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We study turbulent flows in a smooth straight pipe of circular cross-section up to
friction Reynolds number (Reτ ) ≈ 6000 using direct numerical simulation (DNS) of the
Navier–Stokes equations. The DNS results highlight systematic deviations from Prandtl
friction law, amounting to approximately 2 %, which would extrapolate to approximately
4 % at extreme Reynolds numbers. Data fitting of the DNS friction coefficient yields an
estimated von Kármán constant k ≈ 0.387, which nicely fits the mean velocity profile,
and which supports universality of canonical wall-bounded flows. The same constant
also applies to the pipe centreline velocity, thus providing support for the claim that the
asymptotic state of pipe flow at extreme Reynolds numbers should be plug flow. At the
Reynolds numbers under scrutiny, no evidence for saturation of the logarithmic growth
of the inner peak of the axial velocity variance is found. Although no outer peak of the
velocity variance directly emerges in our DNS, we provide strong evidence that it should
appear at Reτ � 104, as a result of turbulence production exceeding dissipation over a large
part of the outer wall layer, thus invalidating the classical equilibrium hypothesis.
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1. Introduction

Turbulent flow in circular pipes has always attracted the interest of scientists, owing
to its prominent importance in the engineering practice and because of the beautiful
simplicity of the set-up. In this respect, the pioneering flow visualizations of Reynolds
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(1883) may be regarded as a milestone for the understanding of turbulent and transitional
flows. The most extensive experimental measurements of high-Reynolds-number pipe
flows have been carried out in modern times in the Princeton SuperPipe pressurized
facility (Zagarola & Smits 1998; McKeon, Zagarola & Smits 2005; Hultmark, Bailey
& Smits 2010). Those investigations have allowed scientists to measure the main flow
features such as friction and mean velocity profiles with high precision, and they currently
constitute the most comprehensive database for the study of pipe turbulence. However,
even the use of specialized microfabricated hot-wire probes could not provide fully reliable
information about the viscous and buffer layers at high Reynolds numbers (Hultmark et

al. 2012). Additional experimental studies of pipe turbulence have been carried out in the
high-Reynolds-number actual flow facility (Hi-Reff), a water tunnel with relatively large
diameter, which allows for accurate estimation of friction (Furuichi et al. 2015, 2018).
Recently, the Center for International Cooperation in Long Pipe Experiments (CICLoPE)
facility of the University of Bologna (Fiorini 2017; Willert et al. 2017) has been set up,
whose large diameter (approximately 1 m) offers a well-established turbulent flow with
relatively large viscous scales, thus granting higher spatial resolution. Flows in different
facilities seem to have sensibly different properties in terms of friction and mean velocity
profiles, which we will comment on.

Numerical simulation of pipe turbulence flow has received less interest than other
canonical flows, the plane channel in particular, because of additional difficulties involved
with the discrete solution of the Navier–Stokes equations in cylindrical coordinates,
with special reference to the treatment of the geometrical singularity at the pipe axis.
Early numerical simulations of turbulent pipe flow were carried out by Eggels et al.

(1994), at friction Reynolds number Reτ = 180 (Reτ = uτ R/ν, with uτ = (τw/ρ)1/2 the
friction velocity, R the pipe radius and ν the fluid kinematic viscosity). Effects of drag
reduction associated with pipe rotation were later studied by Orlandi & Fatica (1997).
Higher Reynolds numbers (up to Reτ ≈ 1140) were reached by Wu & Moin (2008), which
first allowed one to observe a near logarithmic layer in the mean velocity profile. Flow
visualizations and two-point correlation statistics pointed to the existence of high-speed
wavy structures in the pipe core region which are elongated in the axial direction,
and whose streamwise and azimuthal dimensions do not change substantially with the
Reynolds number, when normalized in outer units. Further follow-up direct numerical
simulation (DNS) studies have been carried out by El Khoury et al. (2013), Chin et

al. (2014) and Ahn et al. (2013). At present, the highest Reynolds number in pipe flow
(Reτ ≈ 3000) has been reached in the study of Ahn et al. (2015). Although no sizeable
logarithmic layer is present yet at those conditions, some effects associated with significant
scale separation between inner- and outer-scale turbulence were observed, as the presence
of a k−1 (k being the wavenumber in any wall-parallel direction) power-law ranges in the
velocity spectra.

Despite inherent limitations in the Reynolds numbers which can be attained, DNS has
the advantage over experiments of yielding immediate access to the near-wall region, and
of allowing scientists to measure some flow properties, e.g. the turbulence dissipation rate,
which can hardly be measured in experiments. Hence, it is generally claimed that DNS
data at increasing Reynolds numbers are needed to prove or disprove theoretical claims
related to departure (or not) of the statistical properties of wall-bounded turbulence from
the universal wall scaling (Cantwell 2019; Chen & Sreenivasan 2021; Monkewitz 2021).
In this paper we thus present DNS data of turbulent flow in a smooth circular pipe at
Reτ ≈ 6000, which is two times higher than the previous state of the art. Relying on the
DNS data, we revisit current theoretical inferences and discuss implications about possible
trends in the extreme Reynolds number regime.
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2. The numerical dataset

