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Abstract

Learning based temporal action localization methods re-

quire vast amounts of training data. However, such large-

scale video datasets, which are expected to capture the dy-

namics of every action category, are not only very expen-

sive to acquire but are also not practical simply because

there exists an uncountable number of action classes. This

poses a critical restriction to the current methods when the

training samples are few and rare (e.g. when the target ac-

tion classes are not present in the current publicly avail-

able datasets). To address this challenge, we conceptualize

a new example-based action detection problem where only

a few examples are provided, and the goal is to find the

occurrences of these examples in an untrimmed video se-

quence. Towards this objective, we introduce a novel one-

shot action localization method that alleviates the need for

large amounts of training samples. Our solution adopts the

one-shot learning technique of Matching Network and uti-

lizes correlations to mine and localize actions of previously

unseen classes. We evaluate our one-shot action localiza-

tion method on the THUMOS14 and ActivityNet datasets,

of which we modified the configuration to fit our one-shot

problem setup.

1. Introduction

Temporal action localization, which jointly classifies ac-

tion instances and localizes them in an untrimmed video,

is a key task in video understanding. Due to a wide range

of applications such as video surveillance and video analyt-

ics [31, 16], it has been an active research topic in recent

years [25, 30, 38, 49, 35, 48, 15, 50, 51, 34, 23, 14, 28,

47, 8]. While early attempts relied on handcrafted video

features [31, 19, 44, 25], deep neural network based ap-

proaches have made significant progress [9, 20, 35, 48,

49, 34] and reported the state-of-the-art performance due

to data-driven spatiotemporal feature representations, effec-

Figure 1. Example-based action localization problem setup. In-

puts are a few example videos and a untrimmed test video, after

encoding and computing correlation, frame labeling are obtained

by comparing correlations. Finally, frame labeling are combined

into action instances.

tive end-to-end learning strategies, and the availability of

large-scale action/activity datasets [40, 18, 10].

Most existing deep network based action localization

methods, however, adopt a strongly supervised learning

strategy that relies on a large amount of annotated video

data, which are costly to collect [20, 21]. While transfer

learning or model pretraining may mitigate this problem to

some extent [34, 6, 48], it remains challenging to handle

novel action classes and adapt learned network models to

a new scenario with high data efficiency. By contrast, hu-

man beings are capable of learning new action classes and

localizing their instances from only a few examples of each

class [13, 7]. Therefore, it is much desirable to incorporate

such an efficient learning strategy into action localization

for more flexibility and better generalization when annota-

tions are scarce.

To this end, in this paper, we consider a one(few)-

shot learning scenario of action localization; given one

(or a few) example of new action classes, typically one

per class, our goal is to detect all occurrences of each

class in an untrimmed video. While one-shot learning has

been extensively studied in the context of visual recogni-

tion [1, 24, 32, 33, 43, 12, 29], few studies address the chal-

lenge of learning from a few instances to detect spatiotem-
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poral patterns, such as actions, in videos. To tackle this

problem, we develop a novel meta-learning strategy that in-

tegrates the task-level prior knowledge on matching video

sequences into learning action localization. The key ideas

of our one-shot learning strategy are an intuitive, structured

representation of action videos suitable for matching (par-

tial) sequences and a similarity metric that allows us to

transfer the labeling of action examples to action propos-

als in the untrimmed video. Figure 1 shows an example of

our one-shot action localization pipeline.

Specifically, we propose a new Matching Network archi-

tecture that takes as input a few examples per action class

and predicts a dense temporal labeling of a test video in

terms of action instances. In contrast to the classification

network in [43], our localization network first generates a

sequence of action proposals in a sliding window and pre-

dicts their action labels through three network components,

as follows. The first component, a video encoder network,

computes a segment-based action representation for each

action proposal and reference action, which maintains the

temporal structure of actions and allows for accurate local-

ization. The action proposals are then compared with every

reference action by the second component, a similarity net-

work, which generates a set of correlation scores at each

time step. Based on the correlation scores within a time

window, the third component, a labeling network, predicts

the action class label (as one of the foreground classes or

the background) for the proposal in each time step.

