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Figure 1. Example of a swapped face. Left: source image that represents the identity; Middle: target image that provides the attributes;

Right: the swapped face image. All images are in 1024
2.

Abstract

Face swapping has both positive applications such as

entertainment, human-computer interaction, etc., and neg-

ative applications such as DeepFake threats to politics, eco-

nomics, etc. Nevertheless, it is necessary to understand the

scheme of advanced methods for high-quality face swap-

ping and generate enough and representative face swapping

images to train DeepFake detection algorithms. This pa-

per proposes the first Megapixel level method for one shot

Face Swapping (or MegaFS for short). Firstly, MegaFS or-

ganizes face representation hierarchically by the proposed

Hierarchical Representation Face Encoder (HieRFE) in an

extended latent space to maintain more facial details, rather

than compressed representation in previous face swapping

methods. Secondly, a carefully designed Face Transfer

Module (FTM) is proposed to transfer the identity from a

source image to the target by a non-linear trajectory without

explicit feature disentanglement. Finally, the swapped faces

can be synthesized by StyleGAN2 with the benefits of its

training stability and powerful generative capability. Each

part of MegaFS can be trained separately so the require-
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ment of our model for GPU memory can be satisfied for

megapixel face swapping. In summary, complete face repre-

sentation, stable training, and limited memory usage are the

three novel contributions to the success of our method. Ex-

tensive experiments demonstrate the superiority of MegaFS

and the first megapixel level face swapping database is re-

leased for research on DeepFake detection and face image

editing in the public domain.

1. Introduction

Given two face images, face swapping refers to transfer-

ring the identity from the source image to the target image,

while the facial attributes of the target image hold intact. It

has attracted extensive attention in recent years for its broad

application prospects in entertainment [4, 24], privacy pro-

tection [6, 33], and theatrical industry [34].

Existing face swapping methods can be roughly di-

vided into two categories: subject-specific and subject ag-

nostic methods. Subject-specific face swapping methods

[11, 27, 34] need to be trained and tested on the same

pair of subjects, which restricts their potential applications.

On the contrary, subject agnostic face swapping methods
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[35, 5, 28, 38, 36] can be applied to arbitrary identities with-

out additional training procedures. In this paper, we focus

on a more challenging topic: one shot face swapping, where

only one image is given from the source and target identity

for both training and testing.

With the rapid growth of high resolution image and video

data on the web, it becomes increasingly popular to pro-

cess high resolution samples. However, generating high

resolution swapped faces is rather difficult because of the

following problems. Firstly, information is insufficient for

high-quality face generation due to the compressed repre-

sentation in an end-to-end framework [5, 35, 28]. Secondly,

adversarial training is unstable [8], which confines the res-

olution of previous methods only up to 2562. Thirdly, the

GPU memory limitation makes the training untenable, or

the training batch is bounded by a small size, which aggra-

vates the collapse of the training process.

To this end, this paper proposes the first Megapixel level

one shot Face Swapping method (MegaFS) by adopting the

“divide and conquer” strategy in three steps. Firstly, to over-

come the information loss in the encoder, we adopt GAN

Inversion methods [42, 10, 16, 1, 2, 10, 31, 11, 59] and pro-

pose a Hierarchical Representation Face Encoder (HieRFE)

to find the complete face representation in an extended la-

tent space W++. Secondly, to modify face representations

and resolve the problem of previous latent code manipula-

tion methods [43, 17, 48, 51, 50, 7, 37, 3] that only one at-

tribute can be modified once a time, a novel swapping mod-

ule, Face Transfer Module (FTM), is proposed to control

multiple attributes synchronously without explicit feature

disentanglement. Finally, the unstable adversarial training

problem is evaded by exploiting StyleGAN2 [23] as the de-

coder, which is fixed and the discriminator is not used for

optimization. Each part of MegaFS can be trained sepa-

rately so the GPU memory requirements are satisfied for

megapixel face swapping. The contributions of this paper

can be summarized as:

• To the best of our knowledge, the proposed MegaFS is

the first method that can conduct one shot face swap-

pings at megapixel level.

