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Fig. 1. We present a system for creating 3D photos from a single mobile phone picture (a). The process involves learning-based algorithms for estimating depth

from the 2D input (b) and texture inpainting (d), as well as conventional algorithms for li�ing the geometry to 3D and extending it in parallax regions (c), as

well as generating a final mesh-based representation (e). All steps are optimized to be fast given the limited compute and memory resources available on a

mobile device. The resulting representation (f) can be viewed instantly, generating novel viewpoints at real-time rates.

3D photography is a new medium that allows viewers to more fully experi-

ence a captured moment. In this work, we refer to a 3D photo as one that

displays parallax induced by moving the viewpoint (as opposed to a stereo

pair with a �xed viewpoint). 3D photos are static in time, like traditional

photos, but are displayed with interactive parallax on mobile or desktop

screens, as well as on Virtual Reality devices, where viewing it also includes

stereo. We present an end-to-end system for creating and viewing 3D photos,

and the algorithmic and design choices therein. Our 3D photos are captured

in a single shot and processed directly on a mobile device. The method

starts by estimating depth from the 2D input image using a new monocular

depth estimation network that is optimized for mobile devices. It performs

competitively to the state-of-the-art, but has lower latency and peak mem-

ory consumption and uses an order of magnitude fewer parameters. The

resulting depth is lifted to a layered depth image, and new geometry is

synthesized in parallax regions. We synthesize color texture and structures

in the parallax regions as well, using an inpainting network, also optimized

for mobile devices, on the LDI directly. Finally, we convert the result into a

mesh-based representation that can be e�ciently transmitted and rendered

even on low-end devices and over poor network connections. Altogether, the

processing takes just a few seconds on a mobile device, and the result can be
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instantly viewed and shared. We perform extensive quantitative evaluation

to validate our system and compare its new components against the current

state-of-the-art.
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1 INTRODUCTION

Traditional 2D photography lets us capture the world around us,

with a single click, as an instant frozen in time. 3D photography is

a new way to make these captured moments come back alive. We

use the term 3D photo to refer to any representation that can be

displayed with parallax induced by viewpoint motion at viewing

time (as opposed to a stereo pair, where inter-ocular parallax is

baked in at capture time). Although still static in time, 3D photos

can be interactively explored. The ability to change the viewpoint

is compelling on “�at” mobile or desktop screens, and enables truly

life-like experiences in Virtual Reality, by adding stereo viewing to

head-motion induced parallax.

However, creating and displaying 3D photos poses challenges

that are not present in 2D or even stereo photography: dense depth

is required in addition to color, viewpoint changes reveal previously
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occluded parts of the scene that must be �lled, and the a�ordances

for changing the viewpoint must be developed.

Accurately triangulating depth requires capturing at least two

views of the scene; reconstructing occluded content requires even

more captured views [Hedman et al. 2017; Zitnick et al. 2004]. This

goes beyond the e�ort that most people are willing to spend on a

photograph. While some high-end smartphones are equipped with

multi-lens cameras that can be used to estimate depth from stereo,

they do not help with occluded regions, due to the small baseline of

the lenses. More importantly, there is currently at least an order of

magnitude more phones in use that only have regular single-lens

cameras.

We propose a system that provides a more practical approach to

3D photography. Speci�cally, we address these design objectives:

E�ort: the capture should occur in a single shot and not require any

special hardware.

Accessibility: creation should be accessible on any mobile device,

even devices with regular, single-lens cameras.

Speed: all post-capture processing should at most take a few seconds

(on the mobile device) before the 3D photo can be viewed and

shared.

Compactness: the �nal representation should be easy to transmit

and display on low-end devices for sharing over the internet.

Quality: rendered novel views should look realistic; in particular,

depth discontinuities and disocclusions should be handled grace-

fully.

Intuitive Interaction: interacting with a 3D photo must be in real-

time, and the navigation a�ordances intuitive.

Our system relies only on a single image as input, and estimates

the depth of the scene as well as the content of parallax regions

using learning-based methods. It comprises four algorithm stages

(Figure 1b–e), each containing new technical contributions:

Depth Estimation: A dense depth map is estimated from the input

image using a new neural network, constructed with e�cient

building blocks and optimized with automatic architecture search

and int8-quantization for fast inference on mobile devices. It per-

forms competitively w.r.t. the state-of-the-art while consuming

considerably fewer resources and having fewer parameters.

Layer Generation: The pixels are lifted onto a layered depth image

(LDI), and we synthesize new geometry in parallax regions using

carefully designed heuristic algorithms.

Color Inpainting: We synthesize colors for the newly synthesized

geometry of the LDI using an inpainting neural network. A novel

set of neural modules enables us to transform this 2D CNN to

one that can be applied to the LDI structure directly.

Meshing: Finally, we create a compact representation that can be

e�ciently rendered even on low-end devices and e�ectively trans-

ferred over poor network connections.

All processing steps are optimized for running fast on a mobile

device with limited available resources. We also discuss a�ordences

for viewing 3D photos on mobile and �xed �at screens, as well as

using head-mounted displays for virtual reality.

We validate our system through extensive quantitative evalua-

tion of our system’s components, in particular, comparing depth

estimation and inpainting to alternative state-or-the-art algorithms.

We believe that our proposed system, altogether, largely achieves

the stated objectives and makes 3D photography truly practical and

accessible for everyone.

2 PREVIOUS WORK

Manual annotation: The classic way to create 3D images, pro-

posed in the seminal “tours into the picture” [Horry et al. 1997],

involves carefully annotating the depth of a picture manually. This

can also be done semi-manually with the help of tools [Oh et al.

2001]. While the manual-assisted approach promises the ability

to generate arbitrarily high quality depth maps for downstream

processing, depth annotation is a laborious process and requires a

skilled user.

Single-image depth estimation: Since the seminal paper of Saxena

et al. [2006] there has been considerable progress on estimating

depth from a single image, by leveraging advances in deep learning.

Chen et al. [2016] propose a convolutional neural network (CNN)

architecture and large quantities of training photos with ordinally

labeled point pairs, and provide substantially improved generaliza-

tion capability compared to previous work. Li and Snavely [2018]

provide even denser depth annotation from large-scale photometric

reconstruction. Networks can also be trained with a photometric

loss and stereo supervision [Garg et al. 2016; Godard et al. 2017,

2019; Kuznietsov et al. 2017], which might be easier to obtain than

depth annotation. In addition, synthetic data [Niklaus et al. 2019; Ra-

mamonjisoa and Lepetit 2019] might help with synthesizing sharper

depth discontinuities. Ranftl et al. [2019] show a good improvement

by training from several datasets. While the work mentioned above

achieves commendable results, the proposed network architectures

are too resource intensive in terms of processing, memory consump-

tion and model size for mobile devices (Section 6.4). We propose a

new architecture in this work that performs competitively, but is

considerably faster and smaller.

