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Abstract

We study in this paper the problem of one-shot face

recognition, with the goal to build a large-scale face rec-

ognizer capable of recognizing a substantial number of

persons. Given that for face recognition one can lever-

age a large-scale dataset to learn good face representation,

our study shows that the poor generalization ability of the

one-shot classes is mainly caused by the data imbalance

problem, which cannot be effectively addressed by multi-

nomial logistic regression that is widely used as the final

classification layer in convolutional neural networks. To

solve this problem, we propose a novel supervision signal

called underrepresented-classes promotion (UP) loss term,

which aligns the norms of the weight vectors of the one-

shot classes (a.k.a. underrepresented-classes) to those of

the normal classes. In addition to the original cross en-

tropy loss, this new loss term effectively promotes the un-

derrepresented classes in the learned model and leads to a

remarkable improvement in face recognition performance.

The experimental results on a benchmark dataset of 21, 000
persons show that the new loss term significantly helps im-

prove the recognition coverage rate from 25.65% to 77.48%
at the precision of 99% for underrepresented classes, while

still keeps an overall top-1 accuracy of 99.8% for normal

classes.

1. Introduction

In this paper, we study the problem of one-shot face

recognition, with the goal to build a large-scale face rec-

ognizer. Being capable of recognizing a substantial number

of individuals with high precision and high recall is of great

value to many practical applications, such as surveillance,

security, photo tagging, and celebrity recognition.

Building a large-scale face recognizer is a non-trivial ef-

fort. One of the major challenges is that, for some of the

persons to be recognized, there might be very limited num-

ber of training samples, or even only one sample for each of

them. This challenge naturally exists in many real scenar-

ios, especially when the number of persons to be recognized

Figure 1: The three images in the leftmost column are used

for training. The rest images (in the right panel) are the

corresponding images for testing (partially selected from

the test set). With only one image for each person, our

model can recognize all these test images from hundreds

of thousands of other testing images. More detailed re-

sults are presented in the experimental results section. Note

that we select three typical challenging cases: faces with

occlusion, drawings, and low resolution image.

is very large. Although recent years have witnessed great

processes in deep learning and visual recognition, computer

vision systems still lack the capability of learning visual

concepts from just one or a very few examples [12].

To study this problem, we design a benchmark task and

provide the associated dataset consisting of 21, 000 persons
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each with 50-100 images of high accuracy. Similar to [6],

We divide this dataset into two sets, 20, 000 persons in base

set and 1, 000 persons in novel set. The task is to study

if tens of images are given for each person in the base set

while only one image is given for each person in the novel

set, how to develop an algorithm to recognize the persons

in both the data sets. In particular, we mainly focus on the

recognition accuracy for persons in the novel set as it shows

the one-shot learning capability of a vision system, while

we also check the recognition accuracy for those in the base

set to ensure not to hurt their performance.

Our method for this benchmark task is to train a good

face representation model and build a classifier on top of

that. The base set is used to train a face representation

model, which has good generalization performance on the

novel set. Containing about one million images for 20, 000
persons with high accuracy makes our base set one of the

largest public datasets [9, 8, 22, 3, 5, 17]. We use a standard

residual network with 34 layers [7] to train a classification

model for these 20, 000 persons. In order to evaluate the

generalization performance of this model, we use the last

pooling layer as the face feature and achieve a single model

accuracy of 98.88% on the LFW verification task [9, 8],

which is close to the state of the art. Note that the base set

does not include any person in LFW by design. Recently,

we have seen a considerable amount of research results re-

ported on LFW, which are obtained by using different al-

gorithms on different datasets [1, 17, 16, 18, 15, 19, 20].

To help advance the research in this field, we publish this

dataset and hope it can help researchers compare differ-

ent algorithms with the same training data to emphasize the

contribution from the perspective of algorithms.

Despite the face representation model obtained with the

base set, one has to solve the technical challenge caused by

the highly imbalanced training data when building classi-

fiers to recognize persons in both the base and novel sets.

