the trick A[A]⊤w = A([A]⊤w), where A ∈ Rd×1 or Rd×τ .

To implement the approximate approach, we initialize Γ−
0 = Γ+

0 = [0]d×τ

in Algorithm 1. In Line 6 of Algorithm 1, we update Γ−
t = Γ−

t−1, and update
Γ+
t by Algorithm 2 with inputs xt and Γ+

t−1; in Line 11, we update Γ+
t = Γ+

t−1,
and update Γ−

t by Algorithm 2 with inputs xt and Γ−
t−1. We calculate the

gradient ĝt(wt−1) of Lines 7 and 12 by Eqs. 14 and 15, respectively.

11

Algorithm 3 The OPAUCs algorithm

Input: The regularization parameter λ > 0 and stepsizes {ηt}Tt=1.
Initialize: Set T+

0 = T−
0 = 0, c+0 = c−0 = 0, w0 = 0 and Γ+

0 = Γ−
0 = 0d×d

1: for t = 1, 2, . . . , T do
2: Receive a training example (xt, yt)
3: if yt = +1 then
4: T+

t = T+
t−1 + 1 and T−

t = T−
t−1;

5: c+t = c+t−1 +
1
T+
t

(xt − c+t−1) and c−t = c−t−1;

6: Update Γ+
t = Γ+

t−1 + xtx
⊤
t and Γ−

t = Γ−
t−1;

7: if nnz(Γ+
t) > dτ then

8: Keep only dτ largest elements in Γ+
t and nullify the others;

9: end if
10: Calculate the gradient ĝt(wt−1);
11: else
12: T−

t = T−
t−1 + 1 and T+

t = T+
t−1;

13: c−t = c−t−1 +
1

T−
t

(xt − c−t−1) and c+t = c+t−1;

14: Update Γ−
t = Γ−

t−1 + xtx
⊤
t and Γ+

t = Γ+
t−1;

15: if nnz(Γ−
t) > dτ then

16: Keep only dτ largest elements in Γ−
t and nullify the others;

17: end if
18: Calculate the gradient ĝt(wt−1);
19: end if
20: Update wt = wt−1 − ηtĝt(wt−1)
21: end for

Output: wT

4.2. High-Dimensional Sparse Data

In this section, we introduce a matrix sparsification algorithm to handle
high-dimensional sparse vectors, which shows better performance than ran-
dom projection, hashing and frequent direction. Our basic idea is to seek
two sparse PSD matrices Z+

t and Z−
t which minimize

min
nnz(Z+

t)≤dτ
∥X+

t [X
+
t]

⊤ − Z+
t ∥F and min

nnz(Z−
t)≤dτ

∥X−
t [X

−
t]

⊤ − Z−
t ∥F

where ∥A∥F denotes the Frobenius norm of matrix A, and nnz(A) denotes
the cardinality of non-zero elements in matrix A. It is easy to find that the

12

optimal solutions for the above problem are two sparse matrices Z+
t and Z−

t

which maintain dτ largest element in X+
t [X

+
t]

⊤ and X−
t [X

−
t]

⊤, respectively.
We will take Γ+

t and Γ−
t as approximations for X+

t [X
+
t]

⊤ and X−
t [X

−
t]

⊤,
respectively. Specifically, we receive an example (xt, yt) in the t-th iteration,
and assume yt = +1 (a similar procedure works for yt = −1). We first
update Γ+

t = Γ+
t−1+xt[xt]

⊤, and then sparsify Γ+
t by only keeping the largest

dτ elements in Γ+
t . Therefore, the covariance matrices S+

t and S−
t can be

approximated, respectively, by

Ŝ+
t = Γ+

t /T
+
t − c+t [c

+
t]

⊤ and Ŝ−
t = Γ−

t /T
−
t − c−t [c

−
t]

⊤.

Based on approximated covariance matrices Ŝ+
t and Ŝ−

t , the gradient ĝt(w)
can be computed as

ĝt(w) = c−t −xt+(xt− c−t)(xt− c−t)
⊤w+λw+(Γ−

t /T
−
t − c−t [c

−
t]

⊤)w, (16)

for yt = 1; otherwise

ĝt(w) = xt− c+t +(xt− c+t)(xt− c+t)
⊤w+λw+(Γ+

t /T
+
t − c+t [c

+
t]

⊤)w. (17)

The detailed algorithm is described in Algorithm 3. We calculate the
gradient ĝt(wt−1) of Lines 10 and 18 in Algorithm 3 by Eqs. 16 and 17,
respectively.

5. Theoretical Analysis

Section 5.1 provides the theoretical justification for pairwise least square
loss. Sections 5.2 and 5.3 present regret bounds for the proposed algorithms
based on covariance matrices and approximated covariance matrices, respec-
tively. Section 5.4 gives new generalization and online-to-batch bounds.

5.1. Consistency Analysis

Many pairwise surrogate losses have been developed for AUC optimiza-
tion as mentioned in Section 2. An important theoretical problem: what
extent minimizing such a pairwise surrogate loss improves actual AUC; in
other words, does the expected risk of learning with pairwise surrogate losses
converge to the Bayes risk of AUC? Consistency implies that optimizing with
a pairwise surrogate loss will yield an optimal solution. Formally, we define
the AUC consistency as follows.

13

Definition 1. The pairwise surrogate loss ℓ(f(x)− f(x′)) is said to be con-
sistent with AUC if for every sequence {f ⟨n⟩(x)}n≥1, the following holds over
all distributions D on X × Y

if L(f ⟨n⟩,D) → inf
f
L(f,D) then AUC(f ⟨n⟩,D) → inf

f
AUC(f,D)

where the infimum takes over all measurable functions.

AUC consistency is defined on all measurable functions as in the work of
(Kotlowski et al., 2011; Agarwal, 2013; Menon and Williamson, 2014). An
interesting problem is to study AUC consistency on linear function spaces
for further work.

Gao and Zhou (2015) gave a sufficient condition and a necessary condition
for AUC consistency based on minimizing pairwise surrogate losses, but it
remains open for pairwise least square loss. Menon and Williamson (2014)
presented a general consistent analysis by composing sigmoidal link functions,
whereas pairwise least square loss cannot be composed with a sigmoidal link.
Therefore, previous studies did not provide the consistent analysis on pairwise
least square loss.

We show the consistency of pairwise least square loss for finite instance
spaces. The detailed proof is given in Section 6.3.

Theorem 1. For finite instance spaces and least square loss ℓ(t) = (1− t)2,
the pairwise surrogate loss ℓ(f(x)− f(x′)) is consistent with AUC.

5.2. Regret Bounds with Full Covariance Matrices

Let w∗ and L∗ be defined, respectively, as

w∗ = argmin
w

T∑
t=1

Lt(w) and L∗ =
1

T

T∑
t=1

Lt(w∗). (18)

We provide the worst-case regret bounds when the full covariance matrices
are provided, and it does not require a stochastic (data) sequence. The
detailed proof is given in Section 6.4.

Theorem 2. Let ∥xt∥ ≤ 1, and let w∗, L
∗ be defined in Eqn. 18. We have

T∑
t=1

Lt(wt−1)−
T∑
t=1

Lt(w∗) ≤
2(4 + λ)

λ
+ 2

√
4 + λ

λ
TL∗

by setting the learning rate ηt = 1/(4 + λ+
√

((4 + λ)2 + (4 + λ)λTL∗).

14

Theorem 2 theoretically shows that the performance of the OPAUC algo-
rithm converges to the performance of a batch algorithm which observes all
instances (in hindsight). This theorem gives an O(1/T) bound when L∗ = 0,
and an O(1/

√
T) bound for worst cases, whereas Zhao et al. (2011) achieved

at most O(1/
√
T). Our algorithm and regret bounds are independent of

the ratio of positive and negative instances, while previous work (Kotlowski
et al., 2011; Zhao et al., 2011) is heavily dependent. Wang et al. (2012,
2013) also obtained O(1/T) and O(1/

√
T) regret bounds despite of different

formulations and different techniques.
The faster convergence rate of our proposed algorithm owes to the smooth-

ness of least square loss, an important property that has been explored in
some studies of stochastic learning (Rakhlin et al., 2012) and generalization
error bound analysis (Srebro et al., 2010). It is interesting to further exploit
the λ-strongly convexity of Lt(w), which can lead to a tighter O(lnT/T)
convergence rate by setting ηt = 1/λt as shown in (Hazan et al., 2006).

5.3. Regret Bounds with Approximated Covariance Matrices

This section studies the regret bounds when the covariance matrices are
approximated. Recall that the covariance matrices are given by

S+
t =

1

T+
t

X+
t [X

+
t]

⊤ − c+t [c
+
t]

⊤ and S−
t =

1

T−
t

X−
t [X

−
t]

⊤ − c−t [c
−
t]

⊤,

where X+
t and X−

t denote the matrices of positive and negative instances,
respectively. We try to approximate X+

t [X
+
t]

⊤ and X−
t [X

−
t]

⊤ as done in
Algorithms 2 and 3, since it is easy to store the means c+t and c−t in memory.

To unify our analysis, let Ẑ+
t and Ẑ−

t denote two positive semi-definite
(PSD) matrices approximating X+

t [X
+
t]

⊤ and X−
t [X

−
t]

⊤, respectively. We
write

Ŝ+
t = Ẑ+

t /T
+
t − c+t [c

+
t]

⊤ and Ŝ−
t = Ẑ−

t /T
−
t − c−t [c

−
t]

⊤, (19)

and denote

L̂t(w) =
λ|w|2

2
+w⊤(c−t −xt)+

1

2
+

1

2

(
w⊤(xt− c−t)(xt− c−t)

⊤w+w⊤Ŝ−
t w
)
,

if yt = 1; otherwise,

L̂t(w) =
λ|w|2

2
+w⊤(xt− c+t)+

1

2
+

1

2

(
w⊤(xt− c+t)(xt− c+t)

⊤w+w⊤Ŝ+
t w
)
.

15

Notice that L̂t(w) is an approximation of Lt(w). Let ŵ∗ be given by

ŵ∗ = argmin
w

T∑
t=1

L̂t(w).

We define the stable rank of positive and negative instances, respectively, as

r+t =
1

T+
t

tr(X+
t [X

+
t]

⊤) and r−t =
1

T−
t

tr(X−
t [X

−
t]

⊤),

and further denote
r = maxTt=1{r+t , r−t }. (20)

We assume that the stable rank r is small in this work.
We will present a general result where we assume that there exists a

non-increasing function g(τ) such that

∥X+
t [X

+
t]

⊤ − Ẑ+
t ∥ ≤ g(τ)tr(X+

t [X
+
t]

⊤),

∥X−
t [X

−
t]

⊤ − Ẑ−
t ∥ ≤ g(τ)tr(X−

t [X
−
t]

⊤),
(21)

where τ is a parameter related to approximated methods. We will later in-
stantiate g(τ) for the frequent direction method (Algorithm 2). The following
theorem presents the worst-case regret bounds for approximated covariance
matrices, and it does not require a stochastic (data) sequence.

Theorem 3. Suppose ∥w∗∥ ≤ B and ∥xt∥ ≤ 1. Let L∗, g(τ) and r be
defined as in Eqns. 18, 21 and 20, respectively. Denote β = 1 + rg(τ)/λ,
κ = 4 + λ and select ηt = 1/(κ+

√
(κ2 + κTL∗/β/B2). We have

T∑
t=1

L̂t(wt−1)−
T∑
t=1

Lt(w∗) ≤
r

λ
g(τ)TL∗ + 2κβ2B2 + βB

√
2κβTL∗.

The proof involves bounding the difference between the optimal model
w∗ and optimal approximated model ŵ∗, and then translate this to a bound
on the difference between the cumulative losses of Lt(w∗) and L̂t(ŵ∗). The
detailed proof is given in Section 6.5.

Theorem 3 theoretically shows the gap between the performance of an al-
gorithm with approximated sample covariance matrices and the performance
of a batch algorithm (in hindsight) under the assumption on g(τ). This the-
orem gives comparable regret bounds with Theorem 2 for L∗ = 0 or for small

16

rg(τ)L∗/λ. Also, the additional term rg(τ)L∗/λ can be viewed as the cost
of using low-dimensional approximations to covariance matrices.

