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Abstract. Among the many models of language acceptors that have
been studied in the literature are multihead finite automata (finite au-
tomata with multiple one-way input heads) and 1-reversal counter ma-
chines (finite automata with multiple counters, where each counter can
only “reverse” once, i.e., once a counter decrements, it can no longer
increment). The devices can be deterministic or nondeterministic and
can be augmented with a pushdown stack. We investigate the relative
computational power of these machines. Our results (where C1 and C2

are classes of machines) are of the following types:

1. Machines in C1 and C2 are incomparable.
2. Machines in C1 are strictly weaker than machines in C2.

In obtaining results of these types, we use counting and “cut-and-paste”
arguments as well as an interesting technique that shows that if a lan-
guage were accepted by a device in a given class, then all recursively
enumerable languages would be decidable.

1 Introduction

A deterministic pushdown automaton (DPDA) is a deterministic finite automa-
ton (DFA) augmented with a pushdown stack. The nondeterministic versions are
called NPDA and NFA, respectively. It is well-known that a DPDA is weaker
than an NPDA, and the latter machines accept exactly the context-free lan-
guages. A special case of a pushdown stack is one where the stack alphabet
has only two symbols, one of which is used only to mark the bottom of the
stack and cannot be modified. Such a stack is called a counter. Thus, we can
think of a counter as a memory unit that holds a non-negative integer (initially
zero), which can be incremented by 1, decremented by 1, left unchanged and
tested for zero. A DFA (NFA) augmented with multiple (at least two) coun-
ters is equivalent to a Turing machine [12]. However, if we restrict the counters
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to be reversal-bounded, the equivalence no longer holds. Here, reversal-bounded
means that the number of alternations between non-decreasing mode and non-
increasing mode each counter makes during the computation is at most r for
some given positive integer r. An NFA augmented with such counters is called a
(reversal-bounded) counter machine (NCM). The deterministic version is called
a DCM. It was shown in [7] that an NCM can accept only a language whose
Parikh map is semilinear. Closure and decidable properties for NCM and DCM
were also investigated in [7]. For related results, see [2,3,4,5,8,10]. We note that
a counter making r-reversals can be simulated by � r+1

2 � counters each of which
makes 1 reversal. Hence, we may assume that the counters in a DCM and NCM
are 1-reversal.

An NFA with multiple one-way input heads is called an NMHFA. The de-
terministic version is called DMHFA. These devices were first studied in [13],
where it was reported that for any integer k ≥ 1, a DMHFA (resp., NMHFA)
with k + 1 head is more powerful than one with only k heads. The proof in
[13] was incomplete and was later completed in [15]. Stateless version of this
hierarchy was later shown in [9].

A DPDA (resp. NPDA) can be generalized by augmenting it with multiple
reversal-bounded counters – we will call it a DPCM (resp. NPCM), or by equip-
ping it with multiple input heads – we will call it DMHPDA (resp. NMHPDA).

As for the classes of 1-reversal (pushdown) counter machines (DCM, NCM,
DPCM, NPCM), our primary interest lies in the following questions:

1. whether a pushdown stack or non-determinism strictly strengthens 1-reversal
counter machines, and

2. whether there is a trade-off, that is, whether an NCM can simulate a DPCM,
and vice-versa.

We exhibit two languages which are in the symmetric difference of NCM and
DPCM to answer the above questions negatively (Corollary 2).

It is of particular interest for applications to determine whether a given lan-
guage is in DCM (or in DPCM) or not. This is because these deterministic
classes possess desirable properties about decidability which are not shared by
their non-deterministic counterparts such as the decidability of equivalence be-
tween a DCM and a DPCM (Corollary 5.4 in [7]) or between two DPDAs [14].
A typical tool to prove that a language is not in a given class is the pumping
lemma, and actually pumping lemmas are available for DFA(= NFA), DPDA,
and NPDA [6,16,17]. We propose another type of tool (Lemma 4), which reduces
a language that is accepted by a DPCM with k-counters into its sub-language
that is accepted by a DPCM with at most k−1 counters. Then, using the pump-
ing lemma for DPDA [16], the reduction enables us to prove the existence of a
language in NCM which cannot be accepted by any DPCM (Corollary 1).

