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Abstract: The green and clean sunlight-driven catalytic conversion of CO2 into high-value-added
chemicals can simultaneously solve the greenhouse effect and energy problems. The controllable
preparation of semiconductor catalyst materials and the study of refined structures are of great
significance for the in-depth understanding of solar-energy-conversion technology. In this study, we
prepared nitrogen-doped NiO semiconductors using a one-pot molten-salt method. The research
shows that the molten-salt system made NiO change from p-type to n-type. In addition, nitrogen
doping enhanced the adsorption of CO2 on NiO and increased the separation of photogenerated
carriers on the NiO. It synergistically optimized the CO2-reduction system and achieved highly active
and selective CO2 photoreduction. The CO yield on the optimal nitrogen-doped photocatalyst was
235 µmol·g−1·h−1 (selectivity 98%), which was 16.8 times that of the p-type NiO and 2.4 times that
of the n-type NiO. This can be attributed to the fact that the nitrogen doping enhanced the oxygen
vacancies of the NiOs and their ability to adsorb and activate CO2 molecules. Photoelectrochemical
characterization also confirmed that the nitrogen-doped NiO had excellent electron -transfer and
separation properties. This study provides a reference for improving NiO-based semiconductors for
photocatalytic CO2 reduction.

Keywords: NiO; nitrogen doping; photocatalysis; reduction of CO2

1. Introduction

The rapid development of current society has increased the consumption of non-
renewable fossil fuels. Human beings have to face the problem of energy shortages, and
the resulting large emissions of CO2 are also an important cause of global warming [1–4].
Currently, using sustainable solar energy to photocatalytically reduce CO2 in high-value-
added products is a promising way to simultaneously solve the greenhouse effect and the
energy crisis [5,6]. Therefore, it is very important to design and synthesize photocatalysts
with low pollution, high efficiency, and low cost [7,8].

As an environmentally friendly transition-metal-oxide semiconductor, NiO has excel-
lent conductivity, good chemical stability, and non-toxicity, and it has broad application
prospects at the nanoscale [9,10]. At the same time, it is considered to be a semiconductor
that can be used for CO2 photoreduction due to its sufficiently negative conduction band
position, fast hole mobility, and high charge-carrier concentration [11]. However, due to
the high recombination degree of photogenerated carriers, the separation efficiency of
electrons and holes in the reaction process is low, which greatly weakens the reactivity [12].
In addition, wide-band-gap NiO semiconductor catalysts can only use about 3–5% of solar
ultraviolet light, resulting in the low efficiency of the photocatalytic reduction of CO2,
limiting the application of NiO in photocatalysis [13]. Therefore, NiO is often used as a
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co-catalyst to improve photocatalytic performance and encourage the efficient separation
of photoelectrons and holes [14]. For example, NiO can significantly improve the pho-
tocatalytic hydrogen-production performance of SrTiO3, TiO2, Nb2O5, Ga2O3, and other
photocatalysts [15]. However, the activity was generally low in the reported photocatalytic
reduction of CO2 by NiO [16,17]. Therefore, NiO is usually modified by different methods
to improve the photocatalytic performance [18].

Since NiO has suitable conduction band (CB) and valence band (VB) positions, it
often forms heterostructures with many semiconductors. Zhang et al. [19] prepared an
S-type BiOBr/NiO heterojunction. The experiment showed that the layered structure
of BiOBr/NiO increased the light-absorption and charge-separation performance, and
it improved the redox ability of BiOBr/NiO. In addition, the NiO-layered porous-sheet
structure was conducive to the adsorption of CO2, exposing abundant active sites for CO2
photoreduction, thus achieving excellent CO2 photoreduction performance. Moreover,
Park et al. [20] prepared a single-layer hollow-sphere photocatalytic material (h-NiO-NiS)
of NiO and NiS by partially replacing O with S on NiO hollow spheres. The construction of
this heterojunction greatly enhanced the CO2-adsorption capacity and increased the transfer
of excited electrons from the NiS to the surface along the hollow spheres. The efficient
transfer of electrons led to the prolongation of the photogenerated charges’ recombination
times, which further increased the conversion of CO2 to CH4.

