
����������
�������

Citation: El-Kalyoubi, S.A.; Ragab,

A.; Abu Ali, O.A.; Ammar, Y.A.;

Seadawy, M.G.; Ahmed, A.; Fayed,

E.A. One-Pot Synthesis and

Molecular Modeling Studies of New

Bioactive Spiro-Oxindoles Based on

Uracil Derivatives as SARS-CoV-2

Inhibitors Targeting RNA

Polymerase and Spike Glycoprotein.

Pharmaceuticals 2022, 15, 376.

https://doi.org/10.3390/

ph15030376

Academic Editors: Thierry Besson

and Pascal Marchand

Received: 6 February 2022

Accepted: 17 March 2022

Published: 20 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

One-Pot Synthesis and Molecular Modeling Studies of New
Bioactive Spiro-Oxindoles Based on Uracil Derivatives as
SARS-CoV-2 Inhibitors Targeting RNA Polymerase and
Spike Glycoprotein
Samar A. El-Kalyoubi 1, Ahmed Ragab 2,* , Ola A. Abu Ali 3, Yousry A. Ammar 2,* , Mohamed G. Seadawy 4,
Aya Ahmed 5 and Eman A. Fayed 1,*

1 Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University,
Cairo 11754, Egypt; s.elkalyoubi@hotmail.com

2 Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
3 Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;

o.abuali@tu.edu.sa
4 Main Chemical Laboratories, Egypt Army, Cairo 11351, Egypt; biologist202054@yahoo.com
5 Molecular Virology and Immunology Unit, Cancer Institute, Cairo University, Kasr Al-Ainist, El-Khaleeg,

Cairo 11976, Egypt; ayaah2223@yahoo.com
* Correspondence: ahmed_ragab7@ymail.com or ahmed_ragab@azhar.edu.eg (A.R.); yossry@yahoo.com or

yossry@azhar.edu.eg (Y.A.A.); alfayed_e@azhar.edu.eg or alfayed_e@yahoo.com (E.A.F.);
Tel.: + 20-201-009-341-359 (A.R.)

Abstract: The first outbreak in Wuhan, China, in December 2019 was reported about severe acute
coronaviral syndrome 2 (SARS-CoV-2). The global coronavirus disease 2019 (COVID-19) pandemic
in 2020 resulted in an extremely high potential for dissemination. No drugs are validated in large-
scale studies for significant effectiveness in the clinical treatment of COVID-19 patients, despite the
worsening trends of COVID-19. This study aims to design a simple and efficient cyclo-condensation
reaction of 6-aminouracil derivatives 2a–e and isatin derivatives 1a–c to synthesize spiro-oxindoles
3a–d, 4a–e, and 5a–e. All compounds were tested in vitro against the SARS-CoV-2. Four spiro[indoline-
3,5′-pyrido[2,3-d:6,5-d’]dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against
the SARS-CoV-2 in plaque reduction assay and were subjected to further RNA-dependent-RNA-
polymerase (RdRp) and spike glycoprotein inhibition assay investigations. The four compounds
exhibited potent inhibitory activity ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and 40.27 ± 0.17
to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a reference standard, which
showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike glycoprotein, respectively. The com-
putational study involving the docking studies of the binding mode inside two proteins ((RdRp)
(PDB: 6m71), and (SGp) (PDB: 6VXX)) and geometrical optimization used to generate some molecular
parameters were performed for the most active hybrids.

Keywords: spiro-oxindoles; isatin sulfonamide derivatives; SARS-CoV-2 inhibitory agents; RNA-
polymerase (RdRp) and spike glycoprotein inhibition; computational studies

1. Introduction

Coronaviruses (CoV) are a type of virus that can cause mild to severe respiratory
distress symptoms of cough, high fever, headache, rigor, myalgia, and dizziness [1,2].
Two coronavirus outbreaks, Serious Acute Respiratory Syndrome (SARS) and Middle East
Respiratory Syndrome (MERS) have emerged as epidemics with high mortality in the last
two decades. SARS CoV transmission from civet cats to humans occurred in China in
2002, and MERS CoV transmission from dromedary camels to humans occurred in Saudi
Arabia in 2012 [3]. A cluster of pneumonia cases with an unknown cause surfaced in
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Wuhan, Hubei Province, China, on 31 December 2019, and China later reported that the
outbreak was linked to a seafood market in Wuhan. China revealed the genomic code of the
new coronavirus that caused the outbreak for diagnostic purposes on 12 January 2020 [4].
Among other coronaviruses, the virus causing COVID-19 has the advantage of the presence
of a unique polybasic cleavage site leading to its increased pathogenicity [5]. In addition, it
consists of some structural and some non-structural proteins [6]. The structural proteins
include spike (S protein), envelope (E protein), membrane (M protein), nucleocapsid (N
protein). In contrast, the non-structural proteins include: main protease (Mpro), papain-
like protease (PLpro), non-structural protein 13 (nsp13, helicase), non-structural protein 12
(nsp12, RNA-dependent RNA polymerase), N-terminal exoribonuclease and C-terminal
guanine-N7 methyl transferase (nsp14), uridylate-specific endoribonuclease (nsp15), 2′

-O-methyltransferase (nsp16) and nsp10 [7,8]. Because heterocyclic chemicals have been
implicated in a variety of diseases, including viral infections, AIDS, and cancer, there is
a significant potential for using these numerous nuclei to combat coronaviruses. Some
antiviral drugs containing indolin-2-one, such as Arbidol and Marboran/Methisazone, are
tested against COVID-19 infection. These hybrids, Arbidol I and Marboran/Methisazone
II inhibit membrane fusion and mRNA and protein synthesis, respectively [9]. The use of
variants of already recognized antiviral medicines is a useful option until more accurate
treatment methodologies for COVID-19 become available [10]. In addition, the pyridine
containing hits as 5-chloropyridin-3-yl-1H-indole-4-carboxylate (III) and chloroquine IV,
show specificity against SARS CoV 3CLpro. All screened compounds showed potential
electrophilic centers which may be capable of forming a covalent bond with the nucleophilic
thiol of Cys 145 at the active site of 3CLpro [11] (Figure 1).
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Figure 1. Antiviral drugs having isatin and pyridine moieties.

Furthermore, the purine and pyrimidine derivatives, such as Acyclovir V and Ganci-
clovir VI and Lopinavir VII, were tested against COVID-19 infection and were shown to
be effective in the treatment of COVID-19 [12] involving more than two hydrogen bonds
with Mpro, which were further analyzed by SARS-CoV Mpro inhibition assay. Additionally,
purine derivatives have been shown to have significant antiviral action against a variety of
viruses. Nucleoside analogs, based on purine moiety, were designed and analyzed for their
activity against SARS-CoV using plaque reduction assay in SARS CoV Frankfurt-1 strain
infected Vero E6 cells [13] (Figure 2).
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two pharmacophoric groups via a covalent bond to create a single entity [14]. It was
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hypothesized that the hybridization of two or more pharmacologically active components
in the molecular architecture of hybrid compound/conjugate would prove to be a promising
chemotherapeutic agent [15–18]. As a result of these findings, and as part of our medicinal
program aimed at the discovery of novel biologically important heterocyclic compounds
with various biological activities [19,20], we integrated the structural features of isatin to
design and synthesize a new class of isatin–pyridine-pyrimidine conjugates, hoping to
identify novel functional molecules with potent antiviral effects. The results may provide
useful information for the design of novel chemotherapeutic drugs (Figure 3).
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2. Results and Discussion
2.1. Chemistry

The synthetic strategy to design the target spiro-oxindoles based on uracil derivatives
are outlined from Schemes 1–3. Both 5-(substituted-1-ylsulfonyl)indoline-2,3-dione 1a–c
and 6-aminouracil 2a–e were chosen as the scaffold for annulations of the target congeners
in our quest to create new spiro-oxindoles based on uracil derivatives with potential
pharmacological significance via one-pot reaction.
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The substituted 6-aminouracil derivatives 2a–e were obtained by adding urea, methyl
urea, and/or methyl thiourea to ethyl cyanoacetate in absolute ethanol containing sodium
(sodium ethoxide) by heating under reflux, according to the reported methods [21,22].
Additionally, 5-(substituted-sulfonyl)indoline-2,3-dione 1a–c were prepared according to
the previously reported method [23,24].

