Communication

One-Pot Synthesis of 5-Arylidene-2-Imino-4-Thiazolidinones under Microwave Irradiation

Souad Kasmi-Mir ${ }^{1, *}$, Ayada Djafri ${ }^{3}$, Ludovic Paquin ${ }^{2, \dagger}$, Jack Hamelin ${ }^{2}$ and Mustapha Rahmouni ${ }^{1, \ddagger}$
${ }^{1}$ Laboratoire Synthèse et Catalyse, LSCT, Université Ibn Khaldoun, Tiaret, Algeria; E-mail: ${ }^{\ddagger}$ rahmouni@mail.univ-tiaret.dz
${ }^{2}$ ICMV, UMR 6226, Université de Rennes 1, Campus de Beaulieu, Bt10A 35042-Rennes, France; E-mail: ‘ludovic.paquin@univ-rennes1.fr
${ }^{3}$ Laboratoire Synthèse Organique Appliquée, Université Essénia, Oran, Algeria; Fax : (+213) 4141 9184.

* Author to whom correspondence should be addressed: E-mail: kasmi@mail.univ-tiaret.dz

Received: 2 June 2006; in revised form: 24 July 2006/ Accepted: 25 July 2006 / Published: 10 August 2006

Abstract

A rapid and easy solvent free one-pot synthesis of 5-arylidene-2-imino-4thiazolidinones by condensation of the thioureas with chloroacetic acid and an aldehyde under microwave-irradiation is described.

Keywords: 5-Arylidene-2-imino-4-thiazolidinones; one-pot synthesis, microwaveirradiation.

Introduction

4-Thiazolidinone derivatives constitute an important class of heterocyclic compounds for their potential pharmaceutical applications [1-8]. Consequently, a large number of synthetic protocols leading to these compounds have been reported in the literature [9]. Recently, 5-arylidene-2-imino-4thiazolidinones [10] were synthesized by the reaction of 2-imino-4-thiazolidinones and appropriate aldehydes under basic conditions in ethanol at reflux for about 24 hours. The 2-imino-thiazolidinones in turn were obtained by condensation of thiourea with chloroacetyl chloride in the presence of
triethylamine in CHCl_{3} at room temperature. We have previously reported the synthesis of iminothiazolines [11] by Hantzsch cyclisation using microwave-irradiation. In similar fashion and following the same strategy, we describe herein the one-pot three component solvent-free reaction of the thioureas 1a,a’, chloroacetic acid and an appropriate aldehydes 2a-e under microwave-irradiation according to Scheme 1. Yields and reaction conditions are given in Table 1.

Scheme 1. Synthesis of 5-arylidene-2-imino-4-thiazolidinones 3a-e, 4a-e.

Table 1. Yields and reaction conditions used for the microwave syntheses of 3a-e and 4a-e

Compounds 3	$\mathbf{R}_{\mathbf{1}}$	Time (min)	Yields(\%) ${ }^{(\mathbf{a})}$
3a	Ph	20	89
3b	Ph	15	64
3c	Ph	20	73
3d	Ph	20	71
3e, 3e,	Ph	20	$75^{(\mathrm{b})}$
4a	4-methylpyridin-2-yl	20	79
4b	4-methylpyridin-2-yl	20	68
4c	4-methylpyridin-2-yl	10	77
4d	4-methylpyridin-2-yl	10	74
4e	4-methylpyridin-2-yl	15	61

${ }^{(a)}$ Isolated product yields
${ }^{\text {(b) }} 3: 1$ mixture of isomers 3e/3e’

