
DOI 10.1007/s10844-017-0472-5

One-pass MapReduce-based clustering method for mixed

large scale data

Mohamed Aymen Ben HajKacem1
·

Chiheb-Eddine Ben N’cir1
· Nadia Essoussi1

Received: 20 December 2016 / Revised: 17 April 2017 / Accepted: 4 July 2017

© The Author(s) 2017. This article is an open access publication

Abstract Big data is often characterized by a huge volume and a mixed types of attributes

namely, numeric and categorical. K-prototypes has been fitted into MapReduce frame-

work and hence it has become a solution for clustering mixed large scale data. However,

k-prototypes requires computing all distances between each of the cluster centers and the

data points. Many of these distance computations are redundant, because data points usually

stay in the same cluster after first few iterations. Also, k-prototypes is not suitable for run-

ning within MapReduce framework: the iterative nature of k-prototypes cannot be modeled

through MapReduce since at each iteration of k-prototypes, the whole data set must be read

and written to disks and this results a high input/output (I/O) operations. To deal with these

issues, we propose a new one-pass accelerated MapReduce-based k-prototypes clustering

method for mixed large scale data. The proposed method reads and writes data only once

which reduces largely the I/O operations compared to existing MapReduce implementation

of k-prototypes. Furthermore, the proposed method is based on a pruning strategy to acceler-

ate the clustering process by reducing the redundant distance computations between cluster

centers and data points. Experiments performed on simulated and real data sets show that

the proposed method is scalable and improves the efficiency of the existing k-prototypes

methods.

Keywords K-prototypes · One-pass MapReduce · Large scale data · Mixed data · Pruning

strategy

� Mohamed Aymen Ben HajKacem

medaymen.hajkacem@gmail.com

Chiheb-Eddine Ben N’cir

chiheb.benncir@isg.rnu.tn

Nadia Essoussi

nadia.essoussi@isg.rnu.tn

1 Institut Supérieur de Gestion de Tunis, LARODEC, Université de Tunis, 41 Avenue de la liberté,

cité Bouchoucha, 2000 Le Bardo, Tunisia

J Intell Inf Syst (2019) 52:619–636

/

Published online: 15 July 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-017-0472-5&domain=pdf
mailto:medaymen.hajkacem@gmail.com
mailto:chiheb.benncir@isg.rnu.tn
mailto:nadia.essoussi@isg.rnu.tn

1 Introduction

Large volume of data are being collected from different sources and there is a high demand

for methods and tools that can efficiently analyse these large volume of data referred to as

Big data analysis. Big data usually refers to three mains characteristics also called the three

Vs (Gorodetsky 2014) which are respectively Volume, Variety and Velocity. Volume refers

to the large scale data, Variety indicates the mixed types of data such as numeric, categor-

ical and text data. Velocity refers to the speed at which data is generated and processed

(Gandomi and Haider 2015). Several frameworks have been proposed for processing Big

data. The most well-known is MapReduce framework (Dean and Ghemawat 2008). MapRe-

duce is initially developed by Google and it is designed for processing Big data by exploiting

the parallelism among a cluster of machines. MapReduce has three major features: sim-

ple programming framework, linear scalability and fault tolerance. These features make

MapReduce an useful framework for Big data processing (Lee et al. 2012).

Clustering is an important technique in machine learning, which has been used to orga-

nize data into groups of similar data points called also clusters. Examples of clustering

methods categories are hierarchical methods, density-based methods, grid-based methods,

model-based methods and partitional methods (Jain et al. 1999). These clustering methods

were well used in several applications such as intrusion detection (Tsai et al. 2009; Wang

et al. 2010), customer segmentation (Liu and Ong 2008), document clustering (Ben N’Cir

and Essoussi 2015; Hussain et al. 2014), image organization (Ayech and Ziou 2015; Du

et al. 2015). In fact, conventional clustering methods are not suitable when dealing with

large scale data. This is explained by the high computational cost of these methods which

require unrealistic time to build the groupings. Furthermore, some clustering methods like

hierarchical clustering cannot be applied to Big data because of its quadratic complexity

time. Hence, clustering methods with linear time complexity should be used to handle large

scale data.

On the other hand, Big data is often characterized by the mixed types of data including

numeric and categorical. K-prototypes is one of the most well-known clustering methods

to deal with mixed data, because of its linear time complexity (Ji et al. 2013). It has been

successfully fitted into MapReduce framework in order to perform the clustering of mixed

large scale data Ben Haj Kacem et al. (2015, 2016). However, the proposed methods have

some considerable shortcomings. The first shortcoming is inherit from the conventional

k-prototypes method, which requires computing all distances between each of the cluster

centers and the data points. Many of these distance computations are redundant, because

data points usually stay in the same cluster after first few iterations. The second shortcoming

is the result of inherent conflict between MapReduce and k-prototypes. K-prototypes is an

iterative algorithm which requires to perform some iterations for producing optimal results.

In contrast, MapReduce has a significant problem with iterative algorithms (Ekanayake et al.

2010). As a consequence, the whole data set must be loaded from the file system into the

main memory at each iteration. Then, after it is processed, the output must be written to the

file system again. Therefore, many of I/O disk operations occur during each iteration and

this decelerates the running time.

In order to overcome the mentioned shortcomings, we propose in this paper a new one-

pass Accelerated MapReduce-based K-Prototypes clustering method for mixed large scale

data, referred to as AMRKP. The proposed method is based on a pruning strategy to acceler-

ate the clustering process by reducing the redundant distance computations between cluster

centers and data points. Furthermore, the proposed method reads the data set only once in

contrast to existing MapReduce implementation of k-prototypes. Our solution decreases the

J Intell Inf Syst (2019) 52:619–636620

time complexity of k-prototypes (Huang 1997) from O(n.k.l) to O((n.α%.k + k3).l) and

the I/O complexity of MapReduce-based k-prototypes method (Ben Haj Kacem et al. 2015)

from O(n
p
.l) to O(n

p
) where n the number of data points, k the number of clusters, α% the

pruning heuristic, l the number of iterations and p the number of chunks.