The code used for DNS is the spin-off of an existing solver previously used to study
Rayleigh–Bénard convection in cylindrical containers at extreme Rayleigh numbers
(Stevens et al. 2013). That code is in turn the evolution of the solver originally developed
by Verzicco & Orlandi (1996), and used for DNS of pipe flow by Orlandi & Fatica (1997).
A second-order finite-difference discretization of the incompressible Navier–Stokes
equations in cylindrical coordinates is used, based on the classical marker-and-cell method
(Harlow & Welch 1965), with staggered arrangement of the flow variables to remove
odd–even decoupling phenomena and guarantee discrete conservation of the total kinetic
energy in the inviscid flow limit. Uniform volumetric forcing is applied to the axial
momentum equation to maintain constant mass flow rate in time. The Poisson equation
resulting from enforcement of the divergence-free condition is efficiently solved by double
trigonometric expansion in the periodic axial and azimuthal directions, and inversion
of tridiagonal matrices in the radial direction (Kim & Moin 1985). An extensive series
of previous studies about wall-bounded flows from this group proved that second-order
finite-difference discretization yields in practical cases of wall-bounded turbulence results
which are by no means inferior in quality to those of pseudospectral methods (e.g. Moin
& Verzicco 2016; Pirozzoli, Bernardini & Orlandi 2016). A crucial issue is the proper
treatment of the polar singularity at the pipe axis. A detailed description of the subject is
reported in Verzicco & Orlandi (1996), but basically, the radial velocity ur in the governing
equations is replaced by qr = rur (r is the radial space coordinate), which by construction
vanishes at the axis. The governing equations are advanced in time by means of a hybrid
third-order low-storage Runge–Kutta algorithm, whereby the diffusive terms are handled
implicitly, and convective terms in the axial and radial direction are handled explicitly.
An important issue in this respect is the convective time step limitation in the azimuthal
direction, due to intrinsic shrinking of the cells’ size toward the pipe axis. To alleviate this
limitation we rely on implicit treatment of the convective terms in the azimuthal direction
(Akselvoll & Moin 1996; Wu & Moin 2008), which enables marching in time with similar
time step as in planar domains flow in practical computations. In order to minimize
numerical errors associated with implicit time stepping, in the present code explicit and
explicit discretizations of the azimuthal convective terms are linearly blended with the
radial coordinate, in such a way that near the pipe wall the treatment is fully explicit, and
near the pipe axis it is fully implicit. The code was adapted to run on clusters of graphic
accelerators (GPUs), using a combination of CUDA Fortran and OpenACC directives, and
relying on the CUFFT libraries for efficient execution of fast Fourier transforms (FFTs)
(Ruetsch & Fatica 2014). The DNS were carried out on the Marconi-100 machine based at
CINECA (Italy), relying on NVIDIA Volta V100 graphic cards. Specifically, 1024 GPUs
were used for DNS-F.

Numerical simulations are carried out with periodic boundary conditions in the axial
(z) and azimuthal (θ ) directions. The velocity field is then controlled by two parameters,
namely the bulk Reynolds number (Reb = 2Rub/ν, with R the pipe radius, ub the fluid
bulk velocity and ν its kinematic viscosity), and the relative pipe length, Lz/R. A list of
the main simulations that we have carried out is given in table 1. The mesh resolution
is designed based on well-established criteria in the wall turbulence community. In
particular, the collocation points are distributed in the wall-normal direction so that
approximately 30 points are placed within y+ ≤ 40 (y = R − r is the wall distance, and
the + superscript is used to denote normalization with respect to uτ and ν), with the
first grid point at y+ ≈ 0.05. The mesh is progressively stretched in the outer wall layer
in such a way that the mesh spacing is proportional to the local Kolmogorov length
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Dataset Lz/R Mesh (Nθ × Nr × Nz) Reb λ Reτ T/τt Line style

DNS-A 15 256 × 67 × 256 5300 0.03700 180.3 204.0
DNS-B 15 768 × 140 × 768 17 000 0.02716 495.3 87.4
DNS-C 15 1792 × 270 × 1792 44 000 0.02136 1136.6 25.9
DNS-C-SH 7.5 1792 × 270 × 986 44 000 0.02164 1144.2 31.1 NA
DNS-C-LO 30 1792 × 270 × 3944 44 000 0.02128 1134.6 24.5 NA
DNS-C-FT 15 3944 × 270 × 1792 44 000 0.02114 1131.0 31.3 NA
DNS-C-FR 15 1792 × 540 × 1792 44 000 0.02132 1135.7 28.6 NA
DNS-C-FZ 15 1792 × 270 × 3944 44 000 0.02132 1135.7 15.5 NA
DNS-D 15 3072 × 399 × 3072 82 500 0.01836 1976.0 22.4
DNS-E 15 4608 × 540 × 4608 133 000 0.01659 3028.1 16.6
DNS-F 15 9216 × 910 × 9216 285 000 0.01428 6019.4 8.32

Table 1. Flow parameters for DNS of pipe flow. Here R is the pipe radius; Lz is the pipe axial length; Nθ , Nr

and Nz are the number of grid points in the azimuthal, radial and axial directions, respectively; Reb = 2Rub/ν is
the bulk Reynolds number; λ = 8τw/(ρu2

b) is the friction factor; Reτ = uτ R/ν is the friction Reynolds number;
T is the time interval used to collect the flow statistics; and τt = R/uτ is the eddy turnover time.

scale, which there varies as η+ ≈ 0.8y+1/4 (Jiménez 2018), and the radial spacing at
the pipe axis is ∆y+ ≈ 8.8. Additional details are provided in a specifically focused
publication (Pirozzoli & Orlandi 2021). Regarding the axial and azimuthal directions,
finite-difference simulations of wall-bounded flows yield grid-independent results as long
as ∆x+ ≈ 10, R+

∆θ ≈ 4.5 (Pirozzoli et al. 2016), hence the associated number of grid
points scales as Nz ≈ Lz/R × Reτ/10, Nθ ∼ 2π × Reτ/4.5. All DNS have been carried out
at Courant–Friedrichs–Lewy (CFL) number close to unity, based on the radial convective
time step limitation. The CFL number along the axial direction is typically smaller by a
factor two. The time step expressed in wall units (ν/u2

τ ) ranges from ∆t+ = 0.55 in DNS-A
to ∆t+ = 0.15 in DNS-F. According to the established practice (Hoyas & Jiménez 2006;
Ahn et al. 2015; Lee & Moser 2015), the time intervals used to collect the flow statistics
are reported in terms of eddy-turnover times, τt = R/uτ . For reference, the time window
used to collect the flow statistics in DNS-F amounts to approximately 13.1 flow-through
times (Lz/ub time units).

The sampling errors for some key properties discussed in this paper have been estimated
using the method of Russo & Luchini (2017), based on an extension of the classical batch
means approach. The results of the uncertainty estimation analysis are listed in table 2,
where we provide expected values and associated standard deviation for the friction
factor ( f ), mean centreline velocity (UCL), peak axial velocity variance and its position
((

〈

u2
z

〉

IP
and yIP, respectively), and the dissipation rate of axial velocity variance (ǫ11w).