The function g(τ) depends on the choice of the approximated algorithm.
We first investigate the approximations of X+

t [X
+
t]

⊤ and X−
t [X

−
t]

⊤ by fre-
quent direction (Liberty, 2013), i.e., X+

t [X
+
t]

⊤ and X−
t [X

−
t]

⊤ are approxi-
mated by Z+

t [Z
+
t]

⊤ and Z−
t [Z

−
t]

⊤, respectively. Here Z+
t and Z−

t are updated
by Algorithm 2 (frequent direction). It is necessary to introduce a helpful
lemma from (Liberty, 2013) as follows:

Lemma 1. If Z+
t and Z+

t are the outputs of applying the frequent direction
to matrices X+

t and X−
t , respectively, then we have

0 ≼ Z+
t [Z

+
t]

⊤ ≼ X+
t [X

+
t]

⊤ and
∥∥X+

t [X
+
t]

⊤ − Z+
t [Z

+
t]

⊤
∥∥ ≤ 2

τ
tr(X+

t [X
+
t]

⊤)

0 ≼ Z−
t [Z

−
t]

⊤ ≼ X−
t [X

−
t]

⊤ and
∥∥X−

t [X
−
t]

⊤ − Z−
t [Z

−
t]

⊤
∥∥ ≤ 2

τ
tr(X−

t [X
−
t]

⊤)

where τ is the sketch size.

Therefore, we have g(τ) = 2/τ for frequent direction. Combining Theorem 3
with Lemma 1, we derive the regret bounds when the covariance matrices
are approximated by frequent direction.

Corollary 1. Suppose ∥w∗∥ ≤ B and ∥xt∥ ≤ 1. Let L∗ and r be defined in
Eqns. 18 and 20, respectively, and let τ be the sketch size in Algorithm 2. Set
β = 1 + 2r/τλ, κ = 4 + λ and ηt = 1/(κ+

√
(κ2 + κTL∗/β/B2). We have

T∑
t=1

L̂t(wt−1)−
T∑
t=1

Lt(w∗) ≤
2r

τλ
TL∗ + 2κβ2B2 + βB

√
2κβTL∗.

For matrix sparsification of Algorithm 3, it is not easy to give specific
expression of g(τ). However, we can observe empirically that g(τ) is much
smaller than 2/τ from Figure 4 (Section 7.3).

5.4. Generalization Analysis

Our framework and normalization are different from (Wang et al., 2012;
Kar et al., 2013) as mentioned in Sections 2 and 3, and the normalization
is data-dependent, which makes it difficult to extend the analysis of (Wang
et al., 2012; Kar et al., 2013) to our work. This section presents new general-
ization bounds for our proposed algorithm, and an online-to-batch conversion
follows from the generalization analysis.

17

Suppose that W is a compact function space, and let N (W , ϵ) be the ϵ-
covering number with respect to the L2 norm. We denote p = Pr(x,y)∼D[y = 1]
to be the ratio of positive examples under distribution D, and assume p < 1/2
without loss of generality. Throughout this section, we denote

δ = exp
(−Tϵ2
16B2

1

)
+ 2TN

(
W ,

ϵ

B2

)
exp

(−Tp2
8

)
+TN

(
W ,

ϵ

B2

)
exp

(−(min{p, 2− 3p})2Tϵ2

217B2
1

)
(22)

where B1 = ((1 + 2B)2 + λB2)/2 and B2 = 16(1 + (λ+ 2)B). We have

Theorem 4. Let W = {w : ∥w∥ ≤ B}, ∥x∥ ≤ 1 and T0 = ⌊T/2⌋. Suppose
that wT0 , . . . ,wT ∈ W are models output by OPAUC. For any ϵ > 0 and suf-
ficiently large T , the following holds with probability at least 1−δ (δ is defined
in Eqn. 22) over an i.i.d. sequence S = {(x1, y1), (x2, y2), . . . , (xT , yT)}

1

T − T0

T∑
t=T0+1

L(wt−1,D)− 1

T − T0

T∑
t=T0+1

Lt(wt−1) < ϵ.

The proof involves the decomposition of the excess risk into a martingale
difference sequence and a residual term as in (Wang et al., 2012; Kar et al.,
2013). The martingale sequence converges based on the Azuma-Hoeffding
inequality, and the residual term is bounded by uniform convergence with
cover numbers (Devroye et al., 1996; Rudin and Schapire, 2009).

We cannot make use of the techniques of (Wang et al., 2012) to prove
Theorem 4 directly, because the normalization |{i ∈ [t − 1] : yiyt = −1}| is
data-dependent, which may cause large variations of cumulative losses. For
example, if |{i ∈ [t− 1] : yiyt = −1}| is very small even for large t, then the
cumulative losses have large variations by randomly replacing an example,
and some classical concentrations cannot be applied.

Our strategy is to partition the problems into two cases (based on) whether
the fraction of positive instances (in the given sequence) is close to p =
Pr(x,y)∼D[y = 1] or not. We use the Hoeffding’s inequality to deal with the
case when the fraction of positive instances is far from p; this includes the
special situation that |{i ∈ [t− 1] : yiyt = −1}| is small even for large t. For
the other case, we show that the variations of cumulative losses are bounded.
We finally combine the two cases by the law of total probability. The detailed
proof is deferred to Section 6.6.

18

Theorem 4 presents theoretical analysis on the generalization performance
of our proposed OPAUC algorithm. This theorem can be easily generalized
to other bounded losses such as hinge loss, exponential loss, etc. In addition,
this theorem considers the average of the last T − T0 losses and the first T0
losses are discarded because of technical reasons, and a similar strategy has
been made in (Wang et al., 2012).

Another relevant work (Kar et al., 2013) presents the generalization error
bounds based on generalized Rademacher complexity. However, our work
cannot make similar extensions easily, because the normalization of cumula-
tive losses is data-dependent, while previous normalizations of Rademacher
complexities are all defined data-independently. In addition, it is difficult
to make comparisons between the generalization bounds of Theorem 4 and
those of (Wang et al., 2012; Kar et al., 2013) because of different framework
and normalization.

In the following, we will derive the online-to-batch bounds for OPAUC
algorithm. First, we say that an online learning algorithm has a regret bound
RT if wT0 ,wT0+1, . . . ,wT−1 are such that

1

T − T0

T∑
t=T0+1

Lt(wt−1) ≤ inf
w∈W

1

T − T0

T∑
t=T0+1

Lt(w) +RT . (23)

From Theorem 2, we can observe RT = O(1/
√
T) for the OPAUC algo-

rithm. This definition is helpful to derive the online-to-batch bounds from
generalization bounds, and it has been used in (Kar et al., 2013).

Let w∗
∗ = argminw∈W L(w,D) denote the risk minimizer over the whole

distribution D. Similarly to the proof of Theorem 4, we have

1

T − T0

T∑
t=T0+1

Lt(w
∗
∗)− L(w∗

∗,D) < ϵ (24)

with probability at least 1 − δ. Based on Theorem 4 and Eqns. 23 and 24,
we have

Theorem 5. Let W = {w : ∥w∥ ≤ B}, ∥x∥ ≤ 1 and T0 = ⌊T/2⌋. Sup-
pose that wT0 , . . . ,wT−1 ∈ W are output models by OPAUC with a regret
bound RT . For any ϵ > 0 and sufficient large T , the following holds with

19

probability at least 1 − 2δ (δ is defined in Eqn. 22) over i.i.d. sequence
S = {(x1, y1), (x2, y2), . . . , (xT , yT)},

1

T − T0

T∑
t=T0+1

L(wt−1,D)− L(w∗
∗,D) < 2ϵ+RT .

This theorem presents the online-to-batch bounds for the OPAUC algo-
rithm, and it is interesting to explore other techniques for the online-to-batch
conversion. Based on this theorem, we present theoretical analysis on choos-
ing a random stopping time as follows:

Corollary 2. Let W = {w : ∥w∥ ≤ B}, ∥x∥ ≤ 1 and T0 = ⌊T/2⌋. Suppose
that wT0 , . . . ,wT−1 ∈ W are output models by OPAUC with a regret bound
RT . For any ϵ > 0 and sufficient large T , if we randomly select T0 ≤ t < T ,
then the following holds with probability at least 2/3 − 2δ (δ is defined in
Eqn. 22) over i.i.d. sequence S = {(x1, y1), (x2, y2), . . . , (xT , yT)},

L(wt,D)− L(w∗
∗,D) < 6ϵ+ 3RT .

This corollary shows that the output model could have good performance
by a random stopping time, and the probability is about 2/3 for sufficient
large T . In practice, we pick up the last output model wT as in (Langford
et al., 2009; Shalev-Shwartz et al., 2011), which gives good empirical per-
formance by experiments (Section 7). The proof follows the technique of
(Shalev-Shwartz et al., 2011), and we present the details for completeness in
Section 6.7.

6. Proofs

In this section, we will present detailed proofs for our main results.

6.1. Proof of Proposition 1

We first have

L(f,D) = ES [L(f,S)] = ES

[
T∑
i=1

T∑
j=1

ℓ(f(xi)− f(xj))I[yi > yj]

T+
S T

−
S

]
.

The distribution D can be specified exactly by the triplet (D+,D−, p), and as-
sume that x1, . . . ,xT+

S
are selected i.i.d from distribution D+, and x̂1, . . . , x̂T−

S
are selected i.i.d. from distribution D−.

20

Because the expectation over S can be decomposed into an expectation
over random draws of T+

S and T−
S from Binomial(T, p), followed by an ex-

pectation over D+ and D−, respectively, ES [L(f,S)] is equal to

E

 1

T+
S T

−
S
Ex1∼D+,...,x

T+
S
∼D+,x̂1∼D−,...,x̂

T−
S
∼D−

 T+
S∑

i=1

T−
S∑

j=1

ℓ(f(xi)− f(x̂j))


where the outer expectation is over T+

S ∼Binomial(T, p) and T−
S = T − T+

S .
By the linearity of expectation, we have

L(f,D) = ES [L(f,S)] = E

 1

T+
S T

−
S

T+
S∑

i=1

T−
S∑

j=1

Exi∼D+, x̂j∼D−ℓ(f(xi)− f(x̂j))


which completes the proof of Eqn. 1 since Exi∼D+, x̂j∼D−ℓ(f(xi)−f(x̂j)) have
the same values for all i ∈ [T+

S] and j ∈ [T−
S], and the denominator T+

S T
−
S

can be cancelled. For Eqn. 2, we have

E(xi,yi)∼D,(xj ,yj)∼D[ℓ(f(xi)− f(xj))|yi > yj]

= E(xi,yi)∼D,(xj ,yj)∼D[ℓ(f(xi)− f(xj))|yi = 1, yj = −1]

= Exi∼D+,xj∼D− [ℓ(f(xi)− f(xj))]

which completes the proof. �

6.2. Proof of Proposition 2
Let x1, . . . ,xTS+

t−1

and x̂1, . . . , x̂TS−
t−1

be drawn i.i.d from distributions D+

and D−, respectively. Recall that p = Pr(x,y)∼D[y = 1]. We have

E(x1,y1),...,(xt,yt)∼Dt [Lt(w)]

=
λ

2
|w|2 + E(x1,y1),...,(xt,yt)∼Dt

[∑t−1
i=1 I[yi ̸= yt](1− yt(xt − xi)

⊤w)2

2|{i ∈ [t− 1] : yiyt = −1}|

]

=
λ

2
|w|2 + pExt∼D+, TS−

t−1


TS−

t−1∑
i=1

Ex̂i∼D−(1− (xt − x̂i)
⊤w)2

2TS−
t−1


+(1− p)Ext∼D−, TS+

t−1


TS+

t−1∑
i=1

Exi∼D+(1− (xi − xt)
⊤w)2

2TS+
t−1


=

λ

2
|w|2 + 1

2
Ex∼D+, x̂∼D− [(1− (x− x̂)⊤w)2]

21

which completes the proof. �

6.3. Proof of Theorem 1

We assume a finite instance space X = {x1,x2, . . . ,xn} with marginal
probability pi = Pr[xi] and conditional probability ξi = Pr[y = +1|xi]. The
expected surrogate risk is given by

L(f,D) = C0 + C1

×
∑
i̸=j

pipj(ξi(1− ξj)ℓ(f(xi)− f(xj)) + ξj(1− ξi)ℓ(f(xj)− f(xi))) (25)

where ℓ(t) = (1−t)2, and C0 and C1 are constants and irrelevant to f . Notice
that our proof does not rely on the scaled loss function, i.e., the property of
consistency also holds for scaled loss function γℓ(·) for any constant γ > 0,
because scaled loss function γℓ(·) corresponds to γC1, which does not affect
the optimal solution.