In order to prove the incomparability between DPCM and NCM, we will also
propose a language which is accepted by a DPCM but cannot be accepted by
any NCM. A technique used toward this end deserves special mention: on the
supposition that an NCM accepted this language, we could design an algorithm
to decide the halting problem for Turing machines (Theorem 2).
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2 Preliminaries

Let Σ be an alphabet and by Σ∗ we denote the set of all words over Σ including
the empty word ε. Let Σ+ = Σ∗ \{ε}. For a word w ∈ Σ∗, |w| denotes its length
and wR denotes its reverse. By |w|a, we denote the number of a letter a ∈ Σ
occurring in w. A subset L of Σ∗ is called a language.

Let us recall the definition of reversal-bounded (pushdown) counter machines
[7]. A reversal-bounded counter machine is a finite automaton augmented with
reversal-bounded counters. We can further augment a reversal-bounded counter
machine with a pushdown stack to obtain a reversal-bounded pushdown counter
machine. Formally, a pushdown k-counter machine M is represented by a
7-tuple (Q, Σ, Γ, δ, q0, Z0, F ), where Q, Σ, Γ, F are the respective sets of states,
input letters, stack symbols, and final states, q0 is the initial state, and Z0 ∈ Γ
is the particular stack symbol called the start symbol. We define the transition
δ in a way that is different from but equivalent to the convention as a rela-
tion from Q × Σ × Γ × {0, 1}k into Q × {S, R} × Γ ∗ × {−1, 0, +1}k. S and R
indicate the direction in which M moves its input head (S: stay, R: right). M
is said to be deterministic if δ is a function. A configuration of M is given by
a (k + 3)-tuples (q, w, x, c1, . . . , ck) denoting the fact that M is in the state q,
w is the “unexpended” input, the stack contains the word x, and c1, c2, . . . , ck

are the values contained in the k counters. Among configurations, we define a
relation �M as follows: (q, aw, Xα, c1, . . . , ck) �M (p, w′, βα, c1 + e1, . . . , ck +
ek) if δ(q, a, X, λ(c1), . . . , λ(ck)) contains (p, d, β, e1, . . . , ek), where d ∈ {S, R},
e1, . . . , ek ∈ {−1, 0, +1},

λ(ci) =

{
0 if ci = 0
1 otherwise,

and w′ =

{
aw if d = S

w if d = R.

It is clear that the transition with the indicator S corresponds to the ε-transition
in the conventional definition of pushdown counter machines, whereas that with
R corresponds to the transition which consumes an input symbol. The reflexive
and transitive closure of �M is written as �∗

M . The subscript is dropped from �M

and �∗
M whenever the particular M is understood. A word w ∈ Σ∗ is accepted

by M if (q0, w, Z0, 0, . . . , 0) �∗ (qf , ε, α, c1, . . . , ck) for some qf ∈ F . The set
of all words accepted by M is denoted by L(M). By ignoring the pushdown
stack through the description so far, we can obtain the analogous definition and
notions for counter machines (no pushdown stack).

A counter machine is said to be reversal-bounded if it has the property that
for each of its counter the number of alternations between non-decreasing mode
and non-increasing mode and vice-versa is bounded by a given constant in
any computation1. For the reason mentioned in Introduction, we assume this
1 The reversal-bounded property can be defined by taking into account only the accept-

ing computation, but these two definitions are equivalent. A machine can remember,
in its states, how many times each of its counters has made the reversal, and can
abort a computation immediately after one of its counters makes the reversal more
than the given constant times.
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constant to be 1 in this paper. A finite state machine with a 1-reversal stack is
said to be 1-turn.

