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Abstract—We present techniques for computing small space representations of massive data streams. These are inspired by

traditional wavelet-based approximations that consist of specific linear projections of the underlying data. We present general “sketch”-

based methods for capturing various linear projections and use them to provide pointwise and rangesum estimation of data streams.

These methods use small amounts of space and per-item time while streaming through the data and provide accurate representation

as our experiments with real data streams show.
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1 INTRODUCTION

SITUATIONS abound in which data arrives and is processed
in a stream. For example, network service providers

collect logs of network usage (telephone calls, IP flows, etc.)
in great detail from switches and routers into data
processing centers and use them for trend-related analysis.
In most cases, not all detail history can be accumulated and
stored in online databases; often past data is archived and
access to it is very expensive. Hence, it is highly desirable to
have an approximate, but reasonably accurate, representa-
tion of the data stream that can be stored in a small amount
of space. However, unlike typical selectivity estimation
scenarios where such summary data structures are used, it
is not realistic to make several passes over the data in the
streaming setting. It is crucial that the summary representa-
tion be computed on the stream directly, i.e., in one pass.

Consider the following application scenario that arises in
telecommunications network monitoring. Switches in tele-
communications networks handle a tremendous number of
connections every minute. Typically, for each call it
handles, a switch generates a record (known as a Call
Detail Record or CDR). These get written when calls
complete and, when buffers get full, switches dump them
into a central or distributed data processing facility.
Eventually, these records flow through the system and get
channeled into centers for billing, network operations, etc.
However, for many mission-critical tasks such as fraud,
security, and performance monitoring, telecommunications
companies need rapid access to the CDRs to perform trend-
related analysis such as: What is the total number of
outgoing calls from a telephone number? What is the total
traffic at an npa-nxx (the first six digits of a telephone
number) in the past two hours? Is the outgoing calling
pattern of a telephone number unusual? Can a signature be
maintained of user profiles? All of these queries need to be

answered on the stream since trend analyses are urgent (the

sooner a fraud is detected, the sooner it gets stopped).

Similar issues arise in monitoring Internet network ele-

ments such as routers and Web servers where traffic is

potentially far more voluminous.
The need for processing data streams is beginning to be

understood and, consequently, there is effort underway in

the data mining [11], database, and algorithms communities

to address the outstanding problems that arise. Within the

database community, it is understood that “...Today’s

database systems and data processing algorithms (e.g., data

mining) are ill-equipped to handle data streams effectively, and

many aspects of data management and processing need to be

reconsidered in the presence of data streams.”1 In this paper, we

address a fundamental problem that arises in data stream-

ing scenarios, namely, to what extent can the data streams

be summarized in a small amount of space so that accurate

estimates can be provided for basic aggregate queries on the

underlying signal. While small space data summarization

has been studied in the database community recently, data

streaming applications present novel issues, chiefly, first,

the ability to summarize accurately the signal in one pass,

rather than over multiple passes and, second, the massive

scale of the updates to the underlying signal over time.
In Section 2, we discuss related work, while in Section 3

we present different data models and formats for data

stream applications. In Section 4, we provide the necessary

background on wavelet computations. In Section 5, we

address some of the theoretical issues in designing

algorithms for wavelet computations in data streams. In

Section 6, we present our approach, together with provable

results and address the implementation issues that arise in

our sketch-based methods. In Section 7, we present

experiments with real data, while in Section 8 we present

concluding remarks.
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2 RELATED WORK

Streaming or one-pass algorithms have been studied in
different areas. In algorithms, streaming models have been
studied in [3], [13], [14], [25], [24], where methods have been
developed for comparing data streams under various Lp

distances or clustering them. Within the database commu-
nity, one-pass algorithms have been designed for obtaining
median, quantiles, and other order statistics [1], [30], [19],
correlated aggregate queries [16], mining [15], [9], etc.

Recently, there is an effort to study the general principles
behind continuous queries over data streams in the database
community (e.g., [4], [29]); this is different from our
approach here of supporting ad hoc estimates over the
distribution. The problem of summarizing a data stream to
provide point and range estimates was first considered in
the conference version of this article [22]. Dobra et al. [10]
build on the idea of using sketches to answer complex
multijoin aggregate queries over multiple data streams. A
sketch-based architecture for collecting and processing
distributed network measurements is discussed in [20].

Many techniques have been devised in databases for
small space approximations in the context of selectivity
estimation: sampling techniques [23], [35], histograms [34],
wavelet methods [31], [5], etc. Much of this work is for static
data sets and they do not provide strict performance
guarantees in a streaming scenario. Sampling methods do
work for the dynamic case when input is read over time,
but they do not directly yield any performance bounds for
linear projections that generate wavelet coefficients. Rando-
mized algorithms have been studied in [18] for dynamically
maintaining V -Opt histograms and in [26] for multidimen-
sional histogram maintenance.

Recently, the problem of maintaining wavelet transforms
as data dynamically changes was considered in [32]; in
contrast to the problem of maintaining traditional histo-
grams, maintaining wavelet transforms requires tracking
significant wavelet coefficients over time, a nontrivial task
as the authors argue. When a data item changes in value,
many coefficients may get affected and the set of significant
coefficients could change rather dramatically (as is revealed
from our experiments). Conceptually, maintaining the set of
significant transform values is somewhat similar to the
problem of maintaining bestseller items where the goal is to
maintain the top-k selling items as sales continue, but could
be significantly harder depending upon the transformation.
The main difficulty in the hot lists (a special case of what is
known as iceberg queries [12]) is in detecting which infrequent
values become significantly frequent as data items accumu-
late, using small amount of space. The authors in [27]
propose maintaining a fixed set of transform coefficients over
time. The authors in [32] propose a sophisticated probabil-
istic counting technique. In either case, no provable results
are known on how effective these methods are in tracking the
significant coefficients.

In addition to the wavelet-based methods, the authors in
[27] attempted to maintain the significant Discrete Cosine
transform values over time. In [17], nonadaptive sampling
is used for finding a small-space Fourier representation,
such that the sum-squares-error of the representation is
within the factor ð1þ �Þ of best possible error.

3 DATA STREAMS AND QUERY PROCESSING

3.1 Streaming Data Models

Our input, that we refer to as the stream, arrives

sequentially, item by item, and describes an underlying

signal. In the simplest case which we use to develop the

notions, the signal a is a one-dimensional function

a : ½0 . . . ðN ÿ 1Þ� ! Zþ, that is, the domain is assumed to

be discrete and ordered,2 and the function maps it to

nonnegative integers.
The stream may describe the underlying signal in one of

many ways, yielding different data models as a result.

There are two distinct models for rendering the signal: cash

register or aggregate models. In the cash register model, the

items that arrive over time are domain values in no

particular order and the function is represented by

implicitly aggregating the number of items with a particular

domain value. For example, in the telephone calls case, the

stream could be:

h8008001111; 10i; h8008002222; 15i; h8008003333; 13i;
h8008001111; 23i; h8008001111; 3i . . . :

The underlying signal, namely,

h8008001111; 36i; h8008002222; 15i; h8008003333; 13i

has to be constructed by aggregating the total number of

minutes outgoing from numbers 8008001111, 8008002222,

8008003333, etc.3 In the aggregate model, the items that arrive

over time are the range values in no particular order, and

the signal is therefore explicitly rendered. For example, in

the telephone calls case above, the stream could be:

h8008001111; 36Þ; h8008003333; 13i; h8008002222; 15i:

There are also two distinct formats for the stream: ordered

or unordered. In the ordered case, the items arrive over time in

the increasing (or decreasing) order of the domain values. In

the unordered case, the items that arrive over time are not

necessarily directly in the order of the domain values and

may in fact be an arbitrary permutation of the representation.
The two data models and the two data formats jointly

give us four possible stream renditions of the underlying

signal: ordered/unordered cash register/aggregated rendi-

tions. In the cash register model, there is yet another

variation depending on whether all the items with a given

domain value is contiguous. Data streams in the cash register

model can be contiguous, but not ordered:

h8008002222; 15i; h8008001111; 10i; h8008001111; 23i;
h8008001111; 3i; h8008003333; 13i:

Contiguous cash register rendition is equivalent to un-

ordered aggregate rendition under aggregation of the range

value for the “running” domain value. Therefore, this

rendition is not considered henceforth.
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2. Signals over continuous domains are assumed to be discretized in a
sensible fashion, for the purposes of this paper.