As the most widely used and efficient multiclass classifier

in deep convolutional neural networks, multinomial logis-

tic regression (MLR) has shown great performance on vari-

ous visual recognition problems. However, it receives much

less attention in the low-shot learning problem, where each

novel class has only very few but each base class has much

more training samples. In our experiments, we have ob-

served very poor performance of MLR in recognizing per-

sons in the novel set since the persons in the novel set have

much less images per person compared with the persons in

the base set.

A further analysis in Section 3 shows that a novel class

with only one training sample can only claim a much

smaller partition in the feature space. And we reveal that

there is a close connection between the volume of a class

partition in the feature space and the norm of the weight

vector of this class in the multinomial linear regression

model. Based on this finding, we propose to add a new

loss term to the original cross-entropy loss for MLR, serv-

ing as a prior for the weight vectors in multinomial logistic

regression. This new loss term is based on our empirical

assumption and observation that on average, each person in

the novel set should occupy a space of similar volume in the

feature space, compared with the persons in the base set.

We call this term the Underrepresented-classes Promotion

(UP) loss. For comparison, we also explore other different

options on the priors of the weight vectors.

To quantitatively evaluate the performance, we adopt the

multi-class classification setup (close-domain face identifi-

cation) with test images from both the base set (100, 000
images, 5 images/person) and the novel set (20, 000 images,

20 images/person). We mainly focus on the classification

performance on the novel set to evaluate how well the com-

puter can learn novel visual concepts with only one exam-

ple, while also monitor the performance on the base set to

ensure the performance gain on the novel set is not obtained

by sacrificing the performance on the base set.

Our experimental results clearly demonstrate the effec-

tiveness of the proposed method. With the UP term, we can

recognize 77.48% of the test images in the novel set, with a

high precision of 99%, while all the other methods can only

recognize up to 25.65% of the test images at the same pre-

cision. Note that our UP term does not affect the accuracy

on the base set. The classifier with the proposed UP term

still has an overall top-1 accuracy of 99.8% on the base set.

Our contributions are highlighted as follows.

• We set up a benchmark task for one-shot face recogni-

tion, and provide the associated data set. This data set

is divided into base set (many persons, many training

images/person) and novel set (many persons, one train-

ing image/person). This benchmark task simulates a

lot of real scenarios.

• The base set we provide is one of the largest published

face data sets in the literature. With very minimal ef-

fort, one can learn a good face feature with face verifi-

cation accuracy of 98.88% on LFW [9, 8].

• We reveal that the deficiency of multinomial logis-

tic regression in one-shot learning is related to the

norms of the weight vectors in multinomial logis-

tic regression, and propose a novel loss term called

underrepresented-classes promotion (UP) which effec-

tively addresses the data imbalance problem in one-

shot learning.

• Our experimental results show that the proposed UP

term significantly helps improve the recognition cov-

erage rate from 25.65% to 77.48% at the precision of

99% for one-shot classes, while still keep an overall

top-1 accuracy of 99.8% for normal classes.



2. Related Work

2.1. Lowshot learning for face recognition

We abstract face recognition into two steps. The first

step is face feature extraction, and the second step is to es-

timate the person’s identity from the extracted face feature.

Recently, with the quick development of deep convolutional

neural network, the major focus in face recognition has been

to learn a good face feature space, in which faces of the

same person are close to each other, and faces of differ-

ent persons are far away from each other. There have been

steady progresses in this direction [1, 17, 16, 18, 15, 19, 20].

Moreover, many benchmark tasks for face recognition also

focus on getting good face features. For example, the ver-

ification task with the LFW dataset [9] has become the de

facto standard test to evaluate face feature.

We observe less effort in estimating the person’s identity

from his/her face feature. Many face identification tasks,

e.g., MegaFace [10] or LFW [9] with the identification

setup, are typically based on the similarity comparison be-

tween the images in the gallery set and the query set, which

is essentially a K-nearest-neighborhood (KNN) method to

estimate the persons’ identity. In the most ideal case, if we

have a perfect face feature extractor (inter-class distance is

always larger than the intra-class distance), KNN method

is good enough to estimate the persons’ identity. Unfortu-

nately, no one has a perfect face feature extractor for now.