For an integer k ≥ 0, let NCM(k) be the set of counter machines with k
1-reversal counters, and then let NCM =

⋃
k=0 NCM(k). For notational conve-

niences, we also use NCM(k) to denote a machine in the class as well as the
class of languages accepted by a machine in the class. Their deterministic sub-
classes are denoted by DCM(k) and DCM, respectively. Let us denote the class of
pushdown machines with k 1-reversal counters (pushdown k-counter machines)
by NPCM(k), and NPCM =

⋃
k=0 NPCM(k). DPCM(k) and DPCM are their

deterministic subclasses. Note that NCM(0) = DCM(0) is the class of regular
languages, while NPCM(0) and DPCM(0) correspond to the classes of context-
free languages and deterministic context-free languages, respectively.

3 NCM and DPCM Are Incomparable

We begin our investigation with proving that NCM and DPCM are incomparable
with respect to the power to accept languages. To achieve this goal, we study
the problem of how to determine whether a given language can be accepted by a
machine in DCM(k), NCM(k), DPCM(k), or NPCM(k) for some k ≥ 0 or not.

For specific values of k, pumping lemmata are available. Pumping lemmata
for DCM(0) (the class of regular languages) as well as for NPCM(0) (that of
context-free languages) are well-known the most [6,17]. We need the following
one by Yu [16] for DPCM(0) (that of deterministic context-free languages).

Lemma 1 ([16]). For L ∈ DPCM(0), there exists a constant C for L such that
for any pair of words w, w′ ∈ L if w = xy and w′ = xz with |x| > C, and y and
z begin with the same letter, then one of the following statements is true:

– there is a factorization x = x1x2x3x4x5 with x2x4 �= ε and |x2x3x4| ≤ C
such that for all i ≥ 0, x1x

i
2x3x

i
4x5{y, z} ⊆ L,

– there are factorizations x = x1x2x3, y = y1y2y3, and z = z1z2z3, with x2 �= ε
and |x2x3| ≤ C such that for all i ≥ 0, x1x

i
2x3{y1y

i
2y3, z1z

i
2z3} ⊆ L.

We use the above lemma along with a method which reduces a language in
DPCM(k) into a language in DPCM(0) for an arbitrary k in order to prove that
some language is NOT in DPCM.

Let M be a DPCM(k) for some k ≥ 0. For an integer 1 ≤ i ≤ k, we say that a
word is i-decreasing if while M reading the word, the i-th counter is decreased.

Lemma 2. Let M ∈ DPCM(k). If there exists an integer 1 ≤ i ≤ k such that
no word in L(M) is i-decreasing, then L(M) ∈ DPCM(k − 1).

Proof. The basic idea is the following. It follows from the assumption that while
processing an input, if M encounters the decrement of the i-th counter, the input
should be rejected immediately. Also note that the transition function of M does
not check the actual value of the counter, but it checks only whether the value
is zero or non-zero. Thus, we can encode this zero-nonzero information about
the i-th counter rather into its state, set its initial value to 0, and change it to
1 when M increments the i-th counter for the first time. 
�
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Lemma 3. Let M ∈ DPCM(k) \DPCM(k − 1), and w be an i-decreasing word
for some 1 ≤ i ≤ k. Then L(w) := L(M) ∩ wΣ∗ ∈ DPCM(k − 1).

Proof. First of all, Lemma 2 guarantees the existence of an i-decreasing word w
in L(M) for any 1 ≤ i ≤ k. Let us build up a DPCM(k − 1) M ′ for L(w). Once
activated, this machine firstly checks whether a given input begins with w and
if not M ′ rejects the input immediately. During this check, M ′ simulates the
computation of M on w except for the i-th counter. About the i-th counter, M
remembers, using its state, the value of this counter which is obtained after M
(deterministically) processes w. Since the i-th counter has been reversed already
when M completes the processing of w, M ′ does not require infinite number of
states in order to simulate the counter for the rest of its computation. 
�
By applying Lemmas 2 and 3 alternately as many times as necessary, we can
find a subset of a given language in DPCM(k) which is accepted by a DPCM(0).