Moreover, charge separation can be increased by adjusting the electronic structure of
NiO, thereby improving its CO2 photoreduction activity. Xiang et al. [21] constructed ultra-
thin NiO nanosheets with different oxygen-vacancy concentrations to achieve efficient CO2
photoreduction performance. Density functional theory calculations and CO2-temperature
programmed desorption experiments confirmed that moderate oxygen vacancy concen-
trations achieved a strong combination of the material surface with CO2, enhanced the
adsorption and activation of CO2, and encouraged effective charge transfer. By contrast,
the excessive oxygen-vacancy content reduced the binding affinity of the CO2; thus, the
appropriate regulation of oxygen-vacancy content is an effective means to achieve a NiO
electronic structure that is suitable for CO2 photoreduction. In addition, the construction
of a ternary bridging structure is also an important method to increase the separation of
photoelectrons and holes. For example, Park et al. [22] introduced reduced graphene oxide
(rGO) into the NiO-CeO2 p-n heterostructure, which accelerated the separation and transfer
of photogenerated electrons, and the surface of the material accumulated electrons more
easily, thus improving the photocatalytic activity of the CO2 multi-electron reduction.

In addition, heteroatom doping is an effective method with which to adjust the elec-
tronic structures of catalysts and has been extensively studied [23–26]. However, compared
with anion doping, cation doping produces more harmful electron–hole recombination
centers. Because oxygen and nitrogen show similar chemical, structural, and electronic
characteristics, such as polarizability, electronegativity, coordination number, and ionic
radius, when other elements (such as N 2p) with higher potential energy than O 2p atomic
orbitals are introduced, new VBs instead of O 2p atomic orbitals can be formed, resulting in
smaller Ebg without affecting the CB level, thereby improving the visible-light response [27].
Therefore, non-metallic-element-N doping is a preferable way to improve the photocatalytic
CO2-reduction effect of NiO. Furthermore, it is also important to choose the appropriate
doping method. The molten-salt method of element doping is an efficient and low-cost
method because its molten-salt liquid environment can make the element distribution more
uniform, and the treatment process before and after the reaction is very simple [28].

In this research, NiO semiconductor catalysts with different nitrogen-doping contents
were prepared using a molten-salt calcination method, and the CO2-reduction activity was
tested in a bipyridine ruthenium/triethanolamine heterogeneous catalytic system excited
by different wavelengths of light [29]. The phase composition, band structure, optical
properties, and surface morphology of the doped NiO semiconductor were researched
through a series of characterizations. The enhancement mechanism of the photocatalytic
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performance was discussed, and the possible mechanism of the photocatalytic process
was analyzed.

2. Results and Discussion
2.1. Phase Structure

As shown in Figure 1a, all of the samples corresponded to standard NiO (JCPDS
PDF#47-1049), and no impurity phase was detected via XRD. The diffraction peaks at
2θ = 37.2◦, 43.3◦, 62.9◦, 75.4◦, and 79.4◦ corresponded to the (111), (200), (220), (311), and
(222) crystal planes of the NiO, respectively [30]. In addition, the doping of the N signifi-
cantly enhanced the crystallinity of the sample, which was more conducive to the migration
and separation of photogenerated charges [31]. By enlarging the range of 2θ = 41–45◦

(Figure 1b), it was found that the doping of N made the (200) crystal plane of the N-NiO-x
shift by a small angle. This is because the radius of the N was different from those of
the Ni and the O. After the N doping into the lattice of the NiO, the Ni–O bond became
compressed and stretched to a certain extent, resulting in a change in the crystal-plane
spacing, which showed the shift in the crystal plane’s diffraction angle macroscopically [32].
The average particle diameters of the samples calculated by the Scherrer equation are
shown in Table S1. It was found that the calculated results of the NiO and N-NiO-2 were
similar to the results of the SEM (Figure 2a,b). The particle diameter of the pure NiO was
smaller and more uniform than that of the N-NiO-2. The doping of the N made the NiO
agglomerate and the particle diameter increased.
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2.2. Microstructure