3. The flow of sales through a cash register in a store generates a stream
in this model. More generally, one may consider transactions that also
“subtract” from the underlying data distribution.



Natural data streams in different application domains
may be in different renditions, for example, a time series
data is likely to be in ordered aggregate rendition, while
network volume data is likely to be in the unordered cash
register rendition. The unordered cash register model is the
most general, posing the most challenges in designing data
processing algorithms. We will present results applicable to
all these renditions. For the most part, we focus on the most
general one for our upper bounds and the least general one
for the lower bounds, so our results are broadly applicable.

All of the above discussion on data stream models and
renditions generalize to multiple signals. For example, a
concatenated stream is one in which the stream for each signal
arrives concatenated one after another. For example, the
signal could be the traffic on a telecommunications network
from a particular IP address over time for the whole day,
and signals for multiple number of days may arrive one
after another. Also, the signal may be multidimensional, say
the (source IP address, destination IP address) aggregation
of traffic in networks. As long as all queries are on one of
the dimensions, or on all dimensions, or on a subset of
dimensions specified a priori, the one-dimensional stream-
ing techniques will work. Although our results can be
extended to the multidimensional case when this is not the
case, additional techniques will be needed and will not be a
subject of this paper.

3.2 Stream Processing Model

Now, we focus on how data streams may be processed. We
will present the basic one-pass version of data stream
processing. Each data item, as it arrives, is read and
processed. No backtracking is allowed on the data stream
and explicit access to arbitrary past items is not permitted.
We are allowed a certain amount of additional memory.
This may be used, for example, to store a recent window of
items we have read or some arbitrary subset of items in the
past, or other summary information about the past data
stream. The size of this auxiliary store crucially determines
what computations can be performed on the data stream.
For applications that we consider here, the auxiliary store is
significantly smaller than even the signal domain size.
Hence, the signal can only be partially represented in the
auxiliary store as data items continue to arrive, see Fig. 1.

Two performance parameters of our interest are the time
needed to process each item on the stream and the auxiliary
storage used; our goal would be to keep both as small as
possible.

3.3 Aggregate Queries on Streams

In what follows, we give examples of different types of
aggregate queries that tend to be asked, all in the context of
telecommunications data. The domain is the telephone
number (npa-nxx-line)4 and the range is the total number of
minutes per day of outgoing calls. There is a natural
numerical ordering of the domain. Consider the concate-
nated streams case wherein the signal for each day is
concatenated to the previous one, but each signal is in
unordered cash register model. In how many minutes of

outgoing calls was a particular telephone number involved? This
is a typical “point” query on the signal. How many total

minutes of calls were handled by a telephone exchange which is

given by a particular npa-nxx combination? This is a typical
“range” query.

Our methods apply to both aggregate queries above. In
evaluating solutions, two parameters of interest are the time
it takes to answer a query, as well as the accuracy of the
answers. We will also assume that we know in advance the
size of the domain of is and a maximum bound for the aðiÞs.
Our techniques can be easily extended to the case when
neither is known in advance.

4 BACKGROUND ON WAVELET TRANSFORMS

Wavelet transforms (like Discrete Cosine and Fourier trans-
forms) are special mathematical transforms that attempt to
capture the trends in numerical functions. Often, very few of
the wavelet coefficients of empirical data sets are significant
and a majority are small or insignificant. In practice, a small
number of significant coefficients is needed to capture the
trends in numerical functions. While the theory of wavelets is
extensive, we will only use the rudimentary wavelet trans-
forms in this paper.

We will develop the wavelet background as is typically
done using an example computation; see [31] for similar
background. Consider the signal of length5 N ¼ 8 given by
array A ¼ ½1; 3; 5; 11; 12; 13; 0; 1�; its Haar wavelet transform
computation is shown in Table 1. The transform is
computed by convolving the signal with the low-pass filter
f1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p
g and the high-pass filter fÿ1=

ffiffiffi
2
p

; 1
ffiffiffi
2
p
g,

followed by down-sampling by two. In the discrete case,
if there are N values in the array, this process yields N=2

“averages” and N=2 “differences” (these are averages and
differences, respectively, but scaled by a suitable scaling
factor). We store the differences as the wavelet coefficients
at this level. We then repeat this procedure on the
“averages,” computing “averages” and “differences” again,
until we are left with only one “average” and N ÿ 1
“differences” over logN scales or resolutions. The entire
computation can be quite naturally represented by a binary
tree over the signal array, each node in the tree representing
the “average” of the nodes under it and the “difference”
between the left and right child of that node.
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4. Under the North American Numbering Plan, npa is the three digit
area code, nxx is the three digit exchange code, and line gives the four digit
specific numbering to a telephone in that npa-nxx.

5. Throughout the exposition, we will assume that N is a power or two.
This simplifies notations and discussions without affecting the generality of
the results.

Fig. 1. Stream processing.



The description above of Haar wavelet transforms is
illustrative, but not conducive to streaming computations
directly, especially when the signal is rendered in un-
ordered cash register model. We will unravel the computa-
tion and visualize Haar wavelet transforms in terms of
vector computations. Let us number the levels of the binary
tree as with the bottommost level being 0 and the topmost
(the array) being logN ¼ 3 in this case. For j ¼ 1; . . . ; logN
and k ¼ 0; . . . ; 2j ÿ 1, define the vector �j;kðlÞ ¼ 1 for
kðN=2jÞ � l � kðN=2jÞ þN=2j ÿ 1 and 0 otherwise. These
ranges where �j;kðlÞ ¼ 1 are known as dyadic intervals in the
literature.

We further define  j;k ¼ ÿ�jþ1;2k þ �jþ1;2kþ1 for 0 � j �
logN ÿ 1 and k ¼ 0; . . . ; 2j ÿ 1. The scaling factor at level j is
sj ¼

ffiffiffiffiffiffiffiffiffiffiffi
N=2j

p
, for all j ¼ 0; . . . ; logN . Now, we can define

wavelet vectors to be sj j;k for each j; k, giving N ÿ 1 in all.
These, respectively, yield the N ÿ 1 wavelet coefficients
corresponding to the differences given by dj;k ¼ sjha;  j;ki,
where hx; yi is the inner product of vectors x and y. The final
“average” is the coefficient that corresponds to all 1’s vector v
with scaling factor s0 ¼

ffiffiffiffiffi
N
p

, that is, c0;0 ¼ s0ha; vi; vector s0v
together with the N ÿ 1 wavelet vector form the N wavelet
basis vectors.