By heating 6-aminouracil derivatives 2a–e under reflux condition with 5-(substituted-
sulfonyl)indoline-2,3-dione 1a–c, a series of 3a–d, 4a–e, and 5a–e in a moderate yield
were obtained (Schemes 1 and 3). The mechanistic pathway for the synthesized 1′H-
spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine derivatives 3a–d, 4a–e, and 5a–e were
illustrated in Scheme 2. The first step involved condensation of C3-carbonyl functionality in
indoline-2,3-dione derivatives with C5-in 6-aminouracil derivatives in the presence of acetic
acid to form 5-(2-oxo-5-(substituted-sulfonyl)indolin-3-ylidene)dihydropyrimidine deriva-
tives B. The arylidene intermediate B reacted further with a second mole of 6-aminouracil
derivatives to obtain 2-oxoindolin-3-yl derivatives C that underwent cyclization through
nucleophilic addition followed by elimination of ammonia molecule to get the desired
product. The IR spectra of compound 3a showed absorption bands at v 3330, 3187, 1702,
and 1662 cm−1 corresponding to NH, and carbonyl groups. Its 1H NMR spectra displayed
four exchangeable singlet signals at δ 9.72, 10.87, 11.06, 11.71 ppm, and three signals for
three aromatic protons of indolin-2-one derivative as two doublets at δ 7.16, 7.51 ppm and
one doublet of a doublet at δ 7.65 ppm. Moreover, two singlet signals at δ 3.34, 3.45 ppm for
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two methyl protons (2CH3) and eight pyrrolidinyl (2CH2) appear as two multiplet signals
at δ 1.55, 3.02 ppm.
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Scheme 3. Synthesis of 1H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine derivatives 4a–e, and
5a–e containing 5-(piperidine/morpholin-1-ylsulfonyl) from the reaction of isatin sulfonamide with
uracil derivatives.

Additionally, the 1H NMR spectra of 1′,9′-bis(4-chlorobenzyl)-1′H-spiro[indoline-3,5′-
pyrido[2,3-d:6,5-d′]dipyrimidine 4d revealed four exchangeable signals at δ 9.84, 11.15,
11.38, 11.90 ppm attributed to four NH groups. Moreover, signals at δ 5.18, 5.28 ppm
owned to four protons of two methylene groups (2CH2) and signals at δ 1.32, 1.45,
2.81 ppm related to piperidinyl protons (5CH2). In addition, the eleven aromatic pro-
tons ranged between δ 7.06–7.59 ppm. Furthermore, the 13C NMR spectra of compound
5d exhibited four signals at δ 21.06, 22.84, 24.46, 46.34 ppm related to piperidinyl carbons,
and two methylene carbons appeared at δ 44.61 ppm and spiro-carbon at δ 50.30 ppm.
Furthermore, the aromatic carbons ranged between 83.90–146.75 ppm, as well as signals at
149.58, 150.15, 153.29, 157.84, 160.75, 172.03, 180.94 ppm corresponding to ethylenic carbon
attached to nitrogen (2C=C-N) and five carbonyl groups. (Supplementary data involving
the IR, 1H and 13C NMR data of all the synthetized compounds were represented in the
supplementary material file).

2.2. Antiviral Activity
2.2.1. The Half-Maximal Inhibitory Concentration (IC50)

Eventually, the development of an effective antiviral for SARS-CoV-2, if given to
patients early in infection, could help to limit the viral load, prevent severe disease pro-
gression, and limit person–person transmission. Benchmark testing of those compounds
against other potential antivirals for SARS-CoV-2 with alternative mechanisms of action
would therefore be important as soon as practicable [25]. The synthetic compounds 3a–d,
4a–e, and 5a–e were tested in vitro against the SARS-CoV-2 strain isolated from Egyptian
patients. The reference drug was chloroquine, a well-known chemotherapeutic agent. The
results were presented as IC50 values and described in the table below (Table 1 and Figure 4).
The effect of different concentrations of the compounds on the cellular proliferation of the
Vero E6 cell line following 24 h of treatment was determined using MTT assay [26]. Accord-
ing to the results, most of the compounds tested showed moderate to excellent cytotoxic
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activity against SARS-CoV-2, ranging from 4.10–5.93 µM compared with chloroquine as
the standard drug with IC50 value of about 2.24 µM.

Table 1. % Viability and IC50 of the newly synthesized compounds, and chloroquine at different
concentrations.

Cpd. No.
Concentrations (µM) (Mean ± SEM) IC50

µM0.312 0.625 1.25 2.5 5 10

3a 5.35 ± 0.01 12.13 ± 0.46 15.21 ± 0.40 28.88 ± 0.99 50.26 ± 2.40 74.95 ± 3.00 5.93 ± 0.05
3b 4.66 ± 0.04 17.11 ± 0.62 22.09 ± 0.75 39.20 ± 1.23 53.88 ± 2.53 83.63 ± 3.11 5.03 ± 0.01
3c 6.02 ± 0.17 11.62 ± 0.37 15.95 ± 0.41 29.24 ± 0.93 51.24 ± 2.44 76.79 ± 2.91 5.76 ± 0.07
3d 9.20 ± 0.33 21.20 ± 0.90 32.77 ± 1.11 44.27 ± 2.01 56.1 ± 2.54 89.56 ± 2.93 4.33 ± 0.01
4a 6.17 ± 0.11 11.87 ± 0.10 14.98 ± 0.30 29.78 ± 0.90 52.88 ± 2.34 75.98 ± 2.78 5.77 ± 0.01
4b 19.18 ± 0.31 25.17 ± 1.01 37.76 ± 1.20 49.12 ± 2.05 58.20 ± 2.46 77.00 ± 2.69 4.30 ± 0.01
4c 15.02 ± 0.55 23.12 ± 0.99 28.12 ± 1.01 39.13 ± 1.25 41.45 ± 1.67 79.12 ± 2.87 5.35 ± 0.05
4d 2.19 ± 0.15 11.19 ± 0.38 23.20 ± 0.97 30.20 ± 0.95 55.67 ± 2.66 88.02 ± 2.95 5.05 ± 0.02
4e 2.30 ± 0.91 11.33 ± 0.37 14.32 ± 0.32 22.45 ± 0.87 50.99 ± 2.01 77.09 ± 2.43 5.95 ± 0.06
5a 5.83 ± 0.15 13.12 ± 0.45 16.88 ± 0.53 28.24 ± 0.96 50.13 ± 2.01 74.87 ± 2.36 5.92 ± 0.05
5b 16.19 ± 0.50 21.14 ± 0.78 30.01 ± 1.19 44.30 ± 1.80 60.30 ± 2.36 90.98 ± 3.42 4.10 ± 0.02
5c 10.65 ± 0.35 12.98 ± 0.32 28.01 ± 1.00 37.12 ± 1.10 50.11 ± 1.54 85.30 ± 3.12 4.96 ± 0.01
5d 8.91 ± 0.19 14.79 ± 0.41 18.08 ± 0.80 29.09 ± 0.99 56.78 ± 2.02 73.14 ± 2.13 5.73 ± 0.07
5e 5.19 ± 0.04 10.98 ± 0.21 11.33 ± 0.35 22.22 ± 0.79 56.23 ± 1.79 88.14 ± 3.01 5.29 ± 0.01

Chloroquine * 2.24

* % of viability of chloroquine presented in the supplementary materials; SEM = standard error mean; each value
is the mean of three measures.
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2.2.2. Plaque Reduction Assay (% of Inhibition SARS-CoV2)

As represented in Table 2 and Figure 5, four spiro[indoline-3,5′-pyrido[2,3-d:6,5-
d′]dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against the SARS-
CoV-2 that was isolated from Egyptian patients. Firstly, 5-(pyrrolidin-1-ylsulfonyl)-1′H-
spiroindoline derivative 3a, which has R = CH3 and X = O, found the most active deriva-
tives among these series 3a–d against replication of the virus with the percentage of
inhibition = 84%. Additionally, replacing the methyl group with a benzyl or 4-Cl-benzyl
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moiety, as in compounds 3b and 3c, the activity decreased to 75% and 0%, respectively.
This decrease in the activity because of the presence of benzylidene moiety in general, and
the substitution of one hydrogen bond by chlorine atom at position four in the benzylidene
moiety, leads to removing the activity.

Table 2. Inhibition % of the compounds 3a–c, 4a–e, 5a–e, and Chloroquine as a reference drug.

Cpd. No. Conc
(µM) Viral Count (Untreated) (PFU/mL) Viral Count (Treated) (PFU/mL) Inhibition %

3a

5

11 × 105

1.76 × 105 84
2.5 1.98 × 105 82
1.25 3.3 × 105 70

0.625 3.85 × 105 65

3b

5

10 × 105

2.5 × 105 75
2.5 4.3 × 105 57
1.25 5 × 105 50

0.625 8.3 × 105 17

3c

5

5 × 105

5 × 105 0
2.5 5 × 105 0
1.25 5 × 105 0

0.625 5 × 105 0

3d

5

11 × 105

4.95 × 105 55
2.5 6.6 × 105 40
1.25 7.7 × 105 30

0.625 9.9 × 105 10

4a

5

10 × 105

10 × 105 0
2.5 10 × 105 0
1.25 10 × 105 0

0.625 10 × 105 0

4b

5

9 × 105

0.09 × 105 99
2.5 0.9 × 105 90
1.25 1.8 × 105 80

0.625 2.7 × 105 70

4c

5

11 × 105

2.86 × 105 74
2.5 3.85 × 105 65
1.25 4.4 × 105 60

0.625 9.68 × 105 12

4d

5

11 × 105

2.2 × 105 80
2.5 4.4 × 105 60
1.25 6.6 × 105 40

0.625 7.26 × 105 34

4e

5

9 × 105

0.81 × 105 91
2.5 1.17 × 105 87
1.25 1.53 × 105 83

0.625 3.96 × 105 56

5a

5

9 × 105

7.2 × 105 20
2.5 8.28 × 105 8
1.25 8.73 × 105 3

0.625 9 × 105 0

5b

5

5 × 105

1.65 × 105 67
2.5 2.65 × 105 47
1.25 4.45 × 105 11

0.625 5 × 105 0
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Table 2. Cont.