• For encoding and manipulating the complete face rep-

resentation, faces are encoded by HieRFE hierarchi-

cally in the new extended latent space W++ and a new

multistep non-linear latent code manipulation module,

FTM, is proposed to manage multiple attributes syn-

chronously without explicit feature disentanglement.

• Experimental results on benchmark dataset have

shown the effectiveness of the proposed MegaFS. Fur-

thermore, the first megapixel face swapping database

is released for research of DeepFake detection and face

image editing in the public domain.

2. Related Works

2.1. Face Swapping

Subject-specific face swapping methods are popular in

recent years, where DeepFake [11] and its variants are

trained using pairwise samples. Besides, Korshunova et

al. [27] model different source identities separately, such

as a CageNet for Nicolas Cage, or a SwiftNet for Tay-

lor Swift. Recently, Disney Research realizes high reso-

lution face swapping [34], but it requires training decoders

for different subjects, which hinders its generalization. Be-

sides, it is time consuming and difficult for subject-specific

methods to train specific models for distinct pairs of faces

[14, 46, 45, 29, 20, 55, 26]. Subsequently, subject agnos-

tic face swapping methods break the limitations of previ-

ous subject-specific face swapping methods. Realistic Neu-

ral Talking Head [39] adopts meta-learning to relieve the

pain of fine-tuning on different individuals. FaceSwapNet

[56] proposes a landmark swapper to handle the identity

leakage problem from landmarks. In the meanwhile, other

mindsets follow the attribute disentanglement heuristic to

explore new high fidelity face swapping frameworks. FS-

Net [35] represents the face region of the source image as

a vector, which is combined with a non-face target image

to generate the swapped face image. IPGAN [5] disentan-

gles identities and facial attributes as different vectorized

representaions. Based on previous works, FSGAN [36] and

FaceShifter [28] achieve state-of-the-art results by their out-

standing performance.

2.2. GAN Inversion

Based on a well-trained GAN, GAN Inversion, or La-

tent Space Embedding, tries to find the latent code that can

accurately reconstruct a given image synthesized. To this

end, two problems need to be settled: determining a proper

latent space and designing an algorithm to search for the op-

timal latent code within that space. As for the latent space,

early methods perform image inversion into W ∈ R
1×512

[42, 19, 17], while later works [1, 2, 11, 10] extend the la-

tent space to W+ ∈ R
18×512, which proves to have better

reconstruction results. As for the inversion algorithms, they

either train an encoder [42, 10, 16] to predict latent codes of

images or minimize the error between predicted and given

images by optimizing latent codes from random initializa-

tions [1, 2, 10, 31]. Some methods [11, 59] combine both

to optimize latent codes initialized by encoders.

2.3. Latent Code Manipulation

Latent Code Manipulation, or Latent Control, is another

attractive research area to manipulate latent codes based on

the observation that semantic editing operations can be re-

alized by adding high dimensional directions [43]. Several

linear semantic directions, or trajectories, of W are found
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Figure 2. The proposed MegaFS consists of three stages: Face Encoding, Latent Code Manipulation, and Face Generation. Firstly, HieRFE

projects two face images into latent space W++. Then FTM manipulates Lhigh
s and L

high
t in two hierarchical latent sets Ss and St to get

Ls2t. Finally, the swapped face image ys2t can be synthesized by a pre-trained StyleGAN2 generator from Ct, L
low
t , and Ls2t.

Figure 3. HieRFE consists of a ResNet50 backbone based on resid-

ual blocks, a feature pyramid structure based on FPN, and eighteen

lateral non-linear mapping networks, in which n× refers to the

number of the corresponding parts.

[17, 48]. StyleRig [51] and PIE [50] propose to manipu-

late latent space through an existing 3D model [7], which

successfully control facial poses, expressions, and illumi-

nations. Previous methods [17, 51, 37, 43] have found good

controllability of StyleGAN based on the assumption that

semantic directions in StyleGAN latent space are linear. Re-

cently, StyleFlow [3] achieves better manipulation results

through non-linear trajectories.

3. Method

Fig.2 demonstrates the overall pipeline and notations of

the proposed MegaFS, which combines the identity infor-

mation from a source image xs and attribute information

from a target image xt to generate the final swapped face

image ys2t. In the following, we will present the details of

our method.