The rest of this paper is organized as follows: Section 2 provides related works which

propose to deal with large scale and mixed data. Then, Section 3 presents the k-prototypes

method and MapReduce framework. After that, Section 4 describes the proposed AMRKP

method while Section 5 presents experiments that we have performed to evaluate the

efficiency of the proposed method. Finally, Section 6 presents conclusion and future works.

2 Related works

Given that data are often described by mixed types of attributes such as, numeric and

categorical, a pre-processing step is usually required to transform data into a single type

since most of proposed clustering methods deal with only numeric or categorical attributes.

However, transformation strategies is often time consuming and produces information loss,

leading to inaccurate clustering results (Ahmad and Dey 2007). Therefore, clustering meth-

ods have been proposed in the literature to perform the clustering of mixed data without

pre-processing step (Ahmad and Dey 2007; Ji et al. 2013; Huang 1997; Li and Biswas 2002).

For instance, Li and Biswas (2002) introduced the Similarity-Based Agglomerative Cluster-

ing called SBAC, which is an hierarchical agglomerative algorithm for mixed data. Huang

(1997) proposed k-prototypes method which integrates k-means and k-modes methods to

cluster numeric and categorical data. Ji et al. (2013) proposed an improved k-prototypes to

deal with mixed type of data. This method introduced the concept of the distributed cen-

troid for representing the prototype of categorical attributes in a cluster. Among the latter

discussed methods, k-prototypes remains one of the most popular method to perform clus-

tering from mixed data because of its efficiency (Ji et al. 2013). Nevertheless, it can not

scale with huge volume of mixed data.

To deal with large scale data, several clustering methods which are based on parallel

frameworks have been designed in the literature (Bahmani et al. 2012; Hadian and Shahrivari

2014; Kim et al. 2014; Ludwig 2015; Shahrivari and Jalili 2016; Zhao et al. 2009). Most

of these methods use the MapReduce framework. For instance, Zhao et al. (2009) have

implemented k-means method through MapReduce framework. Bahmani et al. have pro-

posed a scalable k-means (Bahmani et al. 2012) that extends k-means++ technique for

initial seeding. Shahrivari and Jalili (2016) have proposed a single-pass and linear time

MapReduce-based k-means method. Kim et al. (2014) have proposed parallelizing density-

based clustering with MapReduce. A parallel implementation of fuzzy c-means algorithm

into MapReduce framework is presented in Ludwig (2015).

On the other hand, several methods have used the triangle inequality property to improve

the efficiency of the clustering application (He et al. 2010; Nanni 2005). The triangle

inequality is used as an exact mathematical property method in order to reduce the number

of redundant unnecessary distance computations. In fact, the triangle inequality property is

based on the hypothesis that is unnecessary to evaluate distances between a data point and

clusters centers which are not closer to the old assigned center. For example, He et al. (2010),

have proposed an accelerated Two-Threshold Sequential Algorithm Scheme (TTSAS). This

method avoids unnecessary distance calculations by applying the triangle inequality. Nanni

(2005) have exploited triangle inequality property of metric space to accelerated the hierar-

chical clustering method (single-link and complete-link). Although obtained clusters with

J Intell Inf Syst (2019) 52:619–636 621

these discussed methods are exactly the same as the standard ones, they require evaluating

the triangle inequality property for all the set of clusters’ center. Furthermore, these methods

keep the entire data in the main memory for processing which reduces their performance on

large data sets.

Although the later discussed methods offer for users an efficient analysis of large scale

data, they can not support the mixed types of data and are limited to only numeric attributes.

In order to perform the clustering of mixed large scale data, Ben Haj Kacem et al. (2015)

proposed a parallelization of k-prototypes method through MapReduce framework. This

method iterates two main steps until convergence: the step of assigning each data point

to the nearest cluster center and the step of updating cluster centers. These two steps are

implemented in map and reduce phase respectively. Although this method proposes an

effective solution for clustering mixed large scale data, it has some considerable shortcom-

ings. First, k-prototypes requires computing all distances between each of the cluster centers

and the data points. However, many of these distance computations are redundant. Sec-

ond, k-prototypes is not suitable for running within MapReduce framework since during

each iteration of k-prototypes, the whole data set must be read and written to disks and this

requires lots of I/O operations.

3 Preliminaries

This section first presents the k-prototypes method, then presents the MapReduce frame-

work.

3.1 K-prototypes method

Given a data set X = {x1 . . . xn} containing n data points, described by mr numeric attributes

and mt categorical attributes, the aim of k-prototypes (Huang 1997) is to find k clusters by

minimizing the following objective function:

J =
n

∑

i=1

k
∑

j=1

uijd(xi, cj), (1)

where uij ∈ {0, 1} is an element of the partition matrix Un∗k indicating the membership of

data point i in cluster j , cj ∈ C = {c1 . . . ck} is the center of the cluster j and d(xi, cj) is

the dissimilarity measure which is defined as follows:

d(xi, cj) =
mr
∑

r=1

√

(xir − cjr)2 +
mt
∑

t=1

δ(xit , cj t), (2)

where xir represents the value of numeric attribute r and xit represents the value of categor-

ical attribute t for data point i. cjr represents the mean of numeric attribute r and cluster j ,

which can be calculated as follows:

cjr =

|cj |
∑

i=1

xir

∣

∣cj

∣

∣

, (3)

where
∣

∣cj

∣

∣ the number of data points assigned to cluster j . cj t represents the most common

value (mode) for categorical attributes t and cluster j , which can be calculated as follows:

cj t = ah
t , (4)

J Intell Inf Syst (2019) 52:619–636622

where

f (ah
t) ≥ f (az

t), ∀z, 1 ≤ z ≤ mc, (5)

where az
t ∈

{

a1
t . . . a

mc
t

}

is the categorical value z and mc is the number of categories of

categorical attribute t . f (az
t) = |

{

xit = az
t |pij = 1

}

| is the frequency count of attribute

value az
t . For categorical attributes, δ(p, q) = 0 when p = q and δ(p, q) = 1 when p �= q.