Cpd. No. Conc
(µM) Viral Count (Untreated) (PFU/mL) Viral Count (Treated) (PFU/mL) Inhibition %

5c

5

11 × 105

6.6 × 105 40
2.5 8.14 × 105 26
1.25 8.8 × 105 20

0.625 11 × 105 0

5d

5

10 × 105

1.8 × 105 82
2.5 4.9 × 105 51
1.25 6 × 105 40

0.625 6 × 105 40

5e

5

5 × 105

1.5 × 105 70
2.5 3 × 105 40
1.25 3.35 × 105 33

0.625 4.5 × 105 10

Chloroquine

5

6 × 104

0 >99

2.5 0 >99

1.25 0 >99

0.625 0 >99

Three independent experiments were performed for each concentration.
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On the other hand, substituting the carbonyl by thiocarbonyl (X = S), as well as
presence of the methyl group as described in 5-(pyrrolidin-1-ylsulfonyl)-2′,8′-dithioxo-
spiroindoline derivative 3d, displayed the percentage of inhibition as 55%. Furthermore,
5-(piperidin-1-ylsulfonyl)-1′H-spiroindoline derivatives 4b and 4e with a methyl moiety
and carbonyl or thiocarbonyl (X = O or S) showed the highest activity among the tested
derivatives against replication of SARS-CoV-2 with a percentage of inhibition reading
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99% and 91%, respectively. Moreover, 1′H-spiroindoline derivative 4c demonstrated an
inhibition percentage = 74%, and this decrease in activity may be related to the presence of
benzyl moiety. Additionally, compound 4d exhibited good activity with the percentage of
inhibition 80%, when the substitutions were R = 4-chloro benzyl and X = O.

Finally, 5-(morpholinosulfonyl)-1′H-spiroindoline derivatives 5a–e revealed weak
antiviral activity against SARS-CoV-2, with a percentage of inhibition ranging from 20–70%.
Furthermore, in pharmacological terms, the presence of the pyrrolidin-1-yl and piperidin-1-
yl moieties on the skeleton of 1′H-spiroindoline derivatives 3a–d and 4a–e may be directly
responsible for their antiviral activities. In contrast, the presence of the morpholino moiety
as in the series 5a–e exhibited weak antiviral agents.

2.2.3. In Vitro Enzymes Assay

The RNA-dependent RNA-polymerase (RdRp) and spike glycoprotein inhibition
assay were investigated for the most potent anti-SARS-CoV-2 active hybrids 3a, 4b, 4d,
and 4e using chloroquine as a reference drug. The assessment results were summarized
in Table 3 as IC50 values in nM. All tested compounds exhibited potent inhibitory activity
towards RdRp and spike glycoprotein ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and
40.27 ± 0.17 to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a
reference standard, which showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike
glycoprotein, respectively.

Table 3. Inhibition % of the compounds 3a–c, 4a–e, 5a–e, and Chloroquine as a reference drug.

Cpd. No.
IC50 (Mean ± SEM) (nM)

RdRp Spike Glycoprotein

3a 40.23 ± 0.09 40.27 ± 0.17
4b 44.90 ± 0.08 44.83 ± 0.16
4d 41.26 ± 0.25 42.27 ± 0.31
4e 41.23 ± 0.12 42.43 ± 0.26

Chloroquine 45.00 ± 0.02 45.00 ± 0.06
Untreated 17.73 ± 0.12 18.23 ± 0.12

IC50: Compound concentration required to inhibit the enzyme activity by 50%, SEM = Standard error mean; each
value is the mean of three values.

It was found that 5-(pyrrolidin-1-ylsulfonyl)-1′H-spiroindoline derivative 3a strongly
inhibited RdRp and spike glycoprotein (IC50 = 40.23 ± 0.09 and 40.27 ± 0.17 nM, re-
spectively) and had relatively higher potency than the standard (IC50= 45 ± 0.02 and
45 ± 0.06 nM). This increase of the reactivity of 1′,9′-dimethyl-5-(pyrrolidin-1-ylsulfonyl)-
1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)pent
a-one (3a) may be due to the presence of pyridyl moiety, in addition to N-methyl and
X = O. Upon replacement of the oxygen atom with sulfur as in 3d, the activity diminished.

Moreover, 5-(piperidin-1-ylsulfonyl)-1′H-spiroindoline derivatives 4d and 4e revealed
moderate inhibitory activity against RdRp (IC50= 41.26 ± 0.25 and 42.27 ± 0.31) and
spike glycoprotein (IC50= 41.23 ± 0.12 and 42.27 ± 0.31 nM), respectively. On the other
hand, compound 4b revealed equipotent activity to the used reference chloroquine with
IC50= 44.90 ± 0.08 and 44.83 ± 0.16 nM.

Finally, it can be concluded that the existence of pyrrolidinyl/piperidinyl moiety, in
addition to the N-substituted with methyl or 4-chlorobenzyl and X = O as 1′H-spiroindoline
derivatives 4b and 4d is essential for antiviral activity (Table 3).

2.3. Computational Study
2.3.1. Computational Study of the Binding Mode

Recently, in regards to structure-based drug design, molecular docking has become
an evermore essential medication discovery method and is considered the most common
approach in pharmaceutical research [27,28]. Additionally, the docking study illustrates the
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interaction between newly synthesized compounds and active sites in selected proteins at
the atomic level to determine the behavior of new promising compounds in the binding site
of the target proteins [29]. Furthermore, docking simulation studies have been progressed
to visualize, calculate, formulate, and hypothesize about the energy and orientation of
new ligands in the active site in the pocket of a target protein [30,31]. Our study involved
docking of the most active derivative inside the RNA polymerase (RdRp) (PDB: 6m71) and
spike glycoprotein (SGp) (PDB: 6VXX), and the results displayed good binding energy with
lower binding affinity values (S) (kcal/mol) with different types of interactions and the
docking results represented in Table 4 and Figures 6–9.

Table 4. The binding affinity (S) (kcal/mol) of the most promising derivatives, 3a, 4b, 4d, 4e, and
positive controls (Chloroquine and Remdesivir) inside the active site of RNA polymerase (PDB:
6m71) and spike glycoprotein (PDB: 6VXX).

Cpd. No. S
Kcal/mol Residues Ligand Atoms Distance

(°A)
Strength

(%)

(1) RNA-dependent RNA polymerase (RdRp) (PDB: 6m71)

3a −17.38

Asp623 C=O of isatin der. 2.90 10
Lys621 C=O of pyridino-pyrimidine 2.70 37
Arg553 Oxygen of SO2 2.83 76
Arg555 Oxygen of SO2 2.74 46

4b −17.49
Lys621 C=O of isatin der. 2.88 30
Asp623 NH of pyridino-pyrimidine 2.56 70
Arg553 Oxygen of SO2 2.73 32

4d −18.48
Lys551 C=O of pyridino-pyrimidine 2.63 44
Lys708 Phenyl of benzyl der. - -
Arg553 Phenyl of benzyl der. - -

4e −15.38
Asp760 NH of pyridino-pyrimidine 2.38 48
Asp623 NH of pyridino-pyrimidine 2.81 16
Arg553 Oxygen of SO2 2.53 71

CQ −14.94
Asp760 NH of quaternary salt 2.42 70
Arg553 Phenyl of quinoline - -

RDV −16.09

Arg555 Oxygen of phosphate 2.93 24
Arg553 Oxygen of furane 3.11 31
Arg553 Nitrogen of cyano group 3.01 52
Arg553 Pyrole of pyrolo[1,2-f]triazine - -
Asp623 Hydroxy at C4 of furane 2.36 44
Thr556 Nitrogen of cyano group 3.44 12

(2) Spike glycoprotein (SGp) (PDB: 6VXX)

3a −17.67
His1058 C=O of pyridino-pyrimidine 2.64 35
Thr732 NH of pyridino-pyrimidine 2.73 73
Thr732 C=O of pyridino-pyrimidine 2.66 77

4b −15.22
His1058 C=O of isatin 2.72 59
Asp867 NH of pyridino-pyrimidine 2.39 23

4d −16.48 Leu861 NH of pyridino-pyrimidine

4e −15.92
His1058 C=O of isatin 2.66 69
Thr827 NH of pyridino-pyrimidine 2.54 33

CQ −15.71
Asp867 NH of chloroquine C4 2.71 11
Asp867 NH of quaternary salt 2.48 72
His1058 Nitrogen of tertiary amine - -

RDV −15.67 Phe823 NH2 of pyrrolo[2,1-f] [1,2,4]triazin 3.01 22

CQ = Chloroquine; RDV = Remdesivir; (-) arene-cation interaction
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Docking Study Inside RNA-Dependent RNA Polymerase (RdRp) (PDB: 6m71)

Docking of the most active derivatives 3a, 4b, 4d, and 4e, inside the active site of
RNA polymerase (RdRp) (PDB: 6m71), exhibited lower binding energy ranging from
−18.48 kcal/mol to −15.38 kcal/mol compared with chloroquine as positive control
S = −14.94 kcal/mol and remdesivir S = −16.09 Kcal/mol. All the designed deriva-
tives displayed lower binding energy than chloroquine with different types of interaction
(H-bonds donor or H-bond acceptors and arene–cation interaction besides hydrophobic
interactions). Furthermore, the four derivatives displayed hydrophobic interaction through
an aliphatic group (pyrrolidinyl, piperidinyl, and morphinyl), oxygen of sulfonyl, phenyl
of indolin-2-one, alongside carbonyl and methyl, and NH of pyridino-pyrimidine moiety
with the adjacent residues.