Formally, we refer to the coefficients (N ÿ 1 “differ-
ences” and one “average”), as wavelet basis coefficients and
denote them by w‘, so

fw‘ : ‘ ¼ 0; 1; . . . ; N ÿ 1g ¼ fc0;0g [ fdj;kg:

Similarly, we refer to the corresponding vectors as wavelet
basis vectors and denote them by �‘, so that

f�‘ : ‘ ¼ 0; 1; . . . ; N ÿ 1g ¼ fs0vg [ fsj j;kg:

That is, w‘ ¼ ha; �‘i. Hence, informally, wavelet transforma-
tion is the inner product of the signal with a specific (rather
special) set of N vectors, or equivalently, specific linear
projections of the signal. This is the view of wavelet
transformations that we adopt henceforth. For later use, we
define the support of  j;k to be all ls such that  j;k½l� ¼ 1;
support of v is the entire domain.

Our focus is not on keeping all N coefficients, but rather

a much smaller number. In the process, some information

about the underlying signal will be lost. Suppose we sort

the coefficients, so that jw‘1 j � jw‘2
j � � � � . The highest B-test

approximation is defined to be
PB

k¼1 w‘k�‘k , It is easy to

derive and it is well-known that the highest B-term

approximation is in fact the best B-term approximation,

that is, it minimizes the sum squared error (sse) for a given B.
The energy of signal a is defined to be the square of its L2

norm and is preserved under the wavelet transform, i.e.,P
jaij2 ¼

P
jw‘j2. To measure the goodness of a representa-

tion, we define the pseudoenergy of a representation R for

signal a to be kak2
2 ÿ kaÿRk

2
2. We use pseudoenergy

instead of energy kRk2
2 to account for inexact coefficients.

Note that if the coefficients of R are optimal for the choice of
vectors in R, then the pseudoenergy of R equals the energy
of R and maximizing the energy of R amounts to choosing
vectors in R to minimize the sse of R. For our representa-
tions, however, the coefficients may be suboptimal. One can
then raise the energy of R by enlarging a coefficient, which
does not lower the sse. We use the above definition of
pseudoenergy so that maximizing the pseudoenergy corre-
sponds directly to minimizing the sse kaÿRk2

2 and the
energy and pseudoenergy coincide for exact coefficients.

4.1 General Comments

One of the reasons wavelet transformations are popular in
engineering, science, and financial applications is that most
signals that arise in nature have highest (best) B-term
approximation with small error for very small values of B,
that is, there tends to be a rapid-decaying behavior by which
increasing B beyond a small “threshold” does not signifi-
cantly decrease the sum-squares-error. As an example, Fig. 2
plots the sse/energy as a function of B (1 � B � 40) for a
day’s worth of call detail data. The graph reveals a fast decay
in the reduction of the sse, as more coefficients are used.

This small-B approximation property motivated the use
of wavelets in databases, for similarity search [7], as well as
approximate query answering for point and range queries
[31], [5], [21]. We were also motivated by this small-B
approximation property of wavelets to choose them for data
stream processing. However, we are able to exploit this
property in two quite distinct ways. First, we use small B to
represent the underlying signal to a reasonable approxima-
tion. Second, we are able to show how to maintain a small
“sketch” of the signal on the stream so that if the original
signal has a small-B representation which is accurate, then
we can generate a possibly different and approximate
B-term representation which is nearly as accurate. We are
able to do this in a provable manner. This is the basis for our
work.
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TABLE 1
Haar Wavelet Decomposition of Array A ¼ ½1; 3; 5; 11; 12; 13; 0; 1�

Fig. 2. Ratio sse/energy v.s. B for day 0.



5 SOME FOUNDATIONAL ISSUES

Let us recall that our goal is to compute the highest (best)
B-term approximation to a signal of domain size N . Our
first theoretical result is a positive one, showing that for the
ordered aggregate model, the highest B-term representation
can be computed exactly.

Consider the tree representation of the Haar wavelet
transformation specified in Section 4. Recall also that in the
ordered aggregate model, we get the signal values specified
as ði; aðiÞÞ in the increasing order of is. Our algorithm is as
follows: Consider reading the data stream and say we are at
some position i0 in it, that is, we have seen all aðiÞs for i � i0,
for some i0. We maintain the following two sets of items:

1. Highest B-wavelet basis coefficients for the signal
seen thus far.

2. logN straddling coefficients, one for each level of the
Haar wavelet transform tree. At level j, the wavelet
basis vector that straddles i0 is  j;k, where

kðN=2jÞ � i0 � kðN=2jÞ þN=2j ÿ 1;

and there is at most one such vector per level.

When the following data item ði0 þ 1; aði0 þ 1ÞÞ is read, we

update each of the straddling coefficients at each level if

they get affected. Some of the straddling coefficients may no

longer remain straddling. When that happens, we compare

them against the highest B-coefficients and retain the B

highest ones and discard the remaining. At levels in which

a straddling coefficient is no longer straddling, a new

straddling coefficient is initiated. There will be only one

such new straddling coefficient for each level. In this

manner, at every position on the data stream, we maintain

the highest B-wavelet basis coefficients exactly. This gives,

Theorem 1. With at most OðBþ logNÞ storage, we can
compute the highest (best) B-term approximation to a signal
exactly in the ordered aggregate model. Each new data item
needs OðBþ logNÞ time to be processed.

In contrast, computing the highest B-term approximation

seems to be hard in any other streaming model. Intuitively,

keeping track of the highest B numbers in a stream is trivial

with the unordered aggregate streaming model (and there-

fore, the contiguous cash register model), but keeping track

of the highest B values of ðci ÿ diÞ, where cis and dis appear

any which way seems to be difficult (and likewise for more

complex linear projections like wavelet coefficients). In the

unordered cash register model, even keeping track of

highest B aðiÞs is difficult in general; this is the top-B

queries in [12], [6], [2]. We are able to formalize all these

intuitions in rigorous mathematical framework and prove

that computing the highest B-term approximation for a

signal in any of these data streaming models is difficult, i.e.,

would require storing too much data, nearly equal to the

size of the signal, and even that of the stream itself! We state

our result formally below.

Theorem 2. Any streaming algorithm that correctly calculates the
second largest wavelet basis coefficient (which is the largest

wavelet coefficient) of the signal rendered by unordered, cash
register streaming data uses at least N= logOð1ÞðNÞ space. In
fact, this holds if

1. The algorithm need only estimate the quantity up to
the factor 2 and not necessarily compute it exactly,

2. The algorithm need only identify a wavelet basis
coefficient (other than the largest) whose magnitude is
at least half the magnitude of the second largest one
and not necessarily approximate the value of any
particular coefficient, and

3. The stream is at most OðNÞ in size and no larger
stream is needed to force this lower bound.

Additionally, a lower bound of 
ðN=polylogðNÞÞ holds for the
unordered aggregate stream rendition of the signal.

Proof. We reduce the problem of approximating the value

of the largest single coefficient from the following

communication complexity problem, MULTIPARTY

SET DISJOINTNESS [3]: There are s players, each of

whom holds a set of size t from a universe of size

approximately 2st. The sets are promised either to be

disjoint or to intersect uniquely—that is, for some i, each

set contains i and, for all j 6¼ i, zero or one of the sets

contains j. The players must determine which case is in

effect. By [3], this requires communication 
ðt=s3Þ in the

private coin randomized model. We will use the public

coin model—there’s a (long) list of random numbers to

which all the players have access at no cost. Simulating a

public-coin protocol by a private coin protocol requires

logðNÞ þ logð1=�Þ additional communication bits, where

� (here a constant) is the change in success probability, so

the problem is hard in the public coin model, too.