3.1. Hierarchical Representation for Face Swapping

In the first stage, face images are projected into latent

space W++ using Hierarchical Representation Face En-

coder (HieRFE) to deposit complete face information. The

structure of HieRFE is detailed in Fig.3.

Specifically, HieRFE consists of a ResNet50 backbone

based on several residual blocks [18], a feature pyramid

structure based on FPN [30] for feature refinement, and

eighteen lateral non-linear mapping networks for latent

code prediction. Please refer to the corresponding papers

for details of residual blocks and FPN. As for the non-

linear mapping network, it comprises repeated downsam-

pling, convolution, batchnorm, and leakyReLU layers until

the feature map can be pooled as a vector, i.e., l ∈ R
1×512.

Then, the constant input of StyleGAN2 predicted by

the backbone and four latent codes predicted by the small-

est feature map, denoted as C ∈ R
4×4×512 and Llow ∈

R
4×512, represent low-level topology information. Other

latent codes are gathered as Lhigh ∈ R
14×512 to represent

high-level semantic information. Finally, subscript s and t

are adopted to represent the source and target images if it is

necessary in the following paper.
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3.2. Synchronized Control of Multiple Attributes

During the second stage, Face Transfer Module (FTM) is

proposed to control multiple attributes of identity informa-

tion in a synchronized manner for face swapping demands.

In detail, FTM contains 14 Face Transfer Blocks, the num-

ber of which equals that of lhigh.

As shown in Fig.4, each Face Transfer Block contains

three identical transfer cells. In each transfer cell, lhighs and

l
high
t are firstly concatenated to lhighc , which collects all in-

formation from the source and target images. Then lhighs is

refined to l̂highs through a two-step non-linear trajectory:

T (lhighc , lhighs ) = T2(l
high
c , T1(l

high
c , lhighs )) (1)

in which

T1(a, b) = sigmoid(K1(a))× b

T2(a, b) = Tanh(K2(a)) + b
(2)

where K1(·) and K2(·) denote two linear layers. The tra-

jectory is crafted based on the following illustrations. In the

first step, the multiplication coefficients are scaled in range

(0, 1) after sigmoid activation, where lhighs is designed to

discard irrelevant semantics except for the identity infor-

mation. In the second step, lhighs accepts a small amount

of target semantic attributes by shifting in the latent space.

Similarly, l
high
t is processed in parallel but for discarding

target identity while holding other semantics. Finally, the

transferred latent code ls2t ∈ Ls2t can be predicted as

ls2t = σ(ω)l̂hight + (1− σ(ω))l̂highs (3)

where ω ∈ R
1×512 is a trainable weight vector, and σ stands

for the sigmoid activation. The transferred latent codes Ls2t

is composed by gathering all predicted ls2t.

3.3. High­Fidelity Face Generation

Finally in the third stage, Cs and Llow
s are discarded

since they contain negligible identity information from xs.

The swapped face image ys2t can be generated by feeding

StyleGAN2 generator with Ct, L
low
t and Ls2t.

By taking StyleGAN2 as the decoder, face swapping

through latent space differentiates our method from other

face swapping frameworks. Firstly, it provides an extended

latent space for complete face representation, which makes

detailed face generation feasible. Secondly, it makes our

method operating globally in W++ instead of locally on

feature maps, which is desirable as it can conduct non-

linear transformations through latent code manipulations

without local distortions. Thirdly, it does not require ex-

plicit attributes disentanglement, which makes the training

process straightforward without tricky loss functions and

hyper-parameter settings.

Figure 4. Inside FTM, each Face Transfer Block contains three

identical transfer cell. After being processed by three cells, two

refined vectors are weighted by a learnable weight ω and summed

as the final output.

3.4. Objective Functions

For each part of MegaFS, HieRFE and FTM are trained

sequentially, while StyleGAN2 generator remains intact.