Additionally, compound 3a revealed two hydrogen bonds donor between the amino
acid residues, Asp623 and Lys621, with the carbonyl of indolin-2-one and the carbonyl
of the pyridino-pyrimidine derivative with bond lengths of 2.90 and 2.70 Å, respectively.
In addition, there were two hydrogen bond acceptors between the oxygen of sulfonyl
derivatives with Arg553 and Arg555 with bond lengths of 2.83 Å and 2.74 Å (Figure 6),
respectively.
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Furthermore, compound 4b displayed two hydrogen bond acceptors between Lys621
and carbonyl of indolin-2-one derivative, Arg553 and oxygen of sulfonyl, and one hydrogen
bond donor between Asp623 with NH of pyridino-pyrimidine moiety with bond lengths of
2.88 Å (30%), 2.73 Å (32%) and 2.56 Å (70%), respectively. Moreover, compound 4d that
excreted the highest binding energy S = −18.48 Kcal/mol, showed only one hydrogen
bond side-chain acceptor between Lys551 and carbonyl of a pyridino-pyrimidine nucleus
with 2.63 Å bond length and 44% strength. In addition, compound 4d can form two arene–
cation interactions between the two-aryl group of benzylidene derivatives with Lys708 and
Arg553, alongside hydrophobic interactions (Figure 7).
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On the other hand, compound 4e exhibited the lowest binding energy of the synthe-
sized derivatives. It also exhibited less binding energy than chloroquine (with the binding
energy S = −15.38 Kcal/mol) with three hydrogen bonds between Asp760 and Asp623
with NH of a pyridino-pyrimidine nucleus, and Arg553 with the oxygen of sulfonyl deriva-
tives with bond lengths and strengths of 2.38 Å (48%), 2.81 Å (16%), and 2.53 Å (71%),
respectively. (All docking figures are represented in the Supplementary Material File).

Finally, chloroquine established binding energy–14.94 Kcal/mol through a one side-
chain hydrogen bond donor between the Asp760 and NH of quaternary salt in the side chain
with a bond length of 2.42 Å. In addition, the arene–cation interaction between Arg553 and
phenyl ring of quinoline ring occurred. Additionally, the remdesivir demonstrated binding
energy S = −16.09 Kcal/mol, through three hydrogen bond side-chain acceptors with the
residues Arg553, Arg553, alongside one hydrogen bond side-chain donor with Asp623
and one hydrogen bond backbone donor with Thr556 (See Table 4 and the Supplementary
Material File for more details).

Docking Study Inside Spike Glycoprotein (SGp) (PDB: 6VXX)

The simulation study was extended to study the reactivity and interaction of the newly
designed derivatives inside the active site of spike glycoprotein as a second target for
these derivatives. The docking score energy showed lower binding energy S = (−17.67 to
−15.22 Kcal/mol) in comparison with chloroquine S = −15.71 Kcal/mol and remdesivir
S = −15.67 Kcal/mol. Docking simulation results displayed that these derivatives were
chiefly combined in the form of hydrogen bonds with good binding affinity indicat-
ing that the synthesized derivatives could hinder the binding of the SARS-CoV-2 spike
glycoprotein domain.

Compound 3a demonstrated binding energy S = −17.67 Kcal/mol, through two
side-chain hydrogen bond acceptors between His1058, Thr732 and carbonyl of the pyridino-
pyrimidine with bond lengths of 2.64 Å (35%) and 2.66 Å (77%), and one hydrogen bond
side-chain donor between Thr732 with NH of a pyridino-pyrimidine derivatives with a
bond length of 2.73 Å (Figure 8).

Moreover, compounds 4b and 4e showed binding energy S =−15.22,−15.92 Kcal/mol,
respectively, through two hydrogen bonds with the bond length ranging between
2.39–2.72 Å. Noticeably, compound 4d revealed binding energy S = −16.48 Kcal/mol
with one hydrogen bond backbone donor between Leu861 and NH of pyridino-pyrimidine
derivative with a bond length of 2.83 Å (Figure 9). Last of all, chloroquine as positive control
advertised binding energy S =−15.71 Kcal/mol with two hydrogen bond side-chain donors
between Asp867 and NH of chloroquine at C4 and NH of quaternary salt at the side chain
with a bond length of 2.71, 2.48 Å, alongside arene–cation interaction between His1058 and
nitrogen of quaternary salts as well as hydrophobic interaction. Additionally, the remde-
sivir revealed binding energy S = −15.67 Kcal/mol through only one backbone donor
between the residue Phe823 and amino group of pyrrolo[2,1-f ] [1,2,4]triazin derivative
with a 3.01 Å bond length and 22% strength (See all docking figures in the Supplementary
Material File).
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Finally, it can be concluded that the combination of the indolin-2-one sulfonamide
derivatives with 6-aminouracil derivatives to form a new hybrid target as 5-(substitutedsulfo
nyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine derivatives will probably hin-
der the binding of SARS-CoV-2 RNA polymerase and spike glycoprotein more effectively.
The docking results were confirmed by the IC50 and inhibition percentage values in experi-
mental activity and it can be said that these derivatives could resist the SARS-CoV-2.

2.3.2. Geometrical Optimization and Molecular Parameters

The molecular modelling calculation using the DFT method was carried out to evaluate
and specify the relationship between the structure of the most active derivatives and the
experimental activity results. Additionally, the geometrical optimization of the most
promising derivatives 3a, 4b, 4d, 4e and positive controls (Chloroquine and Remdesivir)
were calculated by the DFT method that was used to determine the frontier energies of
molecular orbital, and therefore deduce some quantum molecular pa rameters according to
previously reported methods [32,33], as described in Tables 5 and 6.

Table 5. Energy descriptors of the most active derivatives 3a, 4b, 4d, 4e and positive controls
(chloroquine and remdesivir) calculated using DFT calculation.

Electronic Parameters 3a 4b 4d 4e CQ RDV

Energy (Hartree) −2159.03 −2198.35 −3579.64 −2844.24 −1326.03 −2321.61

Dipole moment (Debye) 6.718 6.687 4.739 4.028 5.62 4.44

E (HOMO) eV −6.00 −6.05 −6.01 −6.17 −5.66 −6.11

E (LUMO) eV −1.74 −1.79 −1.79 −2.13 −1.17 −1.27

∆E (eV) 4.26 4.26 4.23 4.035 4.49 4.83

IP (eV) 6.00 6.05 6.01 6.17 5.66 6.11

EA (eV) 1.74 1.79 1.79 2.13 1.17 1.27

X (eV) 3.87 3.93 3.90 4.15 3.41 3.69

ïïï (eV) 2.13 2.13 2.11 2.01 2.24 2.41

S (eV−1) 0.469 0.469 0.473 0.495 0.446 0.41

µ (eV) −3.87 −3.93 −3.90 −4.15 −3.41 −3.69

ω (eV) 3.52 3.617 3.604 4.27 2.598 2.81
IP =ionization potential, EA= Electron affinity, X = Electronegativity, ïïï = Chemical hardness, S = Chemical
softness, µ = Chemical potential, ω = Electrophilic index, CQ = Chloroquine, RDV = Remdesivir.

The results showed the highest occupied molecular orbitals EHOMO ranged between
(−6.17 to −6.00 eV) and the lowest unoccupied molecular orbitals ELUMO between (−2.13
to −1.74 eV) compared with chloroquine (EHOMO = −5.66 eV and ELUMO = −1.17 eV) and
remdesivir (EHOMO = −6.11 eV and ELUMO = −1.27 eV). The HOMO energy represented
the ability of these derivatives to give electrons as electron donors and localized mainly on
2-oxoindoline derivatives. On the other hand, the LUMO energy displayed by a site that
has the ability to act as an electron attractive, i.e., electron acceptors due to vacant orbitals
and localized at pyrido[2,3-d:6,5-d′]dipyrimidine derivatives moiety.
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Table 6. The highly occupied and lowest unoccupied molecular orbitals of the most active derivatives
3a, 4b, 4d, 4e and positive control (Chloroquine and Remdesivir).