For the large scale face recognition problem, KNN

(based on a reasonably good, yet not perfect feature ex-

tractor) might not be the best solution. If we use all the

face images for every person in the gallery, the complex-

ity is usually too high for large scale recognition, and the

gallery dataset needs to be very clean to ensure high pre-

cision. If we don’t keep all the images per person, how to

construct representer for each class is still an open problem.

One straight forward way is to use the average of face fea-

tures for all the face images of the same person to represent

this person. However, this method may lead to poor perfor-

mance.

We choose to investigate the multinomial logistic regres-

sion (MLR) to estimate the persons’ identity from his/her

face feature. One of the advantages of MLR is that after

feature extraction, the computing complexity of estimating

the persons’ identity is linear to the number of persons, not

the number of images in the gallery. Another advantage

of MLR is that the weight vectors for each classes are es-

timated using the information from all the classes, while

in the KNN setup, the query image only needs to be close

enough to one local class to be recognized. Though MLR

needs some time to train the classifier for all the persons to

be recognized while KNN could keep a general face fea-

ture extractor fixed, in many real scenarios, a few images

of the persons in the novel set are naturally available, and

it worths the time updating or retraining a model if better

performance is offered. In the most recent and largest face

recognition challenge, MS-Celeb-1M [5], the best perfor-

mance is achieved by using the MLR setup [25, 24].

One of the major challenge of using the MLR classifier

is that the MLR classifier trained with standard cross en-

tropy loss does not perform well on the novel set. We have

not seen a lot effort in this direction except boosting the

number of samples in the novel set. Especially for the deep

learning-based feature extractor, this is still an open area.

This is our major focus in this paper: we propose an un-

derrepresented classes promotion (UP) term to improve the

classifier performance on the novel set. Details are provided

in the next section.

In the general image recognition domain, the recent low-

shot learning work [6] also attracts a lot of attentions by its

good performance. In this work, the authors propose to first

shrink the features (especially for the misclassified exam-

ples) to penalize the difference between classifiers learned

on large and small datasets, and then generate “hallucinat-

ing” examples to further transfer the variations from the

base set to the novel set. Compared with the work in [6], we

focus more on the classifier part to handle the imbalanced

data problem. This is mainly because for our task, a good

face representation model (especially generalization capa-

bility) is learned from a sufficiently large scale dataset, base

set, whereas for general visual recognition, the representa-

tion model from the base set is not generalizable enough.

Experimental results in section 4 demonstrate that the fea-

ture improvement method in [6] only has very limited im-

pact on the final results for the low-shot face recognition.

Good face feature also enables us to aggressively focus on

the one-shot learning setting rather than the low-shot learn-

ing setting in [6].

2.2. Dataset

Base set – One of our contributions in this paper is that

we publish a large scale, near noise-free training dataset for

general face representation learning. In the literature, sev-

eral datasets have been published to facilitate the research

in the area. We summarize examples in Table 1.

As shown in Table 1, our training dataset is consider-

ably larger than the publicly available datasets except for

the MS-Celeb-1M dataset [4]. Note that our dataset em-

phasizes on different aspects compared with MS-Celeb-1M.

MS-Celeb-1M targets at recognizing as many as possible

celebrities in the one-million celebrity list so the celebrity

coverage is important, and the noisy label for the less pop-

ular celebrity is inevitable [25, 24, 23]. Therefore, MS-

Celeb-1M inspires work including data cleaning, training

with noisy-labels, etc. The base set provided with this paper

is mainly to train a robust, generalizable face feature extrac-

tor and isolate the problem of one-shot learning from feature



Dataset Available people images

IJB-A [11] public 500 5712
LFW [9, 8] public 5K 13K

YFD [22] public 1595 3425 videos

CelebFaces [17] public 10K 202K

CASIA-WebFace [3] public 10K 500K

Our Base set public 20K about 1.2M

MS-Celeb-1M [4] public 100K about 10M

Facebook private 4K 4400K

Google private 8M 100-200M

Table 1: Face Datasets

learning. For these reasons, in contrast to MS-Celeb-1M,

we have created a smaller yet nearly noise-free version .