According to the analysis of (Gao and Zhou, 2015), it suffices to prove
that, for every optimal solution f such that L(f,D) = inff ′ L(f ′,D), we have
f(xi) > f(xj) for ξi > ξj (equivalent to f(xi) < f(xj) for ξi < ξj by swapping
i and j).

If n = 2, i.e., X = {x1,x2}, then Eqn. 25 gives the expected risk as

L(f,D) = C0 + C1p1p2
(
ξ1(1− ξ2)(1− f(x1) + f(x2))

2

+ ξ2(1− ξ1)(1− f(x2) + f(x1))
2
)
. (26)

Minimizing Eqn. 26 gives the optimal solution f = (f(x1), f(x2)) such that

f(x1)− f(x2) =
ξ1 − ξ2

ξ1 + ξ2 − 2ξ1ξ2
for ξ1 ̸= ξ2.

Therefore, we have f(x1) > f(x2) if ξ1 > ξ2; otherwise f(x1) < f(x2). This
shows the consistency of pairwise least square loss.

If n ≥ 3 and ξi(1 − ξi) = 0 for each i ∈ [n], then each conditional
probability satisfies

ξi = 0 or ξi = 1 for i ∈ [n].

Combining this with Eqn. 25, we have

L(f,D) = C0 + C1

∑
ξi=1,ξj=0

pipj(1− f(xi) + f(xj))
2.

22

Minimizing L(f,D) gives the optimal solution f = (f(x1), f(x2), · · · , f(xn))
such that

f(xi) = f(xj) + 1 for ξi = 1 and ξj = 0

which also shows the consistency of pairwise least square loss.
If n ≥ 3 and there exists some i0 s.t. ξi0(1−ξi0) ̸= 0, then the subgradient

conditions give optimal solution f = (f(x1), f(x2), . . . , f(xn)) such that∑
k ̸=i

pk(ξi + ξk − 2ξiξk)(f(xi)− f(xk)) =
∑
k ̸=i

pk(ξi − ξk) for each 1 ≤ i ≤ n.

Solving the above n linear equations, we obtain

f(xi)− f(xj) = (ξi − ξj)

∏
k ̸=i,j

∑n
l=1 pl(ξl + ξk − 2ξlξk)∑

s1+···+sn=n−2,si≥0 p
s1
1 · · · psnn Γ(s1, s2, · · · , sn)

where Γ is a polynomial in ξk1 + ξk2 − 2ξk1ξk2 for 1 ≤ k1, k2 ≤ n. In the
following, we will give the specific expression for Γ(s1, s2, · · · , sn). Let A =
{i : si ≥ 1} and B = {i : si = 0} = {b1, b2, · · · , b|B|}.

• If |A| = 1, i.e., A = {i1} for some 1 ≤ i1 ≤ n, then

Γ(s1, s2, · · · , sn) =
∏
k∈B

(ξi1 + ξk − 2ξi1ξk).

• If |A| = 2, i.e., A = {i1, i2} for some 1 ≤ i1, i2 ≤ n, then we denote

A1 = {si1 ⊙ i1}
∪

{si2 ⊙ i2}

where {sik ⊙ ik} denotes the multi-set {ik, ik, . . . , ik} of size sik for
k = 1, 2. It is clear that |B| = |A1| = n− 2. Further, we denote G(A1)
by the set of all permutations of A1. Therefore, we have

Γ(s1, s2, · · · , sn) = (ξi1+ξi2−2ξi1ξi2)
∑

π=π1···πn−2∈G(A1)

n−2∏
k=1

(ξπi
+ξbi−2ξπi

ξbi).

• If |A| > 2, then, for i1 ̸= i2 and i1, i2 ∈ A, we denote the multi-set

A1(i1, i2) = {si1 ⊙ i1}
∪

{si2 ⊙ i2}
∪(∪

k∈A\{i1,i2}

{(sk − 1)⊙ k}
)
,

23

and it is easy to derive |A1| = |B|. Further, we denote G(A\{i1, i2}) and
G(A1) by the set of all permutations of A\{i1, i2} and A1, respectively.
Therefore, we set

Γ1(i1, i2,A) =∑
π=π1π2···π|A|−2∈G(A\{i1,i2})

(ξi1 + ξπ1 − 2ξi1ξπ1)(ξπ1 + ξπ2 − 2ξπ1ξπ2)×

· · · × (ξπ|A|−3
+ ξπ|A|−2

− 2ξπ|A|−3
ξπ|A|−2

)(ξπ|A|−2
+ ξi2 − 2ξi2ξπ|A|−2

),

and we have

Γ(s1, s2, · · · , sn) =
∑

i1 ̸=i2 : i1,i2∈A

Γ1(i1, i2,A)

×
∑

π=π1π2...π|B|∈G(A1)

|B|∏
k=1

(ξπk
+ ξbk − 2ξπk

ξbk)

where B = {b1, b2, . . . , b|B|}.

Since there is an i0 s.t. ξi0(1− ξi0) ̸= 0, we have∏
k ̸=i,j

∑n
l=1 pl(ξl + ξk − 2ξlξk)∑

s1+···+sn=n−2,si≥0 p
s1
1 · · · psnn Γ(s1, s2, · · · , sn)

> 0.

Therefore, we have f(xi) > f(xj) if ξi > ξj, and this theorem holds. �

6.4. Proof of Theorem 2

First, we introduce the notion of smoothness as follows.

Definition 2. Given a linear function space W ⊆ Rd, a function f : W → R
is said to be µ-smooth if

∥∇f(w′)−∇f(w)∥ ≤ µ∥w′ −w∥ for every w,w′ ∈ W .

For smooth functions, we have a helpful lemma from (Nesterov, 2003,
Theorem 2.1.5) as follows.

Lemma 2. If f is µ-smooth, then, for every w,w′ ∈ W, we have

f(w)− f(w′) ≥ ⟨∇f(w′),w −w′⟩+ 1

2µ
∥w −w′∥2.

24

Proof of Theorem 2. We will exploit the smoothness to prove this theorem.
The proof technique is motivated from the work of (Shalev-Shwartz, 2007;
Srebro et al., 2010), and the detailed proof is presented for completeness.

We have defined Lt(w) = 0 for T+
t T

−
t = 0 in Section 3, and it is easy to

analyze such cases; therefore, we consider T+
t T

−
t ̸= 0 in the rest of our proof.

Recall that

Lt(w) =
λ

2
∥w∥2 +

∑t−1
i=1 I[yi ̸= yt](1− yt⟨xt − xi,w⟩)2

2|{i ∈ [t− 1] : yi ̸= yt}|
,

and it is easy to derive

∇Lt(w) = λw −
∑t−1

i=1 I[yi ̸= yt](1− yt⟨xt − xi,w⟩)yt(xt − xi)

|{i ∈ [t− 1] : yi ̸= yt}|
.

For w,w′ ∈ W and ∥xt∥ ≤ 1, we have

∥∇Lt(w
′)−∇Lt(w)∥ ≤ (4 + λ)∥w′ −w∥,

which implies that Lt is (4 + λ)-smooth. Denote

wt∗ = argmin
w

Lt(w),

and this gives∇Lt(wt∗) = 0 from the convex and differentiable loss Lt. Based
on Lemma 2 and Lt(wt∗) ≥ 0, we have

∥∇Lt(wt−1)∥2 = ∥∇Lt(wt−1)−∇Lt(wt∗)∥2

≤ 2(λ+ 4)(Lt(wt−1)− Lt(wt∗)) ≤ 2(λ+ 4)Lt(wt−1). (27)

From the convexity of function Lt−1, we have

Lt(wt−1)− Lt(w∗) ≤ ⟨∇Lt(wt−1),wt−1 −w∗⟩. (28)

Therefore, we have

∥wt −w∗∥2 = ∥wt−1 − ηt∇Lt(wt−1)−w∗∥2 = ∥wt−1 −w∗∥2

− 2ηt⟨∇Lt(wt−1),wt−1 −w∗⟩+ η2t ∥∇Lt(wt−1)∥2. (29)

This implies that, by using Eqs. 27 and 28,

(1− (4 + λ)ηt)Lt(wt−1)− Lt−1(w∗) ≤
1

2ηt
∥wt−1 −w∗∥2 −

1

2ηt
∥wt −w∗∥2.

25

Summing over t = 1, . . . , T and rearranging, we obtain

T∑
t=1

(1− (4 + λ)ηt)Lt(wt−1)−
T∑
t=1

Lt(w∗)

≤ 1

2η1
∥w0 −w∗∥2 −

1

2ηT
∥wT −w∗∥2 +

T−1∑
t=1

(
1

2ηt+1

− 1

2ηt
)∥wt −w∗∥2.

By setting ηt = η, we have

1

2η1
∥w0 −w∗∥2 −

1

2ηT
∥wT −w∗∥2 ≤

1

2η
∥w∗∥2 ≤

1

2λη

from w0 = 0 and ∥w∗∥ ≤ 1/
√
λ, and we finally get

T∑
t=1

Lt(wt−1)−
T∑
t=1

Lt(w∗) ≤ 1

1− (4 + λ)η

(
1

2ηλ
+ (4 + λ)η

T∑
t=1

Lt(w∗)

)

≤ 1

1− (4 + λ)η

(
1

2ηλ
+ (4 + λ)ηTL∗

)
.

By setting

η =
1

4 + λ+
√
(4 + λ)2 + (4 + λ)λTL∗

and simple calculations, the theorem holds as desired. �

6.5. Proof of Theorem 3

It is sufficient to consider T+
t T

−
t ̸= 0 as in the proof of Theorem 2. We

rewrite L(w;S) = 1
T

∑T
t=1 Lt(w) as

L(w;S) = 1

2
+w⊤a+

1

2
w⊤ (A1 + A2)w,

26

where

a =
1

T

T∑
t=1

I[yt = 1](c−t−1 − xt) +
1

T

T∑
t=1

I[yt = −1](c+t−1 − xt),

A1 = λId +
1

T

T∑
t=1

I[yt = 1]S−
t−1 +

1

T

T∑
t=1

I[yt = −1]S+
t−1,

A2 =
1

T

T∑
t=1

I[yt = 1](xt − c−t)(xt − c−t)
⊤

+
1

T

T∑
t=1

I[yt = −1](xt − c+t)(xt − c+t)
⊤.

Similarly, we rewrite L̂(w;S) = 1
T

∑T
t=1 L̂t(w) as

L̂(w;S) = 1

2
+w⊤a+

1

2
w⊤(Ã1 + A2

)
w

where

Ã1 = λId +
1

T

T∑
t=1

I[yt = 1]Ŝ+
t +

1

T

T∑
t=1

I[yt = −1]Ŝ−
t ,

and Ŝ+
t and Ŝ−

t are defined by Eqn. 19. The optimal solutions minimizing
L(w;S) and L̂(w;S) are given, respectively, by

w∗ = (A1 + A2)
−1a and ŵ∗ = (Ã1 + A2)

−1a.