The microstructure information of the NiO and N-NiO-2 were collected using SEM and
TEM. As shown in Figure 2a, the NiO appeared in the form of nanospheres, and the particles
were evenly distributed. After the introduction of the N-element doping, the surface of
the sample became irregular and agglomerated (Figure 2b). In addition, the TEM images
showed that the N-NiO-2 was stacked in sheets and irregularly distributed (Figure 2c),
which was similar to the SEM results. Furthermore, as shown by the high-resolution-TEM
imagery in Figure 2e–f, it was found that there were lattice-fringe-spacing values of d = 0.22
and 0.24 nm in the N-NiO-2, which corresponded to the (200) and (111) crystal planes of
the NiO, respectively. No lattice fringes of impurity phases were detected, indicating that
the N doping did not form impurity phases on the surface of the NiO. It is worth noting
that the formation of oxygen defects in the sample macroscopically showed the edge of the
defect band [33]. In addition, the element-mapping spectra in Figure 2g–j show that the Ni,
O, and N elements were uniformly distributed without impurity elements.
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2.3. Optical Properties

The optical absorption spectrum was used to characterize the absorption characteristics
of the sample to different wavelengths of light. In general, the larger the maximum
absorption wavelength, the wider the spectral response of the semiconductor, but this
causes the narrowing of the band gap of the semiconductor, which may further lead to a
reduction in the redox performance in the photocatalytic process [34]. Therefore, it was
necessary to balance the excitation wavelength and redox performance of the light-excited
semiconductor. As shown in Figure 3a, the DRS showed that the maximum absorbance
of all the samples was concentrated within a range of 200–350 nm. However, after the N
doping, the original black NiO was transformed into yellowish brown N-NiO-x (Figure S1);
thus, the absorption of the N-NiO-x in the visible range was weakened. In addition, the
absorption peaks of the N-NiO-x at about 390 nm and 470 nm were attributed to the N 2p
band introduced by the N doping [35]. The weak absorption band around 600 nm belonged
to the defect band [36]. The other absorption peaks at 380–500 nm and the peak around
720 nm correspond to the NiO itself [37].
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The band gap of the sample can be calculated according to the Kubelka–Munk
equation [38]:

(αhv)1/n = A(hv− Eg), (1)

where α is the absorption coefficient, hv is the light energy, A is a constant, Eg is the band
gap, the direct band-gap semiconductor n is 1/2, and the indirect band-gap semiconductor
n is 2. According to the literature, NiO is a direct band-gap semiconductor, and n is 1/2.
Through drawing a (αhv)2-hv diagram and linearly fitting the curve from the intercept to
estimate the Eg of the sample, the results were obtained and they are shown in Figure 3b. It
can be seen that the optical absorption of the NiO weakened after the introduction of the N
doping into the NiO lattice; on the other hand, the doping of N made the band-gap value
of the NiO change from 3.07 to 3.23 eV, and the wider band gap improved the reduction
performance of the NiO.

2.4. Surface Chemical States

In the XPS full spectra of the N-NiO-2 shown in Figure S2a, Ni and O elements were
present, and no obvious N element was found, which may have been due to the low
doping amount. In the C 1s spectrum (Figure S2b), the peaks at 284.8 eV, 286.2 eV, and
288.8 eV corresponded to the C-C, C-O, and C=O of the external carbon source, respectively.
Figure 4a corresponds to the energy spectrum of the Ni element. The characteristic peaks
of the NiO at the binding energies of 853.6 and 872.0 eV corresponded to Ni 2p3/2 and Ni
2p1/2, respectively, corresponding to Ni2+. In addition, the binding energies of 860.6 and
870.7 eV corresponded to the satellite peaks of Ni 2p [39]. However, compared with the
NiO, the Ni 2p characteristic peak of N-NiO-2 shifted 0.59 eV in the direction of increased
binding energy, indicating a decrease in the electron-cloud density of the Ni element [40].
This may have been due to the fact that the electronegativity of N is larger than that of
Ni, and electrons are more easily attracted by the N element. In addition, it can be seen
in Figure 4b that the O 1s were fitted to the three peaks of OI, OII, and OIII with binding
energies of 529.2 eV, 531.2 eV, and 531.9 eV, respectively, corresponding to Ni-O lattice
oxygen, the hydroxyl oxygen of the adsorbed water on the sample surface and oxygen
defects, respectively [41–43]. Compared with the NiO, the oxygen defects of the N-NiO-2
increased from 4.9% to 10.4% (Table 1). The increased oxygen defects were more conducive
to electron capture, thereby promoting the separation of photogenerated charges [44].
Moreover, the binding energy of 400.0 eV (Figure 4c) corresponded to the N 1s peak,
indicating the successful doping of the N element [45].
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Table 1. The XPS fitted peak area and oxygen-defect ratios on NiO and N-NiO-2.