It is easy to verify that the dissimilarity measure given in (2), is a metric distance since it

satisfies the non-negativity, symmetry, identity and triangle inequality property as follows

(Han et al. 2011; Ng et al. 2007):

1. d(xi, xj)>0 ∀ xi, xj ∈ X (Non-negativity)

2. d(xi, xj)=d(xj , xi) ∀ xi, xj ∈ X (Symmetry)

3. d(xi, xj)=0 ⇔ xi=xj ∀ xi, xj ∈ X (Identity)

4. d(xi, xz)+d(xz, xj)≥ d(xi, xj) ∀ xi, xj and xz ∈ X (Triangle inequality)

The main algorithm of k-prototypes method is described by Algorithm 1.

3.2 MapReduce framework

MapReduce (Dean and Ghemawat 2008) is a parallel programming framework designed to

process large scale data across cluster of machines. It is characterized by its highly trans-

parency for programmers, which allows to parallelize algorithms in a easy and comfortable

way. The algorithm to be parallelized needs to be specified by only two phases namely

map and reduce. Each phase has < key/value > pairs as input and output. The map

phase takes in parallel each < key/value > pair and generates one or more intermediate

< key′/value′ > pairs. Then, this framework groups all intermediate values associated with

the same intermediate key as a list (known as shuffle phase). The reduce phase takes this

list as input for generating final values. The whole process can be summarized as follows:

Map(< key/value >) → list(< key′/value′ >)

Reduce(< key′/list(value′) >) → list(< key′/value′′ >)

Figure 1 illustrates the data flow of MapReduce framework. Note that the inputs and out-

puts of MapReduce are stored in an associated distributed file system that is accessible from

any machine of the used cluster. As we mentioned earlier, MapReduce has a significant

problems with iterative algorithms (Ekanayake et al. 2010). Hence, many of I/O opera-

tions occur during each iteration and this decelerates the running time. Several solutions

have been proposed for extending the MapReduce framework to support iterations such

as Twister (Ekanayake et al. 2010), Spark (Zaharia et al. 2010) and Phoenix (Talbot et al.

J Intell Inf Syst (2019) 52:619–636 623

Map1

Shuffle

Map2 Mapm
….

<Key1 Value1> <Key2 Value2> <Key3 Value3>

<Key1
‘ Value1

’>

Reduce

<Key2
’ list (Value2

’)>

<Key2
‘ Value2

’> <Key3
‘ Value3

’>

<Key3
’ list (Value3

’)><Key1
’ list (Value1

’)>

<Key1
’ Value1

’’> <Key2
’ Value2

’’> <Key3
’ Value3

’’>

Fig. 1 Data flow of MapReduce framework

2011). These solutions excel when data can fit in memory because memory access latency

is lower. However, Hadoop MapReduce (White 2012) can be an economical option because

of Hadoop as a Service offering (HaaS), availability and maturity. In fact, the motivation

of our work is to propose a new disk-efficient implementation of a clustering method for

mixed large volume of data. As a solution, we propose the one pass disk implementation of

k-prototypes within Hadoop MapReduce. This implementation reads and writes data only

once, in order to reduce largely the I/O operations.

4 One-pass accelerated MapReduce-based k-prototypes clustering
method for mixed large scale data

This section presents the proposed pruning strategy and the one-pass parallel implementa-

tion of our solution, followed by the parameters selections and the complexity analysis of

the proposed method.

4.1 Pruning strategy

In order to reduce the number of unnecessary distance computations, we propose a pruning

strategy, which requires a pruning heuristic α% to denote the α% subset of cluster cen-

ters that are considered when evaluating triangle inequality property. The proposed pruning

strategy is based on the following assumptions:

– data points usually stay in the same cluster after first few iterations.

– If an assignment of an object has changed from one cluster to another, then the new

cluster center is close to the old assigned center.

This strategy is inspired from marketing where there are a host of products in a particular

category that they are aware of, but only a few they would actively consider for purchasing

J Intell Inf Syst (2019) 52:619–636624

(Eliaz and Spiegler 2011). This is known as consideration set. While all of the products

that a consumer will think of when it’s time to make a purchasing decision (known as the

awareness set), the consideration set includes only those products they would consider a

realistic option for purchase. In our case, we define the consideration set of centers as the

set of α% closest centers from a given old assigned center. The selected assignment of a

data object will be the closest center among the “consideration set” of cluster centers.

The pruning strategy requires at each iteration computing distances between centers and

sorting them. Then, it evaluates the triangle inequality property until the property is not

satisfied or all centers in the subset of selected centers (the consideration set) have been

evaluated. In other words, it evaluates the following theorem between data point and the

centers in increasing order of distance to the assigned center of the previous iteration. If the

pruning strategy reaches a center that does not satisfy the triangle inequality property, it can

skip all the remaining centers and continues on to the next data point.

Theorem 1 Let xi a data point, c1 its cluster center of the previous iteration and c2 another

cluster center. If we know that d(c1, c2) ≥ 2∗ d(xi, c1) ⇒ d(xi, c1) ≤ d(xi, c2) without

having to calculate d(xi, c2).