Moreover, for the convenience of feature evaluation, we

do not include the celebrities in LFW in our 20K dataset.

Thus researchers can directly leverage this dataset and eval-

uate performance on the LFW verification task. In our ex-

periments, With very minimal effort, we learned a good face

feature with face verification accuracy of 98.88% on LFW

[9, 8].

Novel set – We provide 20 images for 1000 persons to test

the performance on the novel set. Some examples are shown

in Figure 1 and Figure 7 . For comparison, the LFW dataset

[9], which is the de facto standard, has less than 100 per-

sons having more than 20 images. The benchmark task in

MegaFace [10] focuses on 80 identities for the query set to

be recognized, though millions of images provided as dis-

tractors.

Our benchmark task evaluate models with a large num-

ber of persons in order to include large variations in age,

race, gender, professions, etc. Moreover, our benchmark

task evaluate models with many images per person in or-

der to include variations in expressions, lighting, poses, etc.

This is to evaluate the model’s generalization ability within

each person.

3. Methodology

Our method includes the following two phases. The first

phase is representation learning. In this phase, we build

face representation model using all the training images from

the base set.

The second phase is one-shot learning with

underrepresented-classes promotion (UP). In this phase,

we train a multiclass classifier to recognize the persons

in both base set and novel set based on the represen-

tation model learned in phase one. We design the

underrepresented-classes promotion (UP) technology to

improve the recognition performance for the persons in the

novel set.

3.1. Representation learning

In the representation learning phase, we train a 20, 000-

class classifier using all the training images of the 20, 000
persons in the base set. As we have described in section 1,

there are about 50-100 images per person in the base set.

The wrong labels in the base set is very limited (less than

1% based on manual check). We save 5 images per person

for testing and use the rest of these images for training. We

crop and align face areas to generate the training data, with

some examples shown in Figure 6. We release the aligned

face images as well as face detection results so that our ex-

perimental results are easily reproducible.

Our face representation model is learned from predicting

the 20, 000 classes. More specifically, we consider each per-

son as one class and train a deep convolutional neural net-

work (ConvNet) supervised by the softmax with the cross-

entropy loss. We have tried different network structures and

adopted the standard residual network with 34 layers [7]

due to its good trade-off between prediction accuracy and

model complexity. Feature extracted from the last pooling

layer is used as the face representation.

As shown in the Table 3, the resnet-34 model leads to

a result comparable to the state-of-the-art performance on

the LFW verification task [9, 8], which demonstrates the

value of our base set in terms of face representation learn-

ing. As all the persons in LFW have been excluded from the

base set, this result indicates a good generalization ability of

the learned face feature, making it possible to decouple the

classifier learning problem from the feature learning. We

will explore more options for feature learning in our future

work.

3.2. Oneshot Learning with UP

In the one-shot learning phase, we train a 21, 000-class

classifier using the training data from both the base set and

the novel set, treating each person as one class. As we have

discussed in the introduction section, in the novel set, there

are 1, 000 persons (mutually exclusive from the base set).

Each person in the novel set has only one image for training

while 20 for testing.

We build this multi-class classifier by using multinomial

logistic regression based on the 34-layer residual network

[7], which is the same network structure as the one we used

in the feature learning phase. We first use the parameters of

the network trained in phase one to initialize the network,

and then further fine-tune the network in phase two.