In our case, there are s � OðlogðNÞÞ players, each of

whom holds a t-set from a universe of size N ¼ 2st, such

that the sets are either pairwise disjoint or have a

common single intersection point. Each player regards

his share of the MULTIPARTY SET DISJOINTNESS

instance (an array of zeros and ones) as a signal on the

odd-indexed points 1; 3; . . . ; N ÿ 1; the even-indexed

signal values are all zero. Using common randomness,

each signal position is negated, independently, with

probability 1=2. Thus, the combined signal has a single

peak of height �s, say at position i, in the intersecting

case, and, in that case, the wavelet coefficient ðai ÿ
aiÿ1Þ=

ffiffiffi
2
p

has the value �s=
ffiffiffi
2
p

. All other signal points in

the intersecting case and all signal points in the disjoint

case, are 0; 1, or ÿ1. (We will make all the signal points

nonnegative below.) In the disjoint case, all wavelet

coefficients at level j ¼ 1, consisting of 1=
ffiffiffi
2
p

times the

difference of adjacent signal points, have the value zero

or �1=
ffiffiffi
2
p

.
We now show that no wavelet basis coefficient (in

lower levels) has magnitude greater than s=2
ffiffiffi
2
p

in the
disjoint case. Coefficients at level j are the result of a
random walk of length at most 2j=2 with equally-likely
steps of size �2ÿj=2. The expected absolute value of the
result is 1, and, with probability at least 1ÿ 1=N , the
absolute value of each result is at most logðNÞ, which we
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can assume is less than s=2
ffiffiffi
2
p

. Thus, with constant
probability, no such coefficient is larger in magnitude
than s=2. (Note that, if in the intersecting case, some
coefficient other than our target is larger than s, we
would still be able to distinguish the intersecting and
disjoint cases.)

This implies a lower bound of t=s4 ¼ n= log5ðNÞ space
for a signal of N possible distinct types and �ðNÞ stream
items.

If we restrict attention to nonnegative signals, the

problem is still hard since one can reduce the general

problem to the nonnegative promise problem. One of the

players simply adds the constant vector with 2s in each

component to the signal constructed above. The largest

wavelet basis coefficient will be the average c0;0, which

takes the value 2s� s=2
ffiffiffi
2
p
� s. The second largest

wavelet basis coefficient, which is the largest wavelet

coefficient, will be the largest wavelet basis coefficient in

the original signal that consists of both positive and

negative coefficients. In the cash register model, the

constant s signal requires just N additional updates, so

the total number of updates (the stream length) is �ðNÞ.
Next, consider finding the identity of a near-maximal

coefficient. Once we know the identity, we could make a
second pass and determine its value in OðlogðNÞÞ space,
thereby getting a constant-factor approximation to the
maximum value using roughly the same communication.

Finally, the proof for the unordered aggregate model
is quite similar. tu

The strong result above shows that nearly all of the

signal must be in the auxiliary store in order to calculate (or

even estimate) the highest B-term approximation in data

streaming models. This seems to indicate that there is no

hope for providing provably good data streaming algo-

rithms for constructing wavelet approximations to the

signal. In the next section, we provide an algorithm that

gets around this bottleneck by using the small B-term

property of wavelet coefficients.

6 OUR DATA STREAMING ALGORITHMS

6.1 Overall Description

We present general techniques for computing wavelet

approximations for a signal in data stream models. In what

follows, we will describe our overall approach before

providing details. All our discussion will be for the most

challenging case, namely, the unordered cash register

rendition of the signal.

We see the data stream, one item after the other. We

maintain a sketch of the signal we have seen thus far. The

sketch is much smaller than the signal; for a signal over the

domain of sizeN , the sketch is of size logOð1ÞðNÞ. As data items

get read, the sketch gets updated. The sketch has the property

that we can generate the linear projections (inner products) of

the signal with a small (polynomial) number of vectors quite

easily and accurately, provided the dot product of the

corresponding unit vectors (the cosine) is large. This can be

used in several ways. First, since any point query i on the

signal can be viewed as merely the inner product of the signal

with a vector that has a 1 in its ith component and 0 elsewhere,

we can use the sketch to directly estimate the point query;

likewise for range queries. Since there are only N point

queries and NðN ÿ 1Þ=2 range queries which is a small

polynomial number, sketches will suffice. Second, since

wavelet transforms are linear projections of the signal with

a specific set ofN vectors, we can generate wavelet coefficient

approximations from the sketch which can in turn be used for

point or range query estimations on the signal. We will

explore both mechanisms.

6.2 Details of Our Approach

Now, we will provide the various details, specifically, what
is a sketch of a signal, how to compute it on a data stream,
and how to use it for estimations.

6.2.1 Sketches

Recall that a sketch will be used to estimate the inner

product of certain vectors with the signal. We need the

following parameters to formally define a sketch and

present our claims: �, a distortion parameter—we seek inner

products correct to within the factor ð1� �Þ approximation;

�, a failure probability—our guarantees will hold with high

probability, � being the failure probability of our claims; �, a

failure threshold—if the cosine between two vectors is greater

than �, we estimate the desired quantity within approxima-

tion factor ð1� �Þ with probability at least 1ÿ �, but we

make no guarantees if the cosine is smaller than �.

An atomic sketch of signal a is the dot product ha; ri, where

r is a random vector of �1-valued random variables. This is

the standard random projection approach found, e.g., in [3].

A sketch of the signal is OðlogðN=�Þ=�2Þ independent atomic

sketches, each with a different random vector r. (Below, we

will substitute other values for � and/or �.)

Since this sketch size is rather small compared to the

signal size, we explicitly store the sketch in the auxiliary

store. As the data stream is read, it is straightforward to

update the sketch: When we see an item i in the cash

register format, we add rji to the atomic sketch with random

vector rj. In an aggregate format, if we see aðiÞ, we add

aðiÞrji (which may be rational-valued) to the atomic sketch

with random vector rj. Thus, it is easy to maintain the

sketch over a data stream.

An important detail arises, namely, how do we store the

random vector rjs. Notice that the rjs are of length N each,

and, above, we argued that space N is prohibitive. The idea

in [25] (following [3]) is that each rj can be generated by a

pseudorandom number generator from a seed sj of size

logOð1ÞðNÞ, which is stored explicitly. The generator G takes

in sj and i and outputs rji ¼ Gðsj; iÞ, quickly. Such random

vectors are easy to generate, as shown in [25]. For a

provably correct algorithm, any four random variables need

to be independent; in practice, for some data, other

pseudorandom number generators may also work.
We adopt this approach, but our requirements on the

random vectors rjs are somewhat more stringent. This is
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because, later, we will need to estimate the inner product of

the signal with the wavelet basis vectors. Each such vector

is length N and some of them have N nonzero entries.

Explicitly generating rji for each i with nonzero wavelet

basis vector component will thus prove time consuming.

We need to be able to compute hrj;  i quickly. With the

exception of the single “average,” this inner product is

actually the difference of two rangesums of the random

variables rji computed over two consecutive dyadic ranges

over i. Henceforth, we drop the superscript j in rj. Our

generator is described next.

6.2.2 The Reed-Muller-based Generator

We show how to generate rjs to meet our requirements

above. The method we use, at the suggestion of Eric Rains

and Neil Sloane, is based on second-order Reed-Muller

codes. We assume that N is a power of 2, by rounding the

actual value of N up to the next power of 2. Thus, for each j,

we need a data structure for a family of N random variables

with values of �1, with the following properties:

. Any four random variables in the family are
independent.