Samples
Oxygen Species

Ni–O O–H OV OV Ratio

NiO 64,587 44,182 5635 4.9%
N-NiO-2 67,586 73,293 16,352 10.4%

2.5. CO2-Photoreduction Performance

Using a LED lamp as the light source, the prepared samples were tested for CO2-
photoreduction activities. As shown in Figure 3, it was found by liquid chromatography
and gas chromatography that the product had no substances other than CO and H2. As
shown in Figure 5b, the T-NiO exhibited extremely low CO2-reduction activity under
365 nm of light, with a CO yield of 14 µmol·g−1·h−1 and a selectivity of 39%, while the
prepared NiO exhibited higher CO yield (95 µmol·g−1·h−1) and selectivity (82%) under
molten-salt conditions. Furthermore, when N-doping was introduced into the NiO, the
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CO yield increased to 235 µmol·g−1·h−1 and the selectivity increased to 98%. As shown in
Figure 5a, with the increase in the N content, the yield and selectivity of the CO increased
gradually and reached its maximum on the N-NiO-2. In addition, in order to research the
photon-utilization rate of the prepared samples, the activity tests were carried out under
420-nanometer and 550-nanometer light sources, and the results are shown in Figure 5c. In
order to investigate the necessary conditions of the reaction system in the catalytic process,
a control experiment was also carried out. It can be seen from Figure 5d that only trace
products were detected under the conditions of no Ru, no catalyst, the use of N2 instead of
CO2, no light, and no TEOA, indicating that the CO did arise from the reduction of CO2
in the system, not from the decomposition of the catalyst, and any changes in the reaction
system greatly affected the catalytic activity.
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In order to further explore the light-utilization efficiency of the system under the irra-
diation of different wavelengths of light, the 2-hour CO yield of the N-NiO-2, the calculated
apparent quantum efficiency (AQE) value, and the optical power of the corresponding
wavelength were determined, and they are listed in Table 2. It can be seen from the table
that the AQE reached 2.4% at 365 nm, indicating that the activity corresponded to the
energy of the light.
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Table 2. Optical power, CO yield, and AQE of the N-NiO-2 at different wavelengths under 2 h
of illumination.

Wavelength (nm) Optical Power (mW) CO Yield (µmol·g−1·h−1) AQE (%)

365 456.4 235.5 2.4
420 358.7 48.2 0.5
550 59.2 1.3 0.06

2.6. Evaluating the Separation Performance of Photogenerated Carriers

In order to explore the photogenerated charge-separation abilities of the prepared
samples and investigate the resistance during charge transport, photoelectrochemical tests
were carried out. As shown in Figure 6a, the N-NiO-x exhibited an enhanced photocurrent
response, indicating that the N doping increased the separation of the photogenerated
carriers [46]. On the other hand, the electrochemical impedance spectra of the samples
(Figure 6b) showed that the doping made the charge-transfer resistance of the NiO smaller,
so that the electrons participated in the catalytic reaction more efficiently [47]. In addi-
tion, the laws of the photocurrent and the impedance were consistent with the activity
law, which also indicated that the charge transfer was the decisive factor in the catalytic
activity. Furthermore, the photoluminescence spectra of the prepared samples are shown in
Figure 6c. At the excitation wavelength of 250 nm, all the samples showed emission peaks
at about 400 nm, which came from the composite luminescence of the photogenerated
carriers. The fluorescence-response values of the N-doped samples were weakened, indi-
cating that the degree of recombination of the photogenerated electrons and holes reduced,
resulting in more effectively separated electrons, improving the catalytic performance of
the photocatalytic reduction system [48].
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The EPR spectra of the samples at room temperature (Figure 7) revealed the presence
of defects in the samples. The Lorentzian linear resonance peaks at g = 2.002 indicated
the presence of unpaired electrons in the samples [49–51]. The results of the EPR and XPS
showed that there were oxygen defects in the samples. The higher Lorentz resonance signal
indicated that the N-NiO-2 had more oxygen defects than the NiO, which indicated that the
molten-salt system effectively introduced oxygen defects into the NiO, and the presence of
N could further increase the formation of oxygen defects. The presence of oxygen defects
formed an electron-capture trap in the semiconductor, which encouraged the separation of
electrons and holes [52]. The CO2 combined with the accumulated electrons in the defects
and was reduced to support the improvement in the reaction performance.
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2.7. Energy-Band Structure