Cpd. No. E (HOMO) E (LUMO)

3a
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Furthermore, the most active derivatives 3a, 4b, 4d, and 4e revealed a lower en-
ergy gap (∆E) (4.03–4.26 eV) compared with chloroquine (∆E) = 4.49 eV, and remdesivir
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(∆E) = 4.83 eV, i.e., the synthesized derivatives displayed the most stable conformer as well
as the most polarizable. Generally, the molecules with lower energy gaps required less
excitation energy and could offer electrons to neighboring biological receptors and were
predicted to have high biological potency as confirmed by the experimental results [34].
Moreover, the values of softness S = 0.469–0.495 eV−1 and hardness ï = 2.01–2.13 eV dis-
played superior activity and lower hardness for the most active derivatives 3a, 4b, 4d, and
4e in comparison to chloroquine (S = 0.446 eV−1 and ï = 2.24 eV) and remdesivir (S = 0.41
eV−1 and ï = 2.41 eV). Additionally, all the tested derivatives exhibited higher electrophilic
index (ω) = 3.52–4.27 eV rather than chloroquine (ω) = 2.59 eV and remdesivir (ω) = 2.81 eV.

2.3.3. Molecular Electrostatic Potential (MEP)

Designing new drugs via molecular electrostatic potential (MEP) is an important
property in evaluating the shape, size, and charge distribution around the molecules. The
distribution of electron density on the surface of molecules provides us information with
the regions that have the ability to donate electrons (which act as nucleophiles) and accept
electrons (which act as electrophiles) by appearing in different colors. The electrostatic
potential increase is in order of blue > green > yellow > orange > red. The red region
indicated an electron-rich region (negative charge sites), while the blue region designated
an electron deficiency region (partially positive charged), and the green and yellow regions
indicated the neutral sites [35,36].

The MEP map of the most promising derivatives 3a, 4b, 4d, 4e and positive controls
(Chloroquine and Remdesivir) are presented in Figure 4. The electron-rich areas are repre-
sented at the oxygen of indolin-2-one derivatives, oxygen of sulfonyl group, and oxygen
of carbonyl of pyrido[2,3-d:6,5-d′]dipyrimidine derivatives moiety, as well as nitrogen of
quinoline in chloroquine, while an electron deficiency region is located at the nitrogen
of pyrido[2,3-d:6,5-d′]dipyrimidine in spiro derivatives. Moreover, the yellow and green
colors appear on carbon and hydrogen of all designed and chloroquine derivatives that
characterized neutral sites as represented in Figure 10. The MEP of the most promising
derivatives 3a, 4b, 4d, and 4e are abundant with positive and negative regions that are
important in the interaction with biological targets, and these results supported a molecular
docking study where the hydrogen bonds formed (donors or acceptors) between these
regions are different on the active site than in the pocket, as represented in Table 4.
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3. Materials and Methods
3.1. Chemistry

All melting points were measured with the Electrothermal LA9000 sequence, and the
Digital Melting Point Apparatus was left uncorrected. At the Pharmaceutical Analytical
Unit, Faculty of Pharmacy, Al-Azhar University, the IR Spectra were calculated using
the KBr disc technique on a Nikolet IR 200 FT IR Spectrophotometer, and the values are
expressed in (cm−1). The 1H NMR and 13C NMR Spectra were recorded on a Bruker
400 MHz Spectrometer and the 13C-NMR spectra was ran at 125 MHz in dimethyl sulfoxide
(DMSO-d6) at Applied Nucleic Acid Research Center, Zagazig University, Egypt. Chemical
changes were calculated in ppm relative to TMS as an internal norm using DMSO-d6 as
a solvent. At the Regional Center for Mycology and Biotechnology (RCMB) at Al-Azhar
University, the mass spectrum was recorded at 70 ev on the DI-50 unit of the Schimadzu GC/
MS- QP5050A Spectrometer and represented as m/z (relative abundance percent). Moreover,
the elemental analysis (C, H, N) was performed at Al-Azhar University’s Regional Center
for Mycology and Biotechnology, and the results were found to be within 0.4 percent of
theoretical values, unless otherwise mentioned. The biological activities were performed
at the Ministry of Defense’s Chemical Warfare Department’s Main Chemical Warfare
Laboratories. TLC sheets precoated with UV fluorescent silica gel Merck 60 F254 plates
were used to track the progress of the reaction, which was visualized using the UV lamp.

Synthesis of 1H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine derivatives
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A mixture of isatin derivatives 1a–c (0.01 mol) and 6-aminouracil derivatives 2a–e
(0.02 mol) in acetic acid (7 mL) were heated under reflux for 6–8 hs. The product therefore
formed was collected, filtrated and recrystallized from the proper solvent.

1′,9′-Dimethyl-5-(pyrrolidin-1-ylsulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]d
ipy-rimidine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (3a)

Yield 72% as Off white powder; M.P.: 350–352 ◦C; IR: ν/cm−1: 3330, 3187 (NH), 3050
(CH-Ar), 2950, 2860 (CH.Aliph.), 1702, 1662 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
11.71, 11.06, 10.87, 9.72 (4s, 4H, 4NH exchangeable by D2O), 7.65 (dd, J = 8.4, 2.1 Hz, 1H,
Ar-H), 7.51 (d, J = 8.4 Hz, 1H, Ar-H), 7.16 (d, 1H, Ar-H), 3.45, 3.34 (2s, 6H, 2CH3), 3.02
(m, 4H), 1.55 (m, 4H); 13C NMR (101 MHz, DMSO) δ 181.11, 172.03, 160.49, 157.64, 150.69
(5C=O), 149.91, 146.78 (2C=C-N), 139.68, 130.58, 127.49, 125.06, 121.68, 117.60, 97.95, 83.76,
50.23 (C-spiro), 47.86 (2CH2-pyrolidine), 30.34, 29.27 (2CH3), 24.56 (2CH2-pyrolidine); MS
(EI, 70 eV): m/z (%) = 527 (M+) (24.58%), 202 (100%); Anal. Calcd for C22H21N7O7S (527.51):
C, 50.09; H, 4.01; N, 18.59; Found C, 50.21; H, 3.87; N, 18.48%.

1′,9′-Dibenzyl-5-(pyrrolidin-1-ylsulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]d
ipy-rimidine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (3b)

Yield 75% as light rose powder; M.P.: 346–348 ◦C; IR: ν/cm−1: 3289, 3250 (NH), 3060
(CH-Ar), 2974, 2850 (CH-Aliph.), 1715, 1644 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
11.91, 11.25, 11.04, 9.79 (4s, 4H, 4NH exchangeable by D2O), 7.62 (dd, J = 8.4, 2.0 Hz, 1H,
Ar-H), 7.40 (t, J = 7.2 Hz, 2H, Ar-H), 7.35 (d, J = 7.2 Hz, 1H, Ar-H), 7.31 (d, J = 7.2 Hz,
3H, Ar-H), 7.27 (d, 2H, Ar-H), 7.23 (t, J = 6.2 Hz, 3H, Ar-H), 7.15 (d, 1H, Ar-H), 5.01 (d,
2H, CH2), 4.90 (d, 2H, CH2), 2.95 (t, J = 6.6 Hz, 4H, 2CH2-pyrolidine), 1.52 (t, J = 6.6 Hz,
4H, 2CH2-pyrolidine); 13C NMR (101 MHz, DMSO) δ 181.00, 172.22, 160.95, 157.64, 150.26
(5C=O), 144.79 (2C=C-N), 139.26, 137.51, 135.98, 130.16, 128.79, 128.28, 127.58, 127.44, 126.18,
125.13, 121.41, 117.28, 98.13, 82.57, 50.25 (C-spiro), 47.82 (2CH2-pyrolidine), 45.94 (2CH2),
24.52 (2CH2-pyrolidine); MS (EI, 70 eV): m/z (%) = 679 (M+) (24.58%), 317 (100%); Anal.
Calcd for C34H29N7O7S (679.71): C, 60.08; H, 4.30; N, 14.43; Found C, 60.35; H, 4.11; N,
14.65%.

1′,9′-Bis(4-chlorobenzyl)-5-(pyrrolidin-1-ylsulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-
d:-6,5-d′]dipyrimidine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (3c)

Yield 78% as rose powder; M.P.: 300–302 ◦C; IR: ν/cm−1: 3320 (NH), 3060 (CH-Ar),
2920, 2855 (CH.Aliph.), 1770, 1727 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm 11.82, 11.38,
11.13, 9.91 (4s, 4H, 4NH exchangeable by D2O), 7.67 (d, J = 8.4 Hz, 1H, Ar-H), 7.64 (d,
J = 7.2 Hz, 1H, Ar-H), 7.56 (d, J = 8.0 Hz, 1H, Ar-H), 7.52 (d, J = 8.0 Hz, 1H, Ar-H), 7.47
(dd, J = 7.6, 1.8 Hz, 1H, Ar-H), 7.36 (d, J = 8.0 Hz, 1H, Ar-H), 7.27 (d, 1H, Ar-H), 7.23 (d, J
= 7.6 Hz, 1H, Ar-H), 7.06 (d, J = 6.8 Hz, 1H, Ar-H), 6.98 (d, J = 7.2 Hz, 1H, Ar-H), 6.83 (d,
J = 6.8 Hz, 1H, Ar-H), 5.11 (d, 2H, CH2), 4.99 (d, 2H, CH2), 3.03 (s, 4H, 2CH2-pyrolidine),
1.58–1.55 (m, 4H, 2CH2-pyrolidine); 13C NMR (101 MHz, DMSO) δ 180.8, 166.13, 160.75,
157.66, 150.12 (5C=O), 145.15 (2C=C-N), 139.31, 134.32, 133.32, 131.55, 130.22, 129.58, 129.31,
128.52, 127.19, 126.19, 125.56, 98.41, 83.55, 50.31 (C-spiro), 47.85 (2CH2-pyrolidine), 44.50
(2CH2), 24.55 (2CH2-pyrolidine); MS (EI, 70 eV): m/z (%) = 747 (M+) (25.48%), 749 (M+2)
(13.44%), 751 (M+4) (21.96), 339 (100%); Anal. Calcd for C34H27Cl2N7O7S (748.59): C, 54.55;
H, 3.64; N, 13.10; Found C, 54.84; H, 3.45; N, 13.19%.