3.2.1 Challenges of One-shot

We very briefly review the multinomial logistic regression

with the standard cross entropy loss. The probability that



0 2 2.1

Class Index 10
4

||
w

||
2

(a) Without UP Term

0 2 2.1
Class Index 104

||w
|| 2

(b) With UP Term

Figure 2: Norm of the weight vector w with/without UP

term in Eq. 6. The x-axis is the class index. The right-

most 1000 classes on the x-axis correspond to the persons

in the novel set. As shown in the figure, without the UP

term, ‖wk‖2 for the novel set is much smaller than that of

the base set, while with the UP term, on average, ‖wk‖2 for

the novel set tends to have similar values as that of the base

set. This promotion introduces significant performance im-

provement, details presented in section 4.

the nth sample xn belongs to the kth class is calculated as,

pk(xn) =
exp(wT

k φ(xn))∑
i exp(w

T
k φ(xn))

, (1)

where wk is the weight vector for the kth class, the sub-

script i is the class index, and φ(·) denotes the feature ex-

tractor for image xn. Note that in all of our experiments,

we always set the bias term bk = 0. We conducted compre-

hensive experiments and empirically found that removing

the bias term from the standard softmax layer in a convolu-

tional deep neural network does not affect the performance.

The cross entropy is used as the loss to guide the training.

L = −
∑

n

tk,n log pk(xn), (2)

where tk,n ∈ {0, 1} is the ground truth label indicating

whether xn belongs to the kth class.

Unfortunately, the loss function in Eq. 2 does not lead

to a good performance for the persons in the novel set. As

presented in section 4, for testing images in the novel set,

the coverage at the precision of 99% is only 25.65%, while

for testing images in the base set, the coverage is 100% at

the precision of 99%. Moreover, in our experiments with

the loss function Eq. 2, we found that the norms of the

weight vectors for the novel classes are much smaller than

the norms of the weight vectors for the base classes, with an

example shown in Figure 2.

(a) ‖wk‖2 = ‖wj‖2 (b) ‖wk‖2 < ‖wj‖2

Figure 3: Relationship between the norm of wk and the

volume size of the partition for the kth class. The dash

line represents the hyper-plane (perpendicular to wj −wk)

which separates the two adjacent classes. As shown, when

the norm of wk decreases, the kth class tends to possess a

smaller volume size in the feature space.

The low coverage for the novel classes is related to the

small values of the norms of the weight vectors for the novel

classes. Without loss of generality, we discuss the decision

hyperplane between any two adjacent classes. We apply

Eq. 1 to both the kth class and the jth class to determine

the decision hyperplane between the two classes (note we

don’t have bias terms throughout our paper):

pj(x)

pk(x)
=

exp(wT
j φ(x))

exp(wT
k φ(x))

= exp[(wj −wk)
Tφ(x)] (3)

As shown in Figure 3, the hyperplane to separate two

adjacent classes k and j is perpendicular to the vector wj −
wk. When the norm of wk gets decreased, this hyperplane

is pushed towards the kth class, and the volume for the kth

class also gets decreased. As this property holds for any

two classes, we can clearly see the connection of the norm

of a weight vector and the volume size of its corresponding

partition space in the feature space.

Here we discuss the reason that the weight vectors for

the novel classes have much smaller norms. If we generate

a convex hull for the training samples of one class in the

base set, typically, the volume of this convex hull is much

larger than that of the convex hull of the samples for one

class in the novel set. Furthermore, the weight vector wk

gets updated when

|pk(xn)− tk,n| < ǫ , (4)

where ǫ is a very small positive number. This is because the

gradient of Eq. 2 with respect to wk is

∂L

∂wk

=
∑

n

(pk(xn)− tk,n)φ(xn) . (5)

Therefore, with a larger convex hull claimed by more sam-

ples in the feature space, the base classes have larger chance



to update their weight vectors and tend to have larger weight

vector norms to satisfy Eq. 4, compared with the novel

classes.

3.2.2 Underrepresented Classes Promotion

In this sub-subsection, we propose a method to promote

the underrepresented classes, a.k.a. the classes with lim-

ited number of (or only one) samples. Our method is based

on a prior which we design to increase the volumes of the

partitions corresponding to the novel classes in the feature

space.

Based on the previous analysis, we introduce a new term

to the loss function with the assumption that on average,

the persons in the novel set and the persons in the base set

should have similar volume sizes for their corresponding

partitions in the feature space.