Proof According to triangle inequality, we know that d(c1, c2) ≤ d(xi, c1)+d(xi, c2) ⇒
d(c1, c2)−d(xi , c1) ≤ d(xi, c2). Consider the left-hand side d(c1, c2)−d(xi, c1) ≥ 2∗
d(xi, c1)−d(xi , c1) = d(xi, c1) ⇒ d(xi, c1) ≤ d(xi, c2).

Notably, setting the pruning heuristic α% too small may decrease the accuracy rate

whereas setting the α% to too large imposes a limit on the number of distance computations

that can be reduced. The impact of the pruning heuristic on the performance of the proposed

method will be discussed in Section 5.5. Algorithm 2 describes the different steps of the

pruning strategy.

J Intell Inf Syst (2019) 52:619–636 625

Algorithm 3 gives the main algorithm of k-prototypes with pruning strategy which we

call it KP+PS algorithm in the rest section of the paper. Initially, the KP+PS algorithm

works exactly the same as k-prototypes. Then, it continues to check whether it is time to

start the pruning strategy. If the time to start is reached, the pruning strategy is applied.

4.2 Parallel implementation

The proposed AMRKP method towards handling mixed large scale data consists of the

parallelization of KP+PS algorithm based on the MapReduce framework. For this purpose,

we first split the input data set into p chunks. Then, each chunk is processed independently

in parallel way by its assigned machine. The intermediate centers are then extracted from

each chunk. After that, the set of intermediate centers is again processed in order to generate

the final cluster centers. The chunks are processed in the map phase while the intermediate

centers are processed in the reduce phase. In the following, we first present the parallel

implementation without considering MapReduce and then, we present how we have fitted

the proposed solution using MapReduce framework.

To define the parallel implementation, it is necessary to define the algorithm that is

applied on each chunk and the algorithm that is applied on the set of intermediate centers.

For both phases, we use the KP+PS algorithm. For each chunk, the KP+PS algorithm is

executed and k centers are extracted. Therefore, if we have p chunks, after applying KP+PS

algorithm on each chunk, there will be a set of k ∗p centers as the intermediate set. In order

to obtain a good quality, we record the number of assigned data points to each extracted

center. That is to say, we extract from each chunk, k centers and the number of data points

assigned to each center. The number of assigned data points to each cluster center represents

the importance of that center. Hence, we must extend the KP+PS algorithm to take into

account the weighted data points when clustering the set of intermediate centers. In order

to consider the weighted data points, we must change center update (3) and (4). If we take

into account wi as the weight of data point xi , center of a final cluster must be calculated

for numeric and categorical attributes using the following equations.

cjr =

|cj |
∑

i=1

xir ∗ wi

∣

∣cj

∣

∣

. (6)

cj t = ah
t , (7)

J Intell Inf Syst (2019) 52:619–636626

where

f (ah
t) ∗ wi ≥ f (az

t) ∗ wi, ∀z, 1 ≤ z ≤ mc, (8)

The parallel implementation of the KP+PS algorithm through MapReduce framework

is straightforward. Each map task picks a chunk of data set, executes the KP+PS algo-

rithm on that chunk and emits the extracted intermediate centers and their weights as

the output. Once the map phase is finished, a set of intermediate weighted centers is

collected as the output of the map phase, and this set of centers is emitted to a single

reduce phase. The reduce phase takes the set of intermediate centers and their weights,

executes again the KP+PS algorithm on them and returns the final centers as the out-

put. Once the final cluster centers are generated, we assign each data point to the nearest

cluster center.

Let Xi the chunk associated to map task i, p the number of chunks, Cw =
{

Cw
1 . . . Cw

p

}

the set of weighted intermediate centers where Cw
i the set of weighted intermediate centers

extracted from chunk i and Cf the set of final centers. Algorithm 4 describes main steps of

the proposed method.

4.3 Parameters selections

The proposed method needs three input parameters in addition to the number of clusters k.

The first parameter is the chunk size, the second parameter is pruning heuristic α% and the

third parameter is the time to start the pruning strategy.

4.3.1 Tuning the chunk size

In theory, the minimum chunk size is k and the maximum chunk size is n. However, both of

these extremes are not practical and value between k and n must be selected. According to

Shahrivari and Jalili (2016), the most memory efficient value for chunk size is
√

k.n because

this value for chunk size generates a set of intermediate centers with size k.n. That is to

say, the chunk size should not be set to value greater than
√

k.n. A smaller chunk size can

yield to better quality since smaller chunk size produces more intermediate centers which

represent the input data set. Hence, all experiments described in Section 5, assume that the

chunk size is
√

k.n.

J Intell Inf Syst (2019) 52:619–636 627

4.3.2 Tuning the pruning heuristic

The pruning heuristic α% can be set between 1 to 100%. A small value of this parame-

ter reduces significantly computational time since most of distance computations will be

ignored leading to a small loss of clustering quality. Alternatively, setting the pruning heuris-

tic to a large value does not reduce the high computational time with leading approximately

the same partitioning of k-prototypes. The experimental results show that setting the prun-

ing heuristic to 10% with respect to all of the pruning heuristics from 1 to 100% tested in

this work gives a good result. Hence, we set the pruning heuristic to 10% to provide a good

trade-off between efficiency and quality.

4.3.3 Tuning the time to start

As mentioned above, many of distance computations are redundant in k-prototypes method

because data points usually stay in the same clusters after first iterations. When the prun-

ing strategy starts from the first iteration, the proposed method may produces an inaccurate

results. Otherwise when the pruning strategy starts from the last iteration, no many dis-

tance computations will be reduced. For this reason, the time to start the pruning strategy is

extremely important. Hence, we start the pruning strategy from iteration 2 because the con-

vergence speed of k-prototypes slows down substantially after iteration 2 in the sense that

many data points remain in the same cluster.