. For any range ½‘; rÞ,
P

‘�i<r ri can be computed

quickly, in time logðN=�ÞðB=ð��ÞÞOð1Þ, though we

will achieve logOð1ÞðNÞ. In particular, ri can be

computed quickly.
. The data structure has size at most

logðN=�ÞðB=ð��ÞÞOð1Þ;

though, again, we will achieve logOð1ÞðNÞ.
As discussed above, we will use logðN=�ÞðB=ð��ÞÞOð1Þ

independent copies of the data structure, indexed by j.
The data structure stores, as a seed, a bit string s of

length m ¼ 1þ logðNÞ þ logðNÞ
2

� �
. Then, ri is given by

ðÿ1Þhs;Mii, where the dot product is modulo 2, and Mi is

the ith column of the m�N 2nd order Reed-Muller parity-

check matrix, M, which we describe below. Thus, the size of

the data structure is the size of the seed, Oðlog2ðNÞÞ. It is

shown in [28] (in a different context) that the family of

random variables satisfies the other properties above.
We now describe the generator in more detail. We

remark that the details are included here for convenience;

much of it can be derived from [28], but requires

specializing it to our context.
The matrix M is defined as follows: Pick logN symbols,

a; b; c; . . . . The N columns are indexed by subsets of the

symbols, in a reverse lexicographic order (see below). The

m rows of M and the m bits of s are indexed by subsets of

the symbols of size 0, 1, or 2. The entry in row r and

column c is 1 if r � c, and 0 otherwise.
For example, for N ¼ 16, the matrix is given below. The

row indices are listed; the column indices can be read from

the four rows with singleton indices.

;: 1111 1111 1111 1111

fdg 0000 0000 1111 1111

fcg 0000 1111 0000 1111

fbg 0011 0011 0011 0011

fag 0101 0101 0101 0101

fc;dg 0000 0000 0000 1111

fb;dg 0000 0000 0011 0011

fa;dg 0000 0000 0101 0101

fb;cg 0000 0011 0000 0011

fa;cg 0000 0101 0000 0101

fa;bg 0001 0001 0001 0001

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

:

To implement our algorithm, one needs to know how to

compute
P

‘�i<r ri quickly; we sketch the algorithm here,
directing the reader to [28] for omitted details. We first give

an overview; after that, we provide enough details to

implement.
Overview. We will show below that, using symmetry, it

suffices to sum
P

0�i<N ri, i.e., to assume that the range

contains all the random variables. We can identify a seed s

with a function sðiÞ ¼ ri, that takes a number i 2 ½0; NÞ and

outputs a pseudorandom bit. We also identify a seed s with

the subset of rows of M corresponding to the 1s in s; then, ri
is the ith position in the mod 2 sum of these rows.

Assuming for the moment that the bit of s indexed by ; is 0,
we also identify s with a particular logðNÞ � logðNÞ matrix

Q, a “quadratic form,” such that

. Q is zero below the diagonal,

. Entry Qjj equals the bit of s indexed by the singleton
set of the jth symbol, and

. Entry Qjk, j < k, equals the bit of s indexed by the
doubleton set of the jth and kth symbols.

As we show below, ri is given by the mod 2 matrix product

iQiT , where we regard i as the vector of the binary

expansion of the number i. Our goal is to compute
P

i ri,

where the sum is over the integers. For certain seeds s,
called easy,

P
i ri is straightforward to compute. For

example, in the example above, if the fa; dg and fb; dg bits

of s are zero, then r has the form �1�2�3�4, where the �s are

equal or opposite, depending on the fc; dg; fcg, and fdg bits.
In any of these cases, we can compute

P
0�i<N=4ð�1Þi ¼P

0�i<N=4 ri recursively and use this value to computeP
0�i<N ri immediately. More generally, we require that, in

an easy seed, the only nonzero doubleton-indexed bits are

fa; bg; fc; dg; fe; fg, etc.
Since our goal is to compute

P
i ri ¼

P
i iQi

T , we get the
same sum if we permute the ris. Below, using elementary

matrix operations, we will find a logðNÞ � logðNÞ matrix R

such that

. R is invertible so that i 7! iR is a permutation. It
follows thatX

i

iQit ¼
X
i

ðiRÞQðiRÞt ¼
X
i

iðRQRT ÞiT :

. (A matrix equivalent to) RQRT is identified with a
known easy seed, s0.
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We then compute the sum of nonzero bits for the easy seed
s0 instead of a general seed s. This completes the overview.
Now, we will provide details.

Formal Description. We assume that the range ½‘; rÞ is
dyadic since any range can be partitioned into OðlogðNÞÞ
dyadic subranges. Similarly, it suffices to assume ½‘; rÞ is the
entire range ½0; NÞ since other dyadic ranges are equivalent
to instances of our problem for smaller N . For example,
consider columns ½4; 8Þ of the second-order Reed-Muller
matrix for N ¼ 16. After deleting useless zero rows (which
can be realized by deleting corresponding bits in s) and
removing repeated rows (which can be realized by
replacing the corresponding bits in s by a single bit equal
to their mod 2 sum), we end up with the second-order
Reed-Muller matrix for N ¼ 4.

Note that
P

0�i<Nðÿ1Þhs;Mii ¼ 2
P

0�i<Nhs;Mii ÿN . We
briefly summarize the technique implied in [28] for
computing

P
0�i<Nhs;Mii.

We can equivalently regard hs;Mii as iQðsÞit mod 2þ
Lit þ C modulo 2, where i is a vector of logðNÞ 0’s and 1’s
mapping the subset of symbols that we identify with index i
(it turns out that the vector is actually just the binary
expansion of the value i), QðsÞ is a logðNÞ � logðNÞ matrix
whose ð�; �Þ entry equals the f�; �g entry of s, where � and
� are symbols among a; b; c; . . . , and � � �, L is a vector
whose �th entry equals the f�gth entry of s, and C is a
constant equal to the ;th bit of s.

Corresponding to Q is a matrix B ¼ QþQt, that is
symmetric and has zero diagonal. We next find an
invertible matrix R such that RBRt has the form

B0 ¼

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0

0 0 0 0 0 . .
.

. .
.

0BBBBBBB@

1CCCCCCCA;

where the diagonals of alternating 1s have equal length, but
may terminate before reaching the other end. Note that any
such matrix is identified with an easy seed. To find R, first
use elementary row and column operations to put all the
nonzero rows and columns of B into the upper left-hand
corner. We can now ignore all the zero rows and columns.
Next, recursively make all but the bottom row and right
column into the desired form, by using a matrix R of the
form

R0 0
0 1

� �
:

Thus, we are left with a matrix of the form

0 1 � � � 0 0 0 a1

1 0 � � � 0 0 0 a2

..

. ..
.
� � � ..

. ..
. ..

. ..
.

0 0 � � � 0 1 0 a2tÿ1

0 0 � � � 1 0 0 a2t

0 0 � � � 0 0 0 a2tþ1

a1 a2 � � � a2tÿ1 a2t a2tþ1 0

0BBBBBBBBB@

1CCCCCCCCCA
or

0 1 � � � 0 0 a1

1 0 � � � 0 0 a2

..

. ..
.
� � � ..

. ..
. ..

.

0 0 � � � 0 1 a2tÿ1

0 0 � � � 1 0 a2t

a1 a2 � � � a2tÿ1 a2t 0

0BBBBBBB@

1CCCCCCCA
depending on whether the rank of B is even or odd. Then,
use

R ¼ I 0
r 1

� �
;

where I is an identity matrix and r is a row of the form
ða2; a1; a4; a3; . . . a2ta2tÿ1Þ or ða2; a1; a4; a3; . . . a2ta2tÿ1; 0Þ. Note
that these operations on a logðNÞ � logðNÞ matrix take time
logOð1ÞðNÞ.