Since all the network components are differentiable, our

localization network can be trained in an end-to-end fash-

ion. We evaluate our approach on the Thumos14 and the

ActivityNet dataset and report significantly better perfor-

mance than the state-of-the-art methods while using only

a small training set. Our ablative studies also demonstrate

the efficacy of every model components in our architecture.

Our main contributions in this work are three-fold:

• We introduce an one(few)-shot action localization

problem that addresses the novel task of detecting ac-

tion instances given only one (or a few) annotated

video examples per class;

• We propose a meta-learning approach to the action lo-

calization problem based on the Matching Network

framework, which is capable of capturing task-level

prior knowledge;

• We develop a structured representation of action

videos for matching that encodes the temporal order-

ing information and produces more accurate localiza-

tion results.

2. Related Work
One-shot Learning Modern techniques for one-shot

learning tend to utilize the meta-learning framework. Meta-

learning techniques are applied on a set of datasets, with the

goal of learning transferable knowledge among datasets

Some approaches train a meta-learner that learns how to

update the parameters of the learners’ model, usually a deep

neural network [1, 24, 32]. The meta-learner learns a update

rule that will guide the learner to quickly adapt to each in-

dividual tasks. MAML [12] combines the meta-learner and

the learner into one, by directly computing gradient with

respect to the meta-learning objective. In [33], a memory-

augmented neural network is trained to learn how to store

and retrieve memories. Also tries to retrieve past memories,

TCML [29] treats each individual dataset as a sequential in-

put, and use temporal convolution to automatically discover

learning strategies.

Metric learning methods are also employed by many

one-shot learning algorithms that generate good results.

Deep siamese networks [22] train a convolutional network

to embed examples so that samples in the same class

are close while samples in different classes are far away.

[43, 36, 39] refine this idea by introducing recurrence and

attention mechanisms.

In this paper, we follow the framework of matching net-

work [43], using correlation to classify given videos, and

adapt it for the example based action detection problem.

Action localization Fully supervised action localization

problem has been extensively studied [25, 30, 38, 49, 35,

48, 15, 50, 51, 34, 23, 14, 28, 47, 8]. To capture temporal

dynamics, LSTM networks have been widely used in repre-

senting action instances. [38, 49, 28] use LSTM in addition

to CNN to better model the temporal dynamics each pro-

posal. In this work, we use LSTM to encode finer temporal

details into the encoding vector of the video. 3D CNN and

temporal convolution have proven to be effective in cap-

turing spatial temporal features, and is reported to achieve

state-of-the-art results for both action recognition and ac-

tion localization tasks. [42, 35, 48, 34, 6, 23]. However, 3D

network is hard to train and require a large amount of data

[6]. Other methods use structured representations to model

the details of action instances. Yuan et al. [50, 51] improves

localization accuracy by explicitly finding the start, middle

and end stage of an action. In this paper, we also employ a

structured representation of the video, but we do not explic-

itly model different stages of an action.

Action localization has been studied in other non-fully

supervised setup by a few works. [3, 17] proposed some

weakly supervised action labeling methods using only the

action order information. UntrimmedNets [45] employs a

different type of weak supervision by using only untrimmed

videos without annotations during training, and a attention

based modeling method is proposed under such weak su-

pervision. [41] uses no supervision at all and formulate

the unsupervised action detection problem as a Knapsack

problem. They propose a supervoxel-based pipeline that
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Figure 2. Overview of the one-shot localization System. We use sliding window to swipe over the untrimmed test video with the stride

equal to the segment length. For each window, we compute correlations with all reference examples. By concatenating correlations with

every example at every time step, a correlation matrix is obtained. In the end, a FC network is applied on the correlation matrix over

a certain time span to make segment level classification of fore/background. On the places of foreground, action classification is done

through comparing correlations. We use different window sizes for multi-scale predictions.

first discover actions and then spatial-temporally localize

them. Unlike these problem setups, we aim to address the

example-based action detection problem, which can be for-

mulated as one-shot action localization. The one-shot as-

pect of the problem restrict us from using any pre-trained

networks.