In terms of accelerating CNNs for monocular depth inference,

Wofk et al. [2019], Poggi et al. [2018], and Peluso et al. [2019] each

proposed a low-latency architecture for real-time processing on

embedded platforms. Lin et al. [2020] explored reducing the mem-

ory footprint of monocular depth estimation networks by super-

resolving predicted depth maps. Finally, Tonioni et al. [2019] pro-

posed an online domain adaptation learning technique suitable for

realtime stereo inference. We compare against some of these meth-

ods in Section 6.4.

Layered Depth Images: Shade et al. [1998] provide a taxonomy

of representations for 3D rendering and our work leverages one

of them for processing. In particular, we leverage Layered Depth

Images (LDI), similar to recent work [Hedman et al. 2017; Hed-

man and Kopf 2018], but with more sophisticated heuristics for

inpainting occlusions, and optimized algorithms to compute the

result within seconds on mobile devices. LDI provide an easy-to-use

representation for background expansion and inpainting, and lend

themselves for conversion into a textured triangle mesh for �nal

content delivery and rendering.

Multi-plane Images: Stereo Magni�cation [Zhou et al. 2018] pro-

posed synthesizing a Multi-plane Image (MPI) representation, i.e.,
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a stack of fronto-parallel planes with RGBU textures, from a small-

baseline stereo pair. This work is extended to Srinivasan et al. [2019]

to reduce the redundancy in the representation and expand the abil-

ity to change the viewpoint. Flynn et al. [2019] generate high-quality

MPIs from a handful of input views using learned gradient descent,

and Mildenhall et al. [2019] blend a stack of MPIs at runtime. All

MPI generation methods above have in common that they require

two or more views as input, while our proposed method uses only

a single input image.

Other Representations and Neural Rendering: Sitzmann et al. [2019]

encode the view-dependent appearance of a scene in a voxel grid

of features and decode at runtime using a “neural renderer”. Other

methods [Martin-Brualla et al. 2018;Meshry et al. 2019] also leverage

on-the-�y neural rendering to increase the photorealism of their

results. However, these methods do not guarantee that disocclusions

are �lled consistently from di�erent viewing angles, and they require

too powerful hardware at runtime to perform in real-time on mobile

devices.

Single-image Novel View Synthesis: Most aforementioned view

synthesis methods require multiple input images, while there are

only a few that can operate with a single input image, like ours.

This is important to mention, because view synthesis from a single

input image is a considerably more di�cult and ill-posed problem.

Yet, it is desirable, because requiring a user to capture a single view

is more practical and the method can even be applied retro-actively

to any existing photo, as demonstrated with historical photos in the

accompanying video.

Liu et al. [2018a] predict a set of homography warps, and a se-

lection map to combine the candidate images to a novel view. It

employs complex networks at runtime, leading to slow synthesis.

Srinivasan et al. [2017] predict a 4D light �eld representation. This

work has only been demonstrated in the context of narrow datasets

(e.g., of plants, toys) and has not been shown to generalize to more

diverse sets.

3 OVERVIEW

3D photography requires a geometric representation of the scene.

There are many popular choices, although some have disadvan-

tages for our application. Light �elds capture very realistic scene

appearance, but have excessive storage, memory, and processing

requirements. Meshes and voxels are very general representations,

but are not optimized for being viewed from a particular viewpoint.

Multi-plane images are not storage andmemory e�cient, and exhibit

artifacts for sloped surfaces at large extrapolations.

In this paper we build on the Layered Depth Image (LDI) represen-

tation [Shade et al. 1998], as in previous work [Hedman et al. 2017;

Hedman and Kopf 2018]. An LDI consists of a regular rectangular

lattice with integer coordinates, just like a normal image; but every

position can hold zero, one, or more pixels. Every LDI-pixel stores a

color and a depth value. Similar to Zitnick et al. [2004], we explicitly

represent the 4-connectivity of pixels between and among layers,

i.e., every pixel can have either zero or exactly one neighbor in each

of the cardinal directions (left, right, up, down).

This representation has signi�cant advantages:

Sparsity: It only stores features that are present in the scene.

Topology: LDIs are locally like images. Many fast image processing

algorithms translate to LDIs.

Level-of-detail: The regular sampling in image-space provides in-

herent level-of-detail: near geometry is more densely sampled

than far geometry.

Meshing: LDIs can be e�ciently converted into texturedmeshes (Sec-

tions 4.4.1-4.4), which can be e�ciently transmitted and ren-

dered.

While LDIs have been used before to represent captured scenes

[Hedman et al. 2017; Hedman and Kopf 2018], our work makes

several important contributions: (1) unlike previous work, our al-

gorithm is not limited to only producing at most two layers at any

point; (2) we better shape the continuation of depth discontinuities

into the disoccluded region using constraints; (3) we propose a new

network for inpainting occluded LDI pixels, as well as a method

to translate existing 2D inpainting networks to operate directly on

LDIs; (4) e�cient algorithms for creating texture atlases and simpli-

�ed triangle meshes; (5) our complete algorithm is faster and runs

end-to-end in just a few seconds on a mobile device.

In the next section, we describe our algorithm for creating 3D

photos from single color images. Next, we describe in Section 5 how

they are experienced on mobile and �xed �at screens, as well as

using head-mounted displays for virtual reality. Finally, in Section 6

we provide detailed quantitative evaluation of our algorithm com-

ponents as well as comparisons to other state-of-the-art methods.

4 CREATING 3D PHOTOS

The input to our method is a single color image. It is typically

captured with a mobile phone, but any other photo may be used

(e.g., historical pictures).

Our system comprises four stages (Figure 1b–e) and runs end-to-

end on the mobile capture device. We describe depth estimation in

Section 4.1, lifting to an LDI and synthesizing occluded geometry in

Section 4.2, inpainting color on the occluded layers in Section 4.3,

and converting the LDI into the �nal mesh representation in Sec-

tion 4.4.

4.1 Depth Estimation

The �rst step in our algorithm is to estimate a dense depth map

from the input image. Monocular depth estimation is a very active

�eld, and many competitive methods have just appeared in the

months prior to writing [Godard et al. 2019; Niklaus et al. 2019;

Ramamonjisoa and Lepetit 2019; Ranftl et al. 2019]. While these

methods achieve high quality results, they use large models that

consume considerable resources during inference. This makes it

di�cult to deploy them in a mobile application. In fact, most of

these methods cannot run even on high-end smart phones due to

the limited memory on these platforms (see Section 6.4).