Thus, we have RBRt ¼ B0, of the desired form. Since R is
invertible, it follows that

P
i iQi

t ¼
P

iðiRÞQðiRÞ
t since the

sums are over the same set. This is
P

i iðRQRtÞit, which
equals

P
i iUTððRQRtÞ þ ðRQRtÞtÞit ¼

P
i iUTðB0Þit, where

UT denotes the upper triangle, since, for any matrix A,

xAxt ¼ xUTðAþAtÞxt;

because, working modulo 2, each side is the parity of the
number of pairs ðj; kÞ such thatxj ¼ xk ¼ 1 andAjk þAkj ¼ 1.
Similarly,X

i

iQit þ Lit þ C ¼
X
i

ðiRÞQðiRÞt þ LðiRÞt þ C

¼
X
i

iUTðB0Þit þ iðRLtÞ þ C

¼
X
i

iðUTðB0Þ þ diagðRLtÞÞit þ C;

since x2 ¼ x so Lit ¼ idiagðLÞit, modulo 2. We may assume
that C ¼ 0, since, if C ¼ 1, the sum becomes

N ÿ
X
i

iðUTðB0Þ þ diagðRLtÞÞit:

(Recall that the summation is over the integers, but all the
matrix arithmetic is performed modulo 2.)

Finally, the matrix ðUTðB0Þ þ diagðRLtÞÞ is in a form
simple enough that we can perform the desired sum
recursively. That is, ðUTðB0Þ þ diagðRLtÞÞ is of the form

a1 1 0 0 0 0
0 a2 0 0 0 0
0 0 a3 1 0 0
0 0 0 a4 0 0
0 0 0 0 a5 1

..

. ..
. ..

. ..
. ..

. . .
.

0BBBBBBB@

1CCCCCCCA;

where the main diagonal is arbitrary and the diagonal
above the main diagonal alternates 0s and 1s at first and
may eventually become all zeros. The corresponding seed,
defined using the symbols �k, has 1s only in the positions
indexed either by singletons or by doubletons of the form
f�2jÿ1; �2jg. For example, if we remove the doubleton-
indexed rows of M above corresponding to bits of s that are
now forced to zero, assuming the alternating diagonal is
1010 rather than, say, 1000, we get
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M 0 ¼

0000 0000 1111 1111

0000 1111 0000 1111

0011 0011 0011 0011

0101 0101 0101 0101

0000 0000 0000 1111

0001 0001 0001 0001

0BBBBBBBB@

1CCCCCCCCA
:

Observe that, by the structure of M, each row in M 0 is of
the form �1�2�3�4, where any two �’s are either equal or
opposite. It follows that the vector sM, the sum of some set
of rows, is the concatenation of four pieces, where any two
pieces are equal or opposite. One can recursively find the
number of 1s in one of these pieces of length N=4, then, in
constant time, use that value to compute the number of 1s
among all N of the random variables.

6.2.3 Estimation of Inner Products

We need a technical primitive, namely, estimating the inner
product of two vectors given their sketches. Sketches were
first introduced to estimate norms of vectors, e.g., in [3]. In
our experiments, we used an approximation for ha; bi based
on the identity

ha; bi ¼ kakkbk 1ÿ

a=kak ÿ b=kbk2

2

0BBB@
1CCCA:

An anonymous referee pointed us to a previous, simpler
technique, proved in [2]: The product of a sketch for a and a
sketch for b is an estimate for ha; bi with similar guarantees.
Either way, the following holds (see [2], [3] for a proof).

Lemma 3.

1. LetX be theOðlogð1=�ÞÞ-wisemedian ofOð1=�2Þ-wise
means of independent copies of

X
i

air
j
i

 ! X
i

bir
j
i

 !
:

Then, we have X ÿ ha; bij j � �kakkbk with prob-
ability 1ÿ �.

2. Let Y be theOðlogð1=�ÞÞ-wisemedian ofOð1=�2Þ-wise
means of independent copies of

X
i

air
j
i

 !2

:

Then, we have Y ÿ kak2
�� �� � �kak2 with probability

1ÿ �.
Below, we will substitute other values for � and � in this

lemma.

6.2.4 Answering Queries from the Sketch

We consider two models of query processing: batch and
online. In the batch model, queries may be posed only at
periodic intervals, e.g., at the end of the day. We do not
need to answer queries in midstream so we can perform
some time-consuming additional processing during the
batch process and amortize this cost over the entire input
stream and the collection of queries.

In the online model, queries may be posed at any time

during the stream processing. Thus, we must be able to

respond rapidly to queries in this case. We present two

heuristic methods: one using wavelet coefficients that

pertain only to the query point and the second that

estimates point values directly.

6.2.5 Batch Query Processing

To answer queries in a batch, we first build a B-term

wavelet representation to the entire signal using the

techniques in Section 6.2. To do this, we exhaustively

estimate each wavelet coefficient as described and select up

to B of the largest coefficients (excluding those whose

square is less than ��=Bkak2
2). We use these estimates as

coefficients in an almost B-term approximation to the

signal. To answer a query in time OðBþ logNÞ, we

determine the OðlogNÞ wavelets whose supports intersect

the query point and sum over those in our B-term

approximation. Note that this procedure also works for

range queries. This procedure provides provable accuracy

guarantees over all point queries.

Theorem 4. There is a streaming algorithm, A, such that, given a

signal a½1::N � with energy kak2
2, if there is a B-term

representation with energy at least �kak2
2, then, with

probability at least 1ÿ �, A finds a representation of at most

B terms with pseudoenergy at least ð1ÿ �Þ�kak2
2. If there is no

B-term representation with energy ð1ÿ �Þ�kak2
2, A reports

“no good representation.” In any case, A uses

O log2ðNÞ logðN=�ÞB2=ð��Þ2
� �

space and per-item time while processing the stream. This
holds in both the aggregate and cash register formats.

Proof. First, estimate kak as kak�, with

kak2
� � kak

2 � 2kak2
�:

Next, estimate each coefficient, ha; �ji, as ha; �ji�, with

ha; �ji� ¼ ha; �ji � x1kakk�jk ¼ ha�ji � x1kak;

where x1 will be determined below. From among the B

largest estimates, take those with ha; �ji� > x2kak�,

where x2 will be determined below; denote by �� the

set of chosen indices. Let �0 be the set of indices of the

j��j biggest coefficients, and let � be the set of indices of

the B largest.
Suppose ha; �j1

i� > ha; �j2
i�, but ha; �j1 <ia; �j2i. We

claim that all four quantities are close in relative value.
Specifically,

ha; �j1
i > ha; �j1

i� ÿ x1kak > x2kak� ÿ x1kak
� ðx2=

ffiffiffi
2
p
Þkak ÿ x1kak ¼ ðx2=

ffiffiffi
2
p
ÿ x1Þkak

so ha; �j1
i� ¼ ha; �j1i � x1kak � ha; �j1

i 1� x1

x2=
ffiffi
2
p
ÿx1

� �
. Si-

milarly,

ha; �j2i > ha; �j1i > ðx2=
ffiffiffi
2
p
ÿ x1Þkak

and ha; �j2i� ¼ ha; �j2i � x1kak � ha; �j2
i 1� x1

x2=
ffiffi
2
p
ÿx1

� �
.
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It follows that

ha; �j2i� < ha; �j1
i�

< ha; �j2
i � 1þ x1

x2=
ffiffiffi
2
p
ÿ x1

 !
� 1ÿ x1

x2=
ffiffiffi
2
p
ÿ x1

 !ÿ1

< ha; �j2
i� � 1þ 3

x1

x2=
ffiffiffi
2
p
ÿ x1

 !
;

provided x1

x2=
ffiffi
2
p
ÿx1

is sufficiently small.