3. One-shot Localization System Overview
Given a few typical examples from a set of new ac-

tion classes, our goal is to locate all the instances of these

classes in an untrimmed video. To this end, we propose a

meta-learning strategy to learn a structured representation

of action instances and a matching similarity metric of ac-

tions that enable us to classify every action candidate in the

untrimmed video based on the action examples and their

class labels. An overview of our one-shot action localiza-

tion net is shown in Figure 2.

Specifically, we develop an one-shot localization neural

network based on the Matching Network framework [43],

which takes as input the examples of new action classes

and predicts a dense labeling of the test video for localiz-

ing action instances of these classes. Our network adopts

a sliding-window strategy to generate a sequence of action

proposals, and assign a class label to each of these proposals

through three main network modules as follows. The first

network module is a video encoder network that generates

a fixed-length feature representation consisting of multiple

segments for action proposal and examples. At each time

step, a correlation score between each pair of the proposal

and the reference examples is computed by the second net-

work module, a similarity network. The correlation scores

at every time step are concatenated to form a correlation

score matrix, which captures how the similarity between

the example and the untrimmed test video changes through

time. Finally, a labeling network predicts the classes of ev-

ery action proposals based on the correlation scores in a lo-

cal temporal window.

In the remainder of this section, we will present the de-

tails of the three network components: the video encoder,

the similarity network and the labeling network. We will

discuss the one-shot learning strategy and the optimization

process for the overall localization network in Section 4.

3.1. Video encoder network

Our matching-based action localization relies on good

alignment between the candidate and the reference videos.

To achieve accurate alignment, we intend to maintain the

temporal structure of action videos in our action represen-

tation. To this end, we develop a segment-based video rep-

resentation with ranking LSTM to encode each action in-

stance as a fixed-length sequence of video segment features.

More specifically, given a target video xi, we evenly split

the video into S segments. Each segment is first encoded by

a two-stream temporal segment network [11, 37, 46], de-

noted as φ, that generates an initial encoding vector φ(xi,s)
for the s-th segment where s = 1, · · · , S. The tempo-

ral segment structure allows us to generate a finer-grained

or partial alignment between two video sequences, e.g., a

reference example and a proposal. To capture the tempo-

ral context, we add an additional LSTM network layer that
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Figure 3. The video encoder. It uses temporal-segment two-stream

network to encode the video into a structured representation. The

final encoded vector for the video is the concatenation of the

LSTM output for each segment.

takes as input the sequence {φ(xi,s)}
S
s=1, and produces the

final encoding of the action segments as

{g(xi,s)}
S
s=1 = LSTM({φ(xi,s)}

S
s=1) (1)

The structure of our video encoder is illustrated in Figure 3.

The LSTM layer is trained with a ranking loss to enhance

the temporal order structure, which we will explain in detail

in Sec 4.3. The overall representation of the target video

is formed by concatenating the encoding vectors of all the

segments.

3.2. Similarity network for matching actions

Given the video representation, we now turn to the task

of classifying an action candidate into one of the action

classes with example videos or the background. Inspired by

the Matching Network architecture [43], we first compute

a correlation score between the action candidate and each

action example using a similarity network, from which we

then predict the class label of the action candidate as de-

scribed in Sec 3.3.