The structures of all new compounds 3a-e, 4a-e were established by analysis of their ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR and mass spectra. The Z configuration of the exocyclic $\mathrm{C}=\mathrm{C}$ bond was assigned on the basis of ${ }^{1} \mathrm{H}$-NMR spectroscopy, according to literature data for analogous 4-thiazolidinones [3,10,12]. The methine proton deshielded by the adjacent $\mathrm{C}=\mathrm{O}$ was detected at 7.76-8.30 ppm, except for $\mathbf{3 d}$ and $\mathbf{4 d}$. In the case of the reaction with aldehyde $\mathbf{2 e}$ a $3: 1$ mixture of two isomers $3 \mathbf{e}$ and $3 \mathbf{e}$ ' was obtained. When the synthesis was performed in EtOH at reflux, the major and the most stable isomer $3 \mathbf{e}$ was obtained. The ${ }^{13} \mathrm{C}$-NMR spectra of all compounds were characterized by the presence of the rhodanine $\mathrm{C}_{2} \mathrm{C}=\mathrm{N}$ at 150.99-154.90 ppm and $\mathrm{C}=\mathrm{O}$ at the rhodanine C_{4} at 165.20-167.25 ppm.

Conclusions

A solvent-free synthesis coupled with focused microwave irradiation appears to be a simple, fast and high yielding method for the preparation of 5-arylidene-2-imino-4-thiazolidinones.

Acknowledgements

We thank Mr Pierre Guenot, responsible for the CRMPO and his group for mass spectrometry

Experimental

General

Melting points were determined on a Koffler melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker ARX $200\left({ }^{1} \mathrm{H}\right.$ at 200 MHz$)$ or Bruker AC $300 \mathrm{P}\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ at 300 and 75 MHz , respectively) spectrometers. Chemical shifts are expressed in parts per million downfield from tetramethylsilane used as an internal standard. The mass spectra were recorded on a Varian MAT 311 at a ionizing potential of 70 eV at the "Centre de Mesures Physiques de l'Ouest" (CRMPO, Rennes). Reactions under microwaves were performed in a PROLABO Synthewave 402 $(2.45 \mathrm{GHz})$ microwave reactor with a single focused system. All solvents and reagents were purchased from Acros Organics and Aldrich Chemical and used without further purification.

Preparation of Thioureas 1a,a’

A mixture of the appropriate amine (0.1 mol) and phenylisothiocyanate (0.12 mol) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 24 h . The crude product was concentrated under vacuum and recrystallized from ethanol. 1.3-diphenylthiourea (1a): 93% yield; beige crystals; $\mathrm{mp}=157{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}$): $\delta 10.00$ (bs, $2 \mathrm{H}, \mathrm{NH}$), 7.47 (m, 10H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}\right) ~ \delta$: 178.89 (C=S), 137.23, 129.12, 126.65, 124.79. 1-(4-methylpyridin-2yl)-3-phenylthiourea (1a’): 94\% yield; beige crystals; $\mathrm{mp}=160^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 13.91(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 9.72(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 8.07(\mathrm{~d}$, $1 \mathrm{H}, J=5.16 \mathrm{~Hz}), 7.36(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 6.80(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 178.73$ (C=S), $153.5(\mathrm{C}=\mathrm{N}), 150.59,150.09,138.38,128.73,126.19,125.02,119.82,112.72,21.33\left(\mathrm{CH}_{3}\right)$.

General procedure for the preparation of 5-arylidene-2-imino-4-thiazolidinones 3a-e, 4a-e.

The appropriate thiourea 1a-a’ (3 mmol), chloroacetic acid (3.6 mmol) and the aldehyde 2 (3 mmol) were placed successively in a cylindrical quartz tube ($\varnothing=1.5 \mathrm{~cm}$). Then the tube was introduced into the Synthwave ${ }^{\circledR} 402$ Prolabo microwave reactor and irradiated at $90-110^{\circ} \mathrm{C}$ for $10-20 \mathrm{~min}$. The microwave is monitored by a computer which allows the temperature of the reaction mixture to be adjusted. After, cooling down to room temperature; the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After elimination of the solvent under vacuum, the residue was purified by recrystallisation from
$\mathrm{EtOH} /$ water. Reaction times and yields are listed in Table 1, while microwave power settings and reaction temperatures are given under each entry.