It follows that the best representation over the terms in

�� has energy within B 3 x1

x2=
ffiffi
2
p
ÿx1

� �2
kak2 of the energy of

the best representation over �0. If j�0j ¼ B, then we have

shown that the energy of the best representation over the

coefficients chosen is within B 3 x1

x2=
ffiffi
2
p
ÿx1

� �2
kak2 of the

energy of the best B-term representation. Otherwise,

consider any coefficient, with index j, of magnitude at

least ðx2 þ x1Þkak. Then, since we have not chosen B

coefficients, the jth coefficient must be among those chosen

since ha; �ji� � x2kak � x2kak�. Thus, the atmost-B of the

top coefficients not chosen have combined energy at most

Bðx2 þ x1Þ2kak2. It follows that, if there is a B-term

representation with energy �kak2, then the best represen-

tation over the chosen coefficients has energy at least

1ÿB 3
x1

x2=
ffiffiffi
2
p
ÿ x1

 !2
0@ 1A�kak2 ÿBðx2 þ x1Þ2kak2

� ð1ÿ �=3Þ�kak2;

if x2 ¼ c2

ffiffiffiffiffiffiffiffiffiffiffi
��=B

p
Þ and x1 ¼ c1x2

ffiffiffiffiffiffiffiffi
�=B

p
¼ c1c2�

ffiffiffi
�
p

=B for
some constants c1 and c2. The cost, which depends on x1,
but not x2, is 1=x2

1, i.e., OðB2=ð�2�ÞÞ.
We cannot recover the best coefficient values. How-

ever, any coefficient we estimate has pseudoenergy

within x2
1kak

2 less than the best value for that coefficient.

So, the representation we recover has pseudoenergy

within Bx2
1kak

2 � Bðx2 þ x1Þ2kak2 � ð1ÿ �=3Þ�kak2 of

best possible over ��. So, if there is a representation

with energy �kak2, we find a representation R with

pseudoenergy at least ð1ÿ 2�=3Þ�kak2. (To get the proof

of the theorem, we can work with �0 so that 2�0=3 becomes

the � and the theorem follows.)

Now, suppose there is no B-term representation with

energy ð1ÿ �Þ�kak2. The above procedure may produce a

representation, R, but we should not output it. We next
show that we can test any representation R produced as

above to see whether it is good enough.
Estimate kak as kak� with kak2 � kak2

� � ð1þ y1Þkak2,
for y1 to be determined below, and estimate kaÿRk as
kaÿRk� with kaÿRk2 � kaÿRk2

� � ð1þ y2ÞkaÿRk2

for y2 to be determined below. For y3 to be determined
below, if kak2

� ÿ kaÿRk
2
� > y3kak2

�, then output R;
otherwise, output “no good representation.”

Suppose there is an R with kak2 ÿ kaÿRk2 > �kak2.
Then, we find a representation with

kak2 ÿ kaÿRk2 > ð1ÿ 2�=3Þ�kak2;

i.e., kaÿRk2 < ð1ÿ � þ 2��=3Þkak2. Then,

kaÿRk2
� � ð1þ y2Þð1ÿ � þ 2��=3Þkak2

�;

so

kak2
� ÿ kaÿRk

2
� � ðÿy2 þ �ð1ÿ 2�=3Þ

ÿ y2�ð1ÿ 2�=3ÞÞkak2
�:

On the other hand, if there is no R with

kak2 ÿ kaÿRk2 > ð1ÿ �Þ�kak2;

then, for any possible R we find,

kak2 ÿ kaÿRk2 � ð1ÿ �Þ�kak2;

so that

kak2
� ÿ kaÿRk

2
� � ð1ÿ �Þ�kak

2 þ y1kak2

� ðð1ÿ �Þ� þ y1Þkak2
�:

Thus, we need

ð1ÿ �Þ� þ y1 � y3 � ÿy2 þ �ð1ÿ 2�=3Þ ÿ y2�ð1ÿ 2�=3Þ;

which can be satisfied for y2 ¼ ��=6 and y1 also linear in
��. It follows that the space overhead and processing
times are quadratic in 1=ð��Þ. (The value for y3 does not
affect the cost.) tu
Note that if there is a representation with pseudoenergy

at least ð1ÿ �Þ�kak2
2, but none with pseudoenergy at least

�kak2
2, then our algorithm may arbitrarily answer “no good

representation” or it may output a representation with
pseudoenergy at least ð1ÿ �Þ�kak2

2. Either behavior is
semantically correct.

6.2.6 Online Query Processing

To answer point queries immediately and directly from the
sketch, we can choose from two heuristic procedures: direct
point or direct wavelet estimates.

For a point query i, we associate it with the vector ei,
consisting of a 1 in position i and zeros elsewhere. An
atomic sketch of ei using the random variable rj is simply rji .
To estimate ai ¼ ha; eii, we compute the sketches of ei and
of a and use Lemma 3 with probability �=N and distortion
��. If jaij � �kak, then our estimate will be aið1� �Þ except
with probability �=N , in space logðN=�Þ=ð��Þ2. If we make a
total of N such queries (not counting repeated queries about
the same i), then all of them will be approximately correct
except with probability �.

We can also answer a point query i relatively immedi-
ately by estimating directly the OðlogNÞ wavelet coeffi-
cients corresponding to those wavelets whose supports
intersect i. That is, we perform a direct wavelet estimate (as
compared to a direct point estimate). We use the techniques
described above and Lemma 3 to estimate the large wavelet
coefficients.

6.2.7 Details and Discussion

One drawback to finding the best B-term approximation for
batch query processing is that it takes time OðN logNÞ. This
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time may be prohibitive in applications with large N . In
practice, we implement our query processing engine as
follows: We maintain the sketch of the signal, as well as a
pool of B coefficients. When a new data item is read, we
update the sketch, as well as the pool of coefficients.
Periodically, we cycle through the set of N wavelet basis
vectors and estimate a batch of their coefficients and update
the pool so that it contains the highest B coefficient
estimates over all. In this way, we amortize the cost of
computing the estimates over that of reading new data
items. The entire implementation needs OðBþ logOð1ÞNÞ
space for the sketch, the pool, as well as all requisite seeds
of random vectors.

While the batch mode provably gives a near best B-term
representation, it does so under the assumption that we
estimate all point queries, each equally likely. This, however,
is not always a valid assumption. Often, we care more about
specific queries than others. In this case, direct estimates can
be more accurate, but only if the point values contribute
significantly to the total energy of the signal. We call these
values “heavy hitters” and show in Section 7.2 that direct
estimates experimentally perform better than batch estimates
on heavy hitters. See this section also for a comparison of
direct point versus direct wavelet estimates of heavy hitters.

We also note experimentally that we can boost the
performance of both direct methods for approximating heavy
hitters using adaptive greedy pursuit. That is, we obtain a very
accurate estimate for the first heavy hitter (the “heaviest”), we
subtract this estimate from the sketch, use the new sketch to
estimate the second heavy hitter, etc. Because we subtract the
estimate for the first heavy hitter from the sketch and because
sketches are linear, the resulting sketch is a good estimate for
the sketch of the residual distribution in which the second
heavy hitter is the peak value. This increases our chances that
we will get an accurate estimate of the second heavy hitter. In
this fashion, we estimate the first kheavy hitters, one after the
other. Each estimate is subtracted from the sketch, increasing
the likelihood that we estimate accurately the remaining
heavy hitters. Of course, such a procedure does not work in
our favor forever. Each estimate contains a small amount of
error that is also subtracted from the sketch. After many
iterations, these errors will eventually overwhelm the
benefits.