In this section we propose a new architecture, called Tiefenrausch,

that is optimized to consume considerably fewer resources, as mea-

sured in terms of inference latency, peak memory consumption, and

model size, while still performing competitively to the state-of-the-

art.
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Fig. 2. Depth estimation network schematic. Gray TR blocks are used in

down-/up-sampling passes and blue TR blocks are used to preserve spatial

resolution. TR Blocks are defined in Fig. 3

These improvements were achieved by combining three tech-

niques: (1) building an e�cient block structure that is fast on mobile

devices, (2) using a neural architecture search algorithm to �nd a

network design that achieves a more favorable trade-o� between

accuracy, latency, and model size, and, then, (3) using 8-bit quanti-

zation to achieve a further reduction of the model size and latency

while retaining most of the accuracy. Below, we describe these opti-

mizations as well as the training procedure in detail.

E�cient Block Structure. We built an e�cient block structure

inspired by previous work [Sandler et al. 2018; Wu et al. 2019] and

is illustrated in Fig. 3. The block contains a sequence of point-wise

(1x1) convolution, KxK depthwise convolution where K is the kernel

size, and another point-wise convolution. Channel expansion, 4 , is

a multiplicative factor which increases the number of channels

after the initial point-wise convolution. In layers which decrease the

spatial resolution, depthwise convolution with stride, B3 > 1, is used.

When increasing the spatial resolution, we use nearest neighbor

interpolation with a scale factor, BD > 1, after the initial point-wise

convolution. If the output dimensions of the block are the same

as the input dimensions (i.e., B3 = BD = 1, �8= = �>DC ), then a

skip connection is added between the input and output with an

additional block in the middle.

We combine these blocks into a U-Net like architecture [Chen

et al. 2016; Li and Snavely 2018; Ronneberger et al. 2015] as shown

in Fig. 2. We �xed the number of downsampling stages to 5 where

each stage has a downsampling factor B3 = 2. All stages have 3

blocks per stage and skip connections are placed between stages

with the same spatial resolution.

Neural Architecture Search. We then use the Chameleonmethodol-

ogy [Dai et al. 2019] to �nd an optimal design given an architecture

search space. Brie�y, the Chameleon algorithm iteratively samples

points from the search space to train an accuracy predictor. This

accuracy predictor is used to accelerate a genetic search to �nd a

model that maximizes predicted accuracy while satisfying speci�ed

resource constraints. In this setting, we used a search space which

varies the channel expansion factor and number of output channels

per block resulting in 3.4 × 10
22 possible architectures. We set a

1x1 (group) Conv, BN, ReLU

K x K DWConv

1x1 (group) Conv, BN

Upsampling

H x W x Cin

H x W x (e x Cin)
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(H x 
!"
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!"
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+

Fig. 3. Block structure used to create the depth estimation architecture. BD
and B3 refer to the up and down sampling scale factors, respectively, and 4

is the channel expansion factor. Refer to the text for details.

FLOP constraint on the model architecture and can vary this con-

straint in order to achieve di�erent operating points. The total time

to search was approximately three days using 800 Tesla V100 GPUs.

Quantization. The result of the architecture search is an opti-

mized model with a reduced FLOP count and a lower number of

parameters. As our model is friendly for low-bit precision computa-

tion, we further improve the model by quantizing the 32-bit �oating

point parameters and activations [Choi et al. 2018] to 8-bit integers.

This achieves a 4× model size reduction as well as a reduction in

inference latency and has been shown to result in only a small ac-

curacy loss in other tasks [Dai et al. 2019]. We use a standard linear

quantizer on both the model parameters and the activations. Fur-

thermore, we utilize Quantization-Aware Training (QAT) in order

to determine the quantization parameters [Jacob et al. 2018] so that

performance translates between training and inference. Our archi-

tecture is particularly amenable to quantization and QAT, because

it only contains standard 1x1 convolution, depth-wise convolution,

BatchNorm, ReLU and resize operations and both convolutions are

memory-bounded. The model can be further simpli�ed by fusing

BatchNorm operations with convolutions and ReLU can be handled

by �xing the lower bound of the quantization parameters to zero.

The convolution and resize operators are the only operators retained

in the �nal model.

Training Details. We train the network with the MegaDepth

dataset, and the scale-invariant data loss and the multi-scale scale-

invariant gradient loss proposed by Li and Snavely [2018], but ex-

clude the ordinal loss term. The training runs for 100 epochs using

minibatches of size 32 and the Adam optimizer with V1 = 0.5 and

V2 = 0.999. The ground truth depth maps in the MegaDepth dataset

do not include depth measurements for the sky region. We found

that using this data as-is led to a network that would not reliably

place the sky in the background. To overcome this limitation we

leverage PSPNet [Zhao et al. 2017] to identify the sky region in the

images. We then replace any missing depth information in the sky
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(a) Raw / cleaned depth image

(b) Raw

(c) Filtered

(d) Cleaned

Fig. 4. Depth image before and a�er cleaning (a). Discontinuities are initially

smoothed out over multiple pixels. Weighted median filter sharpens them

successfully in most places (c). We fix remaining isolated features at middle-

values using connected component analysis (d).

region with twice the maximal depth observed in the depth map.

Intuitively, this forces the sky to have the largest depth in the scene

for all MegaDepth images.

To prevent over�tting to speci�c camera characteristics in our

data we perform data augmentation by varying color saturation,

contrast, image brightness, hue, image area, �eld of view, and left-

right �ipping. Speci�cally, all images have an aspect ratio of 4:3

(or its inverse) and are �rst uniformly resized so the short side is

288U pixels long. U is a uniform random sample in [1, 1.5] to avoid

over�tting to the �eld of view of the training data. The resize oper-

ation uses nearest neighbor point sampling for both the depth map

and the image (it, interestingly, performed better than proper anti-

aliased sampling). Next, we select a random crop of size (288, 288)

from the resized image and depth map. Finally, we apply random

horizontal �ipping to the (288, 288) image and depth map crops.

Another de�ciency we found with early networks was that they

failed to generalize to images from lower quality cameras. The

images in the MegaDepth dataset are well-exposed, but we often

found that other cameras fail to provide such good exposure. To

enable robustness to image color variations, we combine the above

data augmentation with the following color data augmentation.