5-Benzylidene-3-phenyl-2-(phenylimino)thiazolidin-4-one (3a): 50W (110 ${ }^{\circ} \mathrm{C}$); yellow solid; $\mathrm{mp}=$ $216^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}_{5}\right.$ rhod $), 7.6-7.04(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 166.6$ (C=O), 151.05 (C=N), 148.23, 134.77 ($\mathrm{CH}=\mathrm{C} 5_{\text {rhod }}$), 134.51, 133.73, 133.28, 132.73, 131.58, 130.35, 129.46, 128.13, 127.36, 124.96, 121.37; 121.15 ($\mathrm{C}_{\text {rhod }}$); HRMS, m / z found 356.0982 (calc. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: 356.09834$)

5-(4-Methoxybenzylidene)-3-phenyl-2-(phenylimino)thiazoldin-4-one (3b): $50 \mathrm{~W} \quad\left(90^{\circ} \mathrm{C}\right)$; yellow powder; $\mathrm{mp}=204^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.8\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}_{\text {rhod }}\right), 7.32(\mathrm{~m}, 10 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $7.3 \mathrm{~Hz}), 6.9(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.76 \mathrm{~Hz}), 3.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 166.70(\mathrm{C}=\mathrm{O}), 160.99,151.36$ (C=N), 148.49, 134.89 ($\mathrm{CH}=\mathrm{C}_{5}$), 133.80, 133.12, 132.03, 129.29, 128.92, 127.12, 126.39, 124.88, 121.22, 121.27, $118.35\left(\mathrm{C}_{\text {rhod }}\right)$, $\left.114.77\left(\mathrm{C}_{\text {rhod }}\right), 55.46\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS, m / z found 386.1072 (calc. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: 386.10890)

5-(4-(Dimethylamino)benzylidene)-3-phenyl-2-(phenylimino)thiazolidin-4-one (3c): 50W (110 $\left.{ }^{\circ} \mathrm{C}\right)$; yellow crystals; $\mathrm{mp}=208^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C} 5_{\text {rhod }}\right), 7.58-7.06(\mathrm{~m}, 10 \mathrm{H})$, $7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.03 \mathrm{~Hz}), 6.76(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.02\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 167.03$ (C=O), 151.92 (C=N), 151.15, 148.76, 135.19 (CH=C ${ }_{5}$ rod), 134.51, 132.72, $132.46,129.29,128.72$, 128.26, 127.50, 124.65, 121.35, 114.58 (C5rhod), 112.01, $\left.40.06\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS, m / z found 399.1406 (calc. for $\mathrm{C}_{2} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}$: 399.1053).

5-(3-(4(Dimethylamino)phenyl)allylidene)-3-phenyl-2-(phenylimino)thiazolidin-4-one (3d): 30W $\left(110^{\circ} \mathrm{C}\right)$; purple crystals; $\mathrm{mp}=246^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.62-7.47(\mathrm{~m}, 10 \mathrm{H}), 7.39(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $7.61 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{dd}, J=6 \mathrm{~Hz}, J=2 \mathrm{~Hz}), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=7.57 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.4 \mathrm{~Hz}), 3.06\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 166.06(\mathrm{C}=\mathrm{O}), 151.54(\mathrm{C}=\mathrm{N}), 48.60,142.96$, 134.98 ($\mathrm{CH}=\mathrm{C}_{5}$), 134.77, 132.37, 131.31, 129.24, 129.20, 128.76, 128.09, 124.74, 121.25, 119.07 $\left.\left(\mathrm{C5}_{\text {rhod }}\right) ; 112.74,40.68\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS, m / z found 425.1567 (calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS} 425.15618$).