Objective function of HieRFE: Following the previous

work [44], we make use of three objectives for supervis-

ing a pair of input image x and its reconstruction image x̂,

including pixel-wise reconstruction loss Lrec, Learned Per-

ceptual Image Path Similarity (LPISP) loss LLPIPS [58],

and identity loss Lid as follows:

Lrec = ‖x− x̂‖
2

(4)

LLPIPS = ‖F (x)− F (x̂)‖
2

(5)

Lid = 1− cos(R(x), R(x̂)) (6)

where ‖·‖
2

denotes ℓ2 distance, F (·) denotes the perceptual

feature extractor, R(·) denotes the ArcFace [12] recognition

model, cos(·, ·) denotes the cosine similarity of two face

embeddings.

In addition, as face swapping needs pose and expres-

sion controllability, we introduce landmarks loss Lldm to

measure ℓ2 difference between the predicted landmarks of

the input faces and the corresponding ones of reconstructed

faces as following:

Lldm = ‖P (x)− P (x̂)‖
2

(7)

where P (·) denotes the facial landmark predictor [54]. The

overall loss function for training HieRFE is

Linv = λ1Lrec + λ2LLPIPS + λ3Lid + λ4Lldm (8)

where λ1, λ2, λ3 and λ4 are loss weights. Besides, x and x̂

need resizing as the input of each model before calculating

the loss function.
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Objective function of FTM: For training FTM, four losses

are proposed, including:

L′

rec = ‖xs − x̂s‖2 + ‖xt − x̂t‖2 (9)

L′

LPIPS = ‖F (xt)− F (ys2t)‖2 (10)

L′

id = 1− cos(R(xs), R(ys2t)) (11)

L′

ldm = ‖P (xt)− P (ys2t)‖2 (12)

Besides, Lnorm is leveraged to stabilizes the training pro-

cess.

Lnorm =
∥

∥Lhigh
s − Ls2t

∥

∥

2
(13)

Similarly, the overall loss function for training FTM is

Lswap = ϕ1L
′

rec+ϕ2L
′

LPIPS+ϕ3L
′

id+ϕ4L
′

ldm+ϕ5Lnorm

(14)

where ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5 are loss weights. Finally, when

FTM converges, the proposed method is ready for face

swapping on megapixels.

4. Experiments

In this section, we will first show the effectiveness of the

proposed method by comparing it with other state-of-the-art

methods provided in FaceForensics++ [46]. Then the supe-

riority of our method is demonstrated by conducting face

swapping on CelabA-HQ [21]. Finally, an ablation study is

presented to reveal the necessity of each component of our

method.

4.1. Datasets and Implementation Details

CelebA [32]: This dataset is built for face detection, facial

landmark localization, attribute recognition and control, and

face synthesis. It contains 202,599 celebrity images with 40

labeled attributes and 5 landmark location annotations.

CelebA-HQ [21]: It is a high-quality version of CelebA

dataset. All 202,599 images in CelebA are processed by two

pre-trained neural nets for denoising and super-resolution,

resulting in 30,000 high-quality images.

FFHQ [22]: The dataset contains 70,000 megapixel face

images collected from Flickr. FFHQ has considerable vari-

ations of age, ethnicity, gender, and background.

FaceForensics++ [46]: It is a forensics dataset consisting

of 1,000 original video sequences from YouTube that have

been manipulated with five automated face manipulation

methods: Deepfakes, Face2Face, FaceSwap, NeuralTex-

tures, and FaceShifter, in which Deepfakes, FaceSwap, and

FaceShifter are face swapping methods, while Face2Face

and NeuralTextures are reenactment algorithms.

Implementation Details: In all experiments, learning rate

of the Adam optimizer [25] is set to 0.01. We set λ1, λ2, λ3

and λ4 to 1, 0.8, 1, and 1000. We set ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5

to 1, 32, 32, 24, and 100000. In addition, 200,000 faces are

randomly sampled as auxiliary data by running StyleGAN2.

Figure 5. Qualitative comparison results of FaceSwap, DeepFakes,

FaceShifter, and ours. FaceShifter and our method generate obvi-

ously better results than other methods. For FaceShifter, it gener-

ates wrong expressions in row 1 (fierce) and row 2 (fear), of which

expressions are from source faces. Besides, FaceShifter keeps the

beard of target faces in rows 3 and 4, which makes the swapped

faces close to their target faces. In the last three rows, FaceShifter

fails to swap faces. However, our method successfully preserves

identity information from source images.