4.4 Complexity analysis

A typical clustering algorithm has three types of complexities: time complexity, I/O com-

plexity and space complexity. To give complexity analysis of AMRKP method, we use the

following notations: n the number of data points, k the number of clusters, l the number of

iterations, α% the pruning heuristic, s the chunk size and p the number of chunks.

4.4.1 The time complexity analysis

The KP+PS algorithm requires at each iteration computing distances between centers and

sorting them as shown in Algorithm 2. This step can be estimated by O(k2 + k3) ∼= O(k3).

Then, the KP+PS selects an α% centers and evaluates the triangle inequality property until

the property is not satisfied or all centers in the subset of α% centers have been evaluated.

Therefore, we can conclude that the KP+PS algorithm can reduce theoretically the time

complexity of k-prototypes from O(n.k.l) to O((n.α%.k + k3).l).

As stated before, the time to start the pruning strategy is extremely important. Hence,

the time complexity of KP+PS algorithm depends on the iteration from which the pruning

strategy is started. In the best case, when the pruning strategy is started from the first itera-

tion, the time complexity of KP+PS is O((n.α%.k+k3).l). In the worst case, when KP+PS

converges before the pruning strategy is started, then KP+PS falls back to k-prototypes, and

the time complexity is O((n.k+k3).l). Therefore, we can conclude that the time complexity

of KP+PS algorithm is bounded between O((n.α%.k + k3).l) and O((n.k + k3)l).

The KP+PS algorithm is applied twice: in the map phase and the reduce phases. In the

map phase, each chunk involves running the KP+PS algorithm on that chunk. Therefore,

the map phase takes O(n/p.α%.k + k3).l) time. In the reduce phase, the KP+PS algorithm

must be executed on the set of intermediate centers which has k.n/s data points. Hence,

the reduce phase needs O((n/s.α%.k + k3).l) time. Given that k.n/s << n/p, the overall

J Intell Inf Syst (2019) 52:619–636628

time complexity of the proposed method is O(n/p.α%.k + k3).l + (k.n/s.α%.k + k3).l) ∼=
O(n/p.α%.k + k3).l).

4.4.2 The I/O complexity analysis

The proposed method reads the input data set just one time from the file system in the map

phase. Therefore, the I/O complexity of the map phase is O(n/p). The I/O complexity of the

reduce phase is O(k.n/s). As a result, the overall I/O complexity of the proposed method is

O(n/p + k.n/s). If s is fixed to
√

k.n, the I/O complexity will be O(n/p +
√

k.n).

4.4.3 The space complexity analysis

The space complexity of AMRKP depends on the chunk size and the number of chunks

that can be processed in the map phase. The map phase is required to keep p chunks in

the memory. Hence, the space complexity of the map phase is O(p.s). The reduce phase

needs to store k.n/s intermediate centers in the memory. Thus, the space complexity of

the reduce phase is O(k.n/s). As a result, the overall space complexity of the proposed

method is evaluated by O(p.s + k.n/s). If s is fixed to
√

k.n, the space complexity will be

O(p.s +
√

k.n).

5 Experiments and results

5.1 Methodology

In order to evaluate the efficiency of AMRKP method, we performed experiments on both

simulated and real data sets. We tried in this section to figure out three points. (i) How

much is the efficiency of AMRKP method when applied to mixed large scale data compared

to existing methods? (ii) How the pruning strategy can reduce the number of unnecessary

distance computations? (iii) How the MapReduce framework can enhance the scalability of

the proposed method when dealing with mixed large scale data?

We split experiments into three major subsections. First, we compare the performance

of the proposed method versus the following existing methods: conventional k-prototypes,

described in Algorithm 1, denoted by KP and the MapReduce-based k-prototypes (Ben Haj

Kacem et al. 2015) denoted by MRKP. Then, we study the pruning strategy performance to

reduce the number of distance computations between clusters and data points. Finally, we

evaluate the MapReduce performance by analyzing the scalability of the proposed method.

5.2 Environment and data sets

The experiments are performed on a Hadoop cluster running the latest stable version of

Hadoop 2.7.1. The Hadoop cluster consists of 6 machines. Each machine has 1-core 2.30

GHz CPU E5400 and 1GB of memory. The operating system of each machine is Ubuntu

14.10 server 64bit. We conducted the experiments on the following data sets:

– Simulated data set: four series of mixed large data sets are generated. The data sets

range from 100 millions to 400 millions data points. Each data point is described using

5 numeric and 5 categorical attributes. The numeric values are generated with gaussian

distribution. The mean is 350 and the sigma is 100. The categorical values are generated

J Intell Inf Syst (2019) 52:619–636 629

Table 1 Summary of the data sets

Data set Number of data points Number of attributes Domain

Sim100M 100.000.000 10 (5 Numeric, 5 Categorical) Simulated

Sim200M 200.000.000 10 (5 Numeric, 5 Categorical) Simulated

Sim300M 300.000.000 10 (5 Numeric, 5 Categorical) Simulated

Sim400M 400.000.000 10 (5 Numeric, 5 Categorical) Simulated

KDD 4.898.431 36 (33 Numeric, 3 Categorical) Intrusion detection

Poker 1.000.000 10 (5 Numeric, 5 Categorical) Game

using the data generator developed in.1 In order to simplify the names of the simulated

data sets, we will use the notations Sim100M, Sim200M, Sim300M and Sim400M

to denote a simulated data set containing 100, 200, 300 and 400 millions data points

respectively.