We vary the brightness of the image by a gamma adjustment with

a uniformly distributed factor in [0.6, 1.4]. Similarly, we vary the

contrast uniformly between 60% and 100% (i.e., blending with a

middle-gray image) as well as the color saturation of the image.

Finally, images are converted to the HSV colorspace and the hue is

rotated by a uniformly distributed value in [−25◦, 25◦] before being

converted back to RGB.

4.2 Li�ing to Layered Depth Image

Now that we have obtained a dense depth map, we are ready to lift

the image to the LDI representation. This will allow us to express

multiple layers, so we can show detail in parallax regions. These

are details that have not been observed in the input view, they have

to be synthesized.

After discussing depth pre-processing in Section 4.2.1, we will dis-

cuss hallucinating new geometry in parallax regions in Section 4.2.2,

and �nally inpainting of color on the new geometry in Section 4.3.

4.2.1 Depth Pre-processing. The most salient geometric feature in

3D photos are depth discontinuities. At those locations we need

to extend and hallucinate new geometry behind the �rst visible

surface (as will be explained in the next section). The depth images

obtained in the previous section are typically over-smoothed due to

the regularization inherent to the machine learning algorithms that

produced them. This smoothing “washes out” depth discontinuities

over multiple pixels and often exhibit spurious features that would

be di�cult to represent (Figure 4b). The goal of the �rst algorithm

stage is to de-clutter depth discontinuities and sharpen them into

precise step edges.

We �rst apply a weighted median �lter1 with a 5 × 5 kernel size.

Depth values within the kernel are Gaussian-weighted by their

disparity di�erence to the center pixel (using fdisparity = 0.2). The

weighting of the �lter is important to preserve the localization of

discontinuities, and, for example, avoid rounding o� corners. Since

we are interested in forcing a decision between foreground and

background, we disable the weights of pixels near the edge (i.e.,

pixels that have a neighbor with more than gdisp = 0.05 disparity

di�erence.)

This algorithm succeeds in sharpening the discontinuities. How-

ever, it occasionally produces isolated features at middle-depth val-

ues (Figure 4c). We perform a connected component analysis (with

threshold gdisp) and merge small components with fewer than 20

pixels into either foreground or background, whichever has a larger

contact surface (Figures 4d).

4.2.2 Occluded Surface Hallucination. The goal of this stage is to

“hallucinate” new geometry in occluded parts of the scene. We start

by lifting the depth image onto an LDI to represent multiple lay-

ers of the scene. Initially, the LDI has a single layer everywhere

and all pixels are fully connected to their neighbors, except across

discontinuities with a disparity di�erence of more than gdisp.

To create geometry representing occluded surfaces, we next ex-

tend the geometry on the backside of discontinuities iteratively

behind the front-side by creating new LDI pixels. A similar algo-

rithm has been employed by Hedman and Kopf [2018]. However,

their algorithm has an important limitation: pixels are allowed to ex-

tend in all directions (as long as they remain hidden behind the front

layer). This causes frequent artifacts at T-junctions, i.e., where back-

ground, midground, and foreground meet: the midground grows

unrestrained, expanding the foreground discontinuity and creating

a cluttered result (Figure 5b). The authors reduce the undesired

excess geometry by removing all but the nearest and farthest layers

anywhere in the LDI. However, this creates disconnected surfaces

(Figure 5c). We resolve these problems by grouping discontinuities

into curve-like features and inferring spatial constraints to better

shape their growth (Figure 5d). We group neighboring discontinuity

1i.e., sort the samples by value and �nd the one whose sums of preceding weights and
following weights are closest to being equal.
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(a) Expansion constraints

(b) Instant3D N -layer

(c) Instant3D 2-layer

(d) Our method

Fig. 5. Expanding geometry on the back-side of discontinuities into oc-

cluded parts of the scene. Previous work [Hedman and Kopf 2018] produces

artifacts at T-junctions: either extraneous geometry if le� unconstrained (b)

or cracked surfaces when using their suggested fix (c). We improve this by

grouping discontinuities into curve-like features (color-coded), and inferring

spatial constraints to be�er shape their growth (dashed lines).

pixels together, but not across junctions (see color coding in Fig-

ure 5a). At this point, we remove spurious (shorter than 20 pixels)

groups from consideration.

In one extension iteration, each group grows together as one

unit, creating a one pixel wide “wave front” of new LDI pixels. To

avoid the previously mentioned cluttering problem, we restrain

curves from growing beyond the perpendicular straight line at their

end points (dotted lines in Figure 5a). 3-way intersections deserve

special consideration: at these points there are 3 di�erent depths

coming together, but we are only interested in constraining the

midground, while the background should be allowed to freely grow

under both of the other layers. Therefore, we only keep the one of

the three constraints at 3-way intersections that is associated with

the mid-/foreground discontinuity (Figure 5a).

The depth of newly formed pixels is assigned an average of their

neighbors, and the color is left unde�ned for now (to be inpainted in

the next section). Intersecting groups are merged if their disparity

di�erence is below gdisp. We run this expansion algorithm for 50

iterations to obtain a multi-layered LDI with su�cient overlap for

displaying it with parallax.

4.3 LDI Inpainting

At this point we have an LDI with multiple layers around depth

discontinuities, but it is still missing color values in the parallax

regions (i.e., the red pixel in Figure 1c). In this section, we discuss the

inpainting of plausible colors, so that disocclusions when viewing

the 3D photo appear seamless and realistic.

A naïve approach to �lling missing regions in disocclusions would

be to inpaint them in screen space, for example using a state-of-the-

art network, such as Partial Conv [Liu et al. 2018b]. However, this

would not lead to desirable results, because (1) �lling each view

at runtime would be slow, (2) the independent synthesis would

result in inconsistent views, and, �nally, (3) the result would be

continuous on both foreground and background sides of the missing

region (while it should only be continuous on the background side),

thus leading to strong blur artifacts along the edges.

A better approach would be to inpaint on the LDI structure. Then,

the inpainting could be performed once, each view would be con-

sistent by design, and, since the LDI is explicitly aware of the con-

nectivity of each pixel, the synthesis would be only continuous

across truly connected features. However, one complication is that a

LDI does not lend itself easily to processing with a neural network,

due to the irregular connectivity structure. One approach would

be, again, to turn to �lling projected views and warp the result

back onto the LDI. But this might require multiple iterations from

di�erent angles until all missing pixels are covered.

Our solution to this problem uses the insight that the LDI is locally

structured like a regular image, i.e., LDI pixels are 4-connected in

cardinal directions. By traversing these connections we can aggre-

gate a local neighborhood around a pixel (described below), which

allows us to map network operators, such as convolutions, to the

LDI. This mapping, in turn, allows us to train a network entirely in

2D and then use the pretrained weights for LDI inpainting, without

having done any training with LDIs.