Here and elsewhere, capital letters are used to denote flow properties averaged in the
homogeneous spatial directions and in time, brackets denote the averaging operator, and
lower-case letters to denote fluctuations from the mean. We find that the sampling error is
generally quite limited, being larger in the largest DNS, which have been run for shorter
times. In particular, in DNS-F the expected sampling error in friction, centreline velocity
and peak velocity variance is approximately 0.5 %, whereas it is approximately 1 % for
the wall dissipation. Additional tests aimed at establishing the effect of axial domain
length and grid size have been carried out for the DNS-C flow case, whose results are
also reported in table 2. We find that doubling the pipe length yields a change in the
basic flow properties of approximately 0.2 %–0.3 %, whereas halving it yields changes
of approximately 1 % in friction and peak velocity variance, and up to 10 % in the wall
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Dataset λ U+
CL 〈u2

z 〉
+
IP y+

IP ǫ+
11w

DNS-A 0.03700 ± 0.15 % 19.30 ± 0.087 % 7.129 ± 0.26 % 14.95 ± 0.24 % 0.1168 ± 0.47 %
DNS-B 0.02716 ± 0.074 % 21.81 ± 0.17 % 7.352 ± 0.17 % 14.28 ± 0.010 % 0.1506 ± 0.21 %
DNS-C 0.02136 ± 0.13 % 24.07 ± 0.18 % 7.995 ± 0.29 % 14.66 ± 0.073 % 0.1697 ± 0.37 %
DNS-C-SH 0.02164 ± 0.14 % 24.09 ± 0.20 % 8.071 ± 0.44 % 14.37 ± 0.11 % 0.1952 ± 0.54 %
DNS-C-LO 0.02128 ± 0.16 % 24.17 ± 0.11 % 7.965 ± 0.29 % 14.62 ± 0.058 % 0.1704 ± 0.40 %
DNS-C-FT 0.02114 ± 0.12 % 24.28 ± 0.14 % 7.948 ± 0.27 % 14.66 ± 0.078 % 0.1691 ± 0.34 %
DNS-C-FR 0.02132 ± 0.25 % 24.10 ± 0.12 % 7.886 ± 0.31 % 14.41 ± 0.096 % 0.1741 ± 0.60 %
DNS-C-FZ 0.02132 ± 0.21 % 24.07 ± 0.26 % 8.168 ± 0.38 % 14.89 ± 0.14 % 0.1727 ± 0.44 %
DNS-D 0.01839 ± 0.25 % 25.56 ± 0.34 % 8.397 ± 0.43 % 14.79 ± 0.098 % 0.1822 ± 0.57 %
DNS-E 0.01658 ± 0.26 % 26.47 ± 0.27 % 8.681 ± 0.69 % 14.87 ± 0.13 % 0.1903 ± 0.93 %
DNS-F 0.01428 ± 0.36 % 28.05 ± 0.35 % 9.108 ± 0.72 % 15.14 ± 0.20 % 0.1993 ± 1.10 %

Table 2. Uncertainty estimation study: mean values of representative quantities and standard deviation of their
estimates. Here λ is the friction factor; U+

CL is the mean pipe centreline velocity; 〈u2
z 〉

+
IP is the peak axial velocity

variance and y+
IP is its distance from the wall; and ǫ+

11w is the dissipation rate of 〈u2
z 〉 at the wall.

dissipation. Hence, consistent with previous studies (Chin et al. 2010), we believe that
the selected pipe length (Lz/R = 15) is representative of an infinitely long pipe, at least
for the purposes of the present study. In order to quantify uncertainties associated with
numerical discretization, additional simulations have been carried out by doubling the
grid points in the azimuthal, radial and axial directions. Based on the data reported in the
table, after discarding the short pipe case, we can thus quantify the uncertainty due to
numerical discretization and limited pipe length to be approximately 0.3 % for the friction
coefficient and pipe centreline velocity, 0.6 % for the peak velocity variance and 0.9 % for
the wall dissipation.

3. Results

Qualitative information about the structure of the flow field is provided by instantaneous
perspective views of the axial velocity field, provided in figure 1. Although finer-scale
details are visible at the higher Re, the flow in the cross-stream planes is always
characterized by a limited number of bulges distributed along the azimuthal direction,
which closely recall the proper orthogonal decomposition (POD) modes identified by
Hellström & Smits (2014), and which correspond to alternating intrusions of high-speed
fluid from the pipe core and ejections of low-speed fluid from the wall. Streaks are visible
in the near-wall cylindrical shells, whose organization has clear association with the
cross-stream pattern. Specifically, regardless of the Reynolds number, R-sized low-streaks
are observed in association with large-scale ejections, whereas R-sized high-speed streaks
occur in the presence of large-scale inrush from the core flow. At the same time, smaller
streaks scaling in wall units appear, corresponding to buffer-layer ejections/sweeps. Hence,
organization of the flow on at least two length scales is apparent here, whose separation
increases with Reτ .

Mean friction is obviously a parameter of paramount importance as it is related to power
expenditure to sustain the flow. In figure 2, we show the friction factor, namely

λ =
8τw

ρu2
b

. (3.1)
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DNS-A

Re
τ
=180

DNS-B

Re
τ
= 495

DNS-C

Re
τ
= 1137

DNS-D

Re
τ
=1976

DNS-E

Re
τ
= 3028

DNS-F

Re
τ
= 6019

(a) (b) (c)

(d ) (e) ( f )

Figure 1. Instantaneous axial velocity contours (colour scale from blue to red) in turbulent pipe flow as
obtained from DNS. Contours are shown on a cross-stream plane and on a near-wall cylindrical shell

(y+ ≈ 15).