Lemma 4. If L ∈ DPCM, then there exists w ∈ Σ∗ such that L(w) is a
nonempty DPCM(0).

It is noteworthy that our argument so far does not rely on whether the pushdown
stack is available for computation or not. Thus, analogous results of
Lemmas 2, 3, and 4 hold for DCM.

Using Lemma 4, now we can prove the existence of a language which is in
NCM, but cannot be accepted by any DPCM. As an example of such languages,
we propose the balanced language Lb defined as follows:

Lb = {ai1#ai2# · · ·#ain | n ≥ 2, i1, . . . , in ≥ 0
such that i1 + i2 + · · · + ik = ik+1 + · · · + in for some 1 ≤ k < n }.

Informally speaking, an element of this language has the symbol # located at
its fulcrum to the left and to the right of which there are the same number of
a’s. It is clear that Lb can be accepted by an NCM(1).

In order to verify that Lb �∈ DPCM, it suffices to prove that for any word
w ∈ {a, #}∗, L

(w)
b cannot be accepted by any DPCM(0) due to Lemma 4.

Lemma 5. For any w ∈ {a, #}∗, L
(w)
b = Lb ∩ w{a, #}∗ is not a DPCM(0).

Proof. Suppose L
(w)
b were DPCM(0), then so is L := L

(w)
b ∩ wΣ∗#Σ∗#Σ∗.

Let n = |w|a. Then waC#aC+n#, waC#aC+n#a2(C+n) ∈ L, where C is the
pumping constant given in Lemma 1. With x = waC#aC+n, y = #, and z =
#a2(C+n), these words are written as xy and xz, which satisfy the requirements
on x, y, z in Lemma 1. So one of the factorizations must hold. The pumped
parts should not contain any # because any word of L contains exactly |w|# +2
#’s. Let us consider the first factorization x = x1x2x3x4x5. Since x2x4 = am

for some 1 ≤ m ≤ C, omitting this pumpable part from waC#aC+n#a2(C+n)

would result in a word waC−i#aC+n−(m−i)#a2(C+n) for some i ≥ 0. This word
is unbalanced so that other factorization x = x1x2x3 and y = y1y2y3 must hold.
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Since y = #, the pumped part y2 is empty. If x2 is in waC , then removing x2

results in an unbalanced word. If x2 is in aC+n, then pumping x2 more than
once makes the resulting word unbalanced. 
�
Corollary 1. Lb is not in DPCM.

Proof. Suppose that Lb ∈ DPCM. Lemma 4 implies that there exists w ∈ Σ∗

such that L
(w)
b := Lb ∩ wΣ∗ ∈ DPCM(0), but this contradicts Lemma 5. 
�

Having seen that Lb ∈ NCM \DPCM, now we show that there are languages in
DPCM that cannot be accepted by any NCM. This result shall lead us to the
incomparability of NCM and DPCM. It would also follow that the machines in
DCM are strictly less powerful than those in DPCM.

We give two proofs below. The first uses the following result in [1], whose
proof is quite complicated (long and tedious).

Theorem 1 ([1]). If M is an NCM, then we can construct another NCM M ′

such that L(M ′) = L(M) and M ′ operates in linear time (i.e., every string of
length n in L(M’) has an accepting computation for which M ′ runs in linear
time).

Theorem 2. There is a language accepted by a 1-turn DPDA that cannot be
accepted by any NCM.