Formally, we refer to the dataset of action examples

and their labels as the support set and denote it as {X =
{(xi, yi)}

c∗k
i=1 where c is the number of classes and k is the

number of examples per class. The similarity network first

compute the full context embedding [43] of each individual

examples xi with respect to the entire support set. Specifi-

cally1, let g(xi) be the encoding vector of example xi, we

define the Full Context Embedding (FCE) g′(xi,X ) as

g′(xi,X ) =
−→
h i +

←−
h i + g(xi) (2)

−→
h i,
−→c i = LSTM(g(xi),

−→
h i−1,

−→c i−1) (3)
←−
h i,
←−c i = LSTM(g(xi),

←−
h i+1,

←−c i+1) (4)

where the FCE uses a bi-directional LSTM and treats the

g(xi) as an input sequence. The FCE vector g′(xi,X ) is the

1For simplicity and readability, we drop the subscript s.

Figure 4. Similarity Network. All example videos along with a

test video are the inputs for the similarity network. The similarity

network applies FCE on each encoding vectors of example videos.

The FCE is parameterized by a bi-directional LSTM.

summation of outputs of ith step of the LSTM in both di-

rections, and the original g(xi). The full context embedding

encodes the dataset context and enriches the representations

of action examples.

Now given an action proposal x̂ and its encoding vector

g(x̂), the similarity network computes the cosine distances

between the representations of the proposal and all the ex-

amples:

d(x̂, xi) =
g(x̂)T g′(xi,X )

|g(x̂)| · |g′(xi,X )|
(5)

Based on the distances, the original matching network uses

an attention mechanism and voting strategy to classify the

test data into one of classes in the support set [43]:

ŷ =
c∗k∑

i=1

a(x̂, xi)yi (6)

where a(x̂, xi) is the softmax attention of test sample x̂ to

the examples xi:

a(x̂, xi) = ed(g(x̂),g
′(xi,X ))/

∑

j

ed(g(x̂),g
′(xj ,X )) (7)

We note that, as the support set is only composed of fore-

ground classes, such classification method is not applicable

to the localization task, in which we also have to distinguish

foreground from background. Therefore, in our one-shot

action localization architecture, we use the similarity net-

work to compute the correlation scores, and design a sep-

arate labeling network to infer the class labels (including

background) of each proposal in the following subsection.

3.3. Labeling network for localization

Our action localization network uses the sliding-window

strategy to generate action proposal with a fixed stride step.

In this work, we set the stride size equal to the segment

length used in the video encoder. For each window, we

obtain a encoding vector and compute correlation scores
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with the example videos as discussed above. Formally,

we denote the length of each window as l, the number

of segments in each window as S, and the length of the

test video (number of frames) as N . Then the segment

length, also the stride size, is l
S and the number of win-

dow is NS/l. Let x̂n denote nth window proposal, x̂n =
{f(n−1)l/S · · · f(n−1)l/S+l}, where n ∈ [1, NS

l ]. For each

window we have:

cori,x̂n
= g′(xi,X )

T g(x̂n) (8)

By concatenating cori,x̂n
for each i and n, we obtain a cor-

relation matrix. Window length l indicate the scale under

which we are searching. With different l, we can get corre-

lation matrix for multiple scales, thus can obtain multi-scale

predictions.

The labeling network is applied directly on the correla-

tion matrix. Similar to Eq 6 where classification is done

through comparing cosine distances, we compare different

rows of the same column of the correlation matrix by ap-

plying a fully connected neural network on the correlation

matrix over a short temporal span, and output a probabil-

ity distribution over foreground and background via sig-

moid activation. The fully connected network slides over

the correlation matrix along the time dimension, determin-

ing fore/background for every proposal. On the proposals

which the labeling network determines to be foreground,

Eq 6 is applied to predict an action label, which is shown in

the upper part of Figure 2.

Our labeling network is applied over a certain time span,

in order to capture the contextual information and to reduce

frequent label switch between fore/background. Note that

the correlation matrix contains both information about spe-

cific action classes, and whether a proposal belongs to the

background or foreground. For example, if the correlation

with one example are much higher than that with the others,

then the proposal most likely belongs to foreground and has

the same action label as the example; If the correlations with

all examples are relatively low, then it probably belong to

the background. The labeling network learns these criteria

through training.