4.3.1 Mapping the PConv Network to LDI. We represent the LDI in

tensor form as a tuple of a�× float32 “value” tensorP and a 6× 

int32 “index” tensor I, where � is the number of channels, and  

the number of LDI pixels. The value tensor P stores the colors or

activation maps, and the index tensor stores the pixel position (G,~)

position and (left, right, top, bottom) neighbor indices for each LDI

pixel. We also store a 1× binary “mask” tensorM which indicates

which pixels are known and which pixels must be inpainted.

The PartialConv [Liu et al. 2018b] network uses a U-Net like

architecture [Ronneberger et al. 2015]. We map this architecture to

LDI by replacing every PConv layer with LDIPConv layer which

accepts an LDI (P,I) and mask M instead of a � × � ×, color

and 1 × � ×, mask image tensor. All value tensors at a level

(i.e. scale 1/B) of the U-Net share the same index tensor IB . Most

operations in the network are point-wise, i.e., the input/output is a

single pixel, for example ReLU or BatchNorm; these map trivially to

the LDI. The only non-trivial operations, which aggregate kernels,

are 2D convolution (the network uses 3× 3, 5× 5, 7× 7 kernel sizes),

down-scaling (convolutions with stride = 2), and up-scaling.

Convolution: We aggregate the 2D convolution kernels by explor-

ing the LDI graph in breadth-�rst manner: starting at the center

pixel we traverse LDI pixels in up / down / left / right order to

greedily �ll the kernel elements. Once a kernel element has been

visited we do not traverse to this position again. If an LDI pixel

is unconnected in a direction (e.g., at a silhouette) we treat it as

if the pixel was on an image edge i.e. zero-padding. Since we are
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(a) Pixel labels (b) Inpainted and padded (c) Packed texture atlas

Fig. 6. Partitioning the layered depth image into charts for texturing. (a) Pseudo-coloring di�erent kinds of pixels that require inpainting, on two example

charts. Dark blue pixels are occluded, and light blue pixels are on the foreground but close to a discontinuity, and, therefore, contain possibly mixed colors.

Red pixels add padding for texture filtering: dark red pixels (at silhoue�es) are inpainted and light red pixels (elsewhere) are copied from adjacent charts.

Green pixels add padding for JPEG macroblocks (see text). (b) Final inpainted charts. (c) Packed atlas.

(a) 3x3 kernel
(fully connected)

(b) 5x5 kernel
(with silhouette pixels)

Fig. 7. Aggregating convolution kernels on a LDI with breadth-first explo-

ration. The numbers indicate the traversal order. Gray elements cannot be

filled and are zero-padded.

Coarsening

Fig. 8. Coarsening scheme for the up-/downscale operators.

using partial convolutions and the mask is also zero-padded, this

results in partial convolution based padding [Liu et al. 2018c]. For a

3 × 3 kernel where all LDI pixels are fully connected, the pattern in

Figure 7a emerges. Figure 7b shows an example of a 5 × 5 kernel,

where some silhouette pixels have no neighbors in certain direc-

tions. In this case, the breadth-�rst aggregation explores around

these “barriers”, except for the two pixels in the top-right right that

cannot be reached in any way and are partial-padded [Liu et al.

2018c].

Downscaling or Strided Convolutions: In the image-version of the

network, downscaling is done by setting a stride of 2 on convolution

operations, i.e., for every 2 × 2 block of pixels at the �ne scale, only

the top-left pixel is retained at the coarser scale. We implement

down-scaling for the LDI in a similar way: every LDI pixel with

mod(G, 2) = mod(~, 2) = 0 is retained. If multiple LDI pixels occupy

a (G,~) position, they will all be retained. If for two retained pixels

there was a length-2 connecting path at the �ne scale, they will also

be connected a the coarse scale. Figure 8 illustrates this coarsening

scheme.

Upscaling: In the image-version of the network, upscaling is done

with nearest interpolation, i.e., a 2×2 block of pixels at the �ne scale

all take the value of the corresponding 1 pixel at the coarser scale.

We again, emulate this for the LDI: the whole group of LDI pixels

that collapsed into a coarse pixel all take its value. We implemented

the original PConv network in Ca�e2 with the custom convolution

and scaling operators.

4.3.2 Mobile Optimized Inpainting Network. This network enables

high-quality inpainting of parallax regions on LDIs. However, simi-

lar to prior work in depth estimation, it is too large and resource

intensive for mobile applications.

In the following, we propose a new architecture, called Farbrausch

that is optimized in this regard. We begin with a traditional screen-

space (2D) PartialConv network with 5 stages of downsampling.

This network is converted to our LDI representation with our cus-

tom operators. Chameleon Search is used to identify the best set of

hyperparameters encoding the number of output channels for each

stage of the encoder (and similarly the paired decoder stage). In par-

ticular, FLOP count is traded o� against the PartialConv inpainting

loss on its validation set [Liu et al. 2018b]. This hyperparameter

search took 3 days on 400 V100 GPUs. In this time, 150 networks

were trained to build the accuracy predictor used in the genetic

search.

4.4 Conversion to Final Representation

Now that we have a fully inpainted multi-layer LDI, we are ready

to convert it into a textured mesh, which is our �nal representation.

This is done in two parts: creating the texture (Section 4.4.1), and

the mesh generation (Section 4.4.2).

4.4.1 Texture Atlas Generation. The LDI contains many self-over-

lapping parts and has a complex topology. Hence, it cannot be
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PConv7x7ReLU PConv5x5BNReLU PConv3x3

PConv3x3BNReLU Conv3x3BNLReLU Copy Upscale

Fig. 9. Farbrausch Network

mapped to a single contiguous texture image. We thus partition it

into �at charts that can be packed into an atlas image for texturing.

Chart generation: We use a simple seed-and-grow algorithm to

create charts: the LDI is traversed in scanline order, and whenever

a pixel is encountered that is not part of any chart, a new chart

is seeded. We then grow the chart using a breadth-�rst �ood �ll

algorithm that follows the pixel connections in the LDI, but respects

several constraints:

(1) charts cannot fold over in depth, since that would not be

representable;

(2) we cap the maximum chart size to improve packing e�ciency

(avoids large non-convex shapes);

(3) when encountering pixels at the front side of depth edges

(without neighbors in some direction), we mark a range of

adjacent pixels across the edge unusable to avoid �ltering op-

erations from including pixels from di�erent surfaces. These

marked pixels will eventually land in a separate chart.