A correlation generally used for smooth pipes is the Prandtl friction law,

1/λ1/2 = A log10(Rebλ
1/2) − B, (3.2)

where A = log 10/(2k
√

2), with k being the von Kármán log-law constant. The standard
values A = 2.0, B = 0.8, were derived by fitting the experimental data of Nikuradse
(1933). Reynolds-number-dependent corrections to the standard friction law were
introduced by McKeon et al. (2005) in order to improve the fitting of the SuperPipe data.
Figure 2 shows overall agreement of all DNS and experimental data with the Prandtl law.
However, closer scrutiny (see the figure insets) highlights some scatter. Regarding DNS, all
datasets overshoot the Prandtl law at low Reynolds number, although to a quite different
extent. In fact, the data of Wu & Moin (2008), El Khoury et al. (2013) and Chin et al.

(2014) exceed the theoretical values by up to 4 %, whereas our data tend to be much
more consistent with those of Ahn et al. (2015). We believe that this difference may be
related to different grid resolution in the azimuthal direction, which was R+

∆θ = 7–8 in
those previous studies, and 4–5 in our DNS. Our data in fact show minimal overshoot at
low Reynolds number, and consistent undershoot from Prandtl law by approximately 2 %.
Regarding experiments, SuperPipe data typically tend to lie above the theoretical curve
by approximately 2 %, whereas the CICLoPE and Hi-Reff data tend to fall short of it.
Although the range of data overlap is not extensive, it appears that DNS data tend to be
more consistent with the CICLoPE and Hi-Reff data than with other datasets. Fitting the
current DNS data with a functional relationship as (3.2), yields A ≈ 2.102, B ≈ 1.148,
with an inferred value of the von Kármán constant of k = 0.387 ± 0.004, with uncertainty
estimates based on 95 % confidence bounds from the curve-fitting procedure. This value is
extremely close to that suggested by Furuichi et al. (2018), who reported k = 0.386 as an
average value over a very wide range of Reynolds numbers, and also very close to values
reported in boundary layers (Nagib & Chauhan 2009) and channels (Lee & Moser 2015).
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Figure 2. Friction factor as a function of bulk Reynolds number, in linear (a) and in semilogarithmic (b)
scale. Circles denote present DNS data, other symbols are defined in table 3. The solid line corresponds to the
classical Prandtl friction law as given in (3.2), whereas the dashed grey line corresponds to a fit of the DNS
data. Relative deviations with respect to the Prandtl friction law are shown in the insets.

Source Type Reτ range Symbols

Wu & Moin (2008) DNS 180, 1140
El Khoury et al. (2013) DNS 180–1000
Chin et al. (2014) DNS 180–2000
Ahn et al. (2013), Ahn et al. (2015) DNS 180-3000
Durst, Jovanović & Sender (1995) EXP 250
Swanson et al. (2002) EXP 170–1500
Fiorini (2017) EXP 3000–35 000
Willert et al. (2017) EXP 5400–40 000
Nagib et al. (2017) EXP 8000–40 000
McKeon et al. (2005) EXP 1800–32 900
Hultmark et al. (2012) EXP 2000–20 000
Furuichi et al. (2015), Furuichi et al. (2018) EXP 200–53 000
Schultz & Flack (2013) EXP (channel) 1000–6000
Lee & Moser (2015) DNS (channel) 180–5200

Table 3. List of other references for data used in the paper.

If this trend is extrapolated, deviations of approximately 4 % from the standard Prandtl law
would result at Reb = 107.

The mean velocity profile in turbulent pipes has received extensive attention from
theoretical studies, much of the early debate being focused on whether a log law or a
power law better fits the experimental results (Barenblatt, Chorin & Prostokishin 1997),
mainly carried out in the SuperPipe facility (Zagarola & Smits 1998; McKeon et al. 2005).
Recent studies have highlighted the need for corrections to the baseline log law in order
to accurately describe the velocity profile throughout the log layer into the core part of
the flow (Luchini 2017; Cantwell 2019; Monkewitz 2021). In figure 3, we show the series
of velocity profiles computed with the present DNS, compared with previous DNS and
experimental data. Overall, good agreement is observed across various sources as far
as the inner and the overlap regions are concerned, with data gradually approaching a
logarithmic distribution, here identified by visual fitting as U+ = 1/k log y+ + 4.53, using
the value of k = 0.387 determined from friction data. This is quite close to estimates
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Figure 3. Inner-scaled mean velocity profiles obtained with our DNS (a), and compared with previous DNS
and experiments (b). Deviations from the assumed logarithmic wall law, U+

log = log y+/0.387 + 4.53, are
highlighted in the inset of panel (a). For greater clarity, profiles in panel (b) are offset in the vertical direction
by five wall units steps. Lines denote present DNS data, with colour code as in table 1, and symbols denote
data from other authors, as in table 3.

based on direct fitting of the mean velocity profile in pipe flow (Marusic et al. 2013),
which yielded U+ = 1/0.391 log y+ + 4.34. The DNS velocity profiles for Reτ ≥ 103

follow this distribution with deviations of no more than 0.1 wall units from y+ ≈ 30 to
y/R ≈ 0.15, whence the core region develops. Differences with respect to previous DNSs
are concentrated in the core region, which seemingly stronger wake in some datasets,
including our own, Wu & Moin (2008) and Ahn et al. (2013), and weaker in others (El
Khoury et al. 2013; Chin et al. 2014), reflecting previously noted differences in the friction
coefficient. Especially satisfactory is the excellent agreement between our DNS-E velocity
profile and the data of Ahn et al. (2015) at Reτ ≈ 3000. Comparison of our DNS dataset
with experimental data also shows overall good agreement, although some differences are
quite clear in the core region, in which SuperPipe experiments consistently yield lower
U+, which translates into lower friction.