Lup =
∑

n

−tk,n log pk(xn) +
1

|Cn|

∑

k∈Cn

‖‖wk‖
2

2
− α‖2

2
,

(6)

where α is the average of the squared norms of weight vec-

tors for the base classes,

α =
1

|Cb|

∑

k∈Cb

‖wk‖
2

2
. (7)

We use Cb and Cn to denote the sets of the class indices for

the base set and the novel set, respectively. As shown in Eq.

6, the average of the squared norms of the weight vectors

in the novel set is promoted to the average of the squared

norms of the weight vectors for the base set. We call this

term underrepresented-classes promotion (UP) term.

For every mini-batch, we jointly optimize the cross en-

tropy term and the UP loss term. The derivative we sent

back for back propagation is the summation of the deriva-

tive of cross entropy and the derivative of the UP term. We

keep the rest of the optimization the same as a regular deep

convolutional neural network.

3.2.3 Alternative Methods

Adding extra terms of wk to the cost function is essentially

to inject prior knowledge to the system. Different assump-

tions or observations yield to different prior terms to the

weighting vectors. Here we discuss several alternatives to

the UP-prior.

One typical method to handle insufficient data problem

for regression and classification problems is to shrink wk,

[21, 2]. Here we choose the L2-norm option for optimiza-

tion efficiency.

Ll2 =
∑

n

−tk,n log pk(xn) +
∑

k

‖wk‖
2

2
. (8)

Another option is to encourage all the weight vectors to

have similar or even the same norms. A similar idea has

been proposed in [14] for the purpose of accelerating the

training speed. We adopt the soft constraint on the squared

norm of w here.

Leq =
∑

n

−tk,n log pk(xn) +
∑

k∈{Cn∪Cb}

‖‖wk‖
2

2
− β‖2

2
,

(9)

where

β =
1

|{Cn ∪ Cb}|

∑

k∈{Cn∪Cb}

‖wk‖
2

2
. (10)

Note the major difference between this cost function and

the cost function in Eq. 6 is that, in Eq. 9, the values of

the norms of all wk get affected and pushed to the same

value, while in Eq. 6, only the values of the norms of wk

for novel set classes get promoted. The performance of all

these options is presented in Section 4.

4. Experimental Results

4.1. Toy Example

To better visualize and illustrate our idea, we construct a

toy example based on the MNIST data set with a fixed fea-

ture representation. As shown in Figure 4 (a), we have ten

classes (color-coded) in the feature space (each dot corre-

sponds to one sample). In an ideal case, we have sufficient

samples for each of the classes, as shown in (a).

Unfortunately, in many situations, we only have limited

number of samples for certain classes. We simulate an ex-

treme case, as shown in Figure 4 (b). For the left-most class,

we only have one sample (colored in red). In this situation,

the standard multinomial logistic regression will “ignore”

this class, with the solution space shown in Figure 4 (c).

In order to address the above issue, we apply our under-

represented class promotion (UP) in Eq. 6 and get the result

shown in Figure 4 (d). This is achieved by promoting the

squared norm of the weight vector of the underrepresented

class, as illustrated in Table 2.

4.2. Oneshot Face Recognition

As we have described in section 3, we first train a general

face representation model with the training images in the

base set, and then train a multi-class classification model

with the training images in both the base and novel sets.

We list the experimental results in details in the following

subsections.

4.2.1 Face Representation Learning

We use the LFW [9, 8] verification task to evaluate our face

representation model trained using the training images in
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Figure 4: A toy example to illustrate our UP term, better

viewed in color. (a) is an ideal case, where we have suf-

ficient examples for all the classes. Each dot in the figure

corresponds to a sample in the training dataset, while dif-

ferent colors represent different classes. (b) is the case we

discuss in this paper, where for one class (leftmost, red), we

have only one sample. (c) and (d) are the classification re-

sults by optimizing without/with our UP term in Eq. 6. As

shown in (d), our UP term successfully claims a reasonable

volume for the red class (leftmost) with only one example.