This algorithm is fast and produces charts that are reasonably

e�cient for packing (low count, non-complex boundaries). Figure 6

shows a few typical examples.

Texture �lter padding: When using mipmapping, �ltering kernels

span multiple consecutive pixels in a texture. We therefore add a

few pixel thick pad around each chart. We either copy redundant

pixels from neighboring charts, or use isotropic di�usion at step-

edges where pixels do not have neighbors across the chart boundary

(dark/light red in Figure 6, respectively).

Macroblock padding: Another possible source of color bleeding

is lossy image compression. We encode textures with JPEG for

transmission, which operates on non-overlapping 16 × 16 pixel

macroblocks. To avoid bleeding we smoothly inpaint any block

that is overlapped by the chart with yet another round of isotropic

di�usion (green pixels in Figure 6a). Interestingly, this also reduces

the encoded texture size by almost 40% compared to solid color �ll,

because the step edges are pushed from the chart boundaries to

macroblock boundaries where they become “invisible” for the JPEG

encoder.

Packing: Finally, we pack the padded charts into a single atlas

image, so the whole mesh can be rendered as a single unit. We use

a simple tree-based bin packing algorithm2. Figure 6c shows the

complete atlas for the 3D photo in Figure 1.

4.4.2 Meshing. In the �nal stage of our algorithm, we create a tri-

angle mesh that is textured using the atlas from the previous section.

A dense mesh with micro-triangles can be trivially constructed from

the LDI by replacing pixels with vertices and connections with tri-

angles. However, this would be prohibitively large to render, store,

and transmit over a network.

Simpli�cation algorithms for converting detailed meshes into

similar versions with fewer triangles are a long-studied area of com-

puter graphics. However, even advanced algorithms are relatively

slow when applied to such large meshes.

Therefore, we designed a custom algorithm that constructs a

simpli�ed mesh directly. It exploits the 2.5D structure of our repre-

sentation, by operating in the 2D texture atlas domain: simplifying

and triangulating the chart polygons �rst in 2D, and then lifting

them to 3D later.

We start by converting the outline of each chart into a detailed 2D

polygon, placing vertices at the corners between pixels (Figure 10a).

Next, we simplify the polygon using the Douglas-Peucker algorithm

[1973] (Figure 10b). Most charts share some parts of their boundary

with other charts that are placed elsewhere in the atlas (e.g., light

red padding pixels in Figure 6a). We are careful to simplify these

shared boundaries in the exact same way, so they are guaranteed to

�t together when re-assembling the charts.

Now we are ready to triangulate the chart interiors. It is useful

to distribute internal vertices to be able to reproduce depth varia-

tions and achieve more regular triangle shapes. We considered using

adaptive sampling algorithms but found their degree of sophistica-

tion unnecessary, since all major depth discontinuities are already

captured at chart boundaries, and the remaining parts are relatively

smooth in depth. We therefore simply generate strips of vertical

“stud” polylines with evenly spaced interior vertices (Figure 10c).

The studs are placed as evenly as possible, given the constraint that

they have to start and end on chart boundary vertices. We trian-

gulate the composite polygon using a fast plane-sweep algorithm

[de Berg et al. 2008] (Figure 10d).

Having obtained a 2D triangulation, we now simply lift it to 3D

by projecting every vertex along its corresponding ray according

to its depth (Figure 10e). This 3D triangle mesh, together with the

atlas from the previous section, is our �nal representation.

5 VIEWING 3D PHOTOS

Without motion, a 3D photo is just a 2D photo. Fully experiencing

the 3D format requires moving the virtual viewpoint to recreate

the parallax one would see in the real world. We have designed

interfaces for both mobile devices and desktop browsers, as well

as for head-mounted VR displays, where we also leverage stereo

viewing.

2http://blackpawn.com/texts/lightmaps/

ACM Trans. Graph., Vol. 39, No. 4, Article 76. Publication date: July 2020.

http://blackpawn.com/texts/lightmaps/


One Shot 3D Photography • 76:9

(a) Detailed polygon (b) Simpli�ed polygon (c) Interior vertices (d) 2D triangulation (d) Lifted to 3D

Fig. 10. Directly constructing a simplified triangle mesh in the 2D atlas domain.(a) Detailed polygon from the outline of a single chart. (b) Simplified chart

polygon. Adjacent charts are simplified identically to guarantee a tight fit. (c) Added interior vertices to represent depth variation and achieve more regular

triangle shapes. (d) 2D triangulation. (e) Li�ing the mesh to 3D by projecting vertices along their corresponding rays according to their depth.

Fig. 11. Rotating phone induces parallax through sensing from the gyro.

5.1 Mobile and Browser

On mobile devices, there are a number of possible a�ordances that

can be mapped to virtual camera motion. These include scrolling in

the application interface, using the device’s IMUs such as the gyros

to detect rotation, and using touch to manually rotate the view.

After considerable user testing, mapping scrolling behavior to

both vertical rotation (about the horizontal axis) as well as dollying

in and out (translation along the “z” axis) emerged as the best set of

control interactions. This gives the illusion while scrolling through

a vertical feed that the viewing point moves up and into the scene.

We also added a small bit of horizontal rotation (about the vertical

axis) mapped to scrolling. Furthermore, we add additional rotation

to the virtual camera based on rotation of the device detected by

gyros (see Figure 11). In a web browser, we substitute mouse motion

for gyro rotation.

5.2 In Virtual Reality

In VR, we have the advantage of being able to produce two o�set

images, one for each eye, to enable binocular stereo. This creates

a stronger feeling of immersion. 3D photos are currently the only

photographic user-generated content in VR that makes use of all

degrees of freedom in this medium.

We use threeJS (a Javascript 3D library) to render the scene to a

WebGL context, and we use WebVR to render this context to a VR

Device. The renderer queries the device parameters (eye bu�er size

and transforms), applying the information separately for the left

and right eye views to produce a stereo image.

In addition to stereo, we map head motion directly to virtual

camera motion. In 6-DOF headsets, this is a one-to-one mapping.

In 3-DOF (rotation only), we mimic head translation from rotation

around the neck since rotating the head to the left, for example, also

translates the eyes leftward.

We create a frame around the model to hide the outer boundary

of the photo. The result appears like a 3D model viewed through a

2D frame. Since the quality of the 3D photo display degrades when

moving too far away from the original viewpoint, we constrain the

viewing angles and fade the model out if there is too much head

motion.

6 RESULTS AND EVALUATION

6.1 Results

We have extensively tested the robustness of our system. Early

versions of the system have been deployed in a social media app,

where they have been used over 100 million times, attesting to the

quality and robustness of the algorithms.