For experiments on FaceForensics++, HieRFE and FTM

are sequentially trained ten epochs in total on CelebA,

CelebA-HQ, FFHQ, and the auxiliary data. As for exper-

iments on CelebA-HQ, HieRFE and FTM are sequentially

trained seventeen epochs in total on FFHQ and the auxiliary

data. As for training time, it takes about five days on three

Tesla V100 GPUs.

4.2. Experiments on FaceForensics++

Qualitative Comparison: As FaceForensics++ con-

tains images generated by three face swapping methods:

FaceSwap, DeepFakes, and FaceShifter, we extract frames

of the same index from this dataset and compare them with

the proposed MegaFS.

As shown in Fig.5, FaceShifter and our method gener-

ate more visually pleasant results than other methods. For

example, FaceSwap and DeepFakes suffer from blending

inconsistency, distortions, and artifacts. For FaceShifter,

the disentanglement of identity information from other at-

tributes is sub-optimal because of its fixed identity encoder.

In Fig.5, FaceShifter generates unnatural expressions in the

first and second rows, which seems to keep unnecessary ex-
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pressions from the source images. FaceShifter also fails

to transfer identity information from source faces to target

faces by incorrectly maintaining the beard from target faces

in rows 3 and 4. Additionally as shown in rows 4, 5, and

6, FaceShifter tends to keep excessive attributes from tar-

get images, which makes the swapped faces similar to their

target faces.

Quantitative Comparison: In order to make a fair compar-

ison with other methods quantitatively, we follow the exper-

iment settings introduced in FaceShifter [28].

Firstly, ten frames per original video are evenly sam-

pled and processed by MTCNN [57], resulting in 10,000

aligned faces. Then, aligned faces are manually checked in

case of incorrect detections. After data cleaning, all cor-

responding frames in manipulated videos are extracted for

testing. However, as FaceForensics++ is not designed for

face recognition, some videos display repeated identities.

For example, videos numbered 043 and 343 show Vladimir

Putin, and videos of 179, 183 and 826 show the same person

Barack Obama. Thus, we manually categorize all videos

into 885 identities. ID retrieval is measured as the top-1

matching rate of the swapped faces and their corresponding

identities from source faces, serving to measure the identity

preservation ability of different face swapping methods. As

for pose and expression errors, an open-sourced pose esti-

mator [47] and a 3D facial model [13] are used to extract

pose and expression vectors. Then ℓ2 distances between

swapped faces and the corresponding target faces are mea-

sured and recorded in Tab.1.

Method ID retrieval ↑ pose ↓ expression ↓

DeepFakes [11] 88.39 4.64 3.33

FaceSwap [15] 72.69 2.58 2.89

Face2Face [53] - 2.68 2.09

Neural Textures [52] - 2.21 1.64

FaceShifter [28] 90.68 2.55 2.82

Ours 90.83 2.64 2.96

Table 1. Quantitative comparison results on FaceForensics++. The

best two results are shown in red and blue respectively. ↑ means

higher is better, and ↓ means lower is better.

As DeepFakes, FaceSwap, and FaceShifter are face

swapping methods, while Face2Face and Neural Textures

are face reenactment methods, different evaluation criteri-

ons should be considered. We report ID retrieval, pose error,

and expression error for face swapping methods and neglect

ID retrieval for face reenactment methods. As shown in

Tab.1, our method achieves the highest ID retrieval thanks

to the hierarchical representation for faces. However, our

method performs inferior to FaceShifter and reenactment

methods in terms of pose and expression errors. Aside from

face reenactment methods are mainly designed to control

facial movements and expression deformations while ne-

Figure 6. Face swapping results on CelabA-HQ. Images from right

to left are source image xs which provides the identity, target im-

age xt that offers the attributes, and the swapped face image ys2t.

All images are in 1024
2.

glecting to swap the identity information, two possible rea-

sons hide behind. Firstly, our method is trained on only

500,000 images, which is much less than 2,700,000 im-

ages used to train FaceShifter. Besides, the training set for

FaceShifter contains VGGFace [41], which contains more

pose and expression variations compared with CelebA-HQ

and FFHQ. Secondly, StyleGAN2 is trained on FFHQ,

which is proved to have data bias [49]. Consequently, Style-

GAN2 tends to generate smiling faces.