5-((Benzo[d][1,3]dioxol-6-yl)methylene)-3-phenyl-2-(phenylimino)thiazolidin-4-one (3e, 3e’): 50W $\left(110^{\circ} \mathrm{C}\right)$; a 3:1 mixture of $3 \mathbf{e} / 3 \mathbf{e}^{\prime}$; yellow solid; $\mathrm{mp}=218^{\circ} \mathrm{C}$, after crystallisation with EtOH/water; ${ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta: 7.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}_{\text {rhod }}\right), 7.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}_{\text {rrhod }}\right), 7.57-6.85(\mathrm{~m}, 20 \mathrm{H}), 7.3(\mathrm{~s}, 1 \mathrm{H})$, 7.18 (d, 1H, J=8.0Hz), 7.10 (d, 1H, $J=8.2 \mathrm{~Hz}$), 7.03 (d, 1H, $J=8.3 \mathrm{~Hz}), 7.01$ (s, 1H), 6.02 (s, 2H, $\left.\mathrm{CH}_{2}\right), 6.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 167.22(\mathrm{C}=\mathrm{O}), 166.58(\mathrm{C}=\mathrm{O}), 151.54(\mathrm{C}=\mathrm{N}), 150.99$ (C=N), 149.91, 149.20, 148.78, 148.40, 148.65, 148.38, 148.33, 148.30, 134.87, 134.80 ($\mathrm{CH}=\mathrm{C} 5_{\text {rhod }}$), 132.80, 131.42, 129.93, 129.34, 129.31, 129.22, 128.90, 126.15, 127.51, 126.83, 126.13, 124.90, 121.12, 119.04 ($\mathrm{C}_{\text {rhod }}$), 119.02 ($\mathrm{C}_{\text {rhod }}$), 109.80, 109.24, 109.20, 109.16, 109.10, 108.98, $102.02\left(\mathrm{CH}_{2}\right)$, $101.80\left(\mathrm{CH}_{2}\right)$. Isomer $3 \mathbf{e}$ is obtained in 80% yield after reflux in EtOH for 5 hours; yellow solid; $\mathrm{mp}=$ $265{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}_{\text {rhod }}\right), 7.60-6.86(\mathrm{~m}, 10 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, 1 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.07 \mathrm{~Hz}), 6.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 166.58(\mathrm{C}=\mathrm{O}), 150.99(\mathrm{C}=$
$\mathrm{N})$, 149.20, 148.65, 148.38, 148.31, 134.81 ($\mathrm{CH}=\mathrm{C}_{\text {rhod }}$), 131.43, 129.93, 129.31, 128.90, 126.14, 124.90, 121.12, 119.02 ($\mathrm{C}_{\text {rhod }}$), 109.20, 109.16, 108.98, $101.79\left(\mathrm{CH}_{2}\right) ;$ HRMS, m / z found 400.0889 (calc. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 400.08816).

5-Benzylidene-3-(4-methylpyridin-2-yl)-2-(phenylimino)thiazolidin-4-one (4a): $50 \mathrm{~W}\left(110^{\circ} \mathrm{C}\right)$; yellow solid; mp>260 ${ }^{\circ}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}\right) \delta: 8.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 8.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}_{\text {rhod }}\right)$, $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 10 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 167.25$ (C=O), 160.58, 153.05 (C=N), 148.75, 148.20, 139.10, 138.90, 135.90 ($\mathrm{CH}=\mathrm{C} 5_{\text {rhod }}$), 132.09, 130.58, 129.90, 129.56, 127.84, 122.96, 118.61 (C5 rhod), 117.00, 116.9, 112.42, $22.54\left(\mathrm{CH}_{3}\right)$; HRMS, m / z found 371.1083 (calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$: 371.10923).

5-(4-Methoxybenzylidene)-3-(4-methyl-3-(4-methylpyridin-2-yl)-2-(phenylimino)thiazolidin-4-one (4b): $50 \mathrm{~W}\left(90^{\circ} \mathrm{C}\right)$; yellow powder; $\mathrm{mp}=207^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}\right) \delta: 8.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.76 \mathrm{~Hz})$, 7.95 (s, 1H, CH=C5rhod), 7.9 (m, 5H), 7.3 (d, 2H, J=8.3Hz), 7.23 (d, 1H, J=5.6Hz), 7.19 (s, 1H), 6.97 (d, $2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { pyridine }}\right), 2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 165.63(\mathrm{C}=\mathrm{O})$, 160.18 , 154. $06(\mathrm{C}=\mathrm{N}), 139.53$, 136.14 ($\mathrm{CH}=\mathrm{C}_{\text {rhod }}$), 133.72, 132.52, 129.68, 127.89, 125.16, 122.42, 121.27, 118.53 ($\left.\mathrm{C}_{\text {rhod }}\right), 117.45,115.01,113.63,109.81,55.51\left(\mathrm{CH}_{3} \mathrm{O}\right), 22.26\left(\mathrm{CH}_{3 \text { pyridine }}\right)$; HRMS, m / z found 401.1213 (calc. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: 401.11980).