From the assumption that g(τ) is a non-increasing function such that∥∥∥Ẑ+
t −X+

t [X
+
t]

⊤
∥∥∥ ≤ g(τ)tr(X+

t [X
+
t]

⊤),∥∥∥Ẑ−
t −X−

t [X
−
t]

⊤
∥∥∥ ≤ g(τ)tr(X−

t [X
−
t]

⊤),

we have ∥∥∥(A1 + A2)
1/2(Ã1 + A2)

−1(A1 + A2)
1/2 − Id

∥∥∥
=

∥∥∥(Ã1 + A2)
−1/2(A1 − Ã1)(Ã1 + A2)

−1/2
∥∥∥

≤ ∥A1 − Ã1∥∥(Ã1 + A2)
−1∥ ≤ rg(τ)/λ. (30)

27

Denote Ω = (A1 + A2)
1/2(Ã1 + A2)

−1(A1 + A2)
1/2 − Id, and it is easy to get

∥ŵ∗ −w∗∥ =
∥∥∥((Ã1 + A2)

−1 − (A1 + A2)
−1
)
a
∥∥∥

=
∥∥(A1 + A2)

−1/2Ω(A1 + A2)
−1/2a

∥∥
≤ r

λ
g(τ)∥(A1 + A2)

−1a∥ ≤ r

λ
g(τ)∥w∗∥

which implies, from ∥w∗∥ ≤ B, that

∥ŵ∗∥ ≤ ∥w∗∥+ ∥ŵ∗ −w∗∥ ≤ βB, (31)

where β = 1 + g(τ)r/λ. In addition, we have∣∣∣L̂(w∗;S)− L(w∗;S)
∣∣∣

=
3

2

∣∣∣a⊤
(
(Ã1 + A2)

−1 − (A1 + A2)
−1
)
a
∣∣∣

=
3

2

∣∣a⊤(A1 + A2)
−1/2Ω(A1 + A2)

−1/2a
∣∣

≤ rg(τ)

λ

∣∣∣∣32a⊤(A1 + A2)
−1a

∣∣∣∣
≤ rg(τ)

λ

∣∣∣∣12 +
3

2
a⊤(A1 + A2)

−1a

∣∣∣∣ = rg(τ)

λ
L(w∗) (32)

which yields that

L̂(ŵ∗;S) ≤ L(w∗;S) + |L̂(ŵ∗;S)− L(w∗;S)| ≤ βTL∗. (33)

Finally, we have

T∑
t=1

L̂t(wt−1)−
T∑
t=1

Lt(w∗)

≤
T∑
t=1

(
L̂t(wt−1)− L̂t(ŵ∗)

)
+

T∑
t=1

(
L̂t(ŵ∗)− Lt(w∗)

)
.

The second term in the above can be bounded by Eqn. 32. Similarly to the
proof of Theorem 2, we have, by setting ηt = 1/(κ+

√
(κ2 + κTL∗/β/B2),

T∑
t=1

L̂t(wt−1)−
T∑
t=1

L̂t(ŵ∗) ≤ 2κβ2B2 + βB

√
2κL̂(ŵ∗;S)

≤ 2κβ2B2 + βB
√

2κβTL∗

where the last inequality holds from Eqn. 33. This completes the proof. �

28

6.6. Proof of Theorem 4

Theorem 6 (Detailed version of Theorem 4). Let W = {w : ∥w∥ ≤
B}, ∥x∥ ≤ 1 and T0 = ⌊T/2⌋. Suppose that wT0 , . . . ,wT−1 ∈ W are mod-
els output by OPAUC. For any ϵ > 0 and T ≥ max

{
256, 16/p2 ln(64B1/ϵ),

(2 ln 8/p2)4/3, (256B1/ϵ/min{p, 2 − 3p})4
}
, the following holds with proba-

bility at least 1 − δ (δ is defined in Eqn. 22) over an i.i.d. sample S =
{(x1, y1), (x2, y2), . . . , (xT , yT)}

1

T − T0

T∑
t=T0+1

L(wt−1,D)− 1

T − T0

T∑
t=T0+1

Lt(wt−1) < ϵ.

This theorem gives the exact expression that T needs to exceed for our
bounds in contrast to Theorem 4.
Proof. We begin with an intermediate loss

L̄t(wt−1) = E(xt,yt)∼D[Lt(wt−1)|(x1, y1), · · · , (xt−1, yt−1)], (34)

as in the work of (Wang et al., 2012; Kar et al., 2013). We have

Pr

[
T∑

t=T0+1

L(wt−1,D)− Lt(wt−1)

T − T0
≥ ϵ

]

≤ Pr

[
T∑

t=T0+1

L̄t(wt−1)− Lt(wt−1)

T − T0
≥ ϵ

2

]

+Pr

[
T∑

t=T0+1

L(wt−1,D)− L̄t(wt−1)

T − T0
≥ ϵ

2

]
. (35)

For ∥xt∥ ≤ 1 and ∥wt−1∥ ≤ B, it is easy to see that

|Lt(wt−1)| ≤ B1 where B1 = ((1 + 2B)2 + λB2)/2.

Throughout this section, we denote by Et[·] = E(xt,yt)∼D[·]. Our proof in-
cludes four parts as follows.

Step 1: Bounding the Martingale difference
We first observe that {(L̄t(wt−1) − Lt(wt−1))/(T − T0)}t≥T0 is a martingale

29

sequence, and it is bounded by 2B1/(T−T0). Based on the Hoeffding-Azuma
inequality (Azuma, 1967), we have

Pr

[
T∑

t=T0+1

L̄t(wt−1)− Lt(wt−1)

T − T0
≥ ϵ

2

]
≤ exp

(
− Tϵ2

16B2
1

)
.

Step 2: Symmetrization by a ghost sample
We begin with a ghost sample S̃T = {(x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃T , ỹT)} drawn
i.i.d. from distribution D, and denote by

L̃t(wt−1) =
λ

2
∥wt−1∥2 +

∑t−1
i=1 I[ỹi ̸= yt](1− yt(xt − x̃i)

⊤wt−1)
2

2|{i ∈ [t− 1] : ỹiyt = −1}|
. (36)

We further bound Eqn. 35 as follows:

Lemma 3. For T ≥ max
{
256, (2 ln 8/p2)4/3, 8/p2 ln(64B1/ϵ), (256B1/ϵ/min{p, 2−

3p})4
}
, we have

Pr

[
T∑

t=T0+1

L(wt−1,D)− L̄t(wt−1)

T − T0
≥ ϵ

2

]

≤ 2Pr

[
T∑

t=T0+1

Et[L̃t(wt−1)− L̄t(wt−1)]

T − T0
≥ ϵ

4

]
.

Recall that p ≤ 1/2, and thus min{p, 2 − 3p} > 0. Before the proof of
Lemma 3, we first set T1 = ⌊T 3/4⌋, and denote by

S̃T1 = {(x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃T1 , ỹT1)}.

For any fixed S̃T1 , we can see that E[Et[L̃t(wt−1)]|S̃T1] converges to L(wt−1,D)
for sufficiently large T as follows:

Lemma 4. For T ≥ max (256, 8/p2 ln(64B1/ϵ), (256B1/ϵ/min{p, 2− 3p})4),
we have ∣∣∣E [Et[L̃t(wt−1)]|S̃T1

]
− L(wt−1,D)

∣∣∣ ≤ ϵ/8

where Et[·] = E(xt,yt)∼D[·] and E[·] = E(x̃T1+1,ỹT1+1),...,(x̃T ,ỹT)∼DT−T1 [·].

30

Proof: It is easy to observe that, from Eqn. 36,

E
[
Et[L̃t(wt−1)]|S̃T1

]
=

λ

2
∥wt−1∥2 + E

[
T1∑
i=1

I[ỹi ̸= yt](1− yt(xt − x̃i)
⊤wt−1)

2

2|{i ∈ [t− 1] : ỹiyt = −1}|

∣∣∣∣∣ S̃T1

]

+E

[
t−1∑

i=T1+1

I[ỹi ̸= yt](1− yt(xt − x̃i)
⊤wt−1)

2

2|{i ∈ [t− 1] : ỹiyt = −1}|

∣∣∣∣∣ S̃T1

]
and

L(wt−1,D) =
λ

2
∥wt−1∥2 + E

[∑t−1
i=T1+1 I[ỹi ̸= yt](1− yt(xt − x̃i)

⊤wt−1)
2

2|{T1 < i < t : ỹiyt = −1}|

]
.

Thus, we have

E
[
Et[L̃t(wt−1)]|S̃T1

]
− L(wt−1,D)

= E

[
|{i ∈ [T1] : ỹiyt = −1}|

|{i ∈ [t− 1] : ỹiyt = −1}|

T1∑
i=1

I[ỹi ̸= yt](1− yt(xt − x̃i)
⊤wt−1)

2

2|{i ∈ [T1] : ỹiyt = −1}|
−

|{i ∈ [T1] : ỹiyt = −1}|
|{i ∈ [t− 1] : ỹiyt = −1}|

t−1∑
i=T1+1

I[ỹi ̸= yt](1− yt(xt − x̃i)
⊤wt−1)

2

2|{T1 < i < t : ỹiyt = −1}|

∣∣∣∣∣ S̃T1

]
.

For ∥xt∥ ≤ 1 and ∥wt−1∥ ≤ B, we have (1− yt(xt − x̃i)
⊤wt−1)

2/2 ≤ B1, and∣∣∣E [Et[L̃t(wt−1)]|S̃T1

]
− L(wt−1,D)

∣∣∣
≤ 2B1E

[
Et

[
|{i ∈ [T1] : ỹiyt = −1}|

|{i ∈ [t− 1] : ỹiyt = −1}|

]∣∣∣∣ S̃T1

]
≤ 2B1E

[
Et

[
|{i ∈ [T1] : ỹiyt = −1}|
|{i ∈ [T0] : ỹiyt = −1}|

]∣∣∣∣ S̃T1

]
for t ≥ T0.

We complete the proof by combining with Lemma 5. �

Lemma 5. For T ≥ max (256, 8/p2 ln(64B1/ϵ), (256B1/ϵ/min{p, 2− 3p})4),
we have

E

[
Et

[
|{i ∈ [T1] : ỹiyt = −1}|
|{i ∈ [T0] : ỹiyt = −1}|

]∣∣∣∣ S̃T1

]
≤ ϵ

16B1

where T1 = ⌊T 3/4⌋ and T0 = ⌊T/2⌋.

31

Proof: Let S̃T1+1:T0 = {(x̃T1+1, ỹT1+1), (x̃T1+2, ỹT1+2), . . . , (x̃T0 , ỹT0)}. Denote
the set

A =

{
S̃T1+1:T0 :

∣∣∣∣∣
T0∑

i=T1+1

I[ỹi = 1]

T0 − T1
− p

∣∣∣∣∣ ≥ p

2

}
.

Based on the Hoeffding’s inequality (Hoeffding, 1963), we have

Pr
[
S̃T1+1:T0 ∈ A

]
≤ 2 exp(−(T0 − T1)p

2/2) ≤ ϵ/(32B1),

for T > max (256, 8/p2 ln(64B1/ϵ)). For S̃T1+1:T0 /∈ A, we have

|{T1 < i ≤ T0 : yt = 1}| > p(T0 − T1)/2 ≥ Tp/8

|{T1 < i ≤ T0 : yt = −1}| > (T0 − T1)(1− 3p/2) ≥ T (2− 3p)/8

for T > 256. Therefore, it holds that, for T ≥ (256B1/ϵ/min{p, 2− 3p})4,

E

[
Et

[
|{i ∈ [T1] : ỹiyt = −1}|
|{i ∈ [T0] : ỹiyt = −1}|

]∣∣∣∣ S̃T1+1:T0 /∈ A, S̃T1

]
≤ 16T−1/4

min(p, 2− 3p)
≤ ϵ

32B1

.

By the law of total expectation, i.e.,

E[·] = E[·|S̃T1+1:T0 ∈ A] Pr[S̃T1+1:T0 ∈ A]+E[·|S̃T1+1:T0 /∈ A] Pr[S̃T1+1:T0 /∈ A],

we have

E

[
Et

[
|{i ∈ [T1] : ỹiyt = −1}|
|{i ∈ [T0] : ỹiyt = −1}|

]∣∣∣∣ S̃T1

]
≤ Pr[S̃T1+1:T0 ∈ A]

+E

[
Et

[
|{i ∈ [T1] : ỹiyt = −1}|
|{i ∈ [T0] : ỹiyt = −1}|

]∣∣∣∣ S̃T1+1:T0 /∈ A, S̃T1

]
≤ ϵ

16B1

which completes the proof. �

Proof of Lemma 3 It is easy to see that

Pr

[
T∑

t=T0+1

Et[L̃t(wt−1)− L̄t(wt−1)]

T − T0
≥ ϵ

4

]

≥ EST

[
I

[
T∑

t=T0+1

L(wt−1,D)− L̄t(wt−1)

T − T0
≥ ϵ

2

]

× Pr
S̃T

[∣∣∣∣∣
T∑

t=T0+1

L(wt−1,D)− Et[L̃t(wt−1)]

T − T0

∣∣∣∣∣ ≤ ϵ

4

∣∣∣∣∣ST

]]

32

and the lemma holds if

Pr
S̃T

[∣∣∣∣∣
T∑

t=T0+1

L(wt−1,D)− Et[L̃t(wt−1)]

T − T0

∣∣∣∣∣ ≤ ϵ

4

∣∣∣∣∣ST

]
≥ 1

2
.