1′,9′-Dimethyl-5-(pyrrolidin-1-ylsulfonyl)-2′,8′-dithioxo-2′,3′,8′,9′-tetrahydro-1′H-spir
o-[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine]-2,4′,6′(7′H,10′H)-trione (3d)

Yield 69% as Off white powder; M.P.: 325–327 ◦C; IR: ν/cm−1: 3253, 3179 (NH), 3106
(CH-Ar), 2930, 2860 (CH-Aliph.), 1769, 1669 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
12.55, 12.44, 11.94, 9.93 (4s, 4H, 4NH exchangeable by D2O), 7.70 (dd, J = 8.6, 2.0 Hz, 1H,
Ar-H), 7.57 (d, J = 8.6 Hz, 1H, Ar-H), 7.24 (d, 1H, Ar-H), 3.96, 3.74 (2s, 6H, 2CH3), 3.09–2.96
(m, 4H, 2CH2-pyrolidine), 1.55 (m, J = 6.8 Hz, 4H, 2CH2-pyrolidine); 13C NMR (101 MHz,
DMSO) δ 180.29, 176.32 (2C=S), 175.56, 157.80, 155.27 (3C=O), 153.71, 147.02 (2C=C-N),
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139.50, 131.41, 128.09, 125.16, 120.61, 118.28, 102.23, 88.34, 50.61 (C-spiro), 48.03 (2CH2-
pyrolidine), 36.81, 36.46 (2CH3), 24.74 (2CH2-pyrolidine); MS (EI, 70 eV): m/z (%) = 559
(M+) (23.65%), 497 (100%); Anal. Calcd for C22H21N7O5S3 (559.63): C, 47.22; H, 3.78; N,
17.52; Found C, 47.06; H, 3.88; N, 17.75%.

5-(Piperidin-1-ylsulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine]-2,
2′,4′,-6′,8′(3′H,7′H,9′H,10′H)-pentaone (4a)

Yield 74% as Yellowish white; M.P.: 360–361 ◦C; IR: ν/cm−1: 3173 (NH), 3065 (CH-Ar),
2953, 2856 (CH-Aliph.), 1693, 1641 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm 12.00, 11.25
(2s, 2H, 2NH exchangeable by D2O), 10.78 (s, 2H, 2NH exchangeable by D2O), 10.58, 9.68
(2s, 2H, 2NH exchangeable by D2O), 7.51 (dd, J = 8.4, 2.0 Hz, 1H, Ar-H), 7.23 (d, J = 8.4 Hz,
1H, Ar-H), 7.00 (d, 1H, Ar-H), 2.76 (s, 4H, 2CH2-piperidine), 1.44 (s, 4H, 2CH2-piperidine),
1.33 (s, 2H, CH2-piperidine); 13C NMR (101 MHz, DMSO) δ 180.78, 165.81, 161.96, 158.63,
153.67 (5C=O), 149.85, 145.83 (2C=C-N), 139.39, 129.67, 127.57, 125.38, 121.79, 116.98, 97.50,
82.79, 49.05 (C-spiro), 46.39, 24.46, 22.92 (5CH2-piperidine); MS (EI, 70 eV): m/z (%) = 513
(M+) (15.72%), 186 (100%); Anal. Calcd for C21H19N7O7S (513.49): C, 49.12; H, 3.73; N,
19.09; Found C, 49.02; H, 3.85; N, 19.19%.

1′,9′-Dimethyl-5-(piperidin-1-ylsulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]di
pyri-midine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (4b)

Yield 70.5% as Off white powder; M.P.: 349–350 ◦C; IR: ν/cm−1: 3365, 3172 (NH), 3050
(CH-Ar), 2958, 2857 (CH-Aliph.), 1725, 1670 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
11.72, 11.07, 10.87, 9.73 (4s, 4H, 4NH exchangeable by D2O), 7.58 (dd, J = 8.4, 2.0 Hz, 1H,
Ar-H), 7.51 (d, J = 8.4 Hz, 1H, Ar-H), 7.10 (d, 1H, Ar-H), 3.45, 3.35 (2s, 6H, 2CH3), 2.80
(t, 4H, 2CH2-piperidine), 1.43 (s, 4H, 2CH2-piperidine), 1.31 (s, 2H, CH2-piperidine); 13C
NMR (101 MHz, DMSO) δ 181.05, 172.05, 160.51, 157.66, 150.69 (5C=O), 149.92, 146.80
(2C=C-N), 139.66, 130.33, 127.53, 125.30, 121.62, 117.57, 98.09, 83.79, 50.25 (C-spiro), 46.38
(2CH2-piperidine), 30.33, 29.29 (2CH3), 24.42, 22.94, 21.08 (3CH2-piperidine); MS (EI, 70
eV): m/z (%) = 541 (M+) (22.65%), 47 (100%); Anal. Calcd for C23H23N7O7S (541.54): C,
51.01; H, 4.28; N, 18.11; Found C, 51.17; H, 4.48; N, 18.02%.

1′,9′-Dibenzyl-5-(piperidin-1-ylsulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]di
pyri-midine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (4c)

Yield 74% as Pink powder; M.P.: 298–299 ◦C; IR: ν/cm−1: 3390, 3190 (NH), 3070
(CH-Ar), 2945, 2856 (CH-Aliph.), 1708,1640 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
11.95, 11.27, 11.03, 10.09 (4s, 4H, 4NH exchangeable by D2O), 7.79 (d, J = 8.0 Hz, 1H, Ar-H),
7.74 (d, J = 8.4 Hz, 1H, Ar-H), 7.66 (d, J = 8.0 Hz, 1H, Ar-H), 7.62 (d, J = 7.6 Hz, 1H, Ar-H),
7.57 (dd, J = 8.0, 2.0 Hz, 1H, Ar-H), 7.46 (d, J = 8.4 Hz, 1H, Ar-H), 7.37 (t, 2H, Ar-H), 7.13
(t, 2H, Ar-H), 7.11 (d, J = 7.2 Hz, 2H, Ar-H), 7.01 (d, J = 7.6 Hz, 1H, Ar-H), 5.22 (d, 2H,
CH2), 5.01 (d, 2H, CH2), 2.70 (s, 4H, 2CH2-piperidine), 1.38 (s, 4H, 2CH2-piperidine), 1.29
(s, 2H, CH2-piperidine); 13C NMR (101 MHz, DMSO) δ 181.15, 171.87, 160.75, 157.47, 150.35
(5C=O), 149.35, 145.87 (2C=C-N), 139.96, 137.91, 136.98, 134.88, 132.14, 130.87, 127.65, 126.65,
124.54, 120.65, 118.47, 99.19, 84.87, 50.65 (C-spiro), 46.38 (2CH2-piperidine), 45.48 (2CH2),
24.42, 22.94, 21.08 (3CH2-piperidine); MS (EI, 70 eV): m/z (%) = 693 (M+) (17.45%), 264
(100%); Anal. Calcd for C35H31N7O7S (693.74): C, 60.60; H, 4.50; N, 14.13; Found C, 60.86;
H, 4.31; N, 14.26%.

1′,9′-Bis(4-chlorobenzyl)-5-(piperidin-1-ylsulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-
d:6,-5-d′]dipyrimidine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (4d)

Yield 79% as light rose powder; M.P.: 327–329 ◦C; IR: ν/cm−1: 3364, 3171, 3109 (NH),
3050 (CH-Ar), 2940, 2850 (CH-Aliph.), 1773, 1670 (C=O); 1H NMR (400 MHz, DMSO)
δ/ppm 11.90, 11.38, 11.15, 9.84 (4s, 4H, 4NH exchangeable by D2O), 7.59–7.55 (m, 3H,
Ar-H), 7.44 (d, J = 8.8Hz, 1H, Ar-H), 7.40 (d, J = 8.8 Hz, 1H, Ar-H), 7.36 (d, J = 8.4 Hz, 2H,
Ar-H), 7.32 (d, J = 7.6 Hz, 1H, Ar-H), 7.20 (d, 1H, Ar-H), 7.06 (d, J = 7.6 Hz, 2H, Ar-H), 5.28
(d, 2H, CH2), 5.18 (d, 2H, CH2), 2.81 (s, 4H, 2CH2-piperidine), 1.45 (s, 4H, 2CH2-piperidine),
1.32 (s, 2H, CH2-piperidine); 13C NMR (101 MHz, DMSO) δ 180.94, 172.03, 160.75, 157.84,
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153.29 (5C=O), 150.15, 149.58 (2C=C-N), 146.75, 139.51, 133.94, 133.43, 131.70, 131.59, 130.49,
129.67, 129.57, 129.14, 128.92, 127.73, 127.63, 127.49, 125.49, 121.59, 117.54, 98.45, 83.90, 50.30
(C-spiro), 46.34 (2CH2-piperidine), 44.61 (2CH2), 24.46, 22.84, 21.06 (3CH2-piperidine); MS
(EI, 70 eV): m/z (%) = 761 (M+) (37.72%), 763 (M+2) (24.23%), 765 (M+4) (32.28%), 336.97
(100%); Anal. Calcd for C35H29Cl2N7O7S (761.62): C, 55.12; H, 3.83; N, 12.86; Found C,
55.24; H, 3.93; N, 12.54%.