In order to study the energy-band structures and redox properties of the prepared
samples, the flat band potentials of the samples were tested via photoelectrochemical Mott–
Schottky (M–S) analysis. As shown in Figure 8a, the T-NiO exhibited the characteristics
of a p-type semiconductor [53], while the NiO in a molten-salt environment (Figure 8b)
exhibited the characteristics of an n-type semiconductor [54], indicating that the molten salt
encouraged the transformation of the NiO semiconductor type. The surface of the T-NiO
itself was rich in holes, so it showed p-type characteristics. The reduction environment in
the molten-salt atmosphere encouraged the formation of oxygen vacancies on the surface of
the NiO, further enriching it with surface electrons to realize electron doping. Furthermore,
the flat-band potentials of the NiO and N-NiO-2 were −0.75 V and −0.85 V (vs. Ag/AgCl
pH = 7), respectively, which corresponded to −0.55 V and −0.65 V (vs. NHE pH = 7),
respectively, as shown in Figure 8b,c. In general, the conduction band of the n-type
semiconductors was about 0.1 V more negative than the flat-band potential [55], so the
conduction band of the N-NiO-2 was reduced from −0.65 V to −0.75 V (vs. NHE pH = 7).
This indicates that the N doping reduced the conduction-band position of the NiO and
enhanced the reducibility of the reaction. In addition, the valence-band position of the
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N-NiO-2 was 2.45 V, according to the band-gap diagram obtained through the optical
absorption spectrum.
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2.8. Possible Reaction Mechanism

Figure 9 shows the physical adsorption isotherms of the CO2 on the prepared samples.
Compared with the pure NiO, the adsorption capacity of the N-NiO-x materials for the
CO2 increased first and then decreased with the increase in the N content, and it reached
a maximum with the N-NiO-2 sample, which was consistent with the order of reactivity.
These results show that the N doping increased the adsorption of CO2 on the surface of
the NiO, and the combination of electrons with CO2 on the surface of the NiO facilitated
the photoreduction performance of the CO2, indicating that the adsorption of CO2 was the
decisive factor in the activity.

The possible mechanism of the whole reaction is shown in Figure 10. Under illu-
mination, the N-NiO-x semiconductor became excited, and it produced electron–hole
pairs (e−–h+). Subsequently, the excited electrons in the conduction band of the N-NiO-x
transferred to the defect energy level and accumulated there. The holes accumulated in
the valence band were consumed by triethanolamine (TEOA), and the TEOA oxidized
to diethanolamine and glycolaldehyde. At the same time, Ru(bpy)3

2+ activated to the
excited state of Ru(bpy)3

2+* under light irradiation and was then quenched by the TEOA
to form Ru(bpy)3

+. Subsequently, the electrons of the Ru(bpy)3
+ were transferred to the
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conduction band of the NiO, and further accumulated at the defect level, and the Ru(bpy)3
+

was oxidized to the initial state, Ru(bpy)3
2+. Furthermore, CO2 molecules combined with

the excited-state electrons accumulated at the N-NiO-x defect level and protons in water
and converted into the product, CO.
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3. Experimental Section
3.1. Materials