Denote the set

A =

{
S̃T1 :

∣∣∣∣∣ 1T1
T1∑
t=1

I[ỹt = 1]− p

∣∣∣∣∣ > p/2

}
.

From Hoeffding’s inequality (Hoeffding, 1963), we have

Pr[S̃T1 ∈ A] ≤ exp
(
−T1p2/2

)
≤ 1/4 for T > (2 ln 8/p2)4/3.

By the law of total probability, we have

Pr

[∣∣∣∣∣
T∑

t=T0+1

L(wt−1,D)− Et[L̃t(wt−1)]

T − T0

∣∣∣∣∣ > ϵ

4

∣∣∣∣∣ST

]

≤ 1

4
+ Pr

[∣∣∣∣∣
T∑

t=T0+1

L(wt−1,D)− Et[L̃t(wt−1)]

T − T0

∣∣∣∣∣ > ϵ

4

∣∣∣∣∣ST , S̃T1 /∈ A

]
.

For T ≥ max (256, 8/p2 ln(64B1/ϵ), (256B1/ϵ/min{p, 2− 3p})4), it holds that,
from Lemma 4, ∣∣∣E [Et[L̃t(wt−1)]|S̃T1

]
− L(wt−1,D)

∣∣∣ ≤ ϵ/8,

which yields that

Pr

[∣∣∣∣∣
T∑

t=T0+1

L(wt−1,D)− Et[L̃t(wt−1)]

T − T0

∣∣∣∣∣ > ϵ

4

∣∣∣∣∣ST , S̃T1 /∈ A

]

≤ Pr

[∣∣∣∣∣
T∑

t=T0+1

E[Et[L̃t(wt−1)]|S̃T1]− Et[L̃t(wt−1)]

T − T0

∣∣∣∣∣ > ϵ

8

∣∣∣∣∣ST , S̃T1 /∈ A

]

≤ 64

ϵ2
Var

 T∑
t=T0+1

Et

[
L̃t(wt−1)|S̃T1

]
T − T0

 (by Chebyshev’s inequality).

33

If S̃T1 /∈ A, then each Et

[
L̃t(wt−1)|S̃T1

]
changes by at most 2B1/min{p, 2−

3p}/T 3/4 by randomly replacing any example (x̃t, ỹt) for t ≥ T1. Based on
the work of (Devroye et al., 1996, Theorem 9.3), we have

64

ϵ2
Var

 T∑
t=T0+1

Et

[
L̃t(wt−1)|S̃T1

]
T − T0


≤ 16

ϵ2

T∑
i=T1+1

B2
1

(min{p/2, 1− 3p/2})2T 3/2

≤ 4B1/ϵ
2

(min{p, 2− 3p})2T 1/2
≤ 1

4
,

for T > (256B1/ϵ/min{p, 2 − 3p})4 > (16B1/ϵ
2/(min{p, 2 − 3p})2)2. This

completes the proof. �

Step 3: Uniform convergence
For any fixed w ∈ W , we have

Lemma 6. For t ≥ T0, w ∈ W and T ≥ 16/p2 ln(128B1/ϵ), we have

Pr
[
Et[L̃t(w)− Lt(w)] ≥ ϵ/8

]
≤ 2 exp

(
−1

8
Tp2

)
+ exp

(
−(min{p, 2− 3p})2Tϵ2

217B2
1

)
.

Proof: Given T2 = ⌊T/4⌋, let

S̃T2 = {(x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃T2 , ỹT2)},
ST2 = {(x1, y1), (x2, y2), . . . , (xT2 , yT2)},

i.e., the first T2 examples in S̃T and ST , respectively. Denote the sets

A1 =

{
S̃T2 :

∣∣∣∣∣ 1T2
T2∑
t=1

I[ỹt = 1]− p

∣∣∣∣∣ > p/2

}
,

A2 =

{
ST2 :

∣∣∣∣∣ 1T2
T2∑
t=1

I[yt = 1]− p

∣∣∣∣∣ > p/2

}
.

34

By using the Hoeffding inequality (Hoeffding, 1963) again, we have

Pr
[
S̃T2 ∈ A1

]
≤ exp(−Tp2/8), Pr [ST2 ∈ A2] ≤ exp(−Tp2/8) and

Pr
[
S̃T2 /∈ A1 and ST2 /∈ A2

]
≥ 1− 2 exp(−Tp2/8) ≥ 1/2 for T ≥ 16/p2.

For simplicity, we denote ∆ = Et[L̃t(w) − Lt(w)]. By the law of total
probability, we have

Pr
[
∆ ≥ ϵ

8

]
≤ Pr[S̃T2 ∈ A1 or ST2 ∈ A2] + Pr

[
∆ ≥ ϵ

8

∣∣∣ S̃T2 /∈ A1 and ST2 /∈ A2

]
≤ 2 exp(−Tp2/8) + Pr

[
∆ ≥ ϵ

8

∣∣∣ S̃T2 /∈ A1 and ST2 /∈ A2

]
.

It is easy to observe L(w,D) = E[Et[L̃t(w)]] = E[Et[Lt(w)]], and we have

E[∆] = E[Et[L̃t(w)− Lt(w)]] = 0,

and by the law of total expectation, it holds that

E[∆] = E[∆|S̃T2 /∈ A1 and ST2 /∈ A2] Pr[S̃T2 /∈ A1 and ST2 /∈ A2]

+E[∆|S̃T2 ∈ A1 or ST2 ∈ A2] Pr[S̃T2 ∈ A1 or ST2 ∈ A2].

This yields that, for T ≥ 16/p2 ln(ϵ/128B1),

1

2

∣∣∣E[∆]|S̃T2 /∈ A1 and ST2 /∈ A2]
∣∣∣

≤
∣∣∣E[∆|S̃T2 /∈ A1 and ST2 /∈ A2]

∣∣∣Pr[S̃T2 /∈ A1 and ST2 /∈ A2]

=
∣∣∣E[∆|S̃T2 ∈ A1 or ST2 ∈ A2]

∣∣∣Pr[S̃T2 ∈ A1 or ST2 ∈ A2]

≤ 2B1 Pr[S̃T2 ∈ A1 or ST2 ∈ A2] ≤ 4B1 exp(−Tp2/8) ≤ ϵ/32

which implies ∣∣∣E[∆|S̃T2 /∈ A1 and ST2 /∈ A2]
∣∣∣ ≤ ϵ/16.

Therefore, we have

Pr
[
∆ ≥ ϵ

8

∣∣∣ S̃T2 /∈ A1, ST2 /∈ A2

]
≤ Pr

[
∆− E[∆|S̃T2 /∈ A1, ST2 /∈ A2] ≥

ϵ

16

∣∣∣ S̃T2 /∈ A1, ST2 /∈ A2

]
.

35

For S̃T2 /∈ A1 and ST2 /∈ A2, ∆ has a bounded variation of 16B1/min{p, 2−
3p}/T if each (x̃t, ỹt) and (xt, yt) vary for t > T2. By using the McDiarmid’s
inequality (McDiarmid, 1989), we have

Pr
[
∆− E

[
∆|S̃T2 /∈ A1, ST2 /∈ A2

]
≥ ϵ

16

∣∣∣ S̃T2 /∈ A1, ST2 /∈ A2

]
≤ exp

(
−(min{p, 2− 3p})2T 2ϵ2

217(t− T2)B2
1

)
≤ exp

(
−(min{p, 2− 3p})2Tϵ2

217B2
1

)
where the last inequality holds for t < T . �

We next use uniform convergence techniques based on cover numbers; as
a first step, we show that the objective is Lipschitz as follows:

|Et[L̃t(w1)− Lt(w1)]− Et[L̃t(w2)− Lt(w2)]| ≤ 2(1 + (λ+ 2)B)∥w1 −w2∥.

for w1 ∈ W and w2 ∈ W . Let m = N (W , ϵ/16(1 + (λ + 2)B)), and assume
that w1,w2, . . . ,wm is a covering of W , i.e., for any w ∈ W , there is wk s.t.
∥wk −w∥ ≤ ϵ/16(1 + (λ+ 2)B)). Therefore, we have

Pr

[
T∑

t=T0+1

Et[L̃t(wt−1)− Lt(wt−1)]

T − T0
≥ ϵ

4

]

≤
T∑

t=T0+1

Pr

[
sup
w∈W

[Et[L̃t(w)− Lt(w)]] ≥ ϵ

4

]

≤
T∑

t=T0+1

m∑
k=1

Pr
[
[Et[L̃t(wk)− Lt(wk)]] ≥

ϵ

8

]
≤ mT exp

(
−1

8
Tp2

)
+

1

2
mT exp

(
−(min{p, 2− 3p})2Tϵ2

217B2
1

)
(37)

where the last inequality holds from Lemma 6.

36

Step 4: Putting it all together
Based on previous analyses, we have

Pr

[
T∑

t=T0+1

L(wt−1,D)− Lt(wt−1)

T − T0
≥ ϵ

]

≤ exp
(
− Tϵ2

16B2
1

)
+ Pr

[
T∑

t=T0+1

L(wt−1,D)− L̄t(wt−1)

T − T0
≥ ϵ

2

]

≤ exp
(
− Tϵ2

16B2
1

)
+ 2Pr

[
T∑

t=T0+1

Et[L̃t(wt−1)− L̄t(wt−1)]

T − T0
≥ ϵ

4

]

where the first inequality holds from Eqn. 35 and Step 1, and the second
inequality holds from Lemma 3. We complete the proof by combining Eqn. 37
with m = N (W , ϵ/16(1 + (λ+ 2)B)). �

6.7. Proof of Corollary 2

We first define a random variable

ψ = L(wt−1,D)− L(w∗
∗,D)

where the randomness is over the selection of T0 ≤ t ≤ T . It is easy to
observe that ψ ≥ 0 from the definition of w∗

∗, and

E[ψ] =
1

T − T0

T∑
t=T0+1

L(wt−1,D)− L(w∗
∗,D). (38)

By Markov inequality, we have

Pr [ψ ≥ 3E[ψ]] ≤ 1/3,

which completes the proof by combining Theorem 5 with Eqn. 38. �

7. Experiments

In this section, we evaluate the performance of OPAUC on benchmark
datasets in Section 7.1, and present an evaluation on high-dimensional dense
and sparse datasets in Sections 7.2 and 7.3, respectively. Finally, we analyze
the parameter influence in Section 7.4.

37

Table 1: Benchmark datasets
datasets #inst #feat datasets #inst #feat
diabetes 768 8 w8a 49,749 300
fourclass 862 2 kddcup04 50,000 65
german 1,000 24 mnist 60,000 780
splice 3,175 60 connect-4 67,557 126
usps 9,298 256 acoustic 78,823 50
letter 15,000 16 ijcnn1 141,691 22

magic04 19,020 10 epsilon 400,000 2,000
a9a 32,561 123 covtype 581,012 54

7.1. Comparisons on Benchmark Data

We conduct our experiments on sixteen benchmark datasets1,2,3 as sum-
marized in Table 1. Some datasets have been used in previous studies on
AUC optimization, whereas the others are large datasets requiring a one-
pass procedure. The features have been scaled to [−1, 1] for all datasets.
Multi-class datasets have been transformed into binary ones by randomly
partitioning classes into two groups, where each group contains the same
number of classes.