Corresponding norms of the weight vectors are shown in

Table 2.

Without UP With Up
1

9

∑
k 6=9

‖wk‖2 2.29 2.36

‖wk‖2, k = 9 1.75 2.38

Table 2: The norms of the weight vectors for the one-shot

class and base classes with and without the underrepre-

sented class promotion (UP). As shown in Figure 4 (b),

there are 9 base classes, indexed from 0 to 8. The average

of the norms of the weight vectors for these base classes is

listed in the first row in this table. There is one underrepre-

sented class (leftmost class in Figure 4) (b), indexed by 9.

The norm of its weight vector effectively gets increased by

the UP loss term.

the base set in phase one. The LFW verification task is the

de facto standard for face feature evaluation. The task is

to verify if a given face pair (in total 6000) belongs to the

same person or not. The verification accuracy with different

models are listed in Table 3.

As shown, with resnet-34 [7] and the training data in the

base set, we can achieve a result comparable to the state of

Methods Dataset Network Accuracy

JB [1] Public – 96.33%
DeepID2,3 [16, 18] Public 200 99.53%
FaceNet [15] Private 1 99.63%
DeepFace[13] Public 1 97.27%
Human – – 97.53%
Ours (AlexNet) Public 1 96.97%
Ours (Resnet-34) Public 1 98.88%

Table 3: Face Feature Evaluation with LFW verification.

the art. Among the methods using single model and pub-

lic data, we consider our model as achieving a cutting-edge

performance. One advantage of our model is that we train

our model using public data set and standard model struc-

ture, which makes our work easy to reproduce and flexible

to extend for better performance. According to Table 3, we

regard our model good enough to let us start to investigate

the one-shot learning phase. We will leave the face feature

representation improvement as our future work.

4.2.2 One-shot Face Recognition

In phase two, we train a 21, 000-class classifier to recog-

nize the persons in both the base set and the novel set. In

the base set, there are 20, 000 persons, each of which hav-

ing 50 − 100 images for training and 5 for testing. In the

novel set, there are 1000 persons, each having one image

for training and 20 for testing. The experimental results in

this paper were obtained with 100, 000 test images for the

base set and 20, 000 test images for the novel set. In order to

facilitate research in this direction, we release the labels for

20, 000 test images for the base set (out of the 100K base

set test), and release labels for another 5, 000 test images

for the novel set, to build a development set. We focus on

the recognition performance in the novel set while monitor-

ing the recognition performance in the base set to ensure

that the performance improvement in the novel set does not

harm the performance in the base set.

To recognize the test images for the persons in the novel

set is a challenging task. The one training image per per-

son was randomly preselected, and the selected image set

includes images of low resolution, profile faces, and faces

with occlusions. Some examples of the training images are

shown in Figure 1 and Figure 7. As shown, the training im-

ages in the novel set show a large range of variations in gen-

der, race, ethnicity, age, camera quality (or evening draw-

ings), lighting, focus, pose, expressions, and many other pa-

rameters. Moreover, we applied de-duplication algorithms

to ensure that the training image is visually different from

the test images, and the test images can cover many differ-

ent looks for a given person. Some examples can be seen in



Method C@99% C@99.9%

Fixed Feature 25.65% 0.89%
SGM [6] 27.23% 4.24%
Update Feature 26.09% 0.97%
Direct Train 15.25% 0.84%
Shrink Norm (Eq.8) 32.58% 2.11%
Equal Norm (Eq.9) 32.56% 5.18%
UP Term (Eq.6) 77.48% 47.53%

Table 4: Coverage at Precisions = 99% and 99.9% on the

novel set. Please refer to subsection 4.2.2 for the detailed

descriptions for all the methods. As shown in the table, our

UP loss significantly improves the recall at precision 99%
and 99.9% .
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Fixed Feature; Coverage@P=0.99: 0.2565

UP term; Coverage@P=0.99: 0.7748

Equal Norm; Coverage@P=0.99: 0.3256

Figure 5: Precision-Coverage curves of different methods

on the novel set with close-set identification protocol. We

draw selected curves for better visualization. Please refer to

Table 4 for detailed comparisons.