Unlike most other view synthesis methods our systems takes

only a single color image as input. We can therefore apply it to any

pre-existing image. In the supplementary video we show results on

a wide range of historically signi�cant photographs. We also show

a large variety of results on snapshots.

6.2 Code

Pretrained models of our depth estimation network and inpainting

networks are publicly available at the project page.

6.3 Performance

The table below breaks out the runtime of our algorithm stages on

a typical image. We measured these numbers on an iPhone 11 Pro

on six randomly selected 1152 × 1536 images. Depth is estimated at

288 × 384 resolution in 230ms. We report the median time for each

stage.
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Algorithm stage Mean Runtime

Depth estimation 230ms

Depth �lter 51ms

Connecting components 12ms

Occluded geometry 31ms

Color inpainting 540ms

Texture chart generation 72ms

Texture chart padding 151ms

Meshing 11ms

Total 1098ms

We store the �nal textured mesh in a GL Transmission Format

(glTF) container for transmission. This representation can be ren-

dered practically on device using standard graphics engines as dis-

cussed in Section 5. The �nal size of the textured mesh represen-

tation is typically around 300-500kb for an input image of size

1152 × 1536.

An important advantage of our representation is that it is uses

GPU memory e�ciently. While an MPI stores a stack of full-sized

images, the texture atlas only represents surfaces that are actually

used.

6.4 Depth Estimation

We quantitatively compare our optimized depth estimation net-

work against several state-of-the-baselines methods in Table 1. For

most methods the authors only provided �ne-tuned models and no

training code. We list for each method the datasets it was trained

with. In the training data column RW refers to ReDWeb [Xian

et al. 2018], MD to MegaDepth [Li and Snavely 2018], MV to Stereo

Movies [Ranftl et al. 2019], DL to DIML Indoor [Kim et al. 2018], K

to KITTI [Menze and Geiger 2015], KB to Ken Burns [Niklaus et al.

2019], CS to Cityscapes [Cordts et al. 2016], WSVD [Wang et al.

2019], PBRS [Zhang et al. 2017], and NYUv2 [Silberman et al. 2012].

3DP refers to a proprietary dataset of 2.0M iPhone dual-camera

images of a wide variety of scenes. A → B indicates that a model

was pretrained on A and �ne-tuned on B.

We compare against Midas [Ranftl et al. 2019] (versions 1 and

2 released in June 2019 and December 2019, respectively), Mon-

odepth2 [Godard et al. 2019], SharpNet [Ramamonjisoa and Lepetit

2019], MegaDepth [Li and Snavely 2018], Ken Burns [Niklaus et al.

2019], and PyD-Net [Poggi et al. 2018].

Each method has a preferred resolution at which it performs best.

These numbers are either explicitly listed in the respective papers

or the author-provided code resizes inputs to the speci�c resolu-

tion. Also, di�erent methods have di�erent alignment requirements

(e.g., width/height must be a multiple of 16). We list these details

in the supplementary document, but brie�y: all methods, except

Monodepth2, Ken Burns, and PyD-Net resize the input image so

the long dimension is 384 and the other dimension is resized to

preserve the aspect ratio. Ken Burns and PyD-Net resize the long

dimension to 1024 and 512, respectively, and Monodepth2 uses a

�xed 1024× 320 aspect ratio. For this evaluation we resize the input

image to each algorithm’s preferred resolution, and then resize the

result to 384 pixels at which we compare against GT. We evaluate

models on the MegaDepth test split [Li and Snavely 2018] as well as

the entire ReDWeb dataset [Wang et al. 2019], and report standard

metrics. In the supplementary document we provide a larger number

of standard metrics. For the Midas networks we omit the ReDWeb

numbers because it was trained on this dataset, and ReDWeb does

not provide a test split.

We evaluate four versions of our depth network:

Baseline: refers to a manually crafted architecture, as described in

Section 4.1.

AS + no-quant: refers to an optimized architecture with �oat32

operators (i.e., no quantization).

AS + quant: refers to the optimized architecture with quantization.

This is our full model.

AS + quant, MD + 3DP: for completeness we list another snap-

shot that was trained with a proprietary dataset of 2.0M dual-

camera images.

We evaluate the performance on an example image of dimensions

384×288. We �rst report the FLOP count of the model, computed

analytically from the network schematics. Because FLOP counts

do not always accurately re�ect latency, we make runtime mea-

surements on a mobile device. At the same time, we measure peak

memory consumption during the inference. All models were run on

an iPhone 11 Pro. We ran the models on the device as follows. All

models came in PyTorch3 format (except PyD-Net). We converted

them to Ca�e24 using ONNX5, because of Ca�e2’s mobile capabil-

ities (Ca�e2go). We optimized the memory usage with the Ca�e2

Memonger module. Because our scripts did not work on the PyD-

Net tensor�ow model we omit it from the performance evaluation.

Then we measured the peak memory consumption by hooking the

Ca�e2 allocator function and keeping track of the maximum total

allocation during the network run. Only Midas v1, Monodepth2,

and our models were able to run on device, the other ones failed

due to insu�cient memory. Both models have footprints that are

more than an order of magnitude larger than ours.

Finally, we provide details about the model size. We list the num-

ber of �oat32 and int8 parameters for each model as well as the total

model size in MiB, with smaller models being more amendable to

mobile download. While our method does not perform best in terms

of quality compared to signi�cantly higher number of parameter

state of the art models, it is competitive and the quality is su�cient

for our intended application, as demonstrated by hundreds of results

shown in the supplemental video. Themain advantages of our model

is that its size is signi�cantly smaller also resulting in signi�cantly

reduced computation compared to the state of the art models. The

enables depth estimation even on older phone hardware.

6.5 Inpainting

We quantitatively evaluate inpainting on the ReDWeb dataset [Xian

et al. 2018], because it has dense depth supervision. In order to

evaluate inpainting we follow this procedure:

• For each image in the dataset we lift input image to single-

layer LDI (i.e., no extending) and use micro-polygons. That

is, we capture all detail, but we don’t hallucinate any new

details. (Figure 12a).

3https://pytorch.org/
4https://ca�e2.ai/
5https://onnx.ai/
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Table 1. �antitative evaluation our our depth estimation network. The best performance in each column is set in bold, and the second best underscored.

Note, that for the quality evaluation every network used its preferred resolution, while for the performance evaluation we used a fixed resolution of 384 × 288

for all networks. Please refer to the text for a detailed explanation.