Proof. Consider the language Lpal = {x#xR | x ∈ {0, 1}+} (recall that R de-
notes reverse). It is obvious that Lpal can be accepted by a deterministic PDA
(DPDA) and hence Lpal ∈ DPCM(0). Suppose Lpal can be accepted by an NCM
M with k counters. We may assume, by Theorem 1, that M operates in linear
time. Consider an input u#uR, where |u| = n. Clearly, the number of possible
configurations when the input head of M reaches # is O(nk). Now consider an-
other input v#vR, where |v| = n and v �= u. It follows that since there are 2n

binary strings of length n, u#vR will also be accepted by M for n large enough.
This is a contradiction. 
�
We will give another proof of Theorem 2 since it employs an interesting tech-
nique, which constructs a contradictory algorithm to decide an undecidable re-
cursively enumerable language on the assumption that a specific language can
be accepted by an NCM, implying then that the language cannot be accepted
by any NCM. Let us describe the details below.

1. Let L ⊆ {a}∗ be a unary recursively enumerable language that is not decid-
able (such L exists) and M be a Turing machine (TM) accepting L.

2. Let Q and Σ be the state set and worktape alphabet of M and let q0 ∈ Q
be the initial state of M . Let Σ′ = Q ∪ Σ ∪ {#}. Note that a is in Σ.
The halting computation of M on input ad can be represented by the string
ID1#ID3 · · ·#ID2k−1##IDR

2k · · ·#IDR
4 #IDR

2 for some k ≥ 2 (without
loss of generality, we can assume that the length of a computation is even),
where ID1 = q0a

d and ID2k are the initial and halting configurations of M ,
and (ID1, ID2, · · · , ID2k) is a sequence of configurations of M on input ad,
i.e., configuration IDi+1 is a valid successor of IDi.
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Now consider the languages

L1 = {ID1# · · ·#ID2k−1##IDR
2k · · ·#IDR

2 | ID2k is a halting configuration,

k ≥ 2, ID1 = q0a
p(p ≥ 1), and IDi+1 is a valid successor of IDi for odd i},

L2 = {ID1# · · ·#ID2k−1##IDR
2k · · ·#IDR

2 | ID2k is a halting configuration,

k ≥ 2, ID1 = q0a
p(p ≥ 1), and IDi+1 is a valid successor of IDi for even i}.

Clearly, L1 and L2 can be accepted by 1-turn DPDAs.

Theorem 3. L1 or L2 cannot be accepted by any NCM.

Proof. Suppose L1 and L2 are accepted by NCMs A1 and A2 with n1 and n2

1-reversal counters, respectively. We construct from A1 and A2 an NCM A ac-
cepting the language L1 ∩ L2 = {ID1# · · ·#ID2k−1##IDR

2k · · ·#IDR
2 | k ≥

2, ID1 = q0a
p, p ≥ 1, ID2k is a halting configuration, and IDi+1 is a valid suc-

cessor of IDi for i ≥ 1}. A simulates A1 and A2 in parallel (hence, A will have
n = n1 + n2 1-reversal counters).

Finally, we show (using NCM A) that there exists an algorithm to decide L,
which would be a contradiction. The algorithm works as follows:

1. On an input ad, construct a finite automaton B accepting q0a
d#Σ′∗.

2. From the finite automaton B and the NCM A (accepting L1∩L2), construct
an NCM A′ which accepts L(A) ∩ L(B).

3. Test if the language accepted by A′ is empty. This is possible since the
emptiness problem for NCMs (or even for NPCMs) is decidable [7].

Note that ad �∈ L if and only if the language accepted by A′ is empty. 
�

From Corollary 1 and Theorem 2, we have:

Corollary 2. 1. NCM are strictly more powerful than DCM.
2. NCM and DPCM are incomparable.
3. DPCM are strictly more powerful than DCM.