Also note that the labeling network is, in a sense, inde-

pendent to the action classes, as it is applied on the corre-

lation matrix rather than the feature representation of each

videos. This means that criteria it learned should be appli-

cable to input videos from different classes, which makes

it suitable for one-shot prediction. One can think of the

correlation as an operation that filters out irrelevant video-

specific information, and left behind only relevant similar-

ity information. The task of the labeling network is only

to determine whether there are any outstanding correlations

at a specific location. Therefore, we can directly apply the

trained network to other previously unseen classes and still

expect a good performance.

Postprocessing In the post processing stage, we com-

bine multi-scale proposal-level predictions to obtain a sin-

gle frame-level predictions for the test video, and group ad-

jacent frames of the same label to obtain action instances.

Specifically, we employ three steps of postprocessing. First,

we map the proposal prediction to its central segment and

each frame in the segment share the same probability distri-

bution as the segment. Second, we combine multi-scale pre-

diction into one: Each frame has a probability distribution

for each scale. We add the probabilities from every scales

and choose the highest one and the corresponding class as

the confidence score and the final prediction for the frame.

Finally, We group adjacent frames of the same label to get

predicted action windows. The confidence score for the pre-

dicted window is the average score of every frames in that

window. This postprocessing step essentially achieves the

Non-maximum Suppression (NMS) for the localization.

4. One-shot Model Learning

Our localization system is designed for one-shot action

localization, the corresponding meta-learning formulation

should be employed in the training of the model. Every

component of the system is differentiable and the system

can be trained end-to-end. However, to get better initializa-

tion and performance, we pre-train the video encoder and

the similarity network. In the remainder of this section, we

first present the meta-learning formulation employed in this

work, than the overall loss function for the localization sys-

tem. Finally, we present the the model pre-training using

slightly different loss functions.

4.1. Meta Learning Formulation

In meta-learning, the model is trained in a meta-phase on

a set of training tasks, and is evaluated on another set of test-

ing tasks [43, 33, 12]. Formally, we define Tmeta−train to

be the collection of the meta-training tasks: Tmeta−train =
{X , X̂ ,L(X , X̂ , θ)}. Each task consists of its own train-

ing set X = {xi, yi}, test set X̂ = {x̂j , ŷj} where y is

the ground truth label for classification task, or a real value

for regression task, and some loss function L to measure

the performance of the meta-learner depending on the sys-

tem parameters θ. Similarly, we can define the meta-testing

tasks as Tmeta−test = {X , X̂ ,L(X , X̂ , θ)}. The goal of

meta learning is to find the model that minimize the meta-

test loss across a distribution over the meta-test tasks:

θ∗ = argminθET ∼Tmeta−test
[L(T , θ)] (9)

During training, the test loss on X̂ of sampled tasks T ∼
Tmeta−train is served as the training loss to the meta-

learner. For each training set X in Tmetatrain, if only one

or a few samples are presented, then the problem is known

as one(few)-shot learning.
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4.2. Optimization for the Localization System

The FC network in Figure 2 outputs a score Fθ(n) for

each segment indicating whether it belongs to foreground

or not. Using the segment level mask M∗
n as ground truth

for fore/background, we can compute the localization loss

function as the binary cross entropy:

Lloc = −
l

NS

NS/l∑

n=1

[M∗
n logFθ(n)

+ (1−M∗
n log(1− Fθ(n))]

(10)

We also compute classification loss at every segments

whose ground truth is foreground:

Lcls = −
l

NS

NS/l∑

n=1

[M∗
n logPθ(ŷn|x̂n,X )] (11)

where ŷ is given by Eq 6. Note that during testing, we

only further classify the segments who are predicted to be

foreground into action classes. However during training,

we compute classification loss on every ground truth fore-

ground segments.