Quality (MegaDepth) Quality (ReDWeb) Performance Model footprint

Method Training data X <1.25↑ Abs rel↓ RMSE↓ X <1.25↑ Abs rel↓ RMSE↓ FLOPs↓ Runtime↓ Peak mem.↓ �oat32 int8 Size↓

Midas (v1) RW, MD, MV 0.955 0.068 0.027 - - - 33.2G 1.11 s 453.7MiB 37.3M - 142.4MiB

Midas (v2) RW, DL, MV, MD, WSVD 0.965 0.058 0.022 - - - 72.3G - - 104.0M - 396.6MiB

Monodepth2 K 0.845 0.145 0.049 0.350 4.368 0.176 6.7G 0.26 s 194.1MiB 14.3M - 54.6MiB

SharpNet PBRS→ NYUv2 0.839 0.146 0.051 0.308 6.616 0.196 54.9G - - 114.1M - 435.1MiB

MegaDepth DIW→MD 0.929 0.086 0.033 0.434 2.270 0.137 63.2G - - 5.3M - 20.4MiB

Ken Burns MD, NYUv2, KB 0.948 0.070 0.026 0.438 2.968 0.140 59.4G - - 99.9M - 381.0MiB

PyD-Net CS→ K 0.836 0.148 0.052 0.310 5.218 0.198 - - - 2.0M - 7.9MiB

Tiefenrausch (baseline) MD 0.942 0.078 0.031 0.383 1.961 0.156 18.9G - - 3.0M - 11.4MiB

Tiefenrausch (AS + no-quant) MD 0.940 0.080 0.031 0.378 1.987 0.157 6.4G - - 3.5M - 13.4MiB

Tiefenrausch (AS + quant) MD 0.941 0.079 0.031 0.382 1.950 0.156 6.4G 0.23 s 196.1MiB - 3.5M 3.3MiB

Tiefenrausch (AS + quant) MD, 3DP 0.925 0.090 0.035 0.407 1.541 0.142 6.4G 0.23 s 196.1MiB - 3.5M 3.3MiB

(a) Original view, ground truth (b) First layer, ground truth (c) Second layer, ground truth (d) Second layer, Inpainted

Novel view

(e) Original view, inpainted

Fig. 12. Inpainting evaluation. In order to evaluate inpainting we follow this procedure: le� input image to single-layer LDI (i.e., no extending)

(a) Ground truth (b) Wrapped view (c) Masked input (d) Farbrausch screen space

inpainting

(e) Farbrausch LDI inpainting

Fig. 13. Comparing screen space inpainting to our LDI space inpainting using the same network (Farbrausch) trained on 2D images.

• Then we render the image from a canonical viewpoint and

use depth peeling to obtain an LDI with known colors at all

layers, not just the �rst one (Figure 12b–c show the �rst two

layers).

• We consider all layers except the �rst one as unknown and

inpaint them (Figure 12d).

• Finally, we reproject the inpainted LDI back to the original

view (Figure 12e). This is useful, because in this view all

inpainted pixels (from any LDI layer) are visible, and because

it is a normal rendered image we can use any image-space

metric.

In the “Quality (LDI)” column in Table 2 we report a quality loss

computed on the LDI (i.e., between Figures 12c and 12d). In the

“Quality (reprojected)” column in Table 2 we report PSNR and SSIM

metrics. Since SSIM and PSNR evaluate for reconstruction error, we

also include the LPIPS metric [Zhang et al. 2018] to better evaluate
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Table 2. Inpainting Evaluation. The best performance in each column is set in bold, and the second best underscored. Note, FLOP count depends on the input

size, and in the case of LDI this number is variable depending upon the geometric complexity; we report FLOP counts for screen space inpainting with an

image resolution of 512 × 512.

Quality (LDI) Quality (reprojected) Performance Model footprint

Method PSNR↑ PSNR↑ SSIM↑ LPIPS↓ FLOPs↓ �oat32↓ Ca�e2 Size↓

Farbrausch 33.852 34.126 0.9829 0.0232 - 0.37M 1.9MiB

Partial Convolution 33.795 34.001 0.9832 0.0224 - 32.85M 164.4MiB

Farbrausch (screen space) - 32.0211 0.9784 0.0325 2.56G 0.37M 1.9MiB

Partial Convolution (screen space) - 33.225 0.9807 0.0280 37.97G 32.85M 164.4MiB

the perceptual similarity of the inpainted image compared to the

ground truth.

We compare our optimized model against original full size Par-

tialConv model. We also compare against using both models applied

in regular screen space inpainting. Fig. 13 illustrates the signi�-

cant artifacts on the edges when naively using regular screen space

inpainting.

6.6 End-to-end View Synthesis

In the supplementary material we provide a qualitative comparison

to the “3D Ken Burns E�ect” [Niklaus et al. 2019]. Note that the

output of that system is a video showing a linear camera trajectory,

and their inpainting is optimized solely for viewpoints along that

trajectory. In contrast, the output of our system is a mesh that is

suitable for rendering from any viewpoint near the point of capture.

6.7 Limitations

As with any computer vision method, our algorithm does not always

work perfectly. The depth estimation degrades in situations that are

not well represented in the training data. An inherent limitation of

the depth representation is that there is only one depth value per

pixel in the input; semi-transparent surfaces or participating media

(e.g., fog or smoke) are not well represented. We thus see a number

of cases where the resulting 3D photo su�ers from bad depth values.

Nevertheless, most scene captures do result in successful 3D photos.

The sets of images in the two “results” parts in the supplemental

video, were only selected for content before applying our algorithm.

We did not remove any failure cases based on processing. Therefore,

you can see some artifacts if examined closely. They thus provide

an idea of the success rate of the algorithm.

7 CONCLUSIONS AND FUTURE WORK

In this work, we presented a new medium, a 3D Photo, and a sys-

tem to produce them on any mobile device starting from a single

image. These 3D photos can be consumed on any mobile device as

well through desktop browsers. Scrolling, device motion, or mouse

motion all induce virtual viewpoint change and thereby motion par-

allax. 3D Photos also are viewable in HMDs enabling stereoscopic

viewing responsive to head motion.

Not only have we described the steps necessary to produce 3D

Photos, but we’ve also presented advancements in optimizing depth

and inpainting neural networks to run more e�ciently on mobile

devices. These advancements can be used to improve fundamental

algorithmic building blocks for Augmented Reality experiences.

There are many avenues for exploring human-in-the-loop cre-

ative expression with the 3D photo format. While this work shows

how to auto-generate a 3D photo using real imagery, a future di-

rection is to build out a rich set of creative tools to accommodate

artistic intent.
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