Remark 1. Note that the fact that NCM is closed under intersection and has
decidable emptiness problem while this problem is undecidable for DPCM does
not necessary imply that these two classes are incomparable. This kind of argu-
ment would lead to a fallacy. For example, the class DFA of finite automaton
languages is closed under intersection and has decidable emptiness problem. Now
consider the class Null-TM of languages defined by TMs whose inputs can only
be the null string ε. Then the emptiness problem for Null-TM is undecidable
(because the halting problem for TMs on an initially blank tape is undecidable).
However, Null-TM is contained in DFA (since Null-TM consists only of the two
languages ∅ and {ε}), hence, not incomparable.
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4 Counter Machines and Multihead Automata

A (non-deterministic) multihead finite automaton (NMHFA) M with k heads
(written as NMHFA(k)) is a machine with k one-way input heads operating on an
input string with a right end marker $. At the start of the computation, the heads
are on the leftmost symbol of the input string and M is in its initial state. A move
of the machine is a transition of the form δ(q, a1, . . . , ak) = {(p, d1, . . . , dk)},
where q is the current state, a1, . . . , ak are the symbols scanned by heads, p is
the next state, and d1, . . . , dk are the movements of the heads, which can be
R or S (one position to the right, or do not move). Note that the heads are
non-sensing (i.e., the heads cannot sense the presence of the other heads on
the same position). An input is accepted if M eventually enters an accepting
state and all heads are on the right end marker. The machine can be augmented
with a pushdown stack (NMHPDA) in the obvious way. It can be deterministic
(DMHFA, DMHPDA).

The main aim of this section is to investigate the comparability and incom-
parability among the classes of finite state machines with those of finite state
machines with multiple heads. First, we prove that a DCM can be simulated
by a DMHFA. In order to prove this, we propose some properties which can be
assumed for DCMs without loss of generality. The first property says that given
a DCM, we can construct a DCM with the same number of counters which reads
any input till its end.

Lemma 6. Any DCM M can be converted to a DCM M ′ such that L(M ′) =
L(M) and for every input, M ′ does not go into an infinite loop on a symbol on
the input tape.

Proof. Let M have s states. M ′ is constructed as follows:

1. M ′ simulates M .
2. If M has made more than s moves while remaining on the symbol without

at least one of the following happening:
(a) a positive counter decrementing,
(b) a zero counter becoming positive (note that when a positive counter be-

comes zero from being positive, it can no longer become positive again),

then M is looping on the symbol. M ′ then has two cases to handle:

Case 1: During the looping, M does not enter any accepting state. In this case,
M ′ enters a special (new) reject state r and scans the remaining input in
state r until the head falls off the input.

Case 2: During the looping, M enters an accepting state. In this case, M ′ enters
a special (new) accepting state f (thus accepting the input if there is no more
symbol to the right of the head). Then M ′, in state f , on any input enters
a special rejecting state r and scans the remaining input in state r until the
head falls off the input.

The next lemma provides us with one desirable property that DCMs satisfying
Lemma 6 have.
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Lemma 7. Any DCM M can be converted into a DCM M ′ such that L(M ′) =
L(M) and there exist constants c1, c2, and for any input w, the values of counters
are at most c1|w| + c2 during the computation by M ′ on w.

Proof. Let M be a DCM(k) with s states for some k ≥ 1 (since we concern the
value of counters, we ignore the case k = 0). Let M ′ be the DCM(k) converted
from M according to Lemma 6. Let c = s × 2k. Since c ≥ s, according to the
design in Lemma 6, if M ′ makes more than c moves while its head remaining on
the same symbol, then either the event (a) or event (b) must occur.

We claim that during the computation by M ′ on an input of length n, the
value of each counter can be at most (c + 2)k−1(c + 1)(n + k), i.e., O(n), by
induction on the number of counters. Note that when two counters contain the
respective values n1 and n2, M ′ can increment the first counter further by cn2

while decreasing the second one up to 0. In order to make the value of a counter
as large as possible, we employ the following strategies:

1. at each transition, M ′ will increase the values of all counters which are in
non-decreasing mode;

2. M ′ never decrease two counters at the same transition.

For the case k = 1, more than c transitions should not occur uninterruptedly
without moving its head. According to the first strategy, M should increment
the counter from the very beginning transition, and once being decremented, M
cannot increment the counter any more. Thus the value of this counter can be
at most (c + 1)n + c ≤ (c + 1)(n + 1).