More refined information on the behaviour of the mean velocity profile can be gained
from inspection of the log-law diagnostic function

Ξ = y+ dU+/dy+, (3.3)

which is shown in figure 4, and whose constancy would imply the presence of a genuine
logarithmic layer in the mean velocity profile. The figure supports universality of the
inner-scaled axial velocity for Reτ � 103, up to y+ ≈ 100, where Ξ attains a minimum,
and the presence of an outer maximum at y/R ≈ 0.6. Between these two sites the
distribution is roughly linear, as can be better appreciated in figure 4(b), with nearly
constant slope when expressed in outer coordinates. Approximate linear variation of the
diagnostic function in channel flow was observed by Jiménez & Moser (2007), who, based
on refined overlap arguments expressed by Afzal & Yajnik (1973), proposed the following
fit:

Ξ =
1

k
+

β

Reτ

+ α
y

R
, (3.4)

where α, β are adjustable constants, and k is the von Kármán constant. Here we find that
the set of constants k = 0.387, α = 2.0, β = 0, yields overall good approximation of the
pipe DNS data. The consequence is that a genuine logarithmic layer would only be attained
at infinite Reynolds number. In this respect, SuperPipe data seem to suggest the formation
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Figure 4. Log-law diagnostic function as defined in (3.3), expressed as a function of inner-scaled (a) and
outer-scaled (b) wall distance. The dashed horizontal line denotes the inverse Kármán constant, 1/0.387, and
the dash–dotted lines in panel (b) denote the linear fit (3.4), with k = 0.387, α = 2.0, β = 0. Lines denote
present DNS data, with colour code as in table 1, and symbols denote SuperPipe data (McKeon et al. 2005) at
Reτ = 1825, 3328, 6617, 10 914, 19 119, 32 870.
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Figure 5. Mean velocity profiles in outer scaling. Data of flow case DNS-E (a) are compared with SuperPipe
data at Reτ = 3328 and Reτ = 3334, and data of flow case DNS-F (b) with SuperPipe data at Reτ = 5411 and
Reτ = 6617.

of a plateau at Reτ � 104, although the scatter of points is quite significant. Hence, DNS
at higher Reynolds number would be most welcome to confirm or refute our findings, and
possibly determine more accurate values of the extended log-law constants in (3.4).

Comparison with SuperPipe data is presented in outer units in figure 5, limited to the
higher Reτ cases. Despite differences in the Reynolds number, the velocity profiles now
agree very well, throughout the outer layer. This observation would suggest problems with
correct estimation of the friction velocity which, however, seems unlikely both in DNS, in
which we independently evaluate friction velocity by computing the wall derivative of the
velocity profile and from momentum balance, and in experiments, as measurements of the
pressure drop are regarded to have low uncertainty. Hence, reasons for this discrepancy are
not known, and additional experiments as those currently carried out in the large CICLoPE
facility would be especially useful and welcome. Unfortunately, velocity profiles along the
full radial span are not available at the moment for that facility.

The structure of the core region is examined in detail in figure 6, where the mean
velocity profiles are shown in defect form. Although full outer-layer similarity is not
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Figure 6. Defect velocity profiles for DNS and experiments, in linear (a) and semilogarithmic (b) scale. The
dashed grey line marks a parabolic fit of the DNS data (U+

CL − U+ = 8.0(1 − y/R)2), and the dashed purple
line the outer-layer logarithmic fit U+

CL − U+ = 0.961 − 1/0.387 log( y/R).

reached at the conditions of our DNS study (also see the inset of figure 3a), scatter across
the Reynolds number range and with respect to SuperPipe profiles for y/R ≥ 0.2 is no
larger than 5 %. As suggested by Pirozzoli (2014), the core velocity profiles can be closely
approximated with a simple quadratic function, reflecting near constancy of the eddy
viscosity. In particular, we find that the formula

U+
CL − U+ = CO (1 − y/R)2 , (3.5)

fits the DNS data with CO = 8.0 well, and it smoothly connects at y/R ≈ 0.2 with the
logarithmic profile expressed in outer form,

U+
CL−U+= −

1

k
log( y/R) + B, (3.6)

where again k = 0.387, and data fitting yields B = 0.961. While, of course, better
descriptions of the core velocity profiles are possible based on more elaborate functional
relationships (Luchini 2017), the composite profile matching equations (3.5) and (3.6)
yields a reasonable representation of the whole outer-layer mean velocity profile within
the scatter of available data.

Finer evaluation of similarities and differences between DNS and experiments is
provided in figure 7, where we show the mean centreline velocity, UCL, normalized by
the friction velocity (figure 7a), and by the bulk velocity (figure 7b), as a function of
the friction Reynolds number. Consistently with theoretical expectations (e.g. Monkewitz
2021), data suggest logarithmic increase with Reτ according to

U+
CL =

1

kCL

log Reτ + BCL, (3.7)

where we find kCL = k = 0.387 as for the friction law, and BCL = 5.85. For convenience,
the trend of ub/uτ is also presented, having in fact the same logarithmic growth with
Reτ . With some previously noted differences, all pipe flow DNSs seem to exhibit a
consistent trend in the accessible range. While the trend is very similar at low Reynolds
number, experimental data yield consistently lower values of U+

CL, especially those from
the SuperPipe. At Reynolds numbers higher than approximately Reτ = 104, experiments
seem to suggest milder growth rate, although significant differences emerge between the
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Figure 7. Mean pipe centreline velocity (UCL) expressed in inner (a) and in outer (b) units. The dashed grey
line corresponds to a fit of the DNS data. The DNS data are shown as circle symbols, and the corresponding
logarithmic fits are shown as thick dashed lines. Purple lines and symbols are used for the bulk velocity, ub.
For the nomenclature of other symbols, refer to table 3.

SuperPipe and the Hi-Reff datasets. Hence, whether this is the result of a change of
behaviour at high Reynolds number, or some form of shortcoming of experiments, is
difficult to say. As a result of the observed identity (or very close vicinity) of the von
Kármán constant for the centreline and for the bulk velocity, figure 7(b) highlights that
their ratio approaches unity at large Re, supporting the inference that pipe flow asymptotes
to plug flow in the infinite-Reynolds-number limit (Pullin, Inoue & Saito 2013). Regarding
that study, it is worthwhile noticing that one of the assumptions made in the analysis
is that the wall-normal location of the onset of the logarithmic region is either finite, or
increases no faster than Reτ . Interpreting the near-wall minimum of the diagnostic function
in figure 4 as the root of the (near) logarithmic layer, our data support that assumption
well. Whereas the curvature of the core velocity profile is not changing substantially when
expressed in wall units (see figure 6), it would become vanishingly small when expressed
in outer units. However, as figure 7(b) suggests, this trend is extremely slow. Interestingly,
again despite some scatter, DNS and experiments here seem to indicate a common trend
with overall monotonic decrease, perhaps with a ‘bump’ in the range of Reynolds numbers
in the low thousands. The DNS data points at the highest Reynolds numbers (DNS-D,
DNS-E, DNS-F) now appear to be in good agreement with SuperPipe experiments, which
is in line with the previously noted agreement of the outer-scaled mean velocity profiles.