Using the meta-learning framework, we can have the fi-

nal training loss for the one-shot localization task as:

L = ET ∼Tmeta−train
[Lloc + Lcls] (12)

4.3. Pretraining for Video Encoder & Similarity Net

The video encoder and the similarity network contain

most of the trainable parameters in the system, including

the two-stream temporal segment network, the LSTM lyaer

and the FCE module. Therefore we pretrain the video en-

coder and the similarity network under the action recogni-

tion task to get better initialization. During the pretraining

stage, only trimmed action instances are used, thus we are

only concerned the classification loss:

Lcls,s = logPθ(ŷs|x̂s,X ) (13)

where ŷ is again given by Eq 6, x̂ is the test action instance

and X is the collection of all example videos. With the

model pretraining, we can also take advantage of the LSTM

in the video encoder by employing ranking loss [28] to in-

corporate better temporal structures into the encoding vec-

tors g(xi) given in Eq 1. Formally, the ranking loss is:

Lrank,s = max(0, pŷs − p∗ŷs ) (14)

pŷs = (ŷ′s)
T · ŷ (15)

p∗ŷs = max
s′∈[1,s−1]

pŷs′ (16)

where ŷ′s is the predicted probability distribution and ŷ is

the ground truth label. In other words, pŷs and p∗ŷs are the

predicted probability with respect to the ground truth label

ŷ at segment s, and the past maximum predicted probability

respectively.

The intuition of ranking loss is to encourage the clas-

sifier to make more confidant prediction as it is presented

with more and more of the video content. The loss incurs

a penalty when the prediction confidence drops at the sth

segment compared to the highest confidence among past

segments. This encourages the network to make mono-

tonic increasing predictions, which in turn, encourages the

encoding vectors of different segments {g(xi,s)}
S
s=1 to be

more discriminative to each other, thus improve the tem-

poral structure of the final encoding vector, which is the

concatenation of {g(xi,s)}
S
s=1.

Under the meta-learning framework, we can write the

final training loss for the pretraining of the video encoder

and the similarity net as:

L = ET ∼Tmeta−train
{
∑

s

[Lcls,s + Lrank,s]} (17)

5. Experiments

5.1. Datasets & Preparation

We use the Thumos14 [18] and ActivityNet 1.2 [10]

datasets to evaluate our one-shot action localization algo-

rithm.

The one-shot problem setup requires that the classes dur-

ing testing must not be present during training. Thumos14

contains 20 classes from UCF-101, so only the other 81

classes in UCF-101 are used during training the encoder.

We denote the two splits of UCF-101 as UCF-101-81 and

UCF-101-20. After training the encoder, we use a small

part of Thumos14 validation set (contain 6 classes) to train

the fully connected network with the features extracted by

the video encoder, and use the remaining 14 classes in the

test set to test our one-shot localization network. The two

splits of Thumos14 validation set and test set are denoted as

Thumos-val-6 and Thumos-test-14.

Similarly for activity net, we split the 100 classes into

80-20 splits. Our one-shot action localization network is

trained on videos containing only the 80 classes in the

training set, denoted by ActivityNet-train-80, and is tested

on the other 20 classes in the validation set, denoted by

ActivityNet-val-20.

Model pre-training We split the UCF-101-81 dataset

into 10000 small datasets each containing 5 example videos

of 5 different classes and 1 test video belonging to one of

the 5 classes. For each small dataset, the 5 action classes,

5 example videos and 1 test video are all randomly cho-

sen. The 5 action classes are randomly assigned labels from

0-4. Same operation is applied for ActivityNet. We train

the one-shot video encoder and the similarity net under the

meta-learning setup on all such small datasets.
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mAP mAP

Heilbron et al. [5] 13.5 Ours@1 13.6

Yeung et al. [49] 17.1 Ours@5 14.0

Yuan et al. [50] 17.8 Ours@15 14.7

S-CNN [35] 19.0 CDC@1 6.4

S-CNN + SST [4] 23.0 CDC@5 6.5

CDC [34] 23.3 CDC@15 6.8

Table 1. Comparision of our one-shot localization method with

state-of-the-art methods on Thumos14. The left half are the results

under full supervision, the right half are results for one-shot setup.