The used chemicals were nickel nitrate hexahydrate (Ni(NO3)2·6H2O, Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China), sodium hydroxide (NaOH, Shanghai
Aladdin Biochemical Technology Co., Ltd., Shanghai, China), anhydrous lithium chloride
(LiCl, Shanghai McLean Biochemical Technology Co., Ltd., Shanghai, China), potassium
chloride (KCl, Xilong Science Co., Ltd., Shantou, China), urea (CH4N2O, Shanghai McLean
Biochemical Technology Co., Ltd., Shanghai, China), [Ru(bpy)3]Cl2·6H2O(Shanghai McLean
Biochemical Technology Co., Ltd., Shanghai, China), triethanolamine (TEOA, Xilong
Science Co., Ltd., Shantou, China) and acetonitrile (MeCN, Xilong Science Co., Ltd.,
Shantou, China). All chemicals were analytically pure and could be used directly without
purification after purchase.

3.2. Synthesis of Precursor Ni(OH)2

Precursor Ni(OH)2 was prepared by a simple precipitation method: a total of 10 mmol
Ni(NO3)2·6H2O was dissolved in 40 mL of deionized (DI) water under magnetic stirring,
after which 20 mmol of NaOH was added when the solid was completely dissolved. After
30 min of stirring, the precipitate was collected by filtration, washed once with 10 mL
of deionized (DI) water and anhydrous ethanol, and dried at 60 ◦C for 8 h to obtain
precursor Ni(OH)2.

3.3. Synthesis of NiO

The 5 mmol of precursor Ni(OH)2 was fully ground with 2.7 g of LiCl and 3.3 g of
KCl and then calcined at 400 ◦C for 3 h. After the reaction, the bulk was fully dissolved in
DI water and filtered, after which it was washed several times with DI water and ethanol
alternately before drying at 60 ◦C for 8 h to obtain NiO. For comparison, traditional P-type
NiO (T-NiO) was obtained by directly calcining Ni(OH)2.

3.4. Synthesis of N-NiO-x

With urea as the nitrogen-doping source, excessive urea was added to the reaction
to reduce the effect of volatilization. The preparation process of nitrogen-doped NiO was
as follows: a total of 5 mmol of precursor Ni(OH)2, m g urea (m = 0.2,0.3,0.4,0.5), 2.7 g of
LiCl, and 3.3 g of KCl were fully ground and then calcined at 400 ◦C for 3 h. The bulk after
reaction was fully dissolved in appropriate DI water and filtered, after which it was washed
several times with DI water and ethanol alternately and dried at 60 ◦C for 8 h to obtain
N-NiO-x (x is 1, 2, 3, 4). Nitrogen and oxygen contents over N-NiO-2 were determined by
inert-gas-fusion technique using a nitrogen-and-oxygen elemental analyzer (LECO Corp.,
TC-436AR, St. Joseph, USA). The carbon content was obtained by carbon–sulfur analyzer.
The ratio of C over N-NiO-2 was 0.02 wt% (probable error), which was negligible compared
with 2.03 wt% N and 19.21 wt% (Table S2).

3.5. Photocatalytic CO2 Reduction

In this research, the catalytic performances of the samples were evaluated for CO2-
reduction activity. The light source was an 80-watt LED lamp (illumination wavelengths
were 365 nm, 420 nm, 550 nm, Zhenjiang Yinzhu Chemical Technology Co., Ltd., Zhenjiang,
China). Typically, 30 mg of the catalyst, 5 mg of [Ru(bpy)3]Cl2·6H2O (denoted as Ru), 3 mL
of MeCN, 2 mL of H2O, and 1 mL of TEOA were added to a 50-milliliter quartz reactor.
Before the start of the reaction, the reactor was first vented with pure CO2 for 30 min in the
dark, in order to make the reaction system reach the adsorption saturation of CO2; next,
1 mL of gas was extracted every 2 h under illumination and injected into a chromatographic
system (H2 and CO were detected by thermal-conductivity detector and flame-ionization
detector, respectively).
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The CO selectivity was calculated using the following formula:

CO Selectivity (SCO) =
YCO

YCO + YH2
(2)

where YCO and YH2 represent the yields of CO and H2, respectively.
Furthermore, the optical powers at different wavelengths were measured via an optical

power meter, with a probe area of 1 × 1 cm2 to contact light. The light-irradiation area
was 2.5 × 2.5 cm2. The apparent quantum efficiency (AQE) was calculated using the
following formula:

AOE =
2 × the number o f evolved CO molecules

N
(3)

N =
Eλ

hc
(4)

where
N: the number of incident photons;
E: the accumulated light energy in the given area (J);
λ: the wavelength of the light;

h: Planck’s constant (6.626 × 10−34 J·s);
c: the velocity of light (3 × 108 m·s−1).