The distributions of the velocity variances along the coordinate directions are shown
in figure 8, in inner scaling. As is now well established (Marusic & Monty 2019), the
longitudinal (uz) and spanwise (uθ ) velocity fluctuations show slow increase with the
Reynolds number, with commonly accepted logarithmic growth as after Townsend’s
attached eddy model (Townsend 1976). On the other hand, the wall-normal velocity
fluctuations seem to level off to a maximum value of approximately 1.30. It is remarkable
that the general growth of the longitudinal and spanwise fluctuations is more evident in
the outer layer, and in fact it has long been argued about the possible occurrence of a
secondary peak of 〈u2

z 〉, besides the primary buffer-layer peak. Experiments carried out
in the SuperPipe (Hultmark et al. 2012) and CICLoPE (Willert et al. 2017) facilities
indeed support the occurrence of such a peak at Reτ � 104. Whereas DNS data are
not at sufficiently high Reτ to show this secondary peak, it appears that in DNS-F the
axial velocity variance has attained a nearly horizontal inflectional point at y+ ≈ 140.
Comparison with the Reτ ≈ 3000 DNS of Ahn et al. (2015) shows overall good agreement
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Figure 8. Distribution of velocity variances (a) and comparison of cases DNS-E, DNS-F with reference DNS
and experiments (b). In panel (a), the short dashed lines denote the axial velocity variance (〈u2

z 〉), the solid lines
denote the radial velocity variance (〈u2

r 〉), and the long dashed lines denote the azimuthal velocity variance
(〈u2

θ 〉). For colour codes in DNS data, see table 1, and for nomenclature of symbols, see table 3.

of all turbulence intensities. Comparison with SuperPipe data at Reτ = 3000 is also very
good, with the exception of the near-wall peak which is likely to be overestimated in
experiments. The DNS-F data seem to be well bracketed by SuperPipe and CICLoPE
measurements at nearby Reynolds numbers, and also compare very well with experimental
data for plane channel flow (Schultz & Flack 2013).

Distributions of the turbulent shear stress are shown in figure 9. As is well established
(e.g. Lee & Moser 2015), the shear stress profiles tend to become flatter at higher Reτ ,
the peak value rises towards unity, and its position moves farther from the wall, in inner
units. In particular, exploiting mean momentum balance and assuming the presence of
a logarithmic layer in the mean axial velocity, the following prediction follows for the
position of the turbulent shear stress peak (Afzal 1982):

y+
m ≃

√

Reτ

k
, (3.8)

which is intermediate between inner and outer scaling. This observation has led some
authors to argue about the relevance of a ‘mesolayer’ (e.g. Long & Chen 1981; Wei et al.

2005). The asymptotic relationship (3.8) (with k = 0.387) is satisfied with good accuracy
starting at Reτ ≈ 103, reflecting the onset of a near logarithmic layer. Similar results were
obtained by Chin et al. (2014), by processing the mean velocity profiles obtained in the
experiments of Hultmark et al. (2013).

The behaviour of the Reynolds stresses when expressed as a function of the outer-scaled
wall distance, which is shown in figure 10, is also of great theoretical interest. In fact,
according to the attached-eddy model (Townsend 1976; Marusic & Monty 2019), the
wall-parallel velocity variances are expected to decline logarithmically with the wall
distance in the outer layer, hence

〈

u2
z

〉

= B1 − A1 log( y/R),
〈

u2
θ

〉

= B3 − A3 log( y/R), (3.9a,b)

where Ai, Bi are universal constants. Regarding the axial stress, Marusic et al. (2013)
argued that SuperPipe data at the highest available Reynolds number are best fit with
A1 = 1.23, B1 = 1.56, with a sensible logarithmic layer only emerging at Reτ > 104,
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Figure 9. Distributions of turbulent shear stress (a) and its peak position at various Reτ (b). In panel (b) the
circles denote the present DNS data, the squares the data of Hultmark et al. (2013), as processed by Chin et al.

(2014), and the dashed line the theoretical estimate (3.8). For colour codes in DNS data, see table 1.
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Figure 10. Axial (a) and azimuthal (b) turbulent stresses as a function of outer-scaled wall distance. In panel
(a), symbols denote SuperPipe data (Hultmark et al. 2012) at Reτ = 1985, 3334, 5411, 10 480, 20 250, 37 690,
and the dashed grey line the corresponding fit, 〈u2

z 〉 = 1.61–1.25 log( y/R). In panel (b), the dashed coloured
lines denote DNS data of channel flow (Lee & Moser 2015) at Reτ = 550, 1000, 2000, 5200, and the dashed
grey line the fit of the DNS data, 〈u2

θ 〉 = 1.0–0.40 log( y/R). For colour codes in DNS data, see table 1.

in the range of wall distances 3Re
1/2
τ ≤ y+ ≤ 0.15Reτ . The DNS data only show the

formation of a near logarithmic layer farther away from the wall, which is not where
it is expected from theoretical arguments. Hence, little can be said in this respect. The
azimuthal velocity variance, shown in figure 10(b), has a more benign behaviour, and it
features clear logarithmic layers even at modest Reτ . Fitting the DNS data yields A3 =
0.40, B3 = 1.0, which is very close to what is found in channels (Bernardini, Pirozzoli &
Orlandi 2014; Lee & Moser 2015). Measurements of pipe flow carried out in the CICLoPE
facility (Örlü et al. 2017) yielded A3 = 0.63, B3 = 1.21, hence much larger values than in
DNS. Possible overestimation of the wall-normal and azimuthal Reynolds stresses was in
fact acknowledged by the authors of that paper.