4.3. Experiments on CelebA­HQ

Qualitative Result: One superiority of our method is that

it can achieve megapixel level face swapping. As shown

in Fig.6, faces can be swapped across various expressions

and poses. The swapped faces faithfully keep wrinkles, iris

colors, eyebrow and nose shapes from source faces. To the

best of our knowledge, no other methods can swap faces

at the resolution of 10242 except for [34]. However, [34]

needs to train different decoders for different identities, so

it is not compared in this section.
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Method ID similarity ↑ pose ↓ expression ↓ FID ↓

Ours 0.5014 3.58 2.87 10.16

Table 2. Quantitative experimental results on CelebA-HQ. We re-

port ID similarity, pose error, and expression error to demon-

strate the megapixel level face swapping performance of the pro-

posed MegaFS. FID is also reported as the similarity between the

300,000 swapped face images and CelebA-HQ dataset.

Quantitative Result: To quantify the capability of the pro-

posed MegaFS on swapping megapixel face images, we ran-

domly swapped 300,000 pairs of face images in CelebA-

HQ for testing. For the reason that ID retrieval calculation

between 30,000 original faces and 300,000 swapped faces

requires Nine Billion times of matching, we report cosine

similarity of swapped faces and the corresponding source

faces using cosface as ID similarity to release the computa-

tional burden. Also, both pose error and expression error are

measured under the same settings as experimented in sub-

section 4.2. In addition, Fréchet Inception Distance (FID) is

reported to quantify the similarity of the 300,000 swapped

face images to CelebA-HQ dataset. The results are summa-

rized in Tab.2 as the baseline for future research.

4.4. Ablation Study

In this section, we conduct ablation experiments on

CelebA-HQ to evaluate the effectiveness of the key com-

ponents in the proposed MegaFS.

4.4.1 The Choise of Latent Space

In this part, we will verify the superiority of the extended

latent space W++ over W+. We trained another neural net-

work, which has the same network structure as HieRFE, to

project facial images into latent space W+.

Latent Space LPIPS ↓ MSE ↓ failure rate ↓

W+ 0.2486 0.0672 1.28%

W++ 0.2335 0.0563 0.65%

Table 3. Quantitative comparison results of latent space W+ and

W++ using GAN Inversion metrics. LPIPS ℓ2 distance and image

level MSE are measured to quantify the information preservation

capabilities of W+ and W++. The robustness is indicated by the

failure rate of facial reconstruction. For reported metrics, HieRFE

outperforms its counterpart trained on W+.

For illustrating the information preservation ability, two

widely used metrics in GAN Inversion, LPIPS ℓ2 distance

and image level MSE, are reported in Tab.3. Besides, the

percentage of unsuccessful reconstructions is defined as the

failure rate to quantify the robustness of two inversion mod-

els. From the reported results, we can conclude that HieRFE

Figure 7. Qualitative comparison results of reconstructed images

from latent space W+ and W++. From top to bottom: source im-

ages, reconstructed images from W+ and W++. HieRFE and its

counterpart perform well in easy cases (the first column), but the

latter fails to recast sunglasses, glasses, eye gazes, and faces under

complex lighting conditions (from the second to the last columns).

Latent Space ID similarity ↑ pose ↓ expression ↓

W+ 0.5438 4.0640 1.7467

W++ 0.5816 3.8179 1.6489

Table 4. Quantitative comparison results of latent space W+ and

W++ using face swapping metrics. HieRFE trained on W++

beats its counterpart trained on W+ in terms of ID similarity, pose

error, and expression error.

outperforms its counterpart trained on W+ for better infor-

mation preservation ability as well as the robustness. As to

the controllability, we use the same evaluation criterions in

subsection 4.3 to evaluate different latent space. The quan-

titative results are shown in Tab.4, suggesting that W++ is

better than W+ in terms of ID similarity, pose and expres-

sion preservation ability.