1′,9′-Dimethyl-5-(piperidin-1-ylsulfonyl)-2′,8′-dithioxo-2′,3′,8′,9′-tetrahydro-1′H-spiro-
[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine]-2,4′,6′(7′H,10′H)-trione (4e)

Yield 76% as Buff powder; M.P.: 326–327 ◦C; IR: ν/cm−1: 3172, 3109 (NH), 3060
(CH-Ar), 2972, 2840 (CH-Aliph.), 1771, 1670 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
12.56, 12.45, 11.95, 9.94 (4s, 4H, 4NH exchangeable by D2O), 7.63 (dd, J = 8.4, 1.8 Hz, 1H,
Ar-H), 7.58 (d, J = 8.4 Hz, 1H, Ar-H), 7.17 (d, 1H, Ar-H), 3.96, 3.74 (2s, 6H, 2CH3), 2.80 (s, 4H,
2CH2-piperidine), 1.43 (s, 4H, 2CH2-piperidine), 1.33 (s, 2H, CH2-piperidine); 13C NMR
(101 MHz, DMSO) δ 176.20, 175.45 (2C=S), 161.56, 157.64, 155.10 (3C=O), 146.84, 139.37
(2C=C-N), 132.15, 130.95, 127.96, 125.28, 120.44, 118.11, 102.25, 88.26, 50.49 (C-spiro), 46.39
(2CH2-piperidine), 36.66, 36.34 (2CH3), 24.43, 22.93 (3CH2-piperidine); MS (EI, 70 eV): m/z
(%) = 573 (M+) (34.33%), 135 (100%); Anal. Calcd for C23H23N7O5S3 (573.66): C, 48.16; H,
4.04; N, 17.09; Found C, 48.34; H, 3.88; N, 17.23%.

5-(Morpholinosulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine]-2,2′,
4′,-6′,8′(3′H,7′H,9′H,10′H)-pentaone (5a)

Yield 81% as Off white powder; M.P.: 378–380 ◦C; IR: ν/cm−1: 3450, 3181 (NH), 3030
(CH-Ar), 2870 (CH-Aliph.), 1697, 1637 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm 11.99,
11.26 (2s, 2H, 2NH exchangeable by D2O), 10.79 (s, 2H, 2NH exchangeable by D2O), 10.59,
9.68 (2s, 2H, 2NH exchangeable by D2O), 7.52 (dd, J = 8.4, 2.0 Hz, 1H, Ar-H), 7.28 (d, J = 8.4
Hz, 1H, Ar-H), 6.99 (d, 1H, Ar-H), 3.58 (t, 4H, 2CH2-O), 2.72 (s, 4H, 2CH2-N); 13C NMR (101
MHz, DMSO) δ/ppm 180.76, 161.90, 158.58, 152.30, 150.93 (5C=O), 149.87, 145.70 (2C=C-N),
139.75, 128.08, 127.84, 125.66, 121.85, 117.15, 97.26, 82.82, 65.17 (2CH2-O), 49.01 (C-spiro),
45.64 (2CH2-N); MS (EI, 70 eV): m/z (%) = 515 (M+) (20.15%), 129 (100%); Anal. Calcd for
C20H17N7O8S (515.46): C, 46.60; H, 3.32; N, 19.02; Found C, 46.38; H, 3.51; N, 19.17%.

1′,9′-Dimethyl-5-(morpholinosulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipy
rimi-dine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (5b)

Yield 72% as light yellow powder; M.P.: 358–360 ◦C; IR: ν/cm−1: 3390, 3168 (NH),
3088 (CH-Ar), 2867 (CH.Aliph.), 1723, 1667 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
11.72, 11.08, 10.87, 9.77 (4s, 4H, 4NH exchangeable by D2O), 7.60 (d, J = 8.4 Hz, 1H, Ar-H),
7.55 (d, J = 8.4 Hz, 1H, Ar-H), 7.10 (s, 1H, Ar-H), 3.56 (s, 4H, 2CH2-O), 3.46 (s, 3H, CH3),
3.34–3.33 (m, 3H, CH3), 2.74 (s, 4H, 2CH2-N); 13C NMR (101 MHz, DMSO) δ 181.07, 160.51,
157.69, 153.56, 150.71 (5C=O), 149.92, 146.80 (2C=C-N), 140.06, 128.79, 127.84, 125.65, 121.74,
117.72, 97.94, 83.87, 65.20 (2CH2-O), 50.25 (C-spiro), 45.71 (2CH2-N), 30.37, 29.31 (2CH3);
MS (EI, 70 eV): m/z (%) = 543 (M+) (21.48%), 228 (100%); Anal. Calcd for C22H21N7O8S
(543.51): C, 48.62; H, 3.89; N, 18.04; Found C, 48.45; H, 3.99; N, 18.19%.

1′,9′-Dibenzyl-5-(morpholinosulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:6,5-d′]dipy
rimi-dine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (5c)

Yield 77% as buff powder; M.P.: 244–246 ◦C; IR: ν/cm−1: 3323, 3170 (NH), 3058 (CH-
Ar), 2984, 2923, 2840 (CH-Aliph.), 1725, 1653 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
11.92, 11.29, 11.04, 9.86 (s, 4H, 4NH exchangeable by D2O), 7.55 (dd, J = 8.4, 2.0 Hz, 1H,
Ar-H), 7.38 (d, J = 7.6 Hz, 2H, Ar-H), 7.35 (d, J = 8.4 Hz, 2H, Ar-H), 7.31–7.30 (m, 2H, Ar-H),
7.28 (d, J = 6.8 Hz, 2H, Ar-H), 7.23 (t, J = 5.8 Hz, 3H, Ar-H), 7.05 (d, 1H, Ar-H), 5.00 (d, 2H,
CH2), 4.89 (d, 2H, CH2), 3.52 (s, 4H, 2CH2-O), 2.65 (s, 4H, 2CH2-N); 13C NMR (101 MHz,
DMSO) δ 180.97, 160.95, 157.66, 153.40, 150.28 (5C=O), 144.80 (2C=C-N), 139.64, 137.50,
136.01, 128.76, 128.30, 128.06, 127.62, 127.45, 127.11, 126.35, 125.66, 121.43, 117.38, 98.16,
82.63, 65.08 (2CH2-O), 50.24 (C-spiro), 45.62, 45.93 (2CH2) 43.62 (2CH2-N); MS (EI, 70 eV):
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m/z (%) = 695 (M+) (32.09%), 287 (100%); Anal. Calcd for C34H29N7O8S (695.71): C, 58.70;
H, 4.20; N, 14.09; Found C, 58.49; H, 4.32; N, 14.21%.

1′,9′-Bis(4-chlorobenzyl)-5-(morpholinosulfonyl)-1′H-spiro[indoline-3,5′-pyrido[2,3-d:
6,5-d′]dipyrimidine]-2,2′,4′,6′,8′(3′H,7′H,9′H,10′H)-pentaone (5d)

Yield 76% as light rose powder; M.P.: 347–349 ◦C; IR: ν/cm−1: 3257, 3188 (NH), 3092
(CH-Ar), 2926, 2858 (CH-Aliph.), 1720, 1640 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
11.91, 11.40, 11.15, 9.87 (4s, 4H, 4NH exchangeable by D2O), 7.59–7.57 (m, 1H, Ar-H),
7.55–7.52 (m, 1H, Ar-H), 7.48 (d, J = 8.8 Hz, 1H, Ar-H), 7.41 (d, J = 7.2 Hz, 1H, Ar-H), 7.37
(d, J = 6.2 Hz, 1H, Ar-H), 7.34 (d, J = 8.0 Hz, 1H, Ar-H), 7.29 (d, J = 7.6 Hz, 1H, Ar-H),
7.25 (d, 1H, Ar-H), 7.19 (d, 1H, Ar-H), 7.06 (d, J = 7.6 Hz, 1H, Ar-H), 6.89 (d, 1H, Ar-H),
5.22 (d, 2H, CH2), 5.05 (d, 2H, CH2), 3.57 (s, 4H, 2CH2-O), 2.76 (s, 4H, 2CH2-N); 13C NMR
(101 MHz, DMSO) δ 180.98, 160.76, 157.87, 157.72, 150.15 (5C=O), 149.56, 146.77 (2C=C-N),
139.91, 134.31, 133.94, 133.45, 133.31, 131.68, 131.57, 129.57, 129.33, 129.05, 128.48, 128.03,
127.53, 127.21, 126.21, 125.67, 121.73, 117.65, 98.37, 83.98, 65.18 (2CH2-O), 50.31 (C-spiro),
45.67 (2CH2-O), 44.66, 43.08 (2CH2); MS (EI, 70 eV): m/z (%) = 763 (M+) (46.23%), 765 (M+2)
(18.75%), 767 (M+4) (23.17%), 738.78 (100%); Anal. Calcd for C34H27Cl2N7O8S (763.59): C,
53.41; H, 3.56; N, 12.82; Found C, 53.21; H, 3.75; N, 12.98%.