Quantitative insight into Reynolds number effects is provided by inspection of the
amplitude of the inner peak of the axial velocity variance, which we show in figure 11. The
general theoretical expectation is that the peak grows logarithmically with Reτ owing to the
increasing influence of distant, inactive eddies (Marusic & Monty 2019). However, some

926 A28-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

72
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.727


S. Pirozzoli and others

6

7

8

9

10

11

101 102 103 104

〈u
z2
〉 IP

/u
τ2

Re
τ Re

τ

10–4

10–3

10–2

10–1

100

 101 102 103

1
/4

-P
P

K+
 , 

1
/4

-ε
1
1
w+

Re
τ
–0.282

Re
τ
–1.07

(b)(a)

Figure 11. Magnitude of inner peak of axial velocity variance (a), peak turbulence production (PPK , red) and
wall dissipation of axial velocity variance (ǫ11w, black) (b). For colour codes in DNS data, see table 1, and
for nomenclature of symbols, see table 3. In panel (a) the dashed grey line marks the DNS data fit, 〈u2

z 〉
+
IP =

0.67 log Reτ + 3.3, the dashed purple line denotes the defect power law of Chen & Sreenivasan (2021) and
the dash–dotted line the logarithmic law of Marusic, Baars & Hutchins (2017), 〈u2

z 〉
+
IP = 0.63 log Reτ + 3.8.

In panel (b), the dot–dashed and dotted lines denote fits of PPK and ǫ11w in their tendency to the respective
assumed asymptotic values.

recent experimental results (Willert et al. 2017), and theoretical arguments (Chen &
Sreenivasan 2021), suggest that such growth should eventually saturate. Although the
difference between slow logarithmic growth and the attainment of an asymptotic value
is quite subtle in practice, the theoretical interest is high, as in the latter case universality
of wall scaling would be eventually restored. Within the investigated range of Reynolds
numbers, our DNS data in fact support continuing logarithmic increase. Comparison with
channel data (Lee & Moser 2015) shows some difference, which might result from stronger
geometrical confinement of distant eddies in the pipe geometry. However, differences tend
to becomes smaller at higher Reτ . In quantitative terms, we find the slope of logarithmic
increase to be approximately 0.67, a bit steeper than found in channel flow DNS (Lee
& Moser 2015, approximately 0.64), and then suggested from a collection of DNS and
experiments (approximately 0.63 (Marusic et al. 2017)). Experimental data for pipe flow
are quite scattered, as SuperPipe experiments yield an unrealistically decreasing trend
(Hultmark et al. 2012), particle image velocimetry (known as PIV) measurements taken
in the CIPLoPE facility (Willert et al. 2017) suggest saturation of the growth, whereas
hot-wire measurements in the same facility support continued logarithmic growth (Fiorini
2017). The theoretical predictions of Chen & Sreenivasan (2021) (see the dashed purple
line of figure 11a) seem to conform well with channel flow DNS data and with the
experiments of Willert et al. (2017).

While our DNS data cannot be used to directly evaluate the theoretical predictions
owing to limited achievable Reynolds number, they can be used to better scrutinize
the foundations of the theoretical arguments. The main argument made by Chen &
Sreenivasan (2021), although not thoroughly justified in our opinion, was that since
turbulence kinetic energy production is bounded, the wall dissipation must also stay
bounded. Hence, let P = −〈uzur〉dU/dr be the turbulence kinetic energy production rate,
and ǫ11 = ν〈|∇uz|2〉 be the dissipation rate of the axial velocity variance, those authors
first argue that the wall limiting value of ǫ11 should scale as

ǫ11
+
w = 1/4 − β/Re1/4

τ , (3.10)
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with β a suitable constant. In figure 11 we explore deviations of ǫw and of the peak
turbulence kinetic energy production, say PPK , from their asymptotic value, namely 1/4.
According to analytical constraints (Pope 2000), we find that production tends to its
asymptotic value quite rapidly, as approximately 1/Reτ . Consistent with (3.10), the wall
dissipation also tends to 1/4, more or less at the predicted rate, thus empirically validating
the first assumption. The next argument advocated by Chen & Sreenivasan (2021) is that
wall balance between viscous diffusion and dissipation and Taylor series expansion of the
axial velocity variance near the wall yields

〈u2
z 〉

+ ∼ ǫ+
11wy+2

, (3.11)

whence, from assumed invariance of the peak location of 〈u2
z 〉 (say, y+

IP), saturation of
growth of the peak velocity variance would follow. Table 2 suggests that this second
assumption is in fact violated, as the position of the peak slightly increases with Reτ ,
with non-negligible effect on the peak variance as it appears in squared form in (3.11). As
a consequence, logarithmic growth of the peak velocity variance still holds, at least in the
range of Reynolds numbers currently accessible to DNS.

A secondary, outer-layer peak of the axial velocity variance was observed in the
SuperPipe experiments of Hultmark et al. (2012), which relied on nanoscale thermal
anemometry probes. Later experiments carried out in the CICLoPE facility (Örlü et al.

2017), using custom-made X-wire probes, raised doubts about the existence of a genuine
outer peak, and in general prompted further high-quality data to ascertain whether it exists
beyond measurement uncertainty. Particle image velocimetry measurements also carried
out in the CICLoPE facility (Willert et al. 2017), did show an outer peak that develops
and moves away from the inner peak with increasing Reynolds number. Hence, it is
clear that this issue is not definitely settled in experiments. Although no distinct outer
peak of the axial velocity variance is found at the Reynolds numbers accessed in the
present DNS study, it is nevertheless instructive to explore the scaling of the velocity
fluctuations in the range of wall distances where the peak is expected to occur. For that
purpose, we consider the outer position where the second logarithmic derivative of the
velocity variance vanishes, which in the present DNS ranges from y+ ≈ 115 for DNS-A,
to y+ ≈ 140 for DNS-F. Weak dependence of the inner-scaled outer peak position on Reτ ,
although at much higher Reynolds number, was also noticed by Hultmark et al. (2012).
The resulting distribution is shown in figure 12. All DNS data fall nicely on a logarithmic
fit, and they seem to connect smoothly to the experimental results, whose scatter and
uncertainty is expected to be much less than for the inner peak. Experiments indicate a
change of behaviour to a shallower logarithmic dependence with slope of approximately
0.63 (Pullin et al. 2013; Fiorini 2017), which would be very close to the growth rate of the
inner peak (see figure 11). The figure suggests that verification of this effect would require
Reτ of approximately 104.