The qualitative results of two inversion models are dis-

played in Fig.7. HieRFE and its counterpart can recon-

struct easy cases well. However, the latter fails to recast

sunglasses, eyeglasses, eye gazes, and faces under complex

lighting conditions. Thus, the latent space W++ is veri-

fied to be better than W+ for both face reconstruction and

face swapping tasks in all terms of information preservation

ability, robustness, and controllability.

4.4.2 The Design of Latent Code Manipulator

As StyleGAN2 has a layer-wise representation [9, 22, 23],

it is heuristically feasible to manipulate latent codes by any

network that operates on vectors. However, we argue that

the design of the latent code manipulator needs to con-

sider the applicability on vectorized information exchang-

ing. To this end, we make use of [Ct, L
high
t ,Lhigh

s ] in-

stead of [Ct, L
high
t ,Ls2t] for generation, named as Latent

Code Replacement (LCR), to envisage the functionality of

C, Llow and Lhigh. Afterwards, we follow the previous
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Figure 8. The design of ID Injection follows the SPADE ResBlk

[40], with convolutional layers for 2D input subsititued by linear

layers, indicated by black arrows, for vectors.

Latent Control ID similarity ↑ pose ↓ exp ↓ FID ↓

LCR 0.3997 5.04 3.43 9.64

ID Injection 0.4447 3.67 2.82 10.32

FTM (Ours) 0.5014 3.58 2.87 10.16

Table 5. Quantitative comparison results of different latent code

manipulation methods (“exp” represents expression error). FTM

achieves the best ID similarity and pose preservation results and

makes a decent balance among expression error and FID.

method [40] to inject identity information into latent codes.

This design is detailed in Fig.8, namely ID Injection. Both

designs are compared to the proposed FTM.

For a fair comparison, other two sets of 300,000 swapped

face images are generated by adopting LCR and ID Injec-

tion respectively. The quantitative results are summarized

in Tab.5 and the qualitative comparison is shown in Fig.9.

LCR achieves the best FID since it keeps excessive seman-

tic information from source images. However, this is not fa-

vorable for face swapping since information from L
high
t is

lost. As shown in the third column of Fig.9, LCR can swap

faces while ignoring target attributes such as skin color and

eye state. Thus, we can safely conclude that identity infor-

mation, to a large extent, is encoded in Lhigh. Thus, Cs and

Llow
s are discarded in the proposed pipeline.

Based on this observation, ID Injection and FTM are pro-

posed to process only on Lhigh. For ID Injection, it has the

lowest expression error as it reserves topology information

from target images at the cost of other semantic parts from

source images, such as identity information stated in Tab.5,

and facial details as shown in the fourth column of Fig.9.

Among them, FTM achieves the highest ID similarity level,

lowest pose error, and makes a decent balance in terms of

expression error, FID, and visual pleasantness. Thus, the

proposed FTM shows to be better than the other two latent

code manipulators for face swapping.

Figure 9. Qualitative comparison results of different latent code

manipulation methods: LCR, ID Injection, and FTM. LCR keeps

skin color and eye state from the source image xs as shown in the

first two rows. For ID Injection, attributes are dominated by the

target image xt. For example, the red lip in row 2 and beard in the

last row from source images are neglected. FTM achieves the best

balance among the three latent code manipulation methods.

5. Conclusion

In this paper, we have analyzed three unsettled key issues

in previous works for high resolution face swapping and

proposed a general face swapping pipeline named MegaFS

to resolve these difficulties in a three-stage procedure. Hi-

eRFE in the first stage projects faces into hierarchical rep-

resentaions in an extended latent space W++ for complete

facial information deposit. FTM in the second stage trans-

fers the identity from a source image to the target by a non-

linear trajectory without explicit feature disentanglement.

Finally, StyleGAN2 is used to synthesize the swapped face

and avoid unstable adversarial training. The modular de-

sign of MegaFS requires little GPU memory with a negli-

gible performance cost and it performs comparatively when

compared to other state-of-the-art face swapping methods

at the resolution of 2562. Besides, to the best of our knowl-

edge, MegaFS is the first method that can conduct one shot

face swapping on megapixels. Finally, based on MegaFS,

the first megapixel level face swapping database is built and

released to the public for future research of forgery detec-

tion and face swapping.
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