Now suppose that the claim holds for some k − 1 and consider the case when
M ′ has k counters. Let us assume that M decrements (k − 1)-th counter for the
first time while M ′ moving its head from the (m − 1)-th input symbol to the
m-th one. At the point, the value of (k−1)-th or k-th counter can reach at most
(c + 2)k−2(c + 1)(m + k − 1) according to the induction hypothesis, even if M ′

makes the other counters to be 0. While decrementing the (k−1)-th counter up to
0, the k-th counter can increase at most by (c+1)·(c+2)k−2(c+1)(m+k−1)+c.
By expending the rest of the input (n − m symbols), we can increase at most
(c + 1)(n−m) + c. Thus, the k-th counter can become largest when m = n and
the value is (c+2)k−2(c+1)(n+k−1)+(c+1) · (c+2)k−2(c+1)(n+k−1)+ c,
which is at most (c+2)k−1(c+1)(n+k). Thus, the induction step is verified and
the claim holds. By letting c1 = (c + 2)k−1(c + 1) and c2 = k(c + 2)k−1(c + 1),
this lemma holds. 
�

Proposition 1. For any k ≥ 0, DCM(k) ⊆ DMHFA(2k + 1).

Proof. Let M ∈ DCM(k). Each 1-reversal counter C of M can be simulated
by two input heads H1 and H2, which are initially positioned on the leftmost
symbol of the input. When C increments by 1, H1 is moved one position to the
right. When C reverses, both heads are moved simultaneously to the right until
H1 reaches the end marker before continuing with the simulation of C. After
that, decrementing C would correspond to moving H2 one position to the right.
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When H2 reaches the end marker, this indicates that C has the value zero. This
simulation works if the counter values are bounded by n, where n is the length
of the input. If the counter values are bounded by c1n + c2 for some constant
c1, c2 (i.e., the counter values are linearly bounded), then H1 (resp. H2) operates
modulo c1, i.e., H1 (resp. H2) is moved one position to the right for every c1

increments (resp. decrements) of C. The existence of such c1, c2 is guaranteed
by Lemma 7. 
�
Next, we prove the incomparability between NPCM and NMHFA. Following the
notation in the proof of Theorem 2, let us firstly consider the language:

L = {ID1#ID2#ID3#ID4# · · ·#IDk | ID1 = q0a
p for some p ≥ 1

and for i ≥ 1, IDi+1 is a valid successor of IDi}.

It is clear that L ∈ DMHFA(2). In contrast, the technique used to prove Theo-
rem 2 is also applicable to show that L �∈ NPCM.

Proposition 2. There is a language accepted by a DMHFA(2) that cannot be
accepted by any NPCM.

Due to Proposition 2, now it suffices to propose a language in NPCM\NMHFA
to show the incomparability between NPCM and NMHFA. The marked palin-
dromic language Lpal = {x#xR | x ∈ {0, 1}+} serves this purpose, which is
actually in DPDA. The following results may have already been known, but we
have not been able to find an appropriate reference. We give a proof below for
completeness. The proof uses a Kolmogorov-complexity-based idea in [11]. The
Kolmogorov complexity of a word w ∈ Σ∗, denoted by K(w), is defined to be
the length of the shortest program that outputs only w. Let K(w|y) be the con-
ditional Kolmogorov complexity of w with respect to a given extra information
y. A word w is said to be random if K(w) ≥ |w|. It is well-known that there
exist random strings. We state one more well-known fact without proof.

Fact 1. If string uvw is random, then K(v|uw) � |v| − O(log |uvw|).
Proposition 3. Lpal �∈ DMHFA(2).

Proof. Suppose that there were a DMHFA(2) M such that L(M) = Lpal. Let
hr, hl be the rightmost and leftmost heads of M , respectively.