– KDD Cup data set (KDD): is a real data set which consists of normal and attack con-

nections simulated in a military network environment. The KDD data set contains about

5 millions connections. Each connection is described using 33 numeric and 3 categori-

cal attributes. The clustering process for this data set detects type of attacks among all

connections. This data set was obtained from UCI machine learning repository.2

– Poker data set (Poker): is a real data set which is an example of a hand consisting of

five playing cards drawn from a standard deck of 52 cards. The Poker data set contains

about 1 millions data points. Each data point is described using 5 numeric attributes

and 5 categorical attributes. The clustering process for this data set detects the hand

situations. This data set was obtained from UCI machine learning repository.3 Statistics

of these data sets are summarized in Table 1.

5.3 Evaluation measures

In order to evaluate the quality of the proposed method, we use Sum Squared Error (SSE)

(Xu and Wunsch 2010). It is one of the most common partitional clustering criteria which

aims to measure the squared errors between each data point and the cluster center to which

the data point belongs to. SSE can be defined by:

SSE =
n

∑

i=1

k
∑

j=1

d(cj , xi), (9)

where xi the data point and cj the cluster center.

In order to evaluate the ability of the proposed method to scale with large data sets, we

use in our experiments the Speedup measure (Xu et al. 2002). It measures the ability of the

designed parallel method to scale well when the number of machines increases and the size

of data is fix. This measure is calculated as follows:

Speedup =
T1

Tm

, (10)

1https://projets.pasteur.fr/projects/rap-r/wiki/SyntheticDataGeneration.

2https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data.

3http://archive.ics.uci.edu/ml/datasets/Poker.

J Intell Inf Syst (2019) 52:619–636630

https://projets.pasteur.fr/projects/rap-r/wiki/SyntheticDataGeneration
https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
http://archive.ics.uci.edu/ml/datasets/Poker

where T1 the running time of processing data on 1 machine and Tm the running time of

processing data on m machines in the used cluster.

To simplify the discussion of the experimental results in Tables 2, 3, 4 and 5, we will

use the following conventions. Let ψ denotes either KP or MRKP. Let T , D and S denote

respectively the running time, the distance computations and the quality of the clustering

result in terms of SSE. Let β denotes either T , D or S. The enhancement of βAMRKP (new

algorithm) with respect to βψ (original algorithm) in percentage defined by:

�β =
βAMRKP − βψ

βψ

∗ 100%. (11)

For example, the enhancement of the running time of AMRKP with respect to the running

time of k-prototypes is defined by:

�T =
TAMRKP − TKP

TKP

∗ 100%, (12)

where β = T and ψ = KP. It is important to note that as defined in (11), a more negative

value of �β implies a greater enhancement.

5.4 Comparison of the performance of AMRKP versus existing methods

We compare in this section the performance of the proposed method versus existing meth-

ods. The results are reported in Table 2. As the results show, AMRKP method always

finishes several times faster than existing methods. For example, Table 2 shows that

AMRKP method (k = 10 clusters) on Poker data set can reduce the running time by 88.62%

Table 2 Experimental results on

simulated and real data sets Data set k AMRKP-KP AMRKP-MRKP

�T �S �T �S

Sim100 10 −92.21 3.56 −45.05 3.56

50 −92.14 4.78 −53.15 4.78

100 −92.18 0.68 −53.23 0.68

Sim200 10 1.53 1.53 −45.42 1.53

50 −90.85 −3.24 −43.53 −3.24

100 −91.87 −2.25 −51.12 −2.25

Sim300 10 −90.86 4.65 −45.32 4.65

50 −90.57 5.38 −43.86 5.38

100 −92.10 −3.87 −52.75 −3.87

Sim400 10 −91.11 1.25 −46.69 1.25

50 −90.86 3.86 −43.96 3.68

100 −91.17 2.68 −50.94 2.68

KDD 10 −90.06 4.12 −53.66 4.12

50 −83.66 5.68 −56.66 5.68

100 −92.03 3.54 −59.92 3.54

Poker 10 −88.62 25.87 −59.32 25.87

50 −89.17 25.75 −61.35 25.74

100 −85.56 12.36 −62.55 12.36

J Intell Inf Syst (2019) 52:619–636 631

Table 3 Comparison of the

number of distance computations

performed by AMRKP versus

k-prototypes

Data set k AMRKP-KP

�D �S

Sim100M 10 −16.56 3.25

50 −29.85 5.44

100 −55.19 6.53

Sim200M 10 −32.01 4.55

50 −28.88 6.99

100 −54.80 3.23

Sim300M 10 −15.89 4.55

50 −22.13 3.17

100 −55.12 2.86

Sim400M 10 −7.21 3.28

50 −17.25 2.76

100 −51.02 3.01

KDD 10 −62.11 5.31

50 −77.51 4.17

100 −85.56 4.55

Poker 10 −35.11 33.21

50 −59.20 37.76

100 −81.65 36.55

and by 59.32% compared to k-prototypes and MRKP respectively. In all of the data sets,

more than 95% of the running time was spent in the map phase and this shows that AMRKP

method is truly one pass. In addition, obtained results report that the proposed method con-

verges to nearly same results of the conventional k-prototypes which allows to maintain a

good quality of partitioning.