As pointed out by Hultmark et al. (2012), the formation and growth of an outer peak
of the axial velocity variance has important theoretical and practical implications. From
the modelling standpoint, no current Reynolds-averaged Navier–Stokes (RANS) model
is capable of predicting non-monotonic behaviour of Reynolds stresses outside the buffer
layer. From the fundamental physics standpoint, the presence of an outer peak is suggestive
of violation of equilibrium between turbulence production and dissipation. The DNS
allows us to substantiate this scenario, and for that purpose in figure 13, we show the
relative excess of turbulent kinetic energy production (P) over its total dissipation rate, here
defined as D = ν〈ui∇2ui〉, which lumps together dissipation rate and viscous diffusion.
Data confirm the presence of a near-universal region confined to the buffer layer (say,
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Figure 12. Magnitude of outer peak of axial velocity variance as a function of Reτ . Lines and symbols as in
tables 1 and 3. The dashed grey line marks the DNS data fit, 〈u2

z 〉
+
OP = 1.33 log Reτ − 5.61, and the purple line

denotes the logarithmic fit given by Pullin et al. (2013).
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Figure 13. Excess of turbulence kinetic energy production over dissipation as a function of inner-scaled (a)
and outer-scaled (b) wall distance. Lines as in table 1.

8 � y+ � 35), in which production exceeds dissipation by up to 40 %. Data also show
the onset, starting from DNS-B, of another region farther from the wall with positive
unbalance, whose inner limit is constant in inner units, at y+ = 100, and whose outer limit
tends to become constant at high Reτ in outer units, at y/R ≈ 0.4. The peak unbalance
at high Reynolds number is approximately 17 %, and its position seems to scale more
in inner than in outer units. Turbulence kinetic energy production excess in the presence
of a (near) logarithmic mean velocity profile can be interpreted by recalling that only
part of the axial velocity fluctuations which are generated correlates with wall-normal
velocity fluctuations to yield active motions (Townsend 1976), hence the extra production
feeds inactive motions, which do not convey contribution to the turbulent shear stress.
This finding clearly indicates that at high enough Reynolds number the outer wall layer
becomes a dynamically active part of the flow, having the potential to transfer energy both
to the core flow, and towards the wall, in the form of imprinting on the near-wall layer
(Marusic & Monty 2019).
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4. Concluding comments

Although DNS of wall turbulence is still confined to a moderate range of Reynolds
numbers, it is beginning to approach a state in which some typical phenomena of the
asymptotically high-Re emerge. Given its ability to resolve the near-wall layer, DNS lends
itself to testing theories of wall turbulence and to in-depth scrutiny of experimental data.
In this work, DNS of flow in a smooth pipe has been carried out up to Reτ ≈ 6000,
which, although still far from what achievable in experimental tests, allows us to uncover
a number of interesting issues, in our opinion. First, we have noted that DNS data fall
systematically short of the classical Prandtl friction law, by as much as 2 %. This evidence
is not consistent with data from the SuperPipe facility, although other recent data from the
CICLoPE and Hi-Reff facilities seem to yield similar trends. The DNS data fitting suggests
that a logarithmic law as (3.2) still holds, however, with a von Kármán constant k ≈ 0.387,
which matches extremely well the value quoted by Furuichi et al. (2018), and which would
reconcile pipe flow with plane channel and boundary layer flows, thus corroborating claims
made by Marusic et al. (2013). A logarithmic profile with k ≈ 0.387 fits the mean axial
velocity distributions for 30 ≤ y+ ≤ 0.15Reτ well, although linear deviations are clearly
visible, as argued by Afzal & Yajnik (1973) and Luchini (2017), which when taken into
account yield an excellent representation of the velocity profiles up to y/R ≈ 0.5. It is
remarkable that the same value of the von Kármán constant also fits the mean centreline
velocity distribution well (see figure 7), which is found to grow logarithmically throughout
the range of Reτ under investigation. This finding is quite reasonable as it corroborates
that the eventual state of turbulent flow in a pipe should be plug flow, as argued by Pullin
et al. (2013), hence UCL → ub as Reτ → ∞. This would, however, seemingly contrast
with recent measurements made in the CICLoPE facility (Nagib et al. 2017), which
rather suggest a different von Kármán constant for the bulk and the centreline velocity.
Experimental data at Reτ � 104 in fact suggest deviations of U+

CL from the logarithmic
trend found in DNS, however, this effect requires further confirmation, as data are quite
scattered. The core velocity profile is found to be, to a good approximation, parabolic, with
curvature which is nearly constant in wall units, and decreasing in outer units.

Regarding the velocity fluctuations, we find evidence for continuing logarithmic
increase of the inner-peak magnitude with Reτ . Some experiments and theoretical
arguments would indicate that beyond Reτ ≈ 104 a change of behaviour might occur
which, however, is very difficult to quantify. The DNS is probably of little use in this
respect, as in order to clearly discern among the various trends, Reτ in excess of 105

are likely to be needed. As predicted by the attached-eddy hypothesis, the wall-parallel
velocity variances in the outer layer tend to form logarithmic layers, which are especially
evident in the azimuthal velocity. Although we do not find direct evidence for the existence
of an outer peak of the axial velocity variance, our results highlight the occurrence of an
outer site with substantial turbulence production excess over dissipation, thus contradicting
the classical equilibrium hypothesis and likely to yield a distinct peak at Reτ ≈ 104.
Investigating these and other violations of universality of wall turbulence to extrapolate
asymptotic behaviours is a formidable challenge for theoreticians in years to come.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.727.
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