5-(4-(Dimethylaminobenzylidene)-3-(4-methylpyridin-2-yl)-2-(phenylimino)thiazolidin-4one
(4c):
$30 \mathrm{~W}\left(90^{\circ} \mathrm{C}\right)$; red crystals; $\mathrm{mp}=230^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}\right) \delta: 8.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.74 \mathrm{~Hz}), 7.96$ (s, 1H, CH=C5 ${ }_{\text {rhod }}$), 7.62 (s, 1H), 7.58-7.50 (m, 5 H), 7.47 (d, $1 \mathrm{H}, \mathrm{J}=4.12 \mathrm{~Hz}$), 7.33 (d, $2 \mathrm{H}, \mathrm{J}=5.33 \mathrm{~Hz}$), $7.26(\mathrm{~d}, 2 \mathrm{H}, J=5.43 \mathrm{~Hz}), 3.10\left(\mathrm{~s}, 6 \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { pyridine }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}\right) \delta$: 165.20 ($\mathrm{C}=\mathrm{O}$), 159.65, 153.99 ($\mathrm{C}=\mathrm{N}$), 146.33, 139.67, 134.33 ($\mathrm{CH}=\mathrm{C}_{\text {rhod }}$), 133.21, 132.28, 130.20, 129.90, 129. 62, 127.77, 122.51, 118.72 ($\left.\mathrm{C5}_{\text {rhod }}\right)$, 118.63, 117.22, 113.41, $\left.44.52\left(\mathrm{CH}_{3}\right)_{2}\right), 22.52\left(\mathrm{CH}_{3}\right)$; HRMS, $m / z=414.1501$ found (calc. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS}: 414.15143$).

5-(3-(4-(Dimethylamino)phenyl)allylidene)-3-(4-methylpyridin-2-yl)-2-(phenylimino)thiazolidin-4-one (4d): $30 \mathrm{~W}\left(90^{\circ} \mathrm{C}\right)$; red crystals; mp> $260^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 8.43(\mathrm{~d}, 1 \mathrm{H}, J=5.74 \mathrm{~Hz}), 7.58(\mathrm{~d}$, $1 \mathrm{H}, J=5.21 \mathrm{~Hz}), 7.53(\mathrm{t}, 1 \mathrm{H}, J=3.91 \mathrm{~Hz}), 7.47(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=6.28 \mathrm{~Hz}), 6.90(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=3.23 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.83 \mathrm{~Hz}), 6.74(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.08\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}, 2.34(\mathrm{~s}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{3 \text { pyridine }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 165.96(\mathrm{C}=\mathrm{O}), 158.01,153.25(\mathrm{C}=\mathrm{N}), 151.25,149.28,146.33$, 143.34, 135.63, 133.59, 129.30, 129.05, 128.4, 124.10, 122.15, 121.2, 118.78 ($\mathrm{C}_{\text {rhod }}$), 112.03, 40.23 $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 20.79\left(\mathrm{CH}_{3 \text { pyridine }}\right)$; HRMS, m / z found 440.1657 (calc. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OS}: 440.16708$).

5-((Benzo[d][1,3]dioxol-6-yl)methylene)-3-(4-methylpyridin-2yl)-2-(phenylimino)thiazolidin-4-one (4e): 50W $\left(90^{\circ} \mathrm{C}\right)$; yellow powder; $\mathrm{mp}=217^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CF}_{3} \mathrm{COOH}\right) \delta: 8.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 5.97 Hz), 8.3 (s, 1H, CH=C5 ${ }_{\text {rhod }}$), 7.86 (s, 1H), 7.5 (d, $1 \mathrm{H}, J=3 \mathrm{~Hz}$), $7.20(\mathrm{~m}, 8 \mathrm{H}), 6.04$ (s, 2H, CH2), $2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 165.50(\mathrm{C}=\mathrm{O}), 160.67,154.9(\mathrm{C}=\mathrm{N}), 150.15,148.64,141.07$, 135.08 ($\mathrm{CH}=\mathrm{C} 5_{\text {rhod }}$), 133.67, 129.52, 127.98, 127.92, 127.13, 127.04, 122.22, 118.81 ($\mathrm{C}_{\text {rhod }}$), 117.77, 116.44, 113.94, 108.99, 102.06, $22.26\left(\mathrm{CH}_{3}\right)$; HRMS, m / z found 415.099 (calc. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: 415.09906)