3.6. Characterizations

The phase structure of the material was measured using X-ray diffraction (XRD, Cu Kα,
λ = 0.15406 nm, Bruker D8 Advance). The microstructure and element distributions of the
prepared samples were evaluated using scanning-electron microscopy (SEM, FESEM ZEISS
sigma 500, Oberkochen, Batenwerburg, GER), transmission-electron microscopy (TEM,
JEM-2100F), and energy-dispersive X-ray spectroscopy (EDX). The X-ray photoelectron
spectra (XPS, Thermo Fisher, K-Alpha, Waltham, MA, USA) were examined to study the
chemical states of the elements. The UV–Vis diffuse-reflectance spectra (DRS, Shimadzu
UV-2600, Kyoto, Japan) were examined using BaSO4 as the reference standard, in order
to study the optical absorption properties of the samples. The vacancy-defect state in the
photocatalyst was analyzed with electron paramagnetic resonance (EPR, Bruker ER200-SLC,
Billerica, MA, USA) measurement at room temperature. The CO2 adsorption at 273 K under
ice–water-mixture conditions was studied on an automatic physical adsorption instrument
(ASAP 2020, Norcross, Georgia, USA). Steady-state fluorescence (PL) spectra detected the
reintegration of exposed electron–hole pairs at an excitation wavelength of 250 nm with
a fluorescence spectrometer (FLS 980, Edinburgh, Scotland). Photoelectrochemical mea-
surements were carried out in a three-electrode system on an electrochemical workstation
(Shanghai Chenhua CHI-660E, Shanghai, China) using 0.1 mol/L Na2SO4 or 0.1 mol/L
K3Fe(CN)6/K4Fe(CN)6 buffer solution as the electrolyte solution, Ag/AgCl as the reference
electrode, Pt wire as the auxiliary electrode, and indium-tin-oxide conductive glass (ITO) as
the working electrode (10 mg of the sample was dissolved in 3 drops of ethanol, including
10 µL of nafion solution, after which the solution was subjected to ultrasound for 40 min to
completely disperse the sample, with an effective loading area of 0.25 cm2).

4. Conclusions

In summary, NiO semiconductors doped with non-metallic nitrogen were successfully
prepared using a molten-salt method. Compared with the p-type NiO, the reduction
performance of the n-type NiO was improved. Furthermore, the photoreduction of CO2 by
the n-type NiO was more efficient with N doping. The improvement in the photocatalytic
performance of the NiO semiconductor doped with non-metallic nitrogen was mainly due
to three factors: (1) the molten-salt atmosphere increased the transformation of the p-type
NiO to n-type and the conduction-band position met the potential requirements for CO2
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reduction, thus enhancing the reduction performance; (2) the nitrogen doping increased the
adsorption and activation of CO2 on the surface of the NiO semiconductor, and realized
the rapid conversion of CO2; 3) the defect-energy level induced by the oxygen defects
increased the transfer and separation of electrons, and the CO2 obtained electrons at the
oxygen defects more easily and reduced. This research provides a new reference for solving
the insufficient reduction performance of p-type NiO, as well as a new control method for
inhibiting the photogenerated charge recombination of n-type NiO semiconductors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28062435/s1, Table S1: Average particle diameters of
the samples; Table S2: The contents of C and N obtained by carbon-sulfur analyzer and nitrogen-
oxygen elemental analyzer; Figure S1: Photos of NiO and NiO-x; Figure S2: XPS survey spec-
tra (a) and C 1s spectra (b) of N-NiO-2; Figure S3: TCD (a) and FID (b) of gas chromatogram;
(c) Liquid chromatogram.
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