We compare with a series of approaches as follows:

• OAMseq: An online AUC optimization with a sequential updating
method (Zhao et al., 2011);

• OAMgra: An online AUC optimization with a gradient descent updat-
ing method (Zhao et al., 2011);

• Online Uni-Exp: An online gradient descent algorithm which op-
timizes the (weighted) univariate exponential loss (Kotlowski et al.,
2011);

• Online Uni-Log: An online gradient descent algorithm which opti-
mizes the (weighted) univariate logistic loss (Kotlowski et al., 2011);

1http://www.sigkdd.org/kddcup/
2http://www.ics.uci.edu/˜mlearn/MLRepository.html
3http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/

38

Table 2: Testing AUC (mean±std.) of OPAUC with online algorithms on benchmark
datasets. •/◦ indicates that OPAUC is significantly better/worse than the corresponding
method (pairwise t-tests at 95% significance level).

datasets OPAUC OAMseq OAMgra online Uni-Exp online Uni-Log online Uni-Squ

diabetes .8309±.0350 .8264±.0367 .8262±.0338 .8215±.0309• .8260±.0360 .8258±.0354

fourclass .8310±.0251 .8306±.0247 .8295±.0251 .8281±.0305 .8288±.0304 .8292±.0304

german .7978±.0347 .7747±.0411• .7723±.0358• .7908±.0367 .7914±.0361 .7899±.0349

splice .9232±.0099 .8594±.0194• .8864±.0166• .8931±.0213• .9160±.0131• .9153±.0132•

usps .9620±.0040 .9310±.0159• .9348±.0122• .9538±.0045• .9574±.0039• .9563±.0041•

letter .8114±.0065 .7549±.0344• .7603±.0346• .8113±.0074 .8080±.0068 .8053±.0081•

magic04 .8383±.0077 .8238±.0146• .8259±.0169• .8354±.0099• .8353±.0097• .8344±.0086•

a9a .9002±.0047 .8420±.0174• .8571±.0173• .9005±.0024 .9006±.0023 .8949±.0025•

w8a .9633±.0035 .9304±.0074• .9418±.0070• .9093±.0986• .9204±.0114• .8847±.0130•

kddcup04 .7912±.0039 .6918±.0412• .7097±.0420• .7851±.0050• .7859±.0045• .7850±.0042•

mnist .9242±.0021 .8615±.0087• .8643±.0112• .7932±.0245• .9164±.0018• .9156±.0027•

connect-4 .8760±.0023 .7807±.0258• .8128±.0230• .8702±.0025• .8708±.0026• .8685±.0033•

acoustic .8192±.0032 .7113±.0590• .7711±.0217• .8171±.0034• .8206±.0035 .8193±.0035

ijcnn1 .9269±.0021 .9209±.0079• .9100±.0092• .9264±.0035 .9243±.0047• .9022±.0041•

epsilon .9550±.0007 .8816±.0042• .8659±.0176• .9488±.0012• .9406±.0011• .9480±.0021•

covtype .8244±.0014 .7361±.0317• .7403±.0289• .8236±.0017 .8253±.0014 .8236±.0020

win/tie/loss 14/2/0 14/2/0 10/6/0 9/7/0 11/5/0

• Online Uni-Squ: An online gradient descent algorithm which opti-
mizes the (weighted) univariate least square loss;

• SVM-perf: A batch algorithm which directly optimizes AUC (Joachims,
2005);

• Batch SVM-OR: A batch algorithm which optimizes the pairwise
hinge loss (Joachims, 2006);

• Batch LS-SVM: A batch algorithm which optimizes the pairwise least
square loss;

• Batch Uni-Log: A batch algorithm which optimizes the (weighted)
univariate logistic loss (Kotlowski et al., 2011);

• Batch Uni-Squ: A batch algorithm which optimizes the (weighted)
univariate least square loss.

39

Table 3: Testing AUC (mean±std.) of OPAUC with batch algorithms on benchmark
datasets. •/◦ indicates that OPAUC is significantly better/worse than the corresponding
method (pairwise t-tests at 95% significance level).

datasets OPAUC SVM-perf batch SVM-OR batch LS-SVM batch Uni-Log batch Uni-Squ

diabetes .8309±.0350 .8325±.0220 .8326±.0328 .8325±.0329 .8330±.0322 .8332±.0323

fourclass .8310±.0251 .8221±.0381 .8305±.0311 .8309±.0309 .8288±.0307 .8297±.0310

german .7978±.0347 .7952±.0340 .7935±.0348 .7994±.0343 .7995±.0344 .7990±.0342

splice .9232±.0099 .9235±.0091 .9239±.0089 .9245±.0092◦ .9208±.0107• .9211±.0107•

usps .9620±.0040 .9600±.0054• .9630±.0047◦ .9634±.0045◦ .9637±.0041◦ .9617±.0043

letter .8114±.0065 .8028±.0074• .8144±.0064◦ .8124±.0065◦ .8121±.0061 .8112±.0061

magic04 .8383±.0077 .8427±.0078◦ .8426±.0074◦ .8379±0.0078 .8378±.0073 .8338±.0073•

a9a .9002±.0047 .9033±.0039 .9009±.0036 .8982±.0028• .9033±.0025◦ .8967±.0028•

w8a .9633±.0035 .9626±.0042 .9495±.0082• .9495±.0092• .9421±.0062• .9075±.0104•

kddcup04 .7912±.0039 .7935±.0037◦ .7903±.0039• .7898±.0039• .7900±.0039• .7926±.0038

mnist .9242±.0021 .9338±.0022◦ .9340±.0020◦ .9336±.0025◦ .9334±.0021◦ .9279±.0021◦

connect-4 .8760±.0023 .8794±.0024◦ .8749±.0025• .8739±.0026• .8784±.0026◦ .8760±.0024

acoustic .8192±.0032 .8102±.0032• .8262±.0032◦ .8210±.0033◦ .8253±.0032◦ .8222±.0031◦

ijcnn1 .9269±.0021 .9314±.0025◦ .9337±.0024◦ .9320±.0037◦ .9282±.0023◦ .9038±.0025•

epsilon .9550±.0007 .8640±.0049• .8643±.0053• .8644±.0050• .8647±.0150• .8653±.0073•

covtype .8244±.0014 .8271±.0011◦ .8248±.0013 .8222±.0014• .8246±.0010 .8242±.0012

win/tie/loss 4/6/6 4/6/6 6/4/6 4/6/6 6/8/2

Here the weighted univariate losses mean that the losses are weighted by
class priors as done in (Kotlowski et al., 2011).

All experiments are performed with Matlab 7 on a node of compute clus-
ter with 16 CPUs (Intel Xeon Due Core 3.0GHz) running RedHat Linux
Enterprise 5 with 48GB main memory. Due to memory limitation, we uni-
formly select 8,000 training examples at random (without replacement) over
the whole training data for batch algorithms if training size exceeds 8,000,
whereas only 2,000 training examples are selected in a similar manner for the
epsilon dataset because of its high dimension. For all online approaches, we
go through the entire training data only once.

Five-fold cross-validation is executed on training sets to determine the
learning rate ηt ∈ 2[−12:10] for online algorithms, the regularized parameter
λ ∈ 2[−10:2] for OPAUC and λ ∈ 2[−10:10] for batch algorithms. For OAMseq

and OAMgra, the buffer sizes are fixed to be 100 as done in (Zhao et al., 2011).
Theorem 2 shows that the optimal learning rate ηt depends on the optimal

40

fou
rcla

ss
ger

ma
n

spli
ce usp

s
lette

r

ma
gic0

4 a9a w8a

kdd
cup

04 mni
st

con
nec

t-4
aco

usti
c

ijcn
n1

eps
ilon

cov
type

0.1

1

10

100

1000

10000
ru

nn
in

g
tim

e
(s

ec
on

ds
)

datasets

 OPAUC
 OAMseq
 OAMgra
 Online Uni-Exp
 Online Uni-Squ

Figure 1: Comparison of the running time (in seconds) of OPAUC and online learning
algorithms on benchmark datasets. Notice that the y-axis is in log-scale.

loss L∗ yet it is unknown. Practically, we can set ηt to be O(1/
√
T) or a

small constant as in (Zhang, 2004) to approach to the optimal learning rate,
because our algorithm is insensitive to smaller ηt (e.g., ηt < 1/16) as shown
in Figure 5, and this also keeps the one-pass property. In the following, cross-
validation is executed to select ηt because we try to make fair comparisons
with the first online AUC optimization work (Zhao et al., 2011).

The performances of the compared methods are evaluated by five trials of
5-fold cross validation, where the AUC values are obtained by averaging over
these 25 runs. Table 2 shows that OPAUC is significantly better than the
other four online algorithms OAMseq, OAMgra, online Uni-Exp and online
Uni-Squ, particularly for large datasets. The win/tie/loss counts show that
OPAUC is clearly superior to these online algorithms, as it wins for most
times and never loses.

Table 3 shows that OPAUC is highly competitive to the other five batch
learning algorithms; this is impressive because these batch algorithms re-
quire storing the whole/partial training dataset whereas OPAUC does not
store training data. We also notice that those batch algorithms use smaller
datasets because of memory limitation, and have potential for better per-
formance. Additionally, batch LS-SVM which optimizes the pairwise least
square loss is comparable to the other batch algorithms, verifying our argu-
ment that least square loss is effective for AUC optimization.

We also compare the running time of OPAUC and the online algorithms

41

Table 4: Testing AUC (mean±std.) of OPAUCfd with online methods on high-dimensional
dense datasets. •/◦ indicates that OPAUCfd is significantly better/worse than the cor-
responding method (pairwise t-tests at 95% significance level). ‘N/A’ indicates that
OPAUCpca runs out of memory because of PCA.

datasets fourclass magic04 letter ijcnn1 acoustic

features 50,002 50,010 50,016 50,022 50,050

OPAUCfd .8757±.0367 .8967±.0086 .9379±.0043 .9811±.0093 .8589±.0027

OPAUCs .8622±.0301• .8895±.0075• .9336±.0074• .9740±.0098• .8325±.0374•

OAMseq .8657±.0423• .8898±.0096• .9370±.0046 .9802±.0099 .8141±.0102•

OAMgra .8644±.0388• .8830±.0146• .9171±.0381• .9615±.0102• .8282±.0092•

online Uni-Exp .8452±.0534• .8805±.0064• .9241±.0062• .9653±.0051• .8374±.0051•

online Uni-Log .8555±.0329• .8911±.0074• .9293±.0094• .9688±.0038• .8387±.0039•

online Uni-Squ .8507±.0439• .8860±.0200• .9350±.0159• .9491±.0259• .8494±.0077•

OPAUCf .8431±.0311• .8193±.0082• .7869±.0062• .8793±.0126• .8030±.0028•

OPAUCrp .8453±.0320• .8219±.0103• .7885±.0116• .8640±.0236• .8256±.0029•

OPAUCpca .8492±.0323• N/A .8452±.0055• N/A N/A

OPAUCr .8631±.0498• .8863±.1591• .9302±.0352• .9778±.0106• .8062±.0853•

OPAUCh .8574±.0395• .8588±.1413• .9270±.0570• .9653±.0214• .8080±.0961•

OAMseq, OAMgra, online Uni-Exp and online Uni-Squ, and the average CPU
time (in seconds) are shown in Figure 1. As expected, online Uni-Squ and
online Uni-Exp take the least time cost because they optimize on single-
instance (univariate) loss, whereas the other algorithms work by optimizing
pairwise loss. On most datasets, the running time of OPAUC is competitive
to OAMseq and OAMgra, except on the mnist and epsilon datasets which have
the highest dimension in Table 1.

7.2. Comparisons on High-Dimensional Dense Data

In this section, we study the empirical performance for high-dimensional
dense datasets. For convenience, we denote OPAUCfd by the OPAUC algo-
rithm where the covariance matrices are approximated by frequent direction
algorithm as shown in Algorithm 2, and recall that OPAUCs represents the
OPAUC algorithm where the covariance matrices are approximated by sparse
matrices as illustrated in Section 4.2.

To verify the effectiveness of OPAUCfd on high-dimensional dense data,
we select five datasets that have a small number of features in Table 1,
i.e., fourclass, letter, magic04, acoustic and ijcnn1, and then add 50,000 extra
features using random fourier features (Ali and Benjamin, 2007).