@n means n examples per class are used during training. The IoU

threshold is set to 0.5 for all comparison.

Training for Localization We split the Thumos-val-6

dataset and UCF-101-20 into small datasets in a similar

manner. We randomly choose one video from Thumos-val-

6, and pair it with 5 examples UCF-101-20 to form a small

dataset. The examples are chosen from the mutual classes of

UCF-101-20 and Thumos14-6. All such datasets are used

for training the one-shot action localization network. The

5 examples are randomly assigned labels from 1-5, with 0

represent background. Same operation is applied for Activ-

ityNet. At this stage, the parameters of the video encoder

are fixed, only the fully connected network are updated.

Testing for Localization During the meta-testing stage,

the setup is identical to that of meta-training stage, only

now we use Thumos-test-14. We pair a randomly chosen

video in Thumos-test-14 with 5 examples from the mutual

classes with UCF-101-20. As can be easily seen, there

are a large number of different combinations of the 5 ex-

amples (random classes, and random sample within each

class), and the localization performance is dependent on the

example videos chosen. To get a reliable test results, we

randomly sample 1000 different datasets from each of the

14 test classes and calculate mAP across all these datasets.

Same evaluation setup is use for ActivityNet.

Training details During training of the encoder as well

as the FC network, the initial learning rate is set to be

0.001 and decrease by a factor of 5 once the training loss

stop decreasing. To prevent including too many back-

grounds during training, we only use the cropped clips of

the untrimmed videos where the ratios of background and

foreground frames are between 0.5:1 and 1.5:1 . Also, to

ensure all such clips have the same length, we repeat multi-

ple instances of shorter clips to make its length the same as

longer ones.

5.2. Experiments Results

Comparison with fully supervised action detection To

demonstrate the effectiveness of our approach, we make a

comparison with one of the state-of-the-art action detection

method under the one-shot setup, showing that a method

which works well with a lot of training data will perform

mAP@0.5 Average mAP

TCN [8] 37.4 23.5

R-C3D [48] - 26.8

Wang et al. [26] 42.2 14.8

Lin et al. [27] 48.9 32.2

Xiong et al. [47] 41.1 24.8

CDC [34] 43.8 22.7

Ours@1 22.3 9.8

Ours@5 23.1 10.0

CDC@1 8.2 2.4

CDC@5 8.6 2.5

Table 2. Compare our one-shot localization method with state-of-

the-art methods on ActivityNet. The Upper half are the results

under full supervision, the lower half are results for one-shot setup.

@n means n examples per class are used during training.

poorly with very little data. In addition, we include the re-

sults of other state-of-the-art methods under full supervision

to put our method in context.

We see from Table 1 and 2 that, although there is still

a performance gap between one-shot and fully supervised

action detection, our method significantly outperforms the

state-of-the-art method when tested in one-shot setup2. We

further test our method using more training data, 15 samples

per class, on the Thumos14 dataset. Our results show no-

ticeable performance jumps while only small improvements

are observed for CDC, which indicates a good scalability of

our approach w.r.t. the number of samples.

Under the meta-learning setup, the labels are randomly

changed for each action class for every iteration during

training, which forces the feature representation of our

video encoder to decouple from the labels. This way the

video encoder can treat new action classes just as any

other classes, thus achieving fast adaptation from only one

sample. The class-independent property of the parameters

learned from meta-learning are particularly desirable since

the matching network employs a non-parametric approach

for classification. However, for existing methods, when a

sample changes its ground truth label from one iteration to

another, it can confuse the network, preventing the model

from learning discriminative features effectively.