Figure 1, and more examples are shown in the supplemen-

tary materials.

The experimental results of our method and the alterna-

tive methods are listed in Table 4. We use coverage rate at

precision 99% and 99.9% as our evaluation metrics since

this is the major requirement for a real recognizer. The

methods in the table are described as follows.

All the methods in Table 4 are based on a 21, 000-class

classifier (trained with different methods). Note that we

boost all the samples in the novel set for 100 times for all

the methods , since the largest number of samples per per-

son in the base set is about 100.

The “Fixed Feature” in Table 4 means that, in phase two,

we do not update the feature extractor and only train the

classifier in Eq. 2 with the feature extractor provided by

phase one.

The SGM, known as squared gradient magnitude loss,

is obtained by updating the feature extractor during phase

one using the feature shrinking method as described in [6].

Compared with the “Fixed-Feature”, SGM method intro-

duces about 2% gain in recall when precision requirement is

99%, while 4% gain when precision requirement is 99.9%.

The improvement for face recognition by feature shrinking

in [6] is not as significant as that for general image. The

reason might be that the face feature is already a good rep-

resentation for faces and the representation learning is not

a major bottleneck. Note that we did not apply the feature

hallucinating method as proposed in [6] for fair comparison

and to highlight the contribution of model learning, rather

than data augmentation. To couple the feature hallucinat-

ing method (may need to be modified for face) is a good

direction for the next step.

The “Update Feature” method in Table 4 means that we

fine-tune the feature extractor simultaneously when we train

the classifier in Eq. 2 in phase two. The feature updating

does not change the recognizer’s performance too much.

The rest three methods (shrink norm, equal norm,

UP-method) in Table 4 are obtained by using the cost

functions defined in Eq. 8, Eq. 9, and Eq. 6 as

supervision signals for deep convolutional neural net-

work in phase two, respectively, with the face fea-

ture updating option. As shown in the table, our

UP term improves the coverage@precision=99% and

coverage@precision=99.9% significantly.

The coverage at precision 99% on the base set obtained

by using any classifier-based methods in Table 4 is 100%.

The top-1 accuracy on the base set obtained by any of these

classifier-based methods is 99.80± 0.02%. Thus we do not

report them separately in the table.

5. Conclusion and Future Work

In this paper, we have studied the problem of one-shot

face recognition, by creating a benchmark dataset consist-

ing of 20, 000 persons for face feature learning and 1, 000
persons for one-shot learning. We reveal that the defi-

ciency of multinomial logistic regression in one-shot learn-

ing is related to the norms of the weight vectors in multi-

nomial logistic regression, and propose a novel loss called

underrepresented-classes promotion to effectively address

the data imbalance problem in one-shot learning. The eval-

uation results on the benchmark dataset show that the new

loss term brings a significant gain by improving the recogni-

tion coverage rate from 25.65% to 77.48% at the precision

of 99% for one-shot classes, while still keeping an overall

accuracy of 99.8% for normal classes.

In the future, we will continue this study for open do-

main face identification and see how the proposed UP term

can help improve the recognition accuracy in more general

scenarios. We are also interested in applying the UP prior

on the ImageNet dataset under the same setting as in [6]

and explore more options to improve low-shot learning in

general visual recognition problems.
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6. Image Visualization

Figure 6: Example training images in the base set used for

representation learning. These are a portion of the images

we have for Lady Gaga, which covers a large diversity of

her appearance. Note that we have cropped and aligned the

face area to generate the training data.



Figure 7: Example training images in the novel set used for

one-shot learning. In this set, only one training image is

provided for each person. Here we present 18 images for

18 different persons. As shown, there are large variations

in gender, race, ethnicity, age, camera quality, lighting, fo-

cus, occlusion condition, pose, expressions, and many other

aspects.