42

Besides four online algorithms OAMseq, OAMgra, online Uni-Exp and on-
line Uni-Squ, as mentioned in the previous section, we also evaluate three
variants of OPAUC, whose basic idea is to project high-dimensional data to
low-dimensional data and then work with OPAUC as mentioned in Section 4.
In addition, we also compare with two algorithms where the covariance ma-
trices are approximated by random projection and hashing, respectively. The
detailed description is given as follows.

• OPAUCf: Randomly selects 1, 000 features, and then works with
OPAUC;

• OPAUCrp: Projects into a 1, 000-dim feature space by random pro-
jection, and then works with OPAUC;

• OPAUCpca: Projects into a 1, 000-dim feature space by principle com-
ponent analysis, and then works with OPAUC.

• OPAUCr: The OPAUC algorithm where the covariance are approxi-
mated by random projection, which has been suggested in our prelim-
inary work (Gao et al., 2013);

• OPAUCh: The OPAUC algorithm where the covariance are approxi-
mated by using hashing technique.

Similar to Section 7.1, five-fold cross validation is executed on training sets
to determine the learning rate ηt ∈ 2[−12:10] and the regularization parameter
λ ∈ 2[−10:2]. Due to the memory and computational limit, the buffer sizes
are set to 50 for OAMseq and OAMgra, and the sketch size τ is also set to
50 for OPAUCfd, OPAUCs, OPAUCr and OPAUCh. The performance of the
methods is evaluated by five trials of 5-fold cross validation, where the AUC
values are obtained by averaging over these 25 runs.

The comparison results are summarized in Table 4, and we can see clearly
that the proposed OPAUCfd approach is superior to the other compared
methods, since the pairwise t-test shows that OPAUCfd wins most times
and never loses. Compared with Table 2, we find that the performance
can be significantly improved by using random Fourier features (Ali and
Benjamin, 2007). The average CPU time (in seconds) is shown in Figure 2.
As can be seen, OPAUCpca takes the highest cost in time, and it runs out
of memory for larger datasets such as magic04, acoustic and ijcnn1. The
proposed OPAUCfd approach takes higher cost in time than other methods
but with best performance.

43

fourclass magic04 letter ijcnn1 acoustic

10

100

1000

10000

100000

>1000000

ss
ss

ss

 `

 s

ss
ss

ss
ss

s

ss
ss

ss

 `

 s

ss
ss

ss
ss

s

ss
ss

ss

 `

 s

ss
ss

ss
ss

s

ru
nn

in
g

tim
e

(s
ec

on
ds

)

data sets

 OPAUC
fd

 OPAUCs
 OAMseq
 OAMgra
 online Uni-Exp
 online Uni-Squ
 OPAUCf

 OPAUCrp

 OPAUCpca

 OPAUCr
 OPAUC

h

Figure 2: Comparison of the running time on high dimensional dense datasets, and full
black columns indicates that OPAUCpca runs out of memory because of PCA.

Table 5: High-dimensional datasets ordered by feature dimensions

datasets # inst # feat datasets # inst # feat
real-sim 72,309 20,985 sector 9,619 55,197
rcv 20,278 47,236 news20 15,935 62,061

rcv1v2 23,149 47,236 ecml2012 456,886 98,519
sector.lvr 9,619 55,197 news20.binary 19,996 1,355,191

7.3. Comparison on High-Dimensional Sparse Data

Now we investigate the empirical performance for high-dimensional sparse
tasks. Eight real sparse datasets4,5 are shown in Table 5. The news20.binary
dataset contains two classes, different from news20 dataset. The original
news20 and sector are multi-class datesets; in our experiments, we randomly
group the multiple classes into two meta-classes each containing the same
number of classes, and we also use the sector.lvr dataset which regards the
largest class as positive and the union of other classes as negative. The
original ecml2012 and rcv1v2 are multi-label datasets; in our experiments, we

4http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
5http://www.ecmlpkdd2012.net/discovery-challenge

44

Table 6: Testing AUC (mean±std.) of OPAUCs with online methods on high-dimensional
datasets. •/◦ indicates that OPAUCs is significantly better/worse than the correspond-
ing method (pairwise t-tests at 95% significance level). ‘N/A’ means that no result was
obtained after running out 106 seconds (about 11.6 days).

datasets real-sim rcv rcv1v2 sector.lvr

OPAUCs .9910±.0013 .9906±.0015 .9787±.0022 .9980±.0040

OPAUCfd .9745±.0011• .9802±.0026• .9633±.0031• .9965±.0358•

OAMseq .9840±.0061• .9885±.0010• .9686±.0026• .9965±.0064•

OAMgra .9762±.0062• .9852±.0019• .9604±.0025• .9955±.0059•

online Uni-Exp .9914±.0011 .9907±.0012 .9822±.0042◦ .9969±.0093•

online Uni-Log .9888±.0007• .9895±.0014 .9770±.0017• .9776±.0249•

online Uni-Squ .9920±.0009◦ .9918±.0010◦ .9818±.0014◦ .9669±.0260•

OPAUCf .8105±.0042• .7297±.0069• .6875±.0101• .6813±.0444•

OPAUCrp .9444±.0036• .9450±.0039• .9353±.0053• .9863±.0258•

OPAUCpca .9834±.0009• .9796±.0020• .9752±.0020• .9893±.0288•

OPAUCr .9789±.0010• .9831±.0016• .9686±.0029• .9962±.0011•

OPAUCh .9791±.0015• .9837±.0048• .9700±.0032• .9956±.0465•

datasets sector news20 ecml2012 news20.binary

OPAUCs .9520±.0063 .9223±.0048 .9834±.0004 .6402±.0094

OPAUCfd .9296±.0103• .8840±.0059• .9630±.0012• .6406±.0088

OAMseq .9163±.0087• .8543±.0099• N/A .6314±.0131•

OAMgra .9043±.0100• .8346±.0094• .9657±.0055• .6351±.0135•

online Uni-Exp .9215±.0034• .8880±.0047• .9820±.0016• .6347±.0092•

online Uni-Log .9528±.0054 .9200±.0050• .9657±.0032• .6340±.0032•

online Uni-Squ .9203±.0043• .8878±.0066• .9530±.0041• .6237±.0104•

OPAUCf .6228±.0145• .5958±.0118• .6601±.0036• .5068±.0086•

OPAUCrp .7286±.0619• .7885±.0079• .9355±.0047• .6212±.0072•

OPAUCpca .8853±.0114• .8878±.0115• N/A N/A

OPAUCr .9292±.0081• .8871±.0083• .9828±.0008 .6389±.0136•

OPAUCh .9265±.0218• .8890±.0082• .9742±.0013• .6148±.0274•

45

real-sim rcv rcv1v2 sector.lvr sector news20 ecml2012 news20.binary

10

100

1000

10000

100000

>1000000

ss
ss

ss

 s
ss

s

ss
ss

ss

 s
ss

s

ss
ss

ss

 s
ss

s

ru
nn

in
g

tim
e

(s
ec

on
ds

)

datasets

 OPAUCs
 OPAUC

fd

 OAMseq
 OAMgra
 online Uni-exp
 online Uni-squ
 OPAUCr

 OPAUCrp

 OPAUCpca

 OPAUCr
 OPAUC

h

Figure 3: Comparison of the running time on high-dimensional sparse datasets. Full black
columns imply that no results were returned after running out the maximal running time.

only consider the largest label and remove the features in ecml2012 dataset
that take zero values for all instances.

Similar to Section 7.2, five-fold cross validation is executed on training
sets to decide the learning rate ηt ∈ 2[−12:10] and the regularization parameter
λ ∈ 2[−10:2]. Due to memory and computational limit, the buffer sizes are
set to 50 for OAMseq and OAMgra, and the sketch size τ is also set to 50
for OPAUCfd, OPAUCs, OPAUCr and OPAUCh. The performance of the
methods is evaluated by five trials of 5-fold cross validation, where the AUC
values are obtained by averaging over these 25 runs.

The comparison results are summarized in Table 6 and the average CPU
time (seconds) is shown in Figure 3. These results clearly show that our
approximate OPAUCs approach is superior to the other compared methods.
Compared with OAMseq, OAMgra, OPAUCfd, OPAUCr and OPAUCh, the
time costs are comparable whereas the performance of OPAUCs is better.
Online Uni-Squ and Uni-Exp are more efficient than OPAUCs because they
optimize a univariate loss, but the performance of OPAUCs is highly com-
petitive or better, except on real-sim, rcv and rcv1v2, the three datasets with
less than 50,000 features and with class balance between positive and neg-
ative instances. Compared with the three variants, OPAUCf and OPAUCrp

are more efficient, but with much worse performances. OPAUCpca achieves
a worse performance on all datasets; particularly, on the two datasets with
the largest number of features, OPAUCpca cannot return results even after

46

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sketch size τ

N
or

m
al

iz
ed

 F
ro

be
ni

us
 n

or
m

sector (positive instances)

Our sparse algorithm
Frequent direction
Hashing
Random projection

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sketch size τ

N
or

m
al

iz
ed

 F
ro

be
ni

us
 n

or
m

sector (negative instances)

Our sparse algorithm
Frequent direction
Hashing
Random projection

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sketch size τ

N
or

m
al

iz
ed

 F
ro

be
ni

us
 n

or
m

real−sim (postive instances)

Our sparse algorithm
Frequent direction
Hashing
Random projection

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sketch size τ

N
or

m
al

iz
ed

 F
ro

be
ni

us
 n

or
m

real−sim (negative instances)

Our sparse algorithm
Frequent direction
Hashing
Random projection

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sketch size τ

N
or

m
al

iz
ed

 F
ro

be
ni

us
 e

rr
or

news20 (postive instances)

Our sparse algorithm
Frequent direction
Hashing
Random projection

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sketch size τ

N
or

m
al

iz
ed

 F
ro

be
ni

us
 e

rr
or

news20 (nagetive instances)

Our sparse algorithm
Frequent direction
Hashing
Random projection

Figure 4: The comparisons of approximation error on frequent direction, random projec-
tion, hashing and our sparse algorithm.

running out 106 seconds (almost 11.6 days). These observations validate the
effectiveness of OPAUCs for handing high-dimensional sparse data.

Finally, we try to understand why OPAUCs works better than OPAUCfd,
OPAUCr and OPAUCh on high-dimensional sparse datasets, although the ba-
sic idea for those approaches is to use low-rank matrices to approximate the
covariance matrices. We measure the approximation error of each method by
Frobenius norm. More precisely, for original matrix A and output sketch ma-

47

0

0.2

0.4

0.6

0.8

1

stepsize η
t

av
er

ag
e

A
U

C
german

24 26 28 21022202−22−42−62−10 2−82−12
0

0.2

0.4

0.6

0.8

1
kddcup04

stepsize η
t

av
er

ag
e

A
U

C

2−82−12 2−10 2−6 2−4 2−2 20 22 24 26 28 210

0

0.2

0.4

0.6

0.8

1

stepsize η
t

av
er

ag
e

A
U

C

connect−4

2−12 2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210 0

0.2

0.4

0.6

0.8

1

stepsize η
t

av
er

ag
e

A
U

C

acoustic

2−12 2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

Figure 5: Influence of stepsize ηt

trix B, the empirical performance is measured by ∥A⊤A−B∥F for OPAUCs,
and ∥A⊤A−B⊤B∥F for OPAUCfd, OPAUCr and OPAUCh.

Figure 4 shows the approximation error comparisons on datasets sector,
news20 and real-sim. As can be seen, our proposed sparse algorithm (shown
in Section 4.2) takes the best approximation to positive/negative covariance
matrices, and those are rather stable. Frequent direction has better perfor-
mance than random projection and hashing. This verifies the effectiveness
of our sparse algorithms to high-dimensional sparse datasets.

7.4. Parameter Influence

We study the influence of parameters in this section. Figure 5 shows
that stepsize ηt should not be set to values bigger than 1, whereas there is a
relatively big range between [2−12, 2−4] where OPAUC achieves good results.
Figures 6 shows that OPAUC is not sensitive to the value of regularization
parameter λ given that it is not set with a big value. Figure 7 studies
the influence of the iterations for OPAUC, OAMseq and OAMgra, and it
is observable that OPAUC converges faster than the other two algorithms,
which verifies our theoretical argument in Section 5.

8. Conclusion

This paper investigates the one-pass AUC optimization that requires go-
ing through the training data only once, without storing the entire dataset.

48

0

0.2

0.4

0.6

0.8

1

regularization parameter λ

av
er

ag
e

A
U

C
german

22202−22−42−62−82−10 0

0.2

0.4

0.6

0.8

1
kddcup04

regularization parameter λ

av
er

ag
e

A
U

C

2−4 2−2 20 222−62−8
2−10

0

0.2

0.4

0.6

0.8

1
acoustic

regularization parameter λ

av
er

ag
e

A
U

C

22202−22−42−62−82−10
0

0.2

0.4

0.6

0.8

1
acoustic

regularization parameter λ

av
er

ag
e

A
U

C

2−10 2−8 2−6 2−4 2−2 20 22

Figure 6: Influence of regularization parameter λ

50 200 350 500 650 800
0.6

0.7

0.8

0.9

1

number of iterations

av
er

ag
e

A
U

C

german

OPAUC
OAM

gra

OAM
seq

50 400 750 1100 1450 1800 2150 2500
0.6

0.7

0.8

0.9

1
splice

number of iterations

av
er

ag
e

A
U

C

OPAUC
OAM

gra

OAM
seq

Figure 7: Convergence comparisons of OPAUC, OAMseq and OAMgra

Here, a big challenge lies in the fact that AUC is measured by a sum of
losses defined over pairs of instances from different classes. We propose the
OPAUC approach, which employs the least square loss and requires the stor-
ing of only the first and second-statistics for the received training examples.
A nice property of OPAUC is that its storage requirement is O(d2), where d
is the dimension of data, independent of the number of training examples. To
handle high-dimensional tasks, we develop two deterministic strategies to ap-
proximate the covariance matrices for dense and sparse datasets, respectively.
The effectiveness of our proposed approach is verified both theoretically and
empirically. In particular, the performance of OPAUC is significantly better
than online AUC optimization approaches, and is even competitive to batch
learning approaches; the approximate OPAUC is significantly better than
all compared methods. An interesting future issue is to develop one-pass

49

AUC optimization approaches not only with a performance comparable to
batch approaches, but also with an efficiency comparable to univariate loss
optimization approaches.

Acknowledgement

The authors want to thank the associate editor and anonymous reviewers
for helpful comments and suggestions. This research is supported by Na-
tional Science Foundation of China (61333014, 61503179), the National Key
Basic Research Program of China (2014CB340501), and the Jiangsu Science
Foundation (BK20150586).

References

Agarwal, S., 2013. Surrogate regret bounds for the area under the ROC curve
via strongly proper losses. In: Proceedings of the 26th Annual Conference
on Learning Theory. Princeton, NJ, pp. 338–353.

Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D., 2005. Gen-
eralization bounds for the area under the roc curve. Journal of Machine
Learning Research 6, 393–425.

Agarwal, S., Niyogi, P., 2009. Generalization bounds for ranking algorithms
via algorithmic stability. Journal of Machine Learning Research 10, 441–
474.

Agarwal, S., Roth, D., 2005. Learnability of bipartite ranking functions. In:
Proceedings of the 18th Annual Conference on Learning Theory. Bertinoro,
Italy, pp. 16–31.

Ali, R., Benjamin, R., 2007. Random features for large-scale kernel machines.
In: Advances in Neural Information Processing Systems 3. MIT Press,
Cambridge, MA, pp. 1177–1184.

Azuma, K., 1967. Weighted sums of certain dependent random variables.
Tohoku Mathematical Journal 19 (3), 357–367.

Brefeld, U., Scheffer, T., 2005. Auc maximizing support vector learning. In:
Proceedings of the 22nd International Conference on Machine Learning
Workshop on ROC Alalysis. Bonn, Germany.

50

Cesa-Bianchi, N., Lugosi, G., 2006. Prediction, learning, and games. Cam-
bridge University Press.

Clemenćon, S., Lugosi, G., Vayatis, N., 2008. Ranking and empirical mini-
mization of U-statistics. Annals of Statistics 36 (2), 844–874.

Cortes, C., Mohri, M., 2004. AUC optimization vs. error rate minimization.
In: Thrun, S., Saul, L., Schölkopf, B. (Eds.), Advances in Neural Informa-
tion Processing Systems 16. MIT Press, Cambridge, MA, pp. 313–320.

Cortes, C., Mohri, M., Rastogi, A., 2007. Magnitude-preserving ranking al-
gorithms. In: Proceedings of the 24th Annual International Conference on
Machine Learning. Corvallis, Oregon, pp. 169–176.

Devroye, L., Gyorfi, L., Lugosi, G., 1996. A Probabilistic Theory of Pattern
Recognition. Springer, New York.

Egan, J., 1975. Signal detection theory and ROC curve, Series in Cognition
and Perception. Academic Press, New York.

Elkan, C., 2001. The foundations of cost-sensitive learning. In: Proceedings of
the 17th International Joint Conference on Artificial Intelligence. Seattle,
WA, pp. 973–978.

Flach, P. A., Hernández-Orallo, J., Ramirez, C. F., 2011. A coherent inter-
pretation of AUC as a measure of aggregated classification performance.
In: Proceedings of the 28th International Conference on Machine Learning.
Bellevue, WA, pp. 657–664.

Freund, Y., Iyer, R., Schapire, R. E., Singer, Y., 2003. An efficient boost-
ing algorithm for combining preferences. Journal of Machine Learning Re-
search 4, 933–969.

Gao, W., Jin, R., Zhu, S., Zhou, Z.-H., 2013. One-pass auc optimization. In:
Proceedings of the 30th International Conference on Machine Learning.
Atlanta, GA, pp. 906–914.

Gao, W., Zhou, Z.-H., 2013. Uniform convergence, stability and learnabil-
ity for ranking problems. In: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence. Beijing, China, pp. 1337–1343.

51

Gao, W., Zhou, Z.-H., 2015. On the consistency of auc pairwise optimization.
In: Proceedings of the 24th International Joint Conference on Artificial
Intelligence. Buenos Aires, Argentina, pp. 939–945.

Hand, D., 2009. Measuring classifier performance: a coherent alternative to
the area under the roc curve. Machine Learning 77 (1), 103–123.

Hanley, J., McNeil, B., 1982. The meaning and use of the area under a
receiver operating characteristic (roc) curve. Radiology 143, 29–36.

Hanley, J. A., McNeil, B. J., 1983. A method of comparing the areas un-
der receiver operating characteristic curves derived from the same cases.
Radiology 148 (3), 839–843.

Hazan, E., Kalai, A., Kale, S., Agarwal, A., 2006. Logarithmic regret algo-
rithms for online convex optimization. In: Proceedings of the 19th Annual
Conference on Learning Theory. Pittsburgh, PA, pp. 499–513.

Herschtal, A., Raskutti, B., 2004. Optimising area under the roc curve using
gradient descent. In: Proceedings of the 21st International Conference on
Machine Learning. Alberta, Canada.

Hoeffding, W., 1963. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association 58 (301), 13–30.

Hsieh, F., Turnbull, B., 1996. Nonparametric and semiparametric estimation
of the receiver operating characteristic curve. Annals of Statistics 24 (1),
25–40.

Huang, J., Ling, C., 2005. Using auc and accuray in evaluating learing al-
gorithms. IEEE Transactions on Knowledge and Data Engineering 17 (3),
299–310.

Joachims, T., 2005. A support vector method for multivariate performance
measures. In: Proceedings of the 22nd International Conference on Ma-
chine Learning. Bonn, Germany, pp. 377–384.

Joachims, T., 2006. Training linear svms in linear time. In: Proceedings of
the 12th ACM SIGKDD international conference on Knowledge Discovery
and Data Mining. Philadelphia, PA, pp. 217–226.

52

Kar, P., Sriperumbudur, B., Jain, P., Karnick, H., 2013. On the generaliza-
tion ability of online learning algorithms for pairwise loss functions. In:
Proceedings of the 30th International Conference on Machine Learning.
Atlanta, GA, pp. 441–449.

Kotlowski, W., Dembczynski, K., Hüllermeier, E., 2011. Bipartite ranking
through minimization of univariate loss. In: Proceedings of the 28th Inter-
national Conference on Machine Learning. Bellevue, WA, pp. 1113–1120.

Langford, J., Li, L., Zhang, T., 2009. Sparse online learning via truncated
gradient. Journal of Machine Learning Research 10, 719–743.

Liberty, E., 2013. Simple and deterministic matrix sketching. In: Proceed-
ings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Chicago, IL, pp. 581–588.

Liu, X.-Y., Wu, J., Zhou, Z.-H., 2009. Exploratory undersampling for class-
imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics
- B 39 (2), 539–550.

McDiarmid, C., 1989. On the method of bounded differences. In: Surveys in
Combinatorics. Cambridge University Press, Cambridge, UK, pp. 148–188.

Menon, A. K., Williamson, R. C., 2014. Bayes-optimal scorers for bipar-
tite ranking. In: Proceedings of the 27th Annual Conference on Learning
Theory. Barcelona, Spain, pp. 68–106.

Metz, C. E., 1978. Basic principles of ROC analysis. Seminars in Nuclear
Medicine 8 (4), 283–298.

Nesterov, Y., 2003. Introductory lectures on convex optimization: A basic
course. Springer.

Provost, F. J., Fawcett, T., 2001. Robust classification for imprecise environ-
ments. Machine Learning 42 (3), 203–231.

Provost, F. J., Fawcett, T., Kohavi, R., 1998. The case against accuracy
estimation for comparing induction algorithms. In: Proceedings of the
15th International Conference on Machine Learning. Madison, Wisconsin,
pp. 445–453.

53

Rakhlin, A., Shamir, O., Sridharan, K., 2012. Making gradient descent op-
timal for strongly convex stochastic optimization. In: Proceedings of the
29th International Conference on Machine Learning. Edinburgh, Scotland,
pp. 449–456.

Rudin, C., Schapire, R. E., 2009. Margin-based ranking and an equivalence
between AdaBoost and RankBoost. Journal of Machine Learning Research
10, 2193–2232.

Shalev-Shwartz, S., 2007. Online learning: Theory, algorithms, and applica-
tions. Ph.D. thesis, Hebrew University of Jerusalem.

Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A., 2011. Pegasos: Primal
estimated sub-gradient solver for svm. Mathematical Programming, Series
B 127 (1), 3–30.

Srebro, N., Sridharan, K., Tewari, A., 2010. Smoothness, low noise and fast
rates. In: Advances in Neural Information Processing Systems 24. MIT
Press, Cambridge, MA, pp. 2199–2207.

Usunier, N., Amini, M. R., Gallinari, P., 2005. A data-dependent generali-
sation error bound for the auc. In: Proceedings of the 22nd International
Conference on Machine Learning Workshop on ROC Alalysis. Bonn, Ger-
many.

Wang, Y., Khardon, R., Pechyony, D., Jones, R., 2012. Generalization
bounds for online learning algorithms with pairwise loss functions. In:
Proceedings of the 25th Annual Conference on Learning Theory. pp. 13.1–
13.22.

Wang, Y., Khardon, R., Pechyony, D., Jones, R., 2013. Generaliza-
tion bounds for online learning algorithms with pairwise loss functions.
CoRR/abstract 1305.2505.

Wu, J., Brubaker, S., Mullin, M., Rehg, J., 2008. Fast asymmetric learning
for cascade face detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 30 (3), 369–382.

Ying, Y., Zhou, D.-X., 2015. Online pairwise learning algorithms with ker-
nels. CoRR/abstract 1502.07229.

54

Zhang, T., 2004. Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms. In: Proceedings of the 21st International
Conference on Machine Learning. Alberta, Canada.

Zhao, P., Hoi, S., Jin, R., Yang, T., 2011. Online AUC maximization. In:
Proceedings of the 25th International Conference on Machine Learning.
Bellevue, WA, pp. 233–240.

Zhou, X., Obuchowski, N., McClish, D., 2002. Statistical Methods in Di-
agnestie Medicine. John Wiley and Sons, New York.

55