Let us consider a random word w = w1w2 satisfying |w1| = |w2| � log |w| +
|M |, where |M | denotes the (program) size of M . Note that w1 �= w2 because of
the randomness of w. Then we put the following input into M :

I1 = ∗w1 ∗ w2 ∗ # ∗ wR
2 ∗ wR

1 ∗ .

For this input, we say that wi (i = 1, 2) is checked if there is a time t when hr

is on wR
i while hl is on wi.

We claim that both w1 and w2 have to be checked. Indeed, suppose that
w1 were not checked. Consider the computation of M on I1. Let IDin(hr)
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(IDout(hr)) be the configuration of M when hr first reaches the first (resp.
second) * sign in ∗wR

1 ∗ of I1. The analogous notation is defined for hl. Note
that these IDs can be described of length O(log |w|). Given these IDs and
w2, we can reconstruct w1 by a short program as follows: For a word x with
|x| = |w1|, let P (x) = ∗0|w1| ∗w2 ∗# ∗wR

2 ∗x ∗ . We simulate M on this program
P (x) starting with IDin(hr) and IDin(hl). If IDin(hr) �∗

P (x) IDout(hr) and
IDin(hl) �∗

P (x) IDout(hl) hold, then M accepts I1(x) = ∗w1 ∗w2 ∗# ∗wR
2 ∗ x ∗ .

This can happen if and only if x = wR
1 (otherwise, an input not in Lpal would be

accepted by M). Therefore, K(w1|w2) = O(log |w|), but this contradicts Fact 1.
Now, the claim has been verified so that both w1 and w2 have to be checked,

but clearly it cannot be done by one-way multihead FA (if w2 is checked, then
hl is on w2 so that it cannot return back to w1 in order to check w1.) 
�
We can easily modify the proof of Proposition 3 to prove that Lpal cannot be
accepted by any DMHFA not depending on how many heads are available. It
suffices to split the random string w into k substrings of the same length as
w = w1w2 · · ·wk in order to prove that any DMHFA(k) cannot accept this
language. With this modification, we can verify the next proposition.

Proposition 4. Lpal �∈ DMHFA.

We further strengthen the above result by showing that even non-determinism
does not help for multihead finite automata to accept Lpal.

Lemma 8. Let Σ be a non-unary alphabet, and @ be a symbol that is not in
Σ. For a language L ∈ NMHFA(k), there exists a language L′ ⊆ (Σ ∪ {@})∗ in
DMHFA(k + 1) with a property that w ∈ L if and only if w@Σ∗ ∩ L′ �= ∅.
Proof. The transition function of an NMHFA(k) maps a tuple (q, a1, a2, . . . , ak)
into a set {(p1, d11, d12, . . . , d1k), . . . (pm, dm1, dm2, . . . , dmk)}, where m ≥ 0 is an
integer, pis are future states, and dijs are either S or R. Hence, if an NMHFA(k)
is in configuration (q, a1, a2, . . . , ak), it will have m transition choices.

If L is accepted by an NMHFA(k) M and w is a word in L, then there is
a sequence c1, c2, . . . , c|w| such that if we feed w into M and choose the cith
transition at the ith step, we reach an accepting state. On the other hand, if
w �∈ L, there will be no such sequence. Therefore, one can build L′ from L by
attaching @〈c1, c2, . . . , c|w|〉 at the end of every w ∈ L, where 〈c1, c2, . . . , c|w|〉
denotes any encoding of the sequence using the alphabet Σ. 
�
The above-mentioned lemma can be used to show that Lpal is not in NMHFA.
For the sake of contradiction, suppose Lpal ∈ NMHFA(k) for some k. Let L′

pal

be the language that can be constructed from Lpal as in Lemma 8. Then, L′
pal ∈

DMHFA(k + 1). However, an argument very similar to the one in the proof of
Proposition 3 can be used to show that L′

pal �∈ DMHFA(k + 1).

Proposition 5. Lpal �∈ NMHFA.

Corollary 3. Neither DMHFA nor NMHFA is comparable with either DPCM
or NPCM.
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