1′,9′-Dimethyl-5-(morpholinosulfonyl)-2′,8′-dithioxo-2′,3′,8′,9′-tetrahydro-1′H-spiro[in
do-line-3,5′-pyrido[2,3-d:6,5-d′]dipyrimidine]-2,4′,6′(7′H,10′H)-trione (5e)

Yield 74% as light yellow powder; M.P.: 341–343 ◦C; IR: ν/cm−1: 3240, 3186 (NH), 3055
(CH-Ar), 2932, 2860 (CH-Aliph.), 1756, 1673 (C=O); 1H NMR (400 MHz, DMSO) δ/ppm
12.57, 12.44, 11.96, 9.98 (4s, 4H, 4NH exchangeable by D2O), 7.64 (dd, J = 8.4, 1.8 Hz, 1H,
Ar-H), 7.61 (d, J = 8.4 Hz, 1H, Ar-H), 7.19 (s, 1H, Ar-H), 3.97, 3.74 (2s, 6H, 2CH3), 3.56 (s,
4H, 2CH2-O), 2.76 (s, 4H, 2CH2-N); 13C NMR (101 MHz, DMSO) δ 180.07, 176.20 (2C=S),
175.44, 157.61, 155.11 (3C=O), 153.60, 146.82 (2C=C-N), 139.77, 129.42, 128.23, 125.65, 120.55,
118.24, 102.04, 88.32, 65.17 (2CH2-O), 50.48 (C-spiro), 45.71 (2CH2-N), 36.69, 36.35 (2CH3);
MS (EI, 70 eV): m/z (%) = 575 (M+) (39.80%), 566 (100%); Anal. Calcd for C22H21N7O6S3
(575.63): C, 45.90; H, 3.68; N, 17.03; Found C, 45.71; H, 3.54; N, 17.17%.

3.2. Antiviral Activity
3.2.1. Cytotoxicity Assay

Samples were diluted with Dulbecco’s Modified Eagle Medium (DMEM). Stock solu-
tions of the test compounds were prepared in 10% DMSO in dd H2O. The cytotoxic activity
of the extracts were tested in ATCC Vero E6 cells by using the 3-(4, 5-dimethylthiazol -2-
yl)-2, 5-diphenyltetrazolium bromide (MTT) method [26] with minor modification. Briefly,
the cells were seeded in 96-well plates (100 µL/well at a density of 3 × 105 cells/mL)
and incubated for 24 h at 37 ◦C in 5% CO2. After 24 h, cells were treated with various
concentrations of the tested compounds in triplicates. After a further 24 h, the supernatant
was discarded, and cell monolayers were washed with sterile phosphate buffer saline (PBS)
three times and MTT solution (20 µL of 5 mg/mL stock solution) was added to each well
and incubated at 37 ◦C for 4 h followed by medium aspiration. In each well, the formed
formazan crystals were dissolved with 200 µL of acidified isopropanol (0.04 M HCl in
absolute isopropanol = 0.073 mL HCl in 50 mL isopropanol). Absorbance of formazan
solutions were measured at λmax 540 nm with 620 nm as a reference wavelength using a
multi-well plate reader. The percentage of cytotoxicity compared to the untreated cells was
determined with the following equation.

% Cytotoxicity =
(absorbance of cells without treatment− absorbace of cells with treatment )× 100

absorbance of cells without treatment
The plot of % cytotoxicity versus sample concentration was used to calculate the

concentration, which exhibited 50% cytotoxicity (IC50). Three independent experiments for
each concentration were performed.
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3.2.2. Plaque Reduction Assay

Assay was carried out according to the method of [37] in a six-well plate where Vero E6
cells (105 cells/mL) were cultivated for 24 h at 37 ◦C. Cells were grouped into negative and
positive control groups without treatment and treated groups. Severe Acute Respiratory
Syndrome Coronavirus (SARS-CoV-2) virus (isolated from Egyptian patients with the
help of Egy-Army with GenBank code (MT776904) and the link of this on-site represented
as (https://www.ncbi.nlm.nih.gov/nuccore/MT776904, accessed on 5 February 2022)
was diluted to give 103 PFU/well and mixed with the safe concentration of the tested
compounds and incubated for 1 h at 37 ◦C before being added to the cells. Growth medium
was removed from the cell culture plates and the cells were inoculated (100 µL/well) with
the virus with the tested compounds. After 1 h contact time for virus adsorption, 3 mL of
DMEM supplemented with 2% agarose was added and the tested compounds were then
added onto the cell monolayer. Plates were left to solidify and were incubated at 37 ◦C
until formation of viral plaques (3 to 4 days) appeared. Formalin (10%) was added for two
hours before plates were stained with 0.1% crystal violet in distilled water. Control wells
were included where the untreated virus was incubated with Vero E6 cells. Finally, the
plaques were counted and the percentage reduction in plaques formation (% Reduction) in
comparison to control wells was recorded according to the following Equation (1):

Reduction (%) =
Viral count (untreated)−Viral count(treated)

Viral count(untreated)× 100
(1)

where the viral count (untreated) is the viral count in wells where the virus was untreated
with the compounds. Additionally, the viral count (treated) is the viral count in wells where
the virus was treated with the compounds. Additionally, this performance is shown in
Table 2, which presents the inhibition percentage with three independent experiments for
each concentration.

Enzyme assay was prepared according to reported method [38].

3.3. Molecular Docking Study

Firstly, the most active derivatives 3a, 4b, 4d, 4e and positive controls (Chloroquine
and Remdesivir) were built using ChemBioDraw 2014, before being exported to Molecular
Operating Environmental 10.2008 (MOE) [39,40]. Additionally, the structure was prepared
by protonation, and the energy was minimized using the MMFF94x forcefield. The crystal
structure of different proteins as a structure of RNA-dependent RNA polymerase (RdRp)
(PDB: 6M71) and spike glycoprotein (SGp) (PDB: 6VXX) were obtained from the protein data
bank [41,42]. The selected protein and docking process structure was prepared according
to the default protocol and according to the previously reported method [43] using the
dummy atoms to generate the active site. We selected only one chain for SARS-CoV-2 spike
glycoprotein (PDB: 6VXX) (Chain A). Additionally, the SARS-CoV-2 RNA-dependent RNA
polymerase (PDB: 6M71) chain A was selected for the docking proposed. The docking
simulation inside the active site was performed using the trigonal matcher placement
method using London DG as a scoring function. Its energy was represented by Kcal/mol
and the top-scoring pose was inspected visually.

3.4. Computational Study

The geometrical optimization of the most active derivatives 3a, 4b, 4d, 4e and positive
controls (Chloroquine and Remdesivir) were performed using DFT methods through the
Gaussian 09 set of the program according to previously reported methods [32]. The global
descriptors of chemical reactivity are related to frontier molecular orbital and are calculated
simply depending on previously reported methods [44,45]. The global descriptors used
in this study are: IP =ionization potential, EA = Electron affinity, X = Electronegativity,
ï = Chemical hardness, S = Chemical softness, µ = Chemical potential, ω = Electrophilic
index.

https://www.ncbi.nlm.nih.gov/nuccore/MT776904
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4. Conclusions

In summary, a series of newly synthesized compounds of spirooxindole based on uracil
derivatives 3a–d, 4a–e, and 5a–e were prepared through a simple method by heating 5-
(substituted-1-ylsulfonyl)indoline-2,3-dione 1a–c under reflux condition with 6-aminouracil
derivatives 2a–e. Using the MTT assay, the new hybrids were investigated for anti-viral
activity against SARS-CoV-2. As a result, the majority of the compounds tested had
moderate to strong anti-SARS-CoV-2 action. In addition, all new compounds were tested for
percentage of inhibition using the plaque reduction assay, which revealed that compounds
3a, 4b, 4d, and 4e had a high range of action. The mechanism of action on RNA-dependent
RNA polymerase (RdRp) and spike glycoprotein was studied further with these four
hybrids. The results were quite promising, as the new hits were found to be as equally
effective as chloroquine, which was previously used to treat COVID-19. These findings
motivate our team to conduct more advanced studies on the novel hybrids in order to learn
more about the mechanism of action in future investigations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15030376/s1, Supplementary data involving the IR, 1H and
13C NMR data of all the synthetized compounds.
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