References

1. Doran, W. J.; Shonle, H. A. Dialkyl thiazolidinones. J. Org. Chem. 1938, 3, 193-197.
2. Troutman, H. D.; Long, L. M. The synthesis of 2,3-disubstituted-4-thiazolidinones. J. Am. Chem. Soc. 1948, 70, 3436-3439.
3. Vicini, P.; Geronikaki, A.; Anastasia, K.; Incerti, M.; Zani, F. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-thiazolidinones. Bioorg. Med. Chem. 2006, 14, 3859-3864.
4. El-Gendy, Z.; Abdel-Rahman, R. M.; Fawzy, M. M.; Mahmoud, M. B. Biologically active thiazolidinone. Part II. Synthesis and fungitoxicities of isolated and fused thiazolidinones derived from thiosemicarbazones. J. Indian Chem. Soc. 1990, 67, 927-929.
5. Zervosen, A.; Lu, W. P.; Chen, Z.; White, R. E .; Demuth, Jr, T.P.; Frère, J.M. Interaction between Penicillin- Binding Proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones. Antimicrob. Agents Chemother. 2004, 48, 961-969.
6. Diurno, M. V.; Mazzoni, O.; Piscopo, E.; Calignano, A.; Giordano, F.; Bolognese, A. Synthesis and antihistaminic activity of some thiazolidin-4-ones. J. Med. Chem. 1992, 35, 2910- 2912.
7. Bhargava, P. N.; Prakash, S.; Lakhan, R. Synthesis of 2- (4',5'-disubstituted thiazol-2'-ylimino)-3-(methylphenyl)-5-methyl (or H)-thiazolidin-4-ones and their fungicidal activity. Indian J. Chem. 1981, 20B, 927-929.
8. Liu, H-L.; Li, Z.; Anthonsen, T. Synthesis and Fungicidal Activity of 2-Imino-3-(4-aryl-thiazol-2-yl)-thiazolidin-4-ones and their 5-Arylidene Derivatives. Molecules 2000, 5, 1055-1061.
9. (a) Kandeel, K. A. Synthesis and structures of some new thiazolidin-4-ones and thiazolin-4one of anticipated biological activity. Arkivoc 2006, 1-6; (b) D’hooge, M.; De Kimpe, N. Synthetic approaches towards 2-iminothiazolidines: an overview. Tetrahedron 2006, 62, 513-535; (c) Laurent, D. R. St.; DedongWu, Q.G.; Serrano-Wu, H. Regioselective synthesis of 3-(hetero-aryl)-iminothiazolidin-4-ones. Tetrahedron Lett. 2004, 45, 1907-1910.
10. Ottana, R.; Maccari, R.; Barreca, M.L.; Bruno, G.; Rotondo, A.; Rossi, A.; Chiricosta, G.; DiPaola, R.; Sautebin, L.; Cuzzocrea, S.; Vigorita, M.G. 5-Arylidene-2-imino-4-thiazolidinones: Design and synthesis of novel anti-inflammatory agents. Bioorg. Med. Chem. 2005, 13, 42434252.
11. Kasmi, S.; Hamelin, J.; Benhaoua, H. Microwave-assisted solvent free synthesis of iminothiazolines. Tetrahedron Lett. 1998, 39, 8093-8096.
12. Bruno, G.; Costantino, L.; Curinga, C.; Maccari, R.; Monfore, F.; Nicolo, F.; Ottana, R.; Vigorita, M.G. Bioorg. Med. Chem. 2002, 10, 1077-1084.

Sample Availability: Available from the authors.
© 2006 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