Table 4 The impact of the

pruning heuristic α% on the

performance of AMRKP

Data set Pruning heuristic (%) AMRKP-KP

�D �S

KDD 1 −88.56 36.55

10 −85.85 36.44

20 −84.19 34.53

50 −80.17 30.50

80 −76.88 6.99

100 −74.66 0.01

Poker 1 −89.11 4.55

10 −81.65 3.17

20 −74.12 2.86

50 −61.85 2.76

80 −59.20 2.76

100 −59.02 0.01

J Intell Inf Syst (2019) 52:619–636632

Table 5 The impact of the time

to start on the performance of

AMRKP

Data set Time to start AMRKP-KP

�D �S

KDD 1 −89.11 236.55

2 −76.33 5.93

3 −48.05 3.65

5 −45.22 3.05

8 −19.27 2.75

10 −9.61 0.08

Poker 1 −81.11 3.17

2 −81.50 1.35

3 −72.40 0.58

5 −45.35 0.30

8 −18.12 0.15

10 −9.15 0.01

5.5 Pruning strategy performance

We evaluate in this section the performance of the pruning strategy to reduce the number of

redundant distance computations. The results are reported in Table 3. As the results show,

the proposed method reduces the number of distance computations over k-prototypes on

both simulated and real data sets. We must also mention that this reduction becomes more

significant with the increase of k. For example, the number of distance computations is

reduced by 35.11% when k = 10 and by 81.65% when k =100 on Poker data set.

In another experiment we investigated the impact of pruning heuristic α% on the perfor-

mance of the proposed method compared to the conventional k-prototypes. For this purpose,

we run AMRKP with different pruning heuristics from 1 to 100% on real data sets with k =
100. The results are reported in Table 4. As shown in Table 4, when the pruning heuristic

is fixed to a small value, many distance computations are reduced with small loss of qual-

ity. For example, when the pruning heuristic is 10%, the pruning strategy can reduce the

number of distance computations of k-prototypes by 81.65% on Poker data set. But, when

the pruning heuristic is fixed to a large value, a small number of distance computations are

reduced while maintaining the clustering quality. For example, when the pruning heuristic is

80%, the pruning strategy can reduce the number of distance computations of k-prototypes

by 59.20% on Poker data set.

Then, we investigated the impact of the time to start the pruning strategy on the perfor-

mance of the proposed method compared to the conventional k-prototypes. For this purpose,

we run AMRKP with different pruning’starting times from iteration 1 to iteration 10 on real

data sets with k = 100. The results are reported in Table 5. As shown in Table 5, when

the pruning strategy starts from the first iteration, AMRKP leads to significant reduction

of distance computations and this may decrease the clustering quality. For example, when

the pruning strategy starts from iteration 1, the AMRKP can reduce the number of dis-

tance computations of k-prototypes by 81.11% on Poker data set. On the other hand, when

the pruning strategy starts from the last iteration, AMRKP leads to small reduction of dis-

tance computations with small loss of quality. For example, when the pruning strategy starts

J Intell Inf Syst (2019) 52:619–636 633

1.91

3.73

5.66

1.00

6.00

2.00

3.00

1.00

Fig. 2 Speedup of AMRKP as the number of machines increases

from iteration 10, the proposed method can reduce the number of distance computations of

k-prototypes by 9.15% on Poker data set.

5.6 Scalability analysis

We first evaluate in this section the scalability of the proposed method when the number

of machines increases. For investigating the speedup value, we used the Sim400M data set

with k = 100. For computing speedup values, first we executed AMRKP method using just

a single machine and then we added additional machines. Figure 2 illustrates the speedup

results on Sim400M data set. The proposed method shows linear speedup as the number of

machines increases because the MapReduce framework has linear speedup and each chunk

can be processed independently.

Then, we evaluate the scalability of the proposed method when we increase the size of

the data set. For investigating the influence of the size of data set, we used in this section

the Sim100M, Sim200M, Sim300M and Sim400M data sets with k = 100. The results are

plotted in Fig. 3. As the results show, the running time scales linearly, when size of data set

8.52

17.29

25.66

34.61

Fig. 3 Performance of AMRKP as the size of data set increases

J Intell Inf Syst (2019) 52:619–636634

increases. For example, the MRKP method takes more than one hour on Sim400M data set

while the proposed method processed the data set in less than 40 minutes.

6 Conclusion

In order to deal with the issue of clustering mixed large scale data, we have proposed a

new one-pass accelerated MapReduce-based k-prototypes clustering method. The proposed

method reads and writes data only once which reduces largely the I/O operations like disk

I/O and. Furthermore, the proposed method is based on a pruning strategy to accelerate

the clustering process by reducing the redundant distance computations between cluster

centers and data points. Experiments on huge simulated and real data sets have showed the

efficiency of AMRKP to deal with mixed large scale data compared to existing methods.

The proposed method performs several iterations to converge to the optimal local solu-

tion. The number of iterations increases the running time while each iteration is time

consuming. A good initialisation of the proposed method may improve both running time

and clustering quality. An exciting direction for future works is to investigate the use of

scalable initialisation techniques in order to reduce the number of iterations and then may

be the improvement of the scalability of AMRKP method.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

References

Ahmad, A., & Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data. Data

Knowledge Engineering, 63(2), 503–527.
Ayech, M.W., & Ziou, D. (2015). Segmentation of Terahertz imaging using k-means clustering based on

ranked set sampling. Expert Systems with Applications, 42(6), 2959–2974.
Bahmani, B., Moseley, B., Vattani, A., Kumar, R., & Vassilvitskii, S. (2012). Scalable k-means++.

Proceedings of the VLDB Endowment, 5(7), 622–633.
Ben Haj Kacem, M.A., Ben N’cir, C.E., & Essoussi, N. (2015). MapReduce-based k-prototypes clustering

method for big data. In Proceedings of data science and advanced analytics (pp. 1–7).
Ben HajKacem, M.A., N’cir, C.E., & Essoussi, N. (2016). An accelerated MapReduce-based K-prototypes

for big data. In Proceedings of software technologies: applications and foundations (pp. 1–13).
Ben N’Cir, C.E., & Essoussi, N. (2015). Using sequences of words for non-disjoint grouping of documents.