Figure 5 visualize the correlation matrix and the classifi-

cation criteria learned by the FC network. We can see that

the FC network will output background when all correla-

tions are relatively low, or when there is no outstanding cor-

relation. Correct predictions can be made through compar-

ing correlations most of the time, which indicates that the

feature representation of our one-shot video encoder is dis-

criminative. However, false predictions do appear around

the action boundaries. Also, different time steps of the

2In the comparison of one-shot performance, we train the CDC network

from scratch, as opposed to using the pre-trained model on Sports-1M in

the paper, because the one-shot setup forbids us of using any pre-training.
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Figure 5. A portion of the correlation matrix with its correspond-

ing video frames and predictions. Test video contains multiple in-

stances of GolfSwing, one of which is similar to the HammerThrow

example video. Green is the ground truth action, black is back-

ground and blue is another action class. On the last row, red is

false predictions.

same action may express resemblance with different exam-

ples (blue part in Fig 5), which will lead to false predictions.

Effect of the Similarity Net We conduct an ablative

study and evaluate the one-shot performance where the sim-

ilarity network is replaced by binary SVM classifiers. The

result is shown in Table 3, which demonstrates the vital role

of the similarity network in learning effective representa-

tions for the one-shot localization.

mAP

Our encoder + Binary classifier 6.0

Our encoder + Similarity net 13.6

Table 3. Comparison between the similarity network and a binary

linear SVM classifier with the same video encoder.

Effect of Temporal Alignment In this work, a finer

level of alignment is obtained through the segment-based

video representation of the encoder, as well as the rank-

ing loss LSTM. Below we compare one-shot localiza-

tion and recognition performance under different alignment

schemes, demonstrating the critical role of our alignment

for the localization task and its effectiveness in learning dis-

criminative feature representation, respectively.

Alignment Scheme mAP accuracy

No alignment 7.8 -

TS, w/o ranking loss 12.9 57.5

TS, with ranking loss 13.6 57.4

Table 4. One-shot detection mAP and one-shot recognition accu-

racy under different alignment scheme. In the table, No alignment

means not employing segment-based representation, nor ranking

LSTM.

We can also see from the Table 4, a good alignment is

critical in our algorithm. With segment-based representa-

tion, the finer temporal structure allows for more accurate

localization. Although most of the alignment property is

gained through the temporal segment structure of the en-

coder, ranking loss also provides a noticeable performance

boost, as it encourages the features from different segment

to evolve over time, discriminating features from different

segments, thus improved the structured representation. In

the third column, the accuracy with and without ranking

loss are practically identical, indicating that with feature

alignment we can also learn an expressive representation.

Validity of the Video Encoder As explained in section

3.1, the video encoder employs the temporal-segment two-

stream structure. Specifically, the architecture of the CNN

is what we call mini-VGG, which follows the architecture of

the VGG-16 network, but with a only quarter of the convo-

lutional kernels, resulting in a significantly smaller network

size. The main reason of employing such architecture is to

reduce the memory requirements without causing too much

performance degradation. Table 5 shows the encoder per-

formance of the fully supervised action recognition task on

the UCF-101 dataset as well as the number of parameters.

Although our encoder is not the best performing one, it is

Accuracy(%) # parameters

two-stream network[37] 82.9 ∼27.5M

dynamic image [2] 76.9 ∼36.1M

two-stream fusion [11] 85.2 ∼97.3M

my encoder (mini-VGG16) 81.3 ∼3.6M

Table 5. Video encoder performance comparison for fully super-

vised action recognition. Our encoder performs reasonably well

with only a fraction of the network size compared to other widely

used encoders.

much more efficient and with a competitive performance.

More importantly, the segment-based encoder is critical in

our localization system, as shown before.

6. Conclusion

In this work, we present a one-shot action localization

system that employs a similarity based classification strat-

egy. We develop the correlation matrix representation and

train a labeling network on the meta-level to characterize

how the correlations evolve over time. This enable us to dis-

tinguish between example classes and to detect background

as well, which is crucial to the localization task but lacking

in the original matching network. Our network is trained

under the meta-learning framework so that it can quickly

adapt to new classes with just one(few) training samples.

We also develop a structured representation of action videos

for matching that encodes the temporal ordering informa-

tion and can benefit to more accurate localizations.
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