7 EXPERIMENTS

For the experiments, we used traces from AT&T’s call detail
data for a period of one week. The data set describes a
certain type of long-distance calls, aggregated at the npa-
nxx level. The stream is in the unordered cash-register
format and contains 511,033,795 values. The npa-nxx value
corresponds to the originating number. We present an
analysis of the batch method of answering queries (includ-
ing several heuristics presented in the previous section) and
a comparison of the online methods (both direct point and
wavelet estimates). We further explore the improvements
we obtain by using adaptive greedy pursuit.

7.1 Batch Query Processing

In the first experiment, we used the data for Day 0 (45M
records) and computed offline the highest-B wavelet

coefficients for 1 � B � 40. For the streaming set-up, the
distortion � and failure threshold � where both set to 0:3;
thus, we were expecting to compute coefficients additively
to within �9% of the energy of the signal. The sketch size
for these parameters was 3,952 words long. At the end of
the day, we used the sketch to compute a highest-B
approximate set of wavelet coefficients for B between one
and 40. We then reconstructed the signal from both
highest-B sets (varying B) and computed the point-wise
sum-squares-error (sse) of each approximation; that is, the
cumulative sse of all point-queries in the npa-nxx domain.
Fig. 2 plots the sse of both representations over the energy
of the signal, varying B. The seven largest wavelet
coefficients are accurately picked by this sketch as they
contain (cumulatively) roughly 91 percent of the energy. For
B > 7, additional wavelet coefficients contain too little
information to be reliably identified by the sketch. We can
see this in the ratio for the offline case, the error flattens out
around seven coefficients.

Because it may be prohibitively expensive to compute all
N wavelet coefficients from the sketch and then determine
which are the B largest,6 we perform two experiments to
explore the accuracy of possible improvements. We
compare using coefficients from a sample of the data and
updating coefficients in the background as we stream over
the data.

In Fig. 3, we used data from all seven days. We compare
the set of B largest coefficients obtained from the sketch
with 1) the largest B selection obtained from an offline
algorithm (as before) and 2) a static largest B set that is
obtained by picking the best B coefficients after looking at
Day 0 and dynamically maintaining these coefficients in a
streaming fashion, as described in [31]. The latter method is
denoted as Streaming (fixed-set). As in the first experiment,
there is a decrease in the accuracy for B > 26, as the
remaining coefficients are too small to be computed from
the sketch with good accuracy. This streaming model,
however, by far outperforms the case when the selection of
the B coefficients is fixed a priori.7

In a last experiment, we used a pool of B ¼ 40
coefficients and amortized the cost of estimating the
wavelet coefficients by computing 10; 000 coefficients in
the background every 10; 000; 000 items (e.g., we amortize
the cost of a coefficient over 1,000 data items). Fig. 4 shows
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6. For this data set, computing a single wavelet coefficient from the
sketch takes about 22msecs in a 667Mhz Pentium III PC.

7. To verify that the static selection of coefficients was not hindered by a
poor choice in the initial data (Day 0), we reran the experiment starting with
Day 1 and found similar results.

Fig. 3. Ratio sse/energy versus B at the end of day 6.



the performance of all methods for executing all possible
point queries, at the end of each day (starting from Day 1).
For this set up, each wavelet coefficient was estimated about
seven times during the six day run of the experiment. As
more and more wavelet coefficients are updated, the
background computation catches up—and sometimes even
surpasses—the batch computation of all coefficients. This is
a result of different levels of “noise” introduced from the
sketch at the time of the wavelet computation.

7.2 Online Query Processing

In Fig. 5, we summarize an experiment using Day 0 of the
phone data and compute the sse over the energy of the
array for direct point/wavelet and for top-B wavelet (as in
the batch process) estimates over all point queries. For the
two smaller sketch sizes, the top-B wavelet-based computa-
tion is substantially better, in terms of sse, by a factor of 180
and 66, respectively. This is because direct estimation from
the sketch results in very gross estimates for all but the
largest values of the array, the “heavy hitters.” We can also
see that adding more than 10 wavelet coefficients in the
representation increases the error. This agrees with the
observation we made in Fig. 2. These 10 largest wavelet
coefficients are the heavy hitters in the wavelet domain and
can be estimated reliably by the sketch. The last column of
the table shows a large increase in the accuracy of the direct
estimates for the larger sketch. We point out though that
this sketch size is about 20 percent of the size of the array
and not likely to be of real use in practice.

In Table 2, we take a closer look to the estimation of the

heavy hitters for the medium sized sketch. We compute the

relative error ja½i� ÿ âa½i�j=a½i� for the five largest values of a.

The picture now is completely different compared to the

previous run. Approximating the heavy hitters using the

top-B (B ¼ 10; 40) method is very unreliable. This is because

the largest B wavelets capture the overall distribution, not

the peak values. As a result, they are better over all queries

(Table 2), but not as good for the heavy hitters.
In Fig. 6, we compute the average relative error for the first

k heavy hitters for 1 � k � 100; that is, the sum of the

relative errors for the first k heavy hitters, divided by k.

Notice that, unlike the metric sse/energy, this metric is not

weighted by the values of the array; that is, all values

contribute the same. Notice that initially the direct point

estimates are more accurate (in terms of the average relative

error) up to heavy hitter 43, but get progressively worse,

while the direct wavelet estimates are not as accurate

initially, but do not degrade significantly past heavy hitter

50. After heavy hitter 90, the average relative error of the

direct point estimates is over 100 percent.
In Fig. 7, we repeat the experiment using adaptive

greedy pursuit as described in Section 6.2.4. Direct point

estimates are now more accurate than direct wavelet

estimates. The average error for the first 100 heavy hitters

is down from 104 percent to 15 percent compared to the

plain method! We notice, however, that this technique

works well when we have a good idea of what we are

looking for, say the heavy hitters. Wavelets, on the other

hand, are far more reliable for estimating the whole array or

randomly-picked parts thereof.
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Fig. 4. Sse at the end of each day, starting from day 1.

Fig. 5. Comparison (sse/energy) of top-B wavelets against direct

estimates.

TABLE 2
Relative Error for Top 10 Heavy Hitters

Fig. 6. Direct estimates for the top 100 heavy hitters.



8 CONCLUSIONS

In this paper, we addressed a fundamental question in the

data streaming context, namely, how to summarize the

signal represented by the stream in small space so that

aggregates queries on the signal can be answered with

reasonable accuracy. Our methods are more general than

the context in which we have explored them. For example,

one of the attractive features of wavelet-based methods is

that 1) they scale well for multidimensions unlike tradi-

tional selectivity estimation methods and 2) they have been

found to work for data-cube approximations as well [36].

Our methods can be extended quite naturally to those

contexts. Also, recently, the notion of correlated or

continuous queries has been explored for data streams

[16]; we believe that our methods would supplement those

results and enhance them to include generalized correla-

tions. Finally, there is some focus on developing data

mining algorithms for streams. Such algorithms would

need to be able to compare parts of the stream with others

repeatedly; hence, they would need small space methods to

approximate the distance between “substreams” and “sub-

signals” efficiently. Our methods may prove useful there.
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