International Journal of Pattern Recognition and Artificial Intelligence, 29(03), 1550013.
Dean, J., & Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters. Communications

of the ACM, 51(1), 107–113.
Du, H., Wang, Y., & Dong, X. (2015). Texture image segmentation using affinity propagation and spectral

clustering. International Journal of Pattern Recognition and Artificial Intelligence, 29(05), 1555009.
Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., & Fox, G. (2010). Twister: a runtime

for iterative mapreduce. In Proceedings of the 19th ACM international symposium on high performance

distributed computing (pp. 810–818). ACM.
Eliaz, K., & Spiegler, R. (2011). Consideration sets and competitive marketing. The Review of Economic

Studies, 78(1), 235–262.
Gandomi, A., & Haider, M. (2015). Beyond the hype: big data concepts, methods, and analytics. Interna-

tional Journal of Information Management, 35(2), 137–144.
Gorodetsky, V. (2014). Big data: opportunities, challenges and solutions. In Information and communication

technologies in education, research, and industrial applications (pp. 3–22).

J Intell Inf Syst (2019) 52:619–636 635

http://creativecommons.org/licenses/by/4.0/

Ji, J., Bai, T., Zhou, C., Ma, C., & Wang, Z. (2013). An improved k-prototypes clustering algorithm for mixed

numeric and categorical data. Neurocomputing, 120, 590–596.
Hadian, A., & Shahrivari, S. (2014). High performance parallel k-means clustering for disk-resident datasets

on multi-core CPUs. The Journal of Supercomputing, 69(2), 845–863.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
He, C., Chang, J., & Chen, X. (2010). Using the triangle inequality to accelerate TTSAS cluster algorithm.

In Electrical and control engineering (ICECE) (pp. 2507–2510). IEEE.

Hussain, S.F., Mushtaq, M., & Halim, Z. (2014). Multi-view document clustering via ensemble method.

Journal of Intelligent Information Systems, 43(1), 81–99.

Huang, Z. (1997). Clustering large data sets with mixed numeric and categorical values. In Proceedings of

the 1st Pacific-Asia conference on knowledge discovery and data mining (pp. 21–34).

Jain, A.K., Murty, M.N., & Flynn, P.J. (1999). Data clustering: a review. ACM computing surveys (CSUR),

31(3), 264–323.

Kim, Y., Shim, K., Kim, M.S., & Lee, J.S. (2014). DBCURE-MR: an efficient density-based clustering

algorithm for large data using MapReduce. Information Systems, 42, 15–35.

Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., & Moon, B. (2012). Parallel data processing with MapReduce:

a survey. AcM sIGMoD Record, 40(4), 11–20.

Li, C., & Biswas, G. (2002). Unsupervised learning with mixed numeric and nominal data. Knowledge and

Data Engineering, 14(4), 673–690.

Liu, H.H., & Ong, C.S. (2008). Variable selection in clustering for marketing segmentation using genetic

algorithms. Expert Systems with Applications, 34(1), 502–510.

Ludwig, S.A. (2015). Mapreduce-based fuzzy c-means clustering algorithm: implementation and scalability.

In International journal of machine learning and cybernetics (pp. 1–12).

Nanni, M. (2005). Speeding-up hierarchical agglomerative clustering in presence of expensive metrics. In

Pacific-Asia conference on knowledge discovery and data mining (pp. 378–387). Berlin Heidelberg:

Springer.

Ng, M.K., Li, M.J., Huang, J.Z., & He, Z. (2007). On the impact of dissimilarity measure in k-modes

clustering algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 503–507.

Shahrivari, S., & Jalili, S. (2016). Single-pass and linear-time k-means clustering based on MapReduce.

Information Systems, 60, 1–12.

Talbot, J., Yoo, R.M., & Kozyrakis, C. (2011). Phoenix++: modular MapReduce for shared-memory systems.

In Proceedings of the second international workshop on MapReduce and its applications (pp. 9–16).

ACM.

Tsai, C.F., Hsu, Y.F., Lin, C.Y., & Lin, W.Y. (2009). Intrusion detection by machine learning: A review.

Expert Systems with Applications, 36(10), 11994–12000.

Xu, R., & Wunsch, D.C. (2010). Clustering algorithms in biomedical research: a review. Biomedical

Engineering, IEEE Reviews, 3, 120–154.

Xu, X., Jeger, J., & Kriegel, H.P. (2002). A fast parallel clustering algorithm for large spatial databases. In

High performance data mining (pp. 263–290).

Wang, G., Hao, J., Ma, J., & Huang, L. (2010). A new approach to intrusion detection using artificial neural

networks and fuzzy clustering. Expert Systems with Applications, 37(9), 6225–6232.

White, T. (2012). Hadoop: the definitive guide. O’Reilly Media Inc.

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., & Stoica, I. (2010). Spark: cluster computing with

working sets. HotCloud, 10(10–10), 95.

Zhao, W., Ma, H., & He, Q. (2009). Parallel k-means clustering based on mapreduce. In Proceedings of cloud

computing (pp 674–679).

J Intell Inf Syst (2019) 52:619–636636

	One-pass MapReduce-based clustering method for mixed large scale data
	Abstract
	Introduction
	Related works
	Preliminaries*-.3pt
	K-prototypes method
	MapReduce framework

	One-pass accelerated MapReduce-based k-prototypes clustering*-.3pt method for mixed large scale data*-.3pt
	Pruning strategy*-.3pt
	Parallel implementation
	Parameters selections
	Tuning the chunk size
	Tuning the pruning heuristic
	Tuning the time to start

	Complexity analysis
	The time complexity analysis
	The I/O complexity analysis
	The space complexity analysis*.2pt

	Experiments and results*.2pt
	Methodology*.2pt
	Environment and data sets*.2pt
	Evaluation measures
	Comparison of the performance of AMRKP versus existing methods
	Pruning strategy performance
	Scalability analysis

	Conclusion
	